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Abstract

Given only a few observed entries from a low-
rank matrix X , matrix completion is the problem
of imputing the missing entries, and it formal-
izes a wide range of real-world settings that in-
volve estimating missing data. However, when
there are too few observed entries to complete
the matrix, what other aspects of the underlying
matrix can be reliably recovered? We study one
such problem setting, that of “one-sided” ma-
trix completion, where our goal is to recover the
right singular vectors of X , even in the regime
where recovering the left singular vectors is im-
possible, which arises when there are more rows
than columns and very few observations. We pro-
pose a natural algorithm that involves imputing
the missing values of the matrix XTX and show
that even with only two observations per row in
X , we can provably recover XTX as long as we
have at least Ω(r2d log d) rows, where r is the
rank and d is the number of columns. We evalu-
ate our algorithm on one-sided recovery of syn-
thetic data and low-coverage genome sequenc-
ing. In these settings, our algorithm substantially
outperforms standard matrix completion and a
variety of direct factorization methods.

1. Introduction
Matrix completion, the problem of recovering a low-rank
matrix after observing only a subset of its entries, formal-
izes a wide range of real-world settings that involve esti-
mating missing data, including recommending movies to
users (Koren et al., 2009), reducing MRI scan time via par-
allel imaging (Shin et al., 2014), and quantifying annota-
tor disagreement in dataset crowdsourcing (Gordon et al.,
2021). Over the years, a flurry of research has produced
a robust understanding of the problem (Candès & Recht,
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2009; Keshavan et al., 2009, inter alia). However, most
of our understanding is restricted to settings where each
row and each column have more observations than the rank
of the underlying matrix. It is natural that past work op-
erated under this assumption because full matrix comple-
tion is impossible without it: for a rank-r matrix X with
shape m × d, one can show that estimating the matrix is
impossible with o(r(m + d)) observations. Nonetheless,
many important applications do not satisfy this assump-
tion: for example, in low-coverage genotype imputation (Li
et al., 2009), we might sequence d = 2,000 people for
10,000 genetic variants each, out of the m = 10,000,000
genetic variants in humans. Represented as a matrix, we
have a 10,000,000 × 2,000 matrix with 2,000 ∗ 10,000 =
20,000,000 total observations, or about two observations
per row on average, which is certainly much less than the
rank of the matrix. Given too few observed entries to fully
complete the matrix, what other aspects of the underlying
matrix can be reliably recovered?

In this paper, we study settings like these and show that
even with just two entries per row, as long as there are suf-
ficiently many rows, we can perform “one-sided” recovery
and estimate the right singular vectors Q ∈ Rd×r. In the
aforementioned genomics example, this means recovering
the r underlying genotype variation factors for each of the
d people (e.g. ethnicity, sex, and so on; see Figure 1). This
result is despite the fact that we have close to no informa-
tion about the left singular vectors P ∈ Rm×r.

This result might seem counterintuitive due to how ill-
posed the recovery problem is. In particular, let X = UV T

denote the ground truth rank-r matrix with factors U ∈
Rm×r and V ∈ Rd×r. Then, given fewer than r observa-
tions per row, for any Ṽ ∈ Rd×r for which every subset of
r rows is linearly independent, we can find a Ũ ∈ Rm×r

using linear inversion such that X̃ = Ũ Ṽ T agrees with
the observations.1 In other words, regardless of how many
rows we have, observing two entries per row is not enough

1For example, suppose we are given exactly two observations
per row Xi,a(i) and Xi,b(i), where i is the row index and a(i), b(i)
are the two observed locations. Then, given any pairwise linearly
independent set of rank-2 vectors v1, ..., vd ∈ R2, we can choose
each u1, ..., um ∈ R2 by inverting the constraints ⟨ui, va(i)⟩ =
Xi,a(i) and ⟨ui, vb(i)⟩ = Xi,b(i). Then, stacking the ui’s and
vi’s, we have a matrix X̃ = Ũ Ṽ T that agrees with the data.
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Figure 1. TSNE (van der Maaten & Hinton, 2008) visualization of column factor (i.e. eigenvalue-weighted right singular vector) recov-
ery on the 1000genomes dataset (Fairley et al., 2019) with m = 1500 000 bialleles, d = 250 people, and k = 10 observations per row.
Each of the d column factors can be thought of as a vector representation of each person and their underlying genotype variation factors,
with ethnicity being the strongest contributor. Colors represent ethnicity (AFR: blue, AMR: orange, EAS: green, EUR: pink, SAS:
purple). Methods (left to right, top to bottom): (1) Full matrix completion: factor the output of matrix completion on PE(X) (where
given the observation mask E, PE sets unobserved entries to zero), (2) Direct factorization: factor PE(X)TPE(X), (3) Factorization
without diagonal: factor PE(X)TPE(X) with the diagonal set to zero (Cai et al., 2021), (4) Our algorithm: perform matrix completion
to estimate XTX (see Equation 1) and then factor it, and (5) Ground truth: factor the original fully observed matrix. Our method
produces column factors closest to the ground truth, while full matrix completion fails because there are too few observations per row.

to distinguish between a wide range of low-rank matrices,
each with drastically different right singular vectors.

So then how is recovery possible? Recall that when con-
structing the distractors X̃ , the left factors Ũ were chosen
via linear inversion, making the observation locations and
X̄ dependent on one another. Then, to rule out these dis-
tractors, we can make the assumption that the observation
locations are chosen randomly, independently of the under-
lying matrix. Intuitively, this assumption lets us rule out
matrices that are too “correlated” with the observation lo-
cations: for example, we can rule out candidate matrices
whose entries consistently are smaller at the observation lo-
cations than outside, which is often the case for distractor
matrices constructed by linear inversion. While our algo-
rithm does not explicitly rule out matrices in this way, we
provide this discussion to emphasize the importance of ran-
dom sampling in this setting and provide intuition for why
the apparent ill-posedness is not fatal.

Algorithmically, our main idea is that each pair of obser-
vations in a row, denoted Xi,a(i) and Xi,b(i), produces a

noisy estimate of entry (a(i), b(i)) of the matrix 1
mXTX .

Then, given enough rows, we have sufficiently many ob-
servations to impute the missing entries of 1

mXTX , which
we can then factor to obtain the right-side singular vectors
(or equivalently, recover the rowspace) of X . Specifically,
we find that m = Ω(α2rd log d) rows is sufficient to com-
plete 1

mXTX in additive Frobenius error, where α denotes
the maximum squared entry α = maxij X

2
ij . From this

bound, we show that rowspace recovery is possible with
m = Ω(r2d log d) rows, with synthetic experiments sug-
gesting that the r2 dependence is fundamental.

The idea of operating on XTX when X is unbalanced has
been explored in a variety of papers on noisy matrix factor-
ization and subspace estimation, problems closely related
to ours (Gonen et al., 2016; Donoho & Feldman, 2022;
Montanari & Wu, 2022, inter alia). Broadly speaking,
these papers analyze the error of directly factoring a noisy
or incomplete version of XTX , while we focus on show-
ing how the missing values of XTX can be imputed. The
papers most directly related to ours are Montanari & Sun
(2018) and Cai et al. (2021), who study direct factoriza-
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tion for subspace estimation from incomplete observations.
The main difference with our work is that they assume that
the observations are uniform over the matrix, making it un-
clear how reliant the algorithm is on the heavy rows which
happen to have many observations. In contrast, we study
one-sided recovery in the setting where every row has just
two observations. Nonetheless, their direct factorization al-
gorithms are still applicable to our setting. In our experi-
ments, we find that compared to direct factorization, imput-
ing the missing values of XTX before factoring produces
substantially better subspace estimates.

Empirically, we find that our algorithm indeed recovers the
right-side singular vectors even when full matrix comple-
tion is impossible. We evaluate on synthetic data and the
1000genomes dataset (Fairley et al., 2019), a real-world
example where the matrix is highly incomplete with many
more rows than columns. In these settings, our algorithm
substantially outperforms standard matrix completion and
a variety of direct factorization methods.

2. Main Result
Notation: for a matrices A and B, we use ∥A∥max to denote
maxi,j |Aij |, ∥A∥op to denote the operator norm, ∥A∥nuc to
denote the nuclear norm, ∥A∥F to denote the Frobenius
norm, and ⟨A,B⟩ = tr(ATB) to denote the matrix inner
product. We use Ei,j ∈ Rd×d to denote the matrix with 1
in entry (i, j) and 0 elsewhere, f ≲ g to denote that there
exists a universal constant c such that f ≤ cg, and [d] to
denote the set {1, 2, ..., d}. Given an observation mask E ∈
{0, 1}m×d and a matrix A ∈ Rm×d, PE(A) will denote the
elementwise multiplication of E and A.

The problem setup is as follows: from a rank-r matrix X ∈
Rm×d, we randomly observe two entries per row, which
we can represent as indices (a(1), b(1)), ..., (a(m), b(m))
drawn i.i.d. uniformly from {(j1, j2) : j1, j2 ∈ [d], j1 ̸=
j2}. We wish to estimate the matrix Θ∗ = 1

mXTX .

As an example to provide intuition, let entry Xi,j represent
the ith user’s rating for the jth item. Writing X as UV T for
U ∈ Rm×r and V ∈ Rd×r, each entry Xi,j can be written
⟨ui, vj⟩ where ui, vj ∈ Rr are the ith and jth rows of U and
V . Then, we can think of ui as representing the ith user’s
preferences along r attributes, vi as representing the jth
item’s r attributes, and the rating Xij as their inner product.
We’ll informally refer to U as row (i.e. user) factors and V
as column (i.e. item) factors (note that this decomposition
of X into U and V is not unique).

Then, in this example, we can write

Θ∗ =
1

m
XTX = V S̄V T ,

where S̄ is given by S̄ = 1
m

∑m
i=1 uiu

T
i ∈ Rr×r. Written

this way, the (j1, j2)the entry of Θ∗ is given by vTj1 S̄vj2 ,
which is the inner product (induced by S̄) between the j1th
and j2th column factors. Therefore, we can interpret our
goal of recovering Θ∗ as recovering a matrix of pairwise
“column factor similarities.”

Why might recovering pairwise similarities be possible?
For each pair of observations Xi,a(i) = ⟨ui, va(i)⟩ and
Xi,b(i) = ⟨ui, vb(i)⟩, while we don’t know ui, the two ob-
servations should on average be similar if the inner product
⟨va(i), vb(i)⟩S̄ is positive, and dissimilar if the inner prod-
uct is negative. Then, using the product Xi,a(i)Xi,b(i) as
our empirical observation for the similarity between a(i)
and b(i), our estimator involves optimizing the following
squared loss with a nuclear norm regularizer:2

Θ̂ ∈ argmin
∥Θ∥max≤α

L(Θ) + λ∥Θ∥nuc, (1)

L(Θ) =
1

4m

m∑
i=1

[
(Θa(i),b(i) −Xi,a(i)Xi,b(i))

2

+ (Θb(i),a(i) −Xi,b(i)Xi,a(i))
2

+ (Θa(i),a(i) −X2
i,a(i))

2

+ (Θb(i),b(i) −X2
i,b(i))

2
]
. (2)

With this estimator, we have the following error bound:

Theorem 2.1 (Main result). Let Θ̂ be the solution of the
optimization problem defined in Equation 1, where λ is

set to 16α
√

log d+δ
dm . Also, suppose that X is rank r with

∥X∥2max ≤ α, and m ≥ d(log d+δ). Then, with probability
≥ 1− 3e−δ , we have that

1

d2
∥Θ̂−Θ∗∥2F ≲ α2 rd(log d+ δ)

m
.

From this theorem, we can derive the following two corol-
laries: first, because X and Θ∗ = 1

mXTX have the same
rowspace, we can use recovery of Θ∗ to estimate the rows-
pace of X . As is standard, we can measure rowspace recov-
ery error as the error in estimating the right-side singular
vectors up to rotation, producing the following:

Corollary 2.2 (Right-side singular vector recovery). Un-
der the same conditions as Theorem 2.1, let Q ∈ Rd×r de-
note the right-side singular vectors of X , and let Q̂ ∈ Rd×r

be the top r singular vectors of Θ̂. Then, letting σr be the
rth singular value of Θ∗ = 1

mXTX , we have

min
R∈Rr×r:RTR=Ir

∥Q̂R−Q∥2F ≲

(
dα

σr

)2
rd(log d+ δ)

m
.

2Note that this program is convex and can be solved via semi-
definite programming as is standard in matrix completion. In our
experiments, we instead do non-convex gradient descent for com-
putational efficiency, as discussed in Section 5.
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In this corollary, a σr factor appears in the denominator be-
cause the algorithm is tasked with recovering all r singular
directions, even if some have low weight (i.e. σr is small).
However, in many applications, we often care only about
recovering the singular directions with high weight, as the
low weight singular directions have little effect on the data.
Therefore, from Theorem 2.1 we can also derive a column
(i.e. right-side) factor recovery result, which can be thought
of as a weighted version of the rowspace recovery result:
Corollary 2.3 (Column factor recovery). Under the same
conditions as Theorem 2.1, let Q̂ ∈ Rd×r and Λ̂ ∈ Rr×r be
the top r singular vectors and singular values of Θ̂. Also,
let Θ∗ = QΛQT be the SVD of Θ∗ = 1

mXTX , where
Q ∈ Rd×r and Λ ∈ Rr×r. Then, we have

min
R∈Rr×r:
RTR=Ir

1

d
∥Q̂Λ̂1/2R−QΛ1/2∥2F ≲ α

√
r2d(log d+ δ)

m
.

We refer to this corollary as “column factor recovery” be-
cause in the users and items example, we can think of the
corollary as using our estimate of Θ∗ = V S̄V T to recover
V S̄1/2 ∈ Rd×r, or the column factors “skewed” by S̄.

2.1. Interpreting the bounds

While the error metrics in Theorem 2.1 and Corollary 2.3
scale with the magnitude of X , the rowspace recovery error
in Corollary 2.2 is scale-invariant. Therefore, while Theo-
rem 2.1 and Corollary 2.3 scale with the maximum entry α,
the bound in Corollary 2.2 is in terms of the scale-invariant
quantity dα

σr
. To make the bounds more comparable, we can

convert these additive bounds into multiplicative ones by
dividing both sides by the norm of the quantity being esti-
mated (∥Θ∗∥2F in Theorem 2.1, ∥Q∥2F = r in Corollary 2.2,
and ∥QΛ1/2∥2F = ∥Θ∗∥nuc in Corollary 2.3). Then, we
have the following sample complexities:

Theorem 2.1: m ≳

(
dα

∥Θ∗∥F

)2

rd log d

Corollary 2.2: m ≳

(
dα

σr(Θ∗)
√
r

)2

rd log d

Corollary 2.3: m ≳

(
dα

√
r

∥Θ∗∥nuc

)2

rd log d.

Each of these scale-invariant constants can be thought of
as incoherence constants which capture the “spikiness” of
the matrix Θ∗, with similar constants appearing in Negah-
ban & Wainwright (2012), Montanari & Sun (2018), and
Cai et al. (2021) (among others). Letting µ1 = dα

∥Θ∗∥F
,

µ2 = dα
σr(Θ∗)

√
r

, and µ3 = dα
√
r

∥Θ∗∥nuc
, we can interpret these

constants by looking at a few examples:

• All ones matrix: if X is the all ones matrix, then we
have µ1 = µ2 = µ3 = 1.

• Single zero matrix: if X is 1 everywhere, except with
a 0 in entry (1, 1), then we have µ1 and µ3 constant,
while µ2 is order md. In other words, for approximate
recovery of Θ∗ and the column factors, predicting all
ones is sufficient. On the other hand, to recover the
rowspace, the algorithm must know where the 0 is,
which requires sampling entry (1, 1) and is impossible
to do with high probability.

• Gaussian factors (X = UV T with U, V
i.i.d.∼ N (0, 1),

U ∈ Rm×r, V ∈ Rd×r): In this example, Θ∗ =
V S̄V T ≈ V V T because the empirical covariance
S̄ = 1

m

∑m
i=1 uiu

T
i is close to the identity Ir. Then,

up to log and constant factors, we have3 µ1 ≈ µ2 ≈
µ3 ≈

√
r, producing a sample complexity of m ≳

r2d log d. We observe this r2 dependence in synthetic
experiments and suspect that it is fundamental.

• Correlated Gaussian factors: while the rows of U
and V in the previous example were uncorrelated
Gaussians, we can also consider the case where they
are drawn according to N (0, C) for some covariance
matrix C ∈ Rr×r. In this case, µ1 scales roughly as
tr(C2)/

√
tr(C4), which is

√
r if C is the identity but

potentially smaller if the eigenvalues of C are non-
uniform.4 For example, letting s = (s1, ..., sr) denote
the eigenvalues of C2, if the si decay according to a
power law si = c0i

α, then µ1 scales as log r for α = 1
and is constant for α > 1. In other words, the sam-
ple complexity to recover Θ∗ is m ≳ rd log d if the r
factors are sufficiently correlated.

3. Warmup: Gaussian row factors
In this section, we warm up with a simpler setting to pro-
vide intuition. In particular, suppose that the row factors
u1, ..., um ∈ Rr are drawn i.i.d. from a standard Gaus-
sian N (0, Ir). Then, for a pair of observations Xi,a(i) and
Xi,b(i), we have the following expectations:

E[Xi,a(i)Xi,b(i)] = E[uT
i va(i)u

T
i vb(i)]

= vTa(i)E[uiu
T
i ]vb(i)

= vTa(i)vb(i),

E[X2
i,a(i)] = ∥va(i)∥22.

3For r ≪ d, we have (up to constant and log factors) that
α ≈ r, ∥Θ∗∥F ≈ d

√
r, σr(Θ

∗) ≈ d, and ∥Θ∗∥nuc ≈ rd.
4Let Z1 ∈ Rm×r and Z2 ∈ Rd×r have entries drawn i.i.d.

N (0, 1). Then, for m ≫ r, we have that X = Z1CZT
2 and Θ∗ ≈

Z2C
2ZT

2 . The entries of X have mean magnitude
√

tr(C2), and
the off-diagonal entries of Θ∗ have mean magnitude

√
tr(C4),

with both having sub-Exponential concentration. Then, up to log
factors, µ1 = dα/∥Θ∗∥F ≈ tr(C2)/

√
tr(C4).
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Then, each pair of observations gives us unbiased esti-
mates of entries (a(i), b(i)), (b(i), a(i)), (a(i), a(i)), and
(b(i), b(i)) in the pairwise similarity matrix V V T ∈ Rd×d.
Given a very large number of rows, we can then estimate
each entry of V V T as its empirical average:

Off-diagonal terms (j1 ̸= j2):

Θ̂(emp)
j1,j2

=
1

|Sj1,j2 |
∑

i∈Sj1,j2

Xi,j1Xi,j2 ,

Sj1,j2 = {i : (a(i), b(i)) = (j1, j2) or (j2, j1)}.
Diagonal terms (j1 = j2):

Θ̂(emp)
j,j =

1

|Sj |
∑
i∈Sj

X2
i,j ,

Sj = {i : a(i) = j or b(i) = j}.

This empirical average can also be written

Θ̂(emp) = [PE(X)TPE(X)]⊘ [ETE],

where E ∈ Rm×d is the observation mask (1 if that entry is
observed, 0 otherwise), PE sets unobserved entries to zero,
and ⊘ represents element-wise division for entries where
the divisor is non-zero, and a no-op otherwise. In other
words, the empirical average Θ̂ can be written as a renor-
malized version of PE(X)TPE(X), where the (j1, j2)th
entry of the renormalization matrix ETE is the number of
rows where j1 and j2 are both observed.

If we don’t have a very large number of rows, then Θ̂(emp)

can be thought of as a noisy, sparsely populated version of
the column factor similarity matrix V V T , which is rank r.
Then a natural algorithm to estimate V V T is to minimize
the squared loss between the Θ̂ and Θ̂(emp), plus a nuclear
norm regularizer ∥Θ̂∥nuc. Furthermore, we might weight
each entry in the squared loss by the number times it was
observed, producing the objective

min
Θ

∥Θ−Θ(emp)∥2ETE + λ∥Θ∥nuc,

where the weighted loss ∥Θ−Θ(emp)∥2ETE is given by

∥Θ−Θ(emp)∥2ETE

=

d∑
j1=1

d∑
j2=1

(ETE)j1,j2(Θj1,j2 −Θ(emp)
j1,j2

)2

= tr(ΘTETEΘ(emp)). (3)

In fact, some calculation shows that this weighted loss is
exactly the loss we defined originally in Equation 2, up to
rescaling and removal of terms that don’t depend on Θ.
Therefore, we can interpret our algorithm as performing
weighted matrix completion with respect to Θ̂(emp), which
is a properly renormalized version of PE(X)TPE(X).

From this warmup, one can imagine ways to prove noisy
matrix completion error bounds for recovery of V V T given
i.i.d. Gaussian ui’s, as well as extensions to more gen-
eral distributions (e.g. sub-Gaussian or sub-Exponential),
where we instead recover V Cov(u)V T where Cov(u) is
the covariance matrix of u. However, it is not always rea-
sonable to assume independently drawn row factors: for
example, in the genomics case, the chromosome base pairs
are certainly not random or independent of one another.
Therefore, we would like to prove recovery results without
making distributional assumptions on the row factors.

However, recall from the introduction that the problem is
severely underconstrained if we allow arbitrary row fac-
tors and masking. Somewhat surprisingly, we find that
even with arbitrary row factors, assuming random mask-
ing is enough to enable recovery: while the intuition about
noisy empirical averages no longer holds, the randomness
in the masking is enough to enable a key technical step
in the proof involving Radamacher symmetrization (Sec-
tion A.6). In the following section, we provide a sketch of
the proof in this more general setting.

4. Proof sketch
4.1. Outline

In this section, we outline of the proof, which uses re-
stricted strong convexity arguments (Negahban & Wain-
wright, 2012; Negahban et al., 2012). The proof proceeds
as follows: letting ∆ denote the error Θ̂−Θ∗, by the opti-
mality of Θ̂ (along with reverse triangle) we have

0 ≥ L(Θ∗ +∆)− L(Θ∗) + λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

≥ L(Θ∗ +∆)− L(Θ∗)− λ∥∆∥nuc.

If L were τ -strongly-convex, then we could write

≥ ⟨∇L(Θ∗),∆⟩+ τ∥∆∥2F − λ∥∆∥nuc

≥ −∥∇L(Θ∗)∥op∥∆∥nuc + τ∥∆∥2F − λ∥∆∥nuc,

where the second inequality follows from Holder’s inequal-
ity. Then, bounding ∥∇L(Θ∗)∥op and ∥∆∥nuc and rear-
ranging would result in a bound for the error ∥∆∥2F . How-
ever, L is not strongly convex: if we do not restrict to
low-rank matrices, then there are multiple matrices that
agree with the incomplete observations. Therefore, we’ll
instead show a form of restricted strong convexity: in
particular, we’ll show (in Lemma A.7) that the quantity
L(Θ∗ +∆)−L(Θ∗)− ⟨∇L(Θ∗),∆⟩ concentrates around
1
d2 ∥∆∥2F , but with deviation terms depending on ∥∆∥nuc
and ∥∆∥max. Therefore, recovery will depend on ∥∆∥nuc
being small, which follows from the condition that the reg-
ularization strength λ is large enough (Lemma 1 of Negah-
ban & Wainwright (2012)), and ∥∆∥max being small, which
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Figure 2. Rowspace recovery for rank-25 i.i.d. Gaussian column and row factors, with d = 100 columns, where from left to right, the
experiments are as follows: (a) we sample k = 2 observations per row and vary the number of rows m from 10,000 to 1,000,000, (b)
k = 30 with m between 100 and 10,000 (where fewer rows are necessary because k is large), (c) m = 10,000 with k between 2 and 40,
and (d) m = 500,000 with k between 2 and 40. Our algorithm (in solid green) performs produces the most accurate rowspace estimates
for all parameter ranges evaluated on, with the gap being largest for large m and small k.

follows by our assumption that ∥X∥2max ≤ α and the opti-
mization constraint ∥Θ̂∥max ≤ α. With this approach in
mind, the following are caricatures of each of the lemmas:

(a) Section A.6 (operator norm bound):

∥∇L(Θ∗)∥op ≲ α

√
log d

dm
.

(b) Section A.7 (restricted strong convexity):

L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩

≥ 1

d2
∥∆∥2F − cα∥∆∥nuc

√
log d

dm
.

(c) Section A.8 (decomposability):

If λ ≥ 2∥∇L(Θ∗)∥op, then ∥∆∥nuc ≲
√
r∥∆∥F .

With these lemmas, we can first apply restricted strong con-
vexity, reverse triangle, and Holder’s inequality as before:

0 ≥ L(Θ∗ +∆)− L(Θ∗) + λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

≥ 1

d2
∥∆∥2F − cα∥∆∥nuc

√
log d

dm
− ∥∇L(Θ∗)∥op∥∆∥nuc

− λ∥∆∥nuc.

Next, by our operator norm bound (Lemma A.6) and our

setting of λ = 16α
√

log d
dm , we can replace the latter two

terms with cα∥∆∥nuc

√
log d
dm and combine, producing

≥ 1

d2
∥∆∥2F − c′α∥∆∥nuc

√
log d

dm
.

Finally, applying the bound ∥∆∥nuc ≲
√
r∥∆∥F (Lemma 1

of Negahban & Wainwright (2012)) and rearranging pro-

duces 1
d∥∆∥F ≲ α

√
rd log d

m , as desired.

4.2. Operator norm bound

It remains to discuss each of the lemmas, which we do
briefly here and at length in the appendix. First, using our
definition of the loss in Equation 2, we can compute the
gradient of L at Θ∗ as follows (where recall that Ei,j is the
mask matrix with 1 at (i, j) and 0 elsewhere):

∇L(Θ∗) =
1

m

m∑
i=1

1

2
(Θ∗

a(i),b(i) −Xi,a(i)Xi,b(i))Ea(i),b(i)

+
1

m

m∑
i=1

1

2
(Θ∗

a(i),b(i) −Xi,a(i)Xi,b(i))Eb(i),a(i)

+
1

m

m∑
i=1

1

2
(Θ∗

a(i),a(i) −X2
i,a(i))Ea(i),a(i)

+
1

m

m∑
i=1

1

2
(Θ∗

b(i),b(i) −X2
i,b(i))Eb(i),b(i).

We wish to prove that the operator norm of this quan-
tity is small, with high probability with respect to the
randomly sampled indices (a(i), b(i)). In the example
where the row factors ui were Gaussian, we had that
Eui∼Z [Xi,j1Xi,j2 ] = Θ∗

j1,j2
, turning each summand into

a mask matrix multiplied by mean-zero noise. While that
approach no longer holds here, we can write

Xi,a(i)Xi,b(i) −Θ∗
a(i),b(i) =

vTa(i)

(
uiu

T
i − 1

m

m∑
i=1

uiu
T
i

)
vb(i).

At this point, we can apply our assumption that the mask is
chosen independently of the underlying matrix, as it means
that the expectation Ea(i),b(i)∥∇L(Θ∗)∥op is invariant to
permutations of the rows. Considering randomly permuted
row factors brings us closer to the distributional case, which
allows us to apply Radamacher symmetrization arguments
(Section A.6). The rest of the bound then proceeds via stan-
dard concentration arguments.
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Figure 3. Rowspace recovery on the 1000genomes dataset, where from left to right the experiments are as follows: (a) we observe k = 2
entries per row with the number of rows m between 100,000 and 1,500,000, (b) k = 10 with m between 100,000 and 1,500,000, (c)
m = 100,000 with k between 2 and 40, and (d) m = 1,500,000 with k between 2 and 40. The number of columns is fixed with
d = 250 for all experiments. Our algorithm (in solid green) is most accurate for most parameter settings, but is outperformed by full
matrix completion (in dotted pink) when m is small and k is large (plot (c)).

4.3. Restricted strong convexity

The other key lemma is restricted strong convexity; by the
definition of the loss (Equation 2), we can first compute

L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩

=
1

m

m∑
i=1

1

2
[∆2

a(i),b(i) +∆2
b(i),a(i)]

+
1

m

m∑
i=1

1

2
[∆2

a(i),a(i) +∆2
b(i),b(i)].

Recall that we wanted to show that this quantity is lower-
bounded by 1

d2 ∥∆∥2F , minus some concentration terms.
The first point to note is that each term has expectation

E[∆2
a(i),b(i)] =

1

d(d− 1)
∥Poff-diag(∆)∥2F ,

E[∆2
a(i),a(i)] =

1

d
∥Pdiag(∆)∥2F ,

where Pdiag(∆) sets the off-diagonal terms of ∆ to zero
and Poff-diag(∆) = ∆ − Pdiag(∆) sets the diagonal terms
to zero. Then, analyzing the off-diagonal terms and diag-
onal terms separately, we can first show concentration of
the given sums around their expectations. The lemma then
follows from proper treatment and recombination of the di-
agonal and off-diagonal terms.

5. Experiments
5.1. Setup

Finally, we evaluate our method on synthetic data and
the 1000genomes dataset (Fairley et al., 2019). The
1000genomes dataset contains fully sequenced chromo-
somes of 2354 subjects. Due to computational limitations,
we first subsample to m = 1500 000 rows (chosen from the
first chromosome in order of mutation frequency) and the
subjects to d = 250 columns (chosen randomly). We also

reduce the number of rows further in some experiments to
evaluate how error scales as a function of m. We then ran-
domly sample between k = 2 and 40 observations per row
and compare the estimated right-side singular vectors to the
ground truth, produced by factoring the original fully sam-
pled matrix. Specifically, let the ground truth SVD be given
by X = PΣQT . Then, we compute the error as5

min
R∈Rr×r:RTR=Ir

∥Q̂R−Q∥2F . (4)

The estimate Q̂ is produced by the following algorithms:

(a) Full matrix completion: perform rank r matrix com-
pletion on PE(X) and compute the SVD of the result.

(b) Direct factorization: compute the rank r SVD of the
matrix PE(X)TPE(X).

(c) Factorization without diagonal (Cai et al., 2021): com-
pute the rank r SVD of Poff-diag(PE(X)TPE(X)).

(d) Our algorithm: perform rank r matrix completion with
respect to L (Equation 2) and compute the SVD of the
result. The loss function naturally generalizes to k > 2
via the formulation in Equation 3.

We implement vanilla matrix completion via the non-
convex optimization6

min
U∈Rm×r

V ∈Rd×r

1

|E|
∥PE(UV T )− PE(X)∥2F

+ λ

(
1

m

m∑
i=1

∥ui∥22 +
1

d

d∑
i=1

∥vi∥22

)
.

5This minimization is known as the Procrustes prob-
lem (Schonemann, 1966) and can be solved in closed form.

6Note that the L2 regularizer in this objective corresponds to
the likelihood under the Gaussian prior, which is the factor distri-
bution that we use in our synthetic experiments. We choose λ =
0.1 using grid search over the set (0, 0.001, 0.01, 0.1, 0.5, 1, 10).
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Figure 4. A log plot of the row-rank dependence for our algo-
rithm, where we plot the number of rows m required to achieve
low rowspace recovery error for each rank r for i.i.d. Gaussian
row and column factors, k = 2 observations per row, and d = 200
columns. The linear fit has slope almost exactly 2, suggesting a
dependence of m ∝ r2 and confirming our derived bounds.

We also implement our method via the non-convex opti-
mization minV ∈Rd×r L(V V T ), where we fit a symmetric
matrix and omit the L2 regularizer because the diagonal
terms control the factor norms.

For the synthetic experiments, we sample X = UV T with
U ∈ Rm×r and V ∈ Rd×r i.i.d. Gaussian N (0, r−1/2),
rescaled to ensure that the expected norm of each entry is
1. We set the rank to r = 25 with d = 100 columns, while
varying the number of rows m and the observations per row
k depending on the experiment.

We produce each of the plots by resampling the mask ten
times for each parameter setting and plotting the mean plus
or minus two standard deviations; see Section B for other
implementation details and hyperparameters.

5.2. Synthetic experiments

We first discuss the synthetic experiments, shown in Fig-
ure 2. From left to right, the experiments are as follows: (1)
we sample k = 2 observations per row and vary the number
of rows m from 10,000 to 1,000,000, (2) k = 30 with m
between 100 and 10,000 (where fewer rows are necessary
because k is large), (3) m = 10,000 with k between 2 and
40, and (4) m = 500,000 with k between 2 and 40.

In these experiments, our algorithm produces the most ac-
curate rowspace estimates for all parameter ranges evalu-
ated on. The algorithm is especially strong compared to
other methods when m is large or k is small, which are
the settings that motivate our study. Full matrix completion
performs well when m is small and k is large, i.e. the set-
ting with X closer to square and with more observations,
which is when we expect full completion to be feasible.
However, even in this setting, our algorithm performs com-
petitively with or outperforms full matrix completion.

5.3. 1000genomes experiments

Next, we display similar plots for the 1000genomes dataset
experiments, shown in Figure 3, where from left to right
the experiments are as follows: (1) we observe k = 2 en-
tries per row with the number of rows m between 100,000
and 1,500,000, (2) k = 10 with m between 100,000 and
1,500,000, (3) m = 100,000 with k between 2 and 40, and
(4) m = 1,500,000 with k between 2 and 40.7

In these experiments, our algorithm is again most accurate
for most parameter settings and is strongest relative to other
methods when m is large or k is small. However, it is out-
performed by full matrix completion when m is small and
k is large, which is when we expect full completion to be
possible. For the m = 1,500,000 setting, which is most
representative of the ratio m/d we might see in practice for
this setting, our algorithm is most accurate for all values of
k evaluated on and is able to recover the rowspace reliably
with as few as 5 observations per row.

Finally, we visualize the recovered column factors using
TSNE (van der Maaten & Hinton, 2008), which projects the
factors into two dimensions while attempting to preserve
similarity structure (Figure 1). Visually, our algorithm re-
covers the most accurate factors by far and is almost identi-
cal to the ground truth. Factorization without the diagonal
produces the next best estimates but is unable to separate
the EUR, AMR, and SAS clusters. Meanwhile, full matrix
completion is unable to recover coherent clusters because
there are too few observations per row.

5.4. Dependence on rank

Finally, we perform synthetic experiments to verify the
r2 dependence in our derived sample complexity of m =
Ω(r2d log d). Specifically, for each rank r, we sample i.i.d.
Gaussian factors with d = 200 columns and k = 2 obser-
vations per row, and we perform binary search over m to
achieve some target error.8 The result is shown in Figure 4,
where we plot logm versus log r. The points lie almost
exactly on a line with slope 2, suggesting a dependence of
m ∝ r2 and confirming our derived bounds.

6. Related Work
While low-rank matrix completion and factorization have a
long history of research, here we touch on just a few threads
of work most directly related to our paper.

7We set r = 10 for each algorithm and compute the evalua-
tion metric (Equation 4) with respect to the rank 10 SVD of the
original matrix. On the other hand, the ground truth TSNE plot is
produced with respect to the full SVD of the original matrix.

8For each candidate m in the binary search, we average the
loss over 20 runs and accept if 1

r
∥Q̂R−Q∥2F ∈ 0.1± 0.02. The

search starts with a range of m ∈ (0, 4e6).
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Matrix completion. Matrix completion is the problem of
estimating a low-rank matrix after observing a subset of its
entries, and a variety of methods have been proposed and
analyzed for this problem, including nuclear norm mini-
mization (Candès & Recht, 2009; Candes & Plan, 2010),
SVD with trimming (Keshavan et al., 2009), alternating
minimization (Hardt, 2014), and non-convex gradient de-
scent (Ge et al., 2016; Jin et al., 2016). To rule out cer-
tain matrices whose recovery is impossible, these papers
propose various kinds of incoherence assumptions: for
example, Candès & Recht (2009) make assumptions on
the leverage scores of X , while Negahban & Wainwright
(2012) make assumptions about the “spikiness” of X . We
adopt the assumptions and analysis framework of Negah-
ban & Wainwright (2012), who prove additive Frobenius
error bounds under the assumption that the maximum entry
of the underlying matrix is bounded.

Unbalanced noisy matrix factorization. A recent series
of works explores the problem of noisy matrix factoriza-
tion for matrices with high aspect ratio (i.e. many more
rows than columns). In this problem setting, the matrix
is fully observed but with entry-wise additive noise. Feld-
man (2021), Donoho & Feldman (2022), and Montanari &
Wu (2022) study the asymptotics of this problem, charac-
terizing the Bayes optimal error of recovering the singu-
lar vectors as the number of rows and columns m, d →
∞. Broadly speaking, in contrast with past works which
took m, d → ∞ with the ratios d/m and m/d remaining
bounded, these papers consider cases where d/m → ∞
and d/m → 0, finding regimes where recovery of the left
singular values is possible but not the right singular vectors
(and vice versa). While their setting and results are very
different from ours, they share the commonality of study-
ing cases where only “one-sided” recovery is possible.

Subspace and covariance estimation from partial obser-
vations. The papers most directly related to our setting
are Lounici (2014), Gonen et al. (2016), Montanari & Sun
(2018), and Cai et al. (2021). Gonen et al. (2016) con-
sider the problem of subspace estimation from partial ob-
servations: given m partially observed vectors of dimen-
sion d, sampled i.i.d. from a bounded distribution, their
goal is to recover the rank-r subspace that those vectors
lie in. As their algorithm, they perform factorization on
PE(X)TPE(X) with the diagonal rescaled. However, they
make no incoherence assumptions, making matrix comple-
tion inapplicable. Therefore, they find that a sample size
of m = Ω((d/k)2r) is both necessary and sufficient to re-
cover the subspace (where k ≥ 2 is the average number
of observations per vector). Lounici (2014) study a similar
setting, but with the weaker assumption that the vectors are
sampled from a sub-Gaussian distribution, and they prove
a similar sample complexity of m = Ω((d/k)2r log d).

Montanari & Sun (2018) and Cai et al. (2021) also study
subspace estimation from partial observations. Similar
to the above papers, both algorithms involve factoring
PE(X)TPE(X) with the diagonal rescaled, but they adopt
incoherence assumptions to establish sample complexity
bounds no longer quadratic in d. As their sampling distri-
bution, they assume n observations uniformly chosen from
the md entries, and they both prove similar sample com-
plexities of n = Ω(r

√
dm polylog(dm)) (please see the

original papers for the full results). For k observations per
row on average, the number of rows required then becomes
m = Ω(r2(d/k) polylog(d)).

One difference in setting between our paper and the afore-
mentioned papers is that they focus on subspace estimation,
so it suffices to show that PE(X)TPE(X) (after rescaling)
is close to XTX in operator norm. In contrast, because we
are also interested in completing XTX and recovering the
column factors, we show error bounds in Frobenius norm,
which requires more accurate estimation of XTX .

The other main difference between our paper and the afore-
mentioned papers is that they consider the setting where
each entry of X is observed independently with probability
p (or equivalently, that the n observations are uniform over
the matrix). Under this model, even if p is small enough
such that there are two observations per row on average,
some rows might still have larger numbers of observations.
In contrast, we show that the column factors can be recov-
ered even if all of the rows have only two observations.
From a theoretical standpoint, this setting is strictly harder
than the Bernoulli observation setting because given the lat-
ter, we can keep the rows with at least two observations
(which is satisfied by roughly 3/4 of the rows for d ≫ 2),
subsample to two per row, and use our analysis to produce
the same sample complexity (up to constant factors).

7. Conclusion and Future Directions
One limitation of our result is that it only applies to two
observations per row; therefore, a fruitful direction could
involve extending it to more general cases, like k observa-
tions per row or other sampling patterns. Empirically, we
hope that our paper can inspire work on datasets that were
previously too sparsely annotated for full matrix comple-
tion, but might be amenable to our algorithm.
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A. Proofs
A.1. Notation

Letting A and B represent an arbitrary matrices, we’ll use the following notation:

• ∥A∥max – maximum of the absolute values of the entries of A

• ∥A∥op – operator norm

• ∥A∥nuc – nuclear norm

• ∥A∥F – Frobenius norm

• ⟨A,B⟩ = tr(ATB) – matrix inner product

• For a square matrix C ∈ Rd×d, we’ll use Pdiag(C) to represent the matrix C with the off-diagonal terms set to zero,
and Poff-diag(C) = C − Pdiag(C) to represent the matrix C with the diagonal terms set to zero.

• We’ll use Ei,j ∈ Rd×d to represent the matrix with 1 in entry (i, j) and 0 elsewhere, and Ẽi,j to refer to the symmetric
mask 1

2 (Ei,j + Ej,i).

• f ≲ g will denote that there exists a universal constant c such that f ≤ cg.

• [d] will denote the set {1, 2, ..., d}.

Throughout the proofs, when there are long chains of inequalities, we will sometimes box the terms that change from line
to line for ease of reading.

A.2. Setup and main result

The problem setup is as follows: from a rank-r matrix X = UV T ∈ Rm×d with U ∈ Rm×r and V ∈ Rd×r, we randomly
observe two entries per row, which we can represent as indices (a(1), b(1)), ..., (a(m), b(m)) drawn i.i.d. uniformly from
the set {(i, j) : i, j ∈ [d], i ̸= j}. We wish to estimate the matrix

Θ∗ =
1

m
XTX = V S̄V T

S̄ =
1

m
UTU =

1

m

m∑
i=1

uiu
T
i ∈ Rr×r,

where ui ∈ Rr is the ith row of U . Our estimator for Θ∗ minimizes a squared loss with a nuclear norm regularizer, along
with constraints on the maximum off-diagonal and diagonal entries, and is given as follows:

Θ̂ ∈ argmin
∥Θ∥max≤α

L(Θ) + λ∥Θ∥nuc, (5)

where the squared loss L(Θ) is given by

L(Θ) =
1

4m

m∑
i=1

(Θa(i),b(i) −Xi,a(i)Xi,b(i))
2 + (Θb(i),a(i) −Xi,b(i)Xi,a(i))

2

+
1

4m

m∑
i=1

(Θa(i),a(i) −X2
i,a(i))

2 + (Θb(i),b(i) −X2
i,b(i))

2. (6)

Given the assumption that ∥X∥2max ≤ α, we will prove the following error bound:

Theorem A.1. Let Θ̂ be the solution of the optimization problem defined in Equation 5, where λ is set to 16α
√

log d+δ
dm .

Also, suppose that X is rank r with ∥X∥2max ≤ α, and m ≥ d(log d+ δ). Then, with probability ≥ 1− 3e−δ , we have that

1

d2
∥Θ̂−Θ∗∥2F ≲ α2 rd(log d+ δ)

m
.
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A.3. Rowspace recovery

From Theorem A.1, we can first derive a rowspace recovery result, where our goal is to estimate the subspace spanned by
the rows of X . In particular, the rowspace of X is equal to the rowspace of Θ∗ = 1

mXTX , and we have an error bound for
our estimator Θ̂. Therefore, we can use the rowspace of Θ̂ as our estimator and use standard perturbation theory to bound
the rowspace estimation error. Specifically, letting the rank SVD of Θ∗ be given by QΛQT for Q ∈ Rd×r, we can think of
rowspace recovery as estimating the right-side singular vectors Q up to rotation. Then, we can define rowspace recovery
error as minR∈Rr×r:RTR=Ir ∥Q̂R−Q∥2F and produce the following error bound:

Corollary A.2 (Right-side singular vector recovery). Let Θ̂ be the solution of the optimization problem defined in Equa-

tion 5, where λ is set to 16α
√

log d+δ
dm , and let Q̂ ∈ Rd×r be the top r singular vectors of Θ̂. Also, suppose that X is rank

r with ∥X∥2max ≤ α and m ≥ d(log d+ δ), and let Q ∈ Rd×r denote the right-side singular vectors of X . Then, letting σr

be the rth singular value of Θ∗ = 1
mXTX , we have that with probability ≥ 1− 3e−δ ,

min
R∈Rr×r:RTR=Ir

∥Q̂R−Q∥2F ≲

(
dα

σr

)2
rd(log d+ δ)

m
.

Note that while the additive error in Theorem A.1 scales with the magnitude of X , the rowspace recovery error is scale-
invariant. Therefore, while the bound in Theorem A.1 scales with α, the bound in Corollary A.2 is in terms of the quantity
dα
σr

. This quantity can be thought of as capturing both the incoherence and condition number of X: for example, it is
large for “spiky” matrices, where rowspace recovery is impossible (e.g. dm for the matrix with 1 in a single entry and 0
otherwise), and it is small for “incoherent” matrices (e.g. 1 for the all-ones matrix). The corollary directly follows from
Theorem 2 of Yu et al. (2015), a variant of the Davis-Kahan theorem (Davis & Kahan, 1970):

Lemma A.3 (Theorem 2 of Yu et al. (2015)). Let A, Â ∈ Rd×d be symmetric matrices with eigenvalues λ1 ≥ ... ≥ λd and
λ̂1 ≥ ... ≥ λ̂d. Fixing some 1 ≤ r ≤ d, suppose that λr − λr+1 > 0, where λd+1 := −∞. Let V = (v1, ..., vr) ∈ Rd×r

and V̂ = (v̂1, ..., v̂r) ∈ Rd×r have orthonormal columns satisfying Avi = λivi and Âv̂i = λ̂iv̂i. Then,

min
R∈Rr×r:RTR=Ir

∥V̂ R− V ∥F ≤ 23/2∥Â−A∥F
λr − λr+1

.

Proof of Corollary A.2. First, letting the SVD of X be given by PΣQT , we have that the SVD of Θ∗ is given by QΛQT

(for Λ = 1
mΣTΣ ∈ Rr×r). Then, by Theorem 2 of Yu et al. (2015), we have that

min
R∈Rr×r:RTR=Ir

∥Q̂R−Q∥2F ≤ 8
∥Θ̂−Θ∗∥2F
σr(Θ∗)2

.

The corollary then immediately follows from Theorem A.1.

A.4. Column factor recovery

In Corollary A.2, a σr factor appears in the denominator because the algorithm is tasked with recovering all r singular
directions, even if some singular directions have low weight (i.e. σr is small). However, in many applications, we often
care only about recovering the singular directions with high weight, as the low weight singular directions have little effect
on the data. Therefore, from Theorem A.1 we can also derive a column factor recovery result, which can be thought of
as a weighted version of the rowspace recovery result. In particular, our goal here is to recover QΛ1/2 ∈ Rd×r up to
rotation, which can be thought of as containing column factors, or r-dimensional vector representations for each column
in X . Then, using the top r singular values and vectors of Θ̂ for our estimate, we can produce the following error bound:

Corollary A.4 (Column factor recovery). Let Θ̂ be the solution of the optimization problem defined in Equation 5, where

λ is set to 16α
√

log d+δ
dm , and let Q̂ ∈ Rd×r and Λ̂ ∈ Rr×r be the top r singular vectors and singular values of Θ̂. Also,

suppose that X is rank r with ∥X∥2max ≤ α and m ≥ d(log d + δ), and let Θ∗ = QΛQT be the SVD of Θ∗ = 1
mXTX ,

where Q ∈ Rd×r and Λ ∈ Rr×r. Then, we have that with probability ≥ 1− 3e−δ ,

min
R∈Rr×r:RTR=Ir

1

d
∥Q̂Λ̂1/2R−QΛ1/2∥2F ≲ α

√
r2d(log d+ δ)

m
.

13



One-sided Matrix Completion from Two Observations Per Row

Note that unlike Corollary A.2, this bound does not depend on σr because the singular vectors are weighted by their
corresponding singular values. The proof uses Powers-Størmer (Powers & Størmer, 1970) and proceeds as follows:

Lemma A.5 (Powers-Størmer). For positive semidefinite matrices A and B, we have that

∥A−B∥2F ≤ ∥A2 −B2∥nuc.

Proof of Corollary A.4. First, by the Powers-Størmer inequality (Powers & Størmer, 1970), we have that

∥Q̂Λ̂1/2Q̂T −QΛ1/2QT ∥2F ≤ ∥Θ̂r −Θ∗∥nuc,

where Θ̂r = Q̂Λ̂Q̂T is the rank-r truncated version of Θ̂. Next, we have that

∥Θ̂r −Θ∗∥nuc

(i)

≤
√
2r∥Θ̂r −Θ∗∥F

(ii)

≤
√
2r(∥Θ̂− Θ̂r∥F + ∥Θ̂−Θ∗∥F )

(iii)

≤ 2
√
2r∥Θ̂−Θ∗∥F

(iv)

≲ α
√
rd

√
rd(log d+ δ)

m
.

where (i) follows from Θ̂r − Θ∗ being at most rank 2r, (ii) from triangle, (iii) from the Eckart-Young-Mirsky theo-
rem (Eckart & Young, 1936; Mirsky, 1960), which states that Θ̂r is the closest rank-r matrix to Θ̂ in any unitarily invariant
norm, and (iv) from applying Theorem A.1. Then, it suffices to show that

min
R∈Rr×r:RTR=Ir

∥Q̂Λ̂1/2R−QΛ1/2∥2F ≤ ∥Q̂Λ̂1/2Q̂T −QΛ1/2QT ∥2F .

To show this inequality, we can choose a particular rotation R as follows:

∥Q̂Λ̂1/2R−QΛ1/2∥2F = tr(Λ) + tr(Λ̂)− 2tr(RT Λ̂1/2Q̂TQΛ1/2)

(i)
= tr(Λ) + tr(Λ̂)− 2∥Λ̂1/2Q̂TQΛ1/2∥nuc

(ii)
= tr(Λ) + tr(Λ̂)− 2∥Q̂Λ̂1/2Q̂TQΛ1/2Q∥nuc

(iii)

≤ tr(Λ) + tr(Λ̂)− 2tr(Q̂Λ̂1/2Q̂TQΛ1/2Q)

= ∥Q̂Λ̂1/2Q̂T −QΛ1/2QT ∥2F

where (i) follows from choosing R = ABT for A and B given by the SVD Λ̂1/2Q̂TQΛ1/2 = ASBT , (ii) follows from
the fact that ∥C∥nuc = ∥Q1CQT

2 ∥nuc for any Q1, Q2 such that QT
1 Q1 = I and QT

2 Q2 = I , and (iii) follows from the fact
that tr(C) ≤ |tr(C)| ≤ ∥C∥nuc for any matrix C, proving the desired result.

A.5. Proof outline

In this section, we outline the proof of Theorem A.1. Our analysis uses restricted strong convexity arguments, as described
in Negahban & Wainwright (2012), Negahban et al. (2012), and Wainwright (2019). For completeness, we reproduce parts
of their analysis; such lemmas will also be marked with their source. The proof proceeds as follows: letting ∆ denote the
error Θ̂−Θ∗, by the optimality of Θ̂ we can write

0 ≥ L(Θ∗ +∆)− L(Θ∗) + λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

≥ L(Θ∗ +∆)− L(Θ∗)− λ∥∆∥nuc,

where the second line follows from reverse triangle. If L were strongly convex with parameter τ , then we would have 0 ≥
L(Θ∗+∆)−L(Θ∗)−λ∥∆∥nuc ≥ ⟨∇L(Θ∗),∆⟩+τ∥∆∥2F−λ∥∆∥nuc ≥ −∥∇L(Θ∗)∥op∥∆∥nuc+τ∥∆∥2F−λ∥∆∥nuc, where
the second inequality follows from strong convexity and the third from Holder’s inequality. Then, bounding ∥∇L(Θ∗)∥op
(Lemma A.6) and ∥∆∥nuc (Lemma A.8) and rearranging would result in a bound for the error ∥∆∥2F . However, L is not
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One-sided Matrix Completion from Two Observations Per Row

strongly convex: if we do not restrict to low-rank matrices, then there are multiple matrices that agree with the incomplete
observations. Therefore, we’ll instead show a form of restricted strong convexity: in particular, we’ll show (in Lemma A.7)
that the quantity L(Θ∗ +∆)−L(Θ∗)− ⟨∇L(Θ∗),∆⟩ concentrates around 1

d2 ∥∆∥2F , but with deviation terms depending
on ∥∆∥nuc and ∥∆∥max. Therefore, recovery will depend on ∥∆∥nuc being small, which follows from the condition that
the regularization strength λ is large enough (Lemma A.8), and the entries of ∆ being bounded, which follows by our
assumption that ∥X∥2max ≤ α.

We’ll conclude this outline by providing caricatures of each of the lemmas and showing how they come together to produce
the desired bound.

(a) Section A.6 (operator norm bound):

∥∇L(Θ∗)∥op ≲ α

√
log d

dm
.

(b) Section A.7 (restricted strong convexity):

L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩ ≥ 1

d2
∥∆∥2F − cα∥∆∥nuc

√
log d

dm
.

(c) Section A.8 (decomposability):

If λ ≥ 2∥∇L(Θ∗)∥op, then ∥∆∥nuc ≲
√
r∥∆∥F .

Then, from these lemma caricatures, we can first apply restricted strong convexity as follows:

0 ≥ L(Θ∗ +∆)− L(Θ∗)− λ∥∆∥nuc

(i)

≥ ⟨∇L(Θ∗),∆⟩+ 1

d2
∥∆∥2F − cα∥∆∥nuc

√
log d

dm
− λ∥∆∥nuc

(ii)

≥ −∥∇L(Θ∗)∥op∥∆∥nuc +
1

d2
∥∆∥2F − cα∥∆∥nuc

√
log d

dm
− λ∥∆∥nuc

(iii)

≥ −λ

2
∥∆∥nuc +

1

d2
∥∆∥2F − cα∥∆∥nuc

√
log d

dm
− λ∥∆∥nuc

where (i) follows from Lemma A.7 (restricted strong convexity), (ii) from Holder’s inequality, and (iii) from choosing
λ ≥ 2∥∇L(Θ∗)∥op. Next, we can combine the terms with λ and use our upper bound on ∥∆∥nuc, producing

=
1

d2
∥∆∥2F − ∥∆∥nuc

(
cα

√
log d

dm
+

3

2
λ

)

(iv)
=

1

d2
∥∆∥2F − ∥∆∥nuc

cα

√
log d

dm
+ c′α

√
log d

dm


(v)

≥ 1

d2
∥∆∥2F −

√
r∥∆∥F c′′α

√
log d

dm

where (iv) follows from choosing λ = O(∥∇L(Θ∗)∥op) and Lemma A.6 (operator norm bound), and (v) from Lemma A.8

(nuclear norm bound). Finally, rearranging produces 1
d∥∆∥F ≲ α

√
rd log d

m as desired. Note that this calculation is not a
proof; please see Section A.9 for the full proof.
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A.6. Operator norm bound

In this section, we use concentration arguments to upper bound the operator norm ∥∇L(Θ∗)∥op with high probability
(where the randomness is over the sampled indices). Recall that L is defined in Equation 6; a quick calculation reveals that

∇L(Θ∗) =
1

m

m∑
i=1

(Θ∗
a(i),b(i) −Xi,a(i)Xi,b(i))Ẽa(i),b(i)

+
1

2m

m∑
i=1

(Θ∗
a(i),a(i) −X2

i,a(i))Ea(i),a(i)

+
1

2m

m∑
i=1

(Θ∗
b(i),b(i) −X2

i,b(i))Eb(i),b(i),

where we use Ẽa(i),b(i) to denote the symmetric mask 1
2 (Ea(i),b(i) + Eb(i),a(i)).

Lemma A.6. Given matrices X = UV T ∈ Rm×d and Θ∗ = 1
mXTX ∈ Rd×d, suppose that X is bounded by ∥X∥2max ≤

α. Also, let (a(1), b(1)), ..., (a(m), b(m)) denote indices sampled i.i.d. uniformly from the set {(i, j) : i, j ∈ [d], i ̸= j}.
Then, for L defined in Equation 6, we have that

∥∇L(Θ∗)∥op ≤ 8α

√
log d+ δ

dm

with probability ≥ 1− e−δ , for m ≥ d(log d+ δ).

Proof. We’ll first divide the bound into three parts, such that by triangle we have that

∥∇L(Θ∗)∥op ≤

∥∥∥∥∥ 1

m

m∑
i=1

(Θ∗
a(i),b(i) −Xi,a(i)Xi,b(i))Ẽa(i),b(i)

∥∥∥∥∥
op

+

∥∥∥∥∥ 1

2m

m∑
i=1

(Θ∗
a(i),a(i) −X2

i,a(i))Ea(i),a(i)

∥∥∥∥∥
op

+

∥∥∥∥∥ 1

2m

m∑
i=1

(Θ∗
b(i),b(i) −X2

i,b(i))Eb(i),b(i)

∥∥∥∥∥
op

.

Then, we can bound each part separately with high probability and then use the union bound to bound their sum. The
bound for each term will proceed as follows: first, writing the sum as ∥ 1

m

∑m
i=1 Qi∥op for ease of notation, we can use

Markov’s inequality to produce the Chernoff bound

P

∥∥∥∥∥ 1

m

m∑
i=1

Qi

∥∥∥∥∥
op

≥ t

 ≤ E

exp
ξ

∥∥∥∥∥
m∑
i=1

Qi

∥∥∥∥∥
op


 e−ξmt.

Next, we’ll use symmetrization to bound

E

exp
ξ

∥∥∥∥∥
m∑
i=1

Qi

∥∥∥∥∥
op


 ≤ E

exp
2ξ

∥∥∥∥∥
m∑
i=1

εiQ̃i

∥∥∥∥∥
op


 ,

where εi are i.i.d. Radamacher random variables (i.e. uniform over the set {−1,+1}). Finally, we can bound the moments
E(εiQ̃i)

2n to bound this expectation, leading to a matrix Bernstein bound.

Radamacher symmetrization: we’ll first apply the symmetrization argument to the first term; the other two terms proceed
similarly. First, note that by the definitions of X = UV T and Θ∗ = 1

mXTX we can write

Xi,a(i)Xi,b(i) −Θ∗
a(i),b(i) =

〈
Ea(i),b(i), V

(
uiu

T
i − 1

m

m∑
i=1

uiu
T
i

)
V T

〉
,
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where ui denotes the ith row of U . Substituting this expression into the expectation E
[
exp

{
ξ ∥
∑m

i=1 Qi∥op

}]
, we have

E

exp
ξ

∥∥∥∥∥
m∑
i=1

(Θ∗
a(i),b(i) −Xi,a(i)Xi,b(i))Ẽa(i),b(i)

∥∥∥∥∥
op




= E

exp
ξ

∥∥∥∥∥
m∑
i=1

〈
Ea(i),b(i), V

(
uiu

T
i − 1

m

m∑
i=1

uiu
T
i

)
V T

〉
Ẽa(i),b(i)

∥∥∥∥∥
op


 .

Next, because the random indices are drawn i.i.d., this expectation is invariant to the ui’s being permuted with each other
(i.e. sampling a random permutation σ and setting u′

i = uσ(i)). Therefore, we can take an expectation with respect to
sampling a random permutation σ while also replacing 1

m

∑m
i=1 uiu

T
i = Eσ̃uσ̃(i)u

T
σ̃(i), resulting in

= Ea(i),b(i) Eσ

exp
ξ

∥∥∥∥∥
m∑
i=1

⟨Ea(i),b(i), V

(
uσ(i)u

T
σ(i) − Eσ̃[uσ̃(i)u

T
σ̃(i)]

)
V T ⟩Ẽa(i),b(i)

∥∥∥∥∥
op


 ,

where EZ denotes taking the expectation with respect to Z. At this point, we can apply the definition of the operator norm
and proceed with standard symmetrization arguments, resulting in the following chain of inequalities:

Replacing operator norm ∥C∥op with sup
∥z∥2=1

⟨z, Cz⟩:

= Ea(i),b(i)Eσ

[
exp

{
ξ sup
∥z∥2=1

〈
z,

m∑
i=1

⟨Ea(i),b(i), V
(
uσ(i)u

T
σ(i) − Eσ̃[uσ̃(i)u

T
σ̃(i)]

)
V T ⟩Ẽa(i),b(i)z

〉}]
Pulling out the expectation via Φ(sup

g∈G
E|g(X)|) ≤ EΦ(sup

g∈G
|g(X)|) for Φ = exp convex and non-decreasing:

≤ Ea(i),b(i)Eσ Eσ̃

[
exp

{
ξ sup
∥z∥2=1

〈
z,

m∑
i=1

⟨Ea(i),b(i), V
(
uσ(i)u

T
σ(i) − uσ̃(i)u

T
σ̃(i)

)
V T ⟩Ẽa(i),b(i)z

〉}]
We can insert Radamacher random variables ε because σ and σ̃ are i.i.d.:

= Eε Ea(i),b(i)EσEσ̃

[
exp

{
ξ sup
∥z∥2=1

〈
z,

m∑
i=1

⟨Ea(i),b(i), V εi

(
uσ(i)u

T
σ(i) − uσ̃(i)u

T
σ̃(i)

)
V T ⟩Ẽa(i),b(i)z

〉}]
Splitting the sum via Jensen’s inequality:

≤ Eε,a(i),b(i)Eσ

[
1

2
exp

{
2ξ sup

∥z∥2=1

〈
z,

m∑
i=1

εi⟨Ea(i),b(i), V
(
uσ(i)u

T
σ(i)

)
V T ⟩Ẽa(i),b(i)z

〉}]

+ Eε,a(i),b(i)Eσ̃

[
1

2
exp

{
2ξ sup

∥z∥2=1

〈
z,

m∑
i=1

εi⟨Ea(i),b(i), V
(
uσ̃(i)u

T
σ̃(i)

)
V T ⟩Ẽa(i),b(i)z

〉}]
Removing σ and σ̃ by again applying invariance of the expectation to permutation:

= Eε,a(i),b(i)

[
exp

{
2ξ sup

∥z∥2=1

〈
z,

m∑
i=1

εi⟨Ea(i),b(i), V uiu
T
i V

T ⟩Ẽa(i),b(i)z

〉}]

= E

exp
2ξ

∥∥∥∥∥
m∑
i=1

εiXi,a(i)Xi,b(i)Ẽa(i),b(i)

∥∥∥∥∥
op


 .
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We can proceed in exactly the same way for the diagonal terms, resulting in the following inequalities:

E

exp
ξ

∥∥∥∥∥
m∑
i=1

(Θ∗
a(i),b(i) −Xi,a(i)Xi,b(i))Ẽa(i),b(i)

∥∥∥∥∥
op


 ≤ E

exp
2ξ

∥∥∥∥∥
m∑
i=1

εiXi,a(i)Xi,b(i)Ẽa(i),b(i)

∥∥∥∥∥
op


 ,

E

exp
ξ

∥∥∥∥∥
m∑
i=1

1

2
(Θ∗

a(i),a(i) −X2
i,a(i))Ea(i),a(i)

∥∥∥∥∥
op


 ≤ E

exp
2ξ

∥∥∥∥∥
m∑
i=1

1

2
εiX

2
i,a(i)Ea(i),a(i)

∥∥∥∥∥
op


 .

Bounding moments: at this point, we can apply standard matrix Bernstein arguments. First note that for symmetric
independent random matrices Qi, we have

Ee2ξ∥
∑

i Qi∥op
(i)
= E∥e2ξ

∑
i Qi∥op

(ii)

≤ Etr(e2ξ
∑

i Qi) = tr(Ee2ξ
∑

i Qi)
(iii)

≤ tr(e
∑

i log Ee2ξQi
),

where (i) follows from the spectral mapping theorem, (ii) from the fact that the matrix exponential eQ =
∑∞

k=0
Qk

k! is
positive semidefinite, and (iii) from Lemma 6.13 of Wainwright (2019). Therefore, it suffices to bound each Ee2ξQi . For
ease of notation, we’ll define the following random matrices, which are symmetric:

Ri =
1

2
εiXi,a(i)Xi,b(i)(Ea(i),b(i) + Eb(i),a(i))

Si = εiX
2
i,a(i)Ea(i),a(i).

Then, to bound Ee(2ξRi) and Ee(2ξSi), we can bound ER2n
i and ES2n

i (note that the odd moments are zero because εi is
symmetric around the origin). Using our assumption that ∥X∥2max ≤ α, we can compute these moments as follows:

ER2n
i =

1

22n
X2n

i,a(i)X
2n
i,b(i)

2

d
Id

⪯ α2n 1

d
Id

ES2n
i = (X2

i,a(i))
2n 1

d
Id

⪯ α2n 1

d
Id,

so Ri and Si both satisfy the matrix Bernstein condition with b = α and var(Ri) ⪯ α2 1
dId. Then, by a matrix Bernstein

bound (see, e.g., Lemma 6.11 of Wainwright (2019)), we have

Ee2ξRi ⪯ exp

{
2ξ2var(Ri)

1− b|ξ|

}
for all |ξ| < 1/b

⪯ exp

{
2ξ2α2Id

d(1− α|ξ|)

}
for all |ξ| < 1/α,

with the same inequality holding for Si. Substituting into the original inequality, for all |ξ| < 1/α we have

P

∥∥∥∥∥ 1

m

m∑
i=1

(Θ∗
a(i),b(i) −Xi,a(i)Xi,b(i))Ẽa(i),b(i)

∥∥∥∥∥
op

≥ t

 ≤ tr(e
∑

i log Ee2ξRi
)e−ξmt

≤ tr
(
exp

{
2mξ2α2Id
d(1− α|ξ|)

})
e−ξmt

≤ d exp

{
2mξ2α2

d(1− α|ξ|)

}
e−ξmt,

where the last line follows from the fact that tr(eR) ≤ de∥R∥op for symmetric matrices R ∈ Rd×d. Setting ξ = t
4α2/d+αt

produces the bound

P

∥∥∥∥∥ 1

m

m∑
i=1

(Θ∗
a(i),b(i) −Xi,a(i)Xi,b(i))Ẽa(i),b(i)

∥∥∥∥∥
op

≤ t

 ≥ 1− dexp
{
− mt2

8α2/d+ 2αt

}
,
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with the same bound holding for the second and third terms. Finally, for all three bounds to hold simultaneously with
probability ≥ 1− e−δ , we can set

t = 4max

(
2α

√
log d+ δ

dm
,α

log d+ δ

m

)
,

which is dominated by the first term for m ≥ d(log d+ δ).

A.7. Restricted strong convexity

In this section, we will lower bound the quantity L(Θ∗ + ∆) − L(Θ∗) − ⟨∇L(Θ∗),∆⟩ with high probability (where the
randomness is over the sampled indices). In particular, we’ll show that this quantity concentrates around 1

d2 ∥∆∥2F through
careful analysis of the diagonal and off-diagonal terms, along with peeling arguments similar to those in Theorem 10.17
of Wainwright (2019) and Theorem 1 of Negahban & Wainwright (2012). Recall that L is defined in Equation 6; a quick
calculation reveals that

L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩ = 1

2m

m∑
i=1

[∆2
a(i),b(i) +∆2

b(i),a(i)] + [∆2
a(i),a(i) +∆2

b(i),b(i)].

For a matrix ∆ ∈ Rd×d, we’ll use Pdiag(∆) to refer to ∆ with the off-diagonal terms set to zero, and Poff-diag(∆) =
∆− Pdiag(∆) to refer to ∆ with the diagonal set to zero.

Lemma A.7. Let (a(1), b(1)), ..., (a(m), b(m)) be random indices sampled i.i.d. uniformly from the set {(i, j) : i, j ∈
[d], i ̸= j}. Also, let m ≥ d log d. Then, for universal constants c1, c2, and c3, we have that for L defined in Equation 6,
the following bound holds uniformly for all matrices ∆ ∈ Rd×d, with probability ≥ 1− 2e−δ:

L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩ ≥ 1

d2
∥∆∥2F

− c1∥∆∥max∥∆∥nuc

√
log d

dm

− c2∥∆∥max∥∆∥F

√
δ

dm

− c3∥∆∥2max
δ

m
.

Proof. To show this bound, we’ll show the following two bounds for the off-diagonal and diagonal terms, which each hold
with probability ≥ 1− e−δ (and therefore together with probability ≥ 1− 2e−δ):

(a) Off-diagonal terms: with probability ≥ 1− e−δ , the following holds uniformly for all ∆ ∈ Rd×d:

1

m

m∑
i=1

1

2
[∆2

a(i),b(i) +∆2
b(i),a(i)] ≥

1

d(d− 1)
∥Poff-diag(∆)∥2F

− c1∥Poff-diag(∆)∥max∥Poff-diag(∆)∥nuc

√
log d

dm

− c2∥Poff-diag(∆)∥max∥Poff-diag(∆)∥F

√
δ

d(d− 1)m

− c3∥Poff-diag(∆)∥2max
δ

m
.
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(b) Diagonal terms: with probability ≥ 1− e−δ , the following holds uniformly for all ∆ ∈ Rd×d:

1

m

m∑
i=1

1

2
[∆2

a(i) +∆2
b(i)] ≥

1

d
∥Pdiag(∆)∥2F

− c1∥Pdiag(∆)∥max∥Pdiag(∆)∥nuc

√
log d

dm

− c2∥Pdiag(∆)∥max∥Pdiag(∆)∥F

√
δ

dm

− c3∥Pdiag(∆)∥2max
δ

m
.

Note that the lemma follows from adding these two claims because we have the following inequalities:

(i) Max: the max of the entire matrix bounds the max of subsets of the matrix, so ∥Pdiag(∆)∥max ≤ ∥∆∥max and
∥Poff-diag(∆)∥max ≤ ∥∆∥max.

(ii) Nuclear norm: the Pdiag operator reduces nuclear norm, so ∥Pdiag(∆)∥nuc ≤ ∥∆∥nuc and ∥Poff-diag(∆)∥nuc = ∥∆ −
Pdiag(∆)∥nuc ≤ 2∥∆∥nuc.

(iii) Frobenius norm terms: because ∥Poff-diag(∆)∥2F + ∥Pdiag(∆)∥2F = ∥∆∥2F , we have

1

d(d− 1)
∥Poff-diag(∆)∥2F +

1

d
∥Pdiag(∆)∥2F ≥ 1

d2
∥Poff-diag(∆)∥2F +

1

d2
∥Pdiag(∆)∥2F =

1

d2
∥∆∥2F ,

lower bounding the first term, and we also have

∥Poff-diag(∆)∥F

√
1

d(d− 1)
+ ∥Pdiag(∆)∥F

√
1

d
≤

√
2∥Poff-diag(∆)∥2F

1

d(d− 1)
+ 2∥Pdiag(∆)∥2F

1

d

≤
√

2∥Poff-diag(∆)∥2F
1

d
+ 2∥Pdiag(∆)∥2F

1

d

=

√
2

d
∥∆∥F ,

which upper bounds the deviation.

Off-diagonal term bound: We’ll start by bounding the off-diagonal terms; the proof for the diagonal terms will proceed
similarly. First, note that the inequality is scale-invariant, so WLOG we can assume ∥Poff-diag(∆)∥max = α. Fixing some
D and ρ, let Q(D, ρ) denote the set

Q(D, ρ) = {∆ ∈ Rd×d : ∥Poff-diag(∆)∥max = α, ∥Poff-diag(∆)∥F ≤ D, ∥Poff-diag(∆)∥nuc ≤ ρ}.

and let Z(D, ρ) denote the largest deviation in Q(D, ρ), or

Z(D, ρ) = sup
∆∈Q(D,ρ)

∣∣∣∣∣ 1m
m∑
i=1

1

2
[∆2

a(i),b(i) +∆2
b(i),a(i)]−

1

d(d− 1)
∥Poff-diag(∆)∥2F

∣∣∣∣∣ .
We’ll first produce a high probability upper bound on Z(D, ρ) for fixed D and ρ, and we’ll then use a peeling argument to
produce a high probability bound for general D and ρ.

Bound: First, note that each summand has expectation

E
[
⟨∆, Ẽa(i),b(i)⟩2

]
=

1

d(d− 1)
∥Poff-diag(∆)∥2F ,
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so Z(D, ρ) is an empirical process of the form supg∈G | 1m
∑m

i=1 g(Xi)−Eg(X)|. Furthermore, we have that each term is
uniformly bounded 1

2 [∆
2
a(i),b(i) +∆2

b(i),a(i)] ≤ α2, with uniformly bounded variance:

var
(
⟨∆, Ẽa(i),b(i)⟩2

)
= E⟨∆, Ẽa(i),b(i)⟩4 − E⟨∆, Ẽa(i),b(i)⟩2

≤ α2E⟨∆, Ẽa(i),b(i)⟩2 − E⟨∆, Ẽa(i),b(i)⟩2

= (α2 − 1)
1

d(d− 1)
∥Poff-diag(∆)∥2F

≤ α2 1

d(d− 1)
D2.

Therefore, by a functional Bernstein inequality (Theorem 3.27 of Wainwright (2019)), we have

P

(
Z(D, ρ) ≥ 2EZ(D, ρ) + 2σ

√
δ′

m
+ 2b

δ′

m

)
≤ e−δ′

where σ = αD
√

1
d(d−1) and b = α2. Next, to bound the expectation EZ(D, ρ), we have that

E sup
∆∈Q(D,ρ)

∣∣∣∣∣ 1m
m∑
i=1

⟨Ẽa(i),b(i),∆⟩2 − E[⟨Ẽa(i),b(i),∆⟩2]

∣∣∣∣∣ (i)≤ 2E sup
∆∈Q(D,ρ)

∣∣∣∣∣ 1m
m∑
i=1

εi⟨Ẽa(i),b(i),∆⟩2
∣∣∣∣∣

(ii)
= 2E sup

∆∈Q(D,ρ)

∣∣∣∣∣ 1m
m∑
i=1

εi⟨Ẽa(i),b(i), Poff-diag(∆)⟩2
∣∣∣∣∣

(iii)

≤ 4αE sup
∆∈Q(D,ρ)

∣∣∣∣∣ 1m
m∑
i=1

εi⟨Ẽa(i),b(i), Poff-diag(∆)⟩

∣∣∣∣∣
(iv)

≤ 4αE sup
∆∈Q(D,ρ)

∣∣∣∣∣∣
∥∥∥∥∥ 1

m

m∑
i=1

εiẼa(i),b(i)

∥∥∥∥∥
op

∥Poff-diag(∆)∥nuc

∣∣∣∣∣∣
≤ 4αρE

∥∥∥∥∥ 1

m

m∑
i=1

εiẼa(i),b(i)

∥∥∥∥∥
op

(v)

≤ 64αρ

√
log d

dm
,

where (i) follows from Radamacher symmetrization, (ii) follows from the fact that a(i) ̸= b(i) so only off-diagonal
terms of ∆ are sampled, (iii) follows from the fact that ∥Poff-diag(∆)∥max ≤ α and the Ledoux-Talagrand contraction
inequality for Radamacher processes (see (5.61) in Wainwright (2019) or Section 4.2 in Ledoux & Talagrand (1991)),
and (iv) follows from Holder’s inequality. To show (v), note that each εiẼa(i),b(i) is mean zero with operator norm 1 and
variance var(εiẼa(i),b(i)) =

1
dId, so by matrix Bernstein (Theorem 6.17 of Wainwright (2019)) we have

P

∥∥∥∥∥ 1

m

m∑
i=1

εiẼa(i),b(i)

∥∥∥∥∥
op

≥ t

 ≤ 2d exp

{
− mt2

2( 1d + t)

}
.

Then, for m ≥ d log d, we can integrate to bound the expectation by 16
√

log d
dm : in particular, by Exercise 2.8(a) of

Wainwright (2019), we have that

P(Z ≥ t) ≤ Ce
− t2

2(ν2+bt) =⇒ EZ ≤ 2ν(
√
π +

√
logC) + 4b(1 + logC)
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where we have C = 2d, ν2 = 1
dm , and b = 1

m , resulting in

E

∥∥∥∥∥ 1

m

m∑
i=1

εiẼa(i),b(i)

∥∥∥∥∥
op

≤ 2
1√
dm

(
√
π +

√
log(2d)) + 4

1

m
(1 + log(2d))

≤ 16

√
log d

dm
,

where the second inequality follows from combining terms and using the fact that the first term is larger when m ≥ d log d.
Putting everything together, we have that

P

(
Z(D, ρ) ≤ 128αρ

√
log d

dm
+ 4αD

√
δ′

d(d− 1)m
+ 4α2 δ

′

m

)
≥ 1− e−δ′ . (7)

Peeling: given this bound, we can use a peeling argument to extend to general D and ρ. Our approach will be to cover all
possible ∆ with the sets

Qk,ℓ = {∆ ∈ Rd×d : ∥Poff-diag(∆)∥max = α, α2k−1 ≤ ∥Poff-diag(∆)∥F ≤ α2k, α2ℓ−1 ≤ ∥Poff-diag(∆)∥nuc ≤ α2ℓ}.

The idea is that we can use the union bound to ensure that the uniform bound in the first part (Equation 7) applies to each
set Qk,ℓ. Then, because Qk,ℓ captures values of D and ρ up to factors of 2, we can produce the desired inequality for
general ∆ while only losing constant factors in the deviation terms.

The first step is to bound the number of such sets that we need, which we can do by upper- and lower-bounding the
Frobenius and nuclear norms with respect to α:

α = ∥Poff-diag(∆)∥max ≤ ∥Poff-diag(∆)∥F ≤ d∥Poff-diag(∆)∥max = dα

α = ∥Poff-diag(∆)∥max ≤ ∥Poff-diag(∆)∥nuc ≤ d3/2∥Poff-diag(∆)∥max = d3/2α.

Therefore, it suffices to have k = 1, 2, ..., ⌈log d⌉ and ℓ = 1, 2, ..., ⌈(3/2) log d⌉. By the union bound, the probability that
the bound in Equation 7 holds for all of the sets Qk,ℓ is at least ≥ 1 − ⌈(3/2) log d⌉⌈log d⌉2 exp {−δ′}, which we can
bound by ≥ 1− e−δ for δ ≥ log 6 + log log d by setting δ′ = 3δ.

Then, for any specific ∆, letting k, ℓ be the indices such that ∆ ∈ Qk,ℓ, we have that

1

m

m∑
i=1

⟨∆, Ẽa(i),b(i)⟩2
(i)

≥ 1

d(d− 1)
∥Poff-diag(∆)∥2F − c1αρ

√
log d

dm
− c2αD

√
δ

d(d− 1)m
− c3α

2 δ

m

=
1

d(d− 1)
∥Poff-diag(∆)∥2F − c1α(α2

ℓ)

√
log d

dm
− c2α(α2

k)

√
δ

d(d− 1)m
− c3α

2 δ

m

(ii)

≥ 1

d(d− 1)
∥Poff-diag(∆)∥2F − 2c1α∥Poff-diag(∆)∥nuc

√
log d

dm

− 2c2α∥Poff-diag(∆)∥F

√
δ

d(d− 1)m
− c3α

2 δ

m
,

where (i) follows from the fact that Qk,ℓ ⊆ Q(D, ρ) for D = α2k, ρ = α2ℓ, and (ii) follows from the fact that α2k−1 ≤
∥Poff-diag(∆)∥F and α2ℓ−1 ≤ ∥Poff-diag(∆)∥nuc.

Diagonal terms: the bound for the diagonal terms proceeds in the same way, but with slightly different quantities. As
before, we’ll assume that ∥Pdiag(∆)∥max = α. Fixing D and ρ, we’ll define the set Q(D, ρ) as

Q(D, ρ) = {∆ ∈ Rd×d : ∥Pdiag(∆)∥max = α, ∥Pdiag(∆)∥F ≤ D, ∥Pdiag(∆)∥nuc ≤ ρ},

and we’ll define Z(D, ρ) as

Z(D, ρ) = sup
∆∈Q(D,ρ)

∣∣∣∣∣ 1m
m∑
i=1

1

2
[∆2

a(i),a(i) +∆2
b(i),b(i)]−

1

d
∥Pdiag(∆)∥2F

∣∣∣∣∣ ,
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where we have that each term has expectation

E
[
1

2
[∆2

a(i),a(i) +∆2
b(i),b(i)]

]
=

1

d
∥Pdiag(∆)∥2F .

We again have that each term is uniformly bounded by α2 and has uniformly bounded variance, but this time with α2 1
dD

2.

The bound for EZ(D, ρ) ≤ 64αρ
√

log d
dm proceeds exactly as before, producing the functional Bernstein inequality

P

(
Z(D, ρ) ≤ 128αρ

√
log d

dm
+ 4αD

√
δ′

dm
+ 4α2 δ

′

m

)
≥ 1− e−δ′ .

Finally, we can proceed with exactly the same peeling argument as before, leading to the following bound holding uni-
formly with probability ≥ 1− e−δ:

1

m

m∑
i=1

1

2
[∆2

a(i),a(i) +∆2
b(i),b(i)] ≥

1

d
∥Pdiag(∆)∥2F − 2c1α∥Pdiag(∆)∥nuc

√
log d

dm

− 2c2α∥Pdiag(∆)∥F

√
δ

dm
− c3α

2 δ

m
,

which completes the proof.

A.8. Decomposability

In this section, we show that for large enough regularization strength λ, the error ∆ = Θ̂ − Θ∗ must have small nuclear
norm. The arguments in this section proceed exactly as in Proposition 9.13 of Wainwright (2019), which we reproduce
here for completeness. To aid our analysis of the nuclear norm regularizer, we’ll first define the subspaces M and M̄ of
Rd×d as follows (where S⊥ denotes the orthogonal complement of a subspace S), following Negahban et al. (2012):

M = {Θ : rowspace(Θ) ⊆ rowspace(Θ∗), colspace(Θ) ⊆ colspace(Θ∗)}
M̄⊥ = {Θ : rowspace(Θ) ⊆ rowspace(Θ∗)⊥, colspace(Θ) ⊆ colspace(Θ∗)⊥}.

From these subspaces, we can define M⊥ and M̄ accordingly as their orthogonal complements. As an example, if Θ∗ is
the rank-r matrix with the r × r identity in the top left corner and zeros otherwise, then we have

M =

[
Γr×r 0
0 0

]
M⊥ =

[
0 Γr×(d−r)

Γ(d−r)×r Γ(d−r)×(d−r)

]
M̄⊥ =

[
0 0
0 Γ(d−r)×(d−r)

]
M̄ =

[
Γr×r Γr×(d−r)

Γ(d−r)×r 0

]
,

where each Γa×b represents an arbitrary matrix in Ra×b. With these subspaces defined, we have the following two facts:
(1) for any A ∈ M and B ∈ M̄⊥, we have ∥A + B∥nuc = ∥A∥nuc + ∥B∥nuc, i.e. the nuclear norm is decomposable
with respect to (M, M̄) (Negahban et al., 2012), and (2) if Θ∗ is rank r, then all matrices in M are at most rank r and all
matrices in M̄ are at most rank 2r. Broadly speaking, the proof will proceed by using the optimality of Θ̂ (with large enough
regularization strength λ) to bound ∥∆∥nuc, which involves projecting ∆ onto these subspaces and using decomposability
of the nuclear norm.
Lemma A.8. [Proposition 9.13 of Wainwright (2019)] Let ∆ = Θ̂−Θ∗ denote the error, where Θ̂ solves the optimization
problem defined in Equation 5. Also, suppose that the regularization strength λ is at least

λ ≥ 2∥∇L(Θ∗)∥op.

Then, we have

∥∆∥nuc ≤ 4
√
2r∥∆∥F .
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Proof. First, note that we can project the error ∆ onto orthogonal subspaces M̄ and M̄⊥ as follows:

∥∆∥nuc = ∥∆M̄⊥ +∆M̄∥nuc

(triangle) ≤ ∥∆M̄⊥∥nuc + ∥∆M̄∥nuc

(i)

≤ ∥∆M̄⊥∥nuc +
√
2r∥∆M̄∥F

≤ ∥∆M̄⊥∥nuc +
√
2r∥∆∥F ,

where (i) follows from the fact that any matrix in M̄ is at most rank 2r. Therefore, at this point it suffices to bound
∥∆M̄⊥∥nuc. By the optimality of Θ̂, we have

0 ≥ L(Θ∗ +∆)− L(Θ∗) + λ (∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

(i)

≥ ⟨∇L(Θ∗),∆⟩+ λ (∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

(ii)

≥ −∥∇L(Θ∗)∥op∥∆∥nuc + λ (∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

(iii)

≥ −λ

2
∥∆∥nuc + λ (∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc) ,

where (i) follows from the convexity of L, (ii) from Holder’s inequality, and (iii) from our assumption that λ ≥
2∥∇L(Θ∗)∥op. Next, we’ll project the error ∆ onto M̄ and M̄⊥ to expand the second term as follows:

∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc = ∥Θ∗ +∆M̄⊥ +∆M̄∥nuc − ∥Θ∗∥nuc

(i)

≥ ∥Θ∗ +∆M̄⊥∥nuc − ∥∆M̄∥nuc − ∥Θ∗∥nuc

(ii)
= ∥Θ∗∥nuc + ∥∆M̄⊥∥nuc − ∥∆M̄∥nuc − ∥Θ∗∥nuc

= ∥∆M̄⊥∥nuc − ∥∆M̄∥nuc,

where (i) follows from reverse triangle, and (ii) follows from decomposability and the fact that Θ∗ ∈ M. Substituting the
expression for the second term, we have that

0 ≥ −λ

2
∥∆∥nuc + λ(∥∆M̄⊥∥nuc − ∥∆M̄∥nuc)

(i)

≥ −λ

2
(∥∆M̄⊥∥nuc + ∥∆M̄∥nuc) + λ(∥∆M̄⊥∥nuc − ∥∆M̄∥nuc)

=
λ

2
(∥∆M̄⊥∥nuc − 3∥∆M̄∥nuc),

where (i) follows from the triangle inequality. Rearranging, we have that ∥∆M̄⊥∥nuc ≤ 3∥∆M̄∥nuc. Putting everything
together, we have that ∥∆∥nuc ≤ 4∥∆M̄∥nuc ≤ 4

√
2r∥∆∥F as desired.

A.9. Proof of theorem

Finally, we can put everything together to prove Theorem A.1, which we reproduce here:

Theorem. Let Θ̂ be the solution of the optimization problem defined in Equation 5, where λ is set to 16α
√

log d+δ
dm . Also,

suppose that X is rank r with ∥X∥2max ≤ α, and m ≥ d(log d+ δ). Then, with probability ≥ 1− 3e−δ , we have that

1

d2
∥Θ̂−Θ∗∥2F ≲ α2 rd(log d+ δ)

m
.

Proof. By our setting of λ = 16α
√

log d+δ
dm , we can apply Lemma A.6 (operator norm bound) to show that

λ

2
≥ ∥∇L(Θ∗)∥op
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with probability ≥ 1−e−δ . We’ll also condition on the high-probability bound in Lemma A.7 (restricted strong convexity),
which holds with probability ≥ 1− 2e−δ (so by the union bound, both hold with probability ≥ 1− 3e−δ):

L(Θ∗ +∆)− L(Θ∗)− ⟨∇L(Θ∗),∆⟩ ≥ 1

d2
∥∆∥2F − c1∥∆∥max∥∆∥nuc

√
log d

dm

− c2∥∆∥max∥∆∥F

√
δ

dm
− c3∥∆∥2max

δ

m
.

First, note that we have ∥∆∥max ≤ ∥Θ̂∥max + ∥Θ∗∥max ≤ 2α, where ∥Θ̂∥max ≤ α is a constraint of the optimization
problem (Equation 5) and ∥Θ∗∥max ≤ α follows from our assumption that ∥X∥2max ≤ α:

max
ij

|Θ∗
ij | = max

ij

∣∣∣∣∣ 1m
m∑

k=1

XkiXkj

∣∣∣∣∣
≤ max

ij

1

m

m∑
k=1

|Xki||Xkj |

≤ 1

m

m∑
k=1

α.

Then, given these lemmas, we can prove the result as follows: first, by the optimality of Θ̂, we have

0 ≥ L(Θ∗ +∆)− L(Θ∗) + λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

(i)

≥ ⟨∇L(Θ∗),∆⟩+ 1

d2
∥∆∥2F − c1α∥∆∥nuc

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m

+ λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

(ii)

≥ −∥∇L(Θ∗)∥op∥∆∥nuc +
1

d2
∥∆∥2F − c1α∥∆∥nuc

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m

+ λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc)

(iii)

≥ −λ

2
∥∆∥nuc +

1

d2
∥∆∥2F − c1α∥∆∥nuc

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m

+ λ(∥Θ∗ +∆∥nuc − ∥Θ∗∥nuc),

where (i) follows from Lemma A.7 (restricted strong convexity), (ii) from Holder’s inequality, and (iii) from our setting
of λ and Lemma A.6 (operator norm bound). Next, we can combine terms involving λ and use our bound on the nuclear
norm (Lemma A.8), producing

(i)

≥ −λ

2
∥∆∥nuc +

1

d2
∥∆∥2F − c1α∥∆∥nuc

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m
+ λ(−∥∆∥nuc)

=
1

d2
∥∆∥2F − c1α∥∆∥nuc

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m
− 3

2
λ∥∆∥nuc

(ii)

≥ 1

d2
∥∆∥2F − c1α∥∆∥nuc

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m
− c4∥∆∥nuc α

√
log d+ δ

dm

(iii)

≥ 1

d2
∥∆∥2F − c1α

√
r∥∆∥F

√
log d

dm
− c2α∥∆∥F

√
δ

dm
− c3α

2 δ

m
− c4

√
r∥∆∥F α

√
log d+ δ

dm
,

where (i) follows from reverse triangle, (ii) from our setting of λ, and (iii) from Lemma A.8 (nuclear norm bound). At this
point, we can rearrange to produce the bound

1

d2
∥∆∥2F ≲ max

(
α
√
r∥∆∥F

√
log d

dm
, α∥∆∥F

√
δ

dm
, α2 δ

m
,
√
r∥∆∥Fα

√
log d+ δ

dm

)
,
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which we can simplify into

1

d
∥∆∥F ≲ max

(
α

√
rd log d

m
, α

√
dδ

m
, α

√
δ

m
, α

√
rd(log d+ δ)

m

)

≲ α

√
rd(log d+ δ)

m
,

completing the proof.

B. Experiments and hyperparameters
Experiments were run on TITAN RTX and RTX 3090 GPUs with 24 gigabytes of memory; in all experiments we set the
random seed to zero. Optimization was done via Adam (Kingma & Ba, 2015) with lr = 1e−10, β = (0.9, 0.999), and
10,000 steps.
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