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Abstract

Foundation models have become popular in forecasting due to their ability to1

make accurate predictions, even with minimal fine-tuning on specific datasets. In2

this paper, we demonstrate how the newly released regression variant of TabPFN,3

a general tabular foundation model, can be applied to time series forecasting.4

We propose a straightforward approach, TabPFN-TS, which pairs TabPFN with5

simple feature engineering to achieve strong forecasting performance. Despite its6

simplicity and with only 11M parameters, TabPFN-TS outperforms Chronos-Mini,7

a model of similar size, and matches or even slightly outperforms Chronos-Large,8

which has 65-fold more parameters. A key strength of our method lies in its reliance9

solely on artificial data during pre-training, avoiding the need for large training10

datasets and eliminating the risk of benchmark contamination. To encourage11

reproducibility, we provide a Colab Notebook1 to demonstrate our approach.12

1 Introduction13

Time series forecasting has received a lot of attention due to its large set of high-impact applications,14

in areas such as energy, finance and logistics. Recently, deep learning has gained popularity in15

forecasting for its ability to integrate covariates and custom likelihoods [Benidis et al., 2022].16

However, these methods typically require large amounts of training data to outperform simpler17

approaches. To address this, several lines of work have explored pre-training foundation models on18

large collections of time series datasets, followed by zero-shot or few-shot fine-tuning.19

In this work, we demonstrate that the tabular foundation model TabPFN [Hollmann et al., 2023]220

performs on par with, or slightly outperforms state-of-the-art time-series foundation models out-21

of-the-box in forecasting. This shows that TabPFN is sufficiently general, eliminating the need for22

time-series-specific priors [Dooley et al., 2024] or extensive pre-training on real-world time series23

datasets as in Ansari et al. [2024].24

2 Related work25

Traditional forecasting methods, such as ARIMA and ETS [Hyndman, 2018], are widely used but are26

often outperformed by deep learning models when ample training data is available [Salinas et al.,27

2020].28

1https://bit.ly/tabpfn-ts
2We use a recent version of TabPFN, for which a formal publication is not yet available, can be accessed at

https://github.com/automl/tabpfn-client.
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Figure 1: Overview of TabPFN-TS. Given a time series, we derive features from the timestamps to
form both X_train and X_test. The target values of the history are used as y_train. These three
variables are then used by TabPFN to predict the target values of the future timestamps.

Recently, foundation models for time series have been developed, particularly suited for smaller29

datasets (fewer than a few million time steps). These models, pre-trained on real-world time-series30

datasets, are applied to new time series through zero-shot prediction, without fine-tuning. Rasul et al.31

[2023] introduced an auto-regressive model trained on large datasets that performs well in zero-shot32

settings and improves further with fine-tuning. Other works have explored similar foundational33

approaches [Woo et al., 2024, Dooley et al., 2024], as surveyed by Liang et al. [2024].34

Another line of work involves adapting architectures from other domains and modalities to create35

time series foundation models. Gruver et al. [2024] and Ansari et al. [2024] demonstrated strong36

forecasting performance using models designed for language tasks, while Yang et al. [2024] applied37

Vision Transformers to time series forecasting.38

In this work, we extend the tabular foundation model from Hollmann et al. [2023] to time series39

forecasting, notably without requiring pre-training on real-world or synthetic time series datasets.40

3 Method41

We frame time series forecasting as a tabular regression problem, where each time series is treated as42

an independent table, as shown in Figure 1. Tabular regression uses the training data (in this case, the43

history of the series) to predict future target values. Unlike auto-regressive methods, our approach44

generates multi-step-ahead predictions by relying solely on historical information. Moreover, each45

time series is processed independently, with no information shared between series. As a result, our46

method is a local, multi-step-ahead forecasting approach.47

3.1 Featurizing Time Series Data for TabPFN48

Leveraging TabPFN for forecasting requires capturing temporal relationships through appropriate49

feature engineering. We derive features directly from the timestamps, excluding lagged and auto-50

regressive features (e.g., moving averages and lag terms), as they rely on future values and are51

therefore unsuitable for non-auto-regressive, multi-step-ahead prediction settings. All of our features52

describe the current time stamp, independent of other time steps.53

Sine and Cosine Encoding To capture the cyclical nature of most calendar-based features (exclud-54

ing the year), we apply sine and cosine transformations. This replaces a feature with two new features55

representing its sine and cosine values, with the period set to match the feature’s natural cycle (e.g.56

24 hours for the hour of the day, 7 days for the day of the week).57

Calendar Features From each timestamp, we extract several calendar-based features: the year,58

the hour of the day (sine and cosine), the day of the week (sine and cosine), the day of the month59

(sine and cosine), the day in the year (sine and cosine), the week of the year (sine and cosine), and60

the month of the year (sine and cosine).61

Running Index To introduce a temporal reference within the timeline, we include the index of each62

time step as a feature (e.g., 0 for the first time step in the time series, 4 for the fifth). This provides a63

straightforward and effective way to track the progression of time across the observations.64
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Figure 2: Forecasting performance of various models on 24 datasets. MAE scores are normalized
using the scores of Seasonal Naive to compute Relative MASE, then aggregated via geometric mean
over the datasets. 95% confidence interval is included. Lower is better.

3.2 Forecasting with TabPFN65

For each time series, we transform the sequence into a table with the aforementioned features, as66

outlined in Figure 1. This table is then fed to TabPFN as an “i.i.d.” regression task. Since the available67

TabPFN implementation does not support batched inference, we process each time series individually.68

4 Experiments69

In this section, we aim to rigorously assess the point forecast accuracy of TabPFN-TS. All evaluations70

are conducted with AutoMLBenchmark [Gijsbers et al., 2024], following the same settings used in71

the evaluation of AutoGluon-TS [Shchur et al., 2023].72

Datasets We utilize 24 of the 29 datasets from the AutoGluon-TS evaluation, excluding 5 datasets73

due to their large size, which prevented TabPFN-TS from completing within the 4 hour time limit.74

Adhering to this constraint ensures a fair comparison with the results reported in AutoGluon-TS,75

where we reference baseline results. Despite the exclusions, the remaining datasets span a wide range76

of application domains and exhibit diverse time series characteristics. Table A.1 outlines the datasets77

and their respective statistics.78

TabPFN Configuration We use a recent TabPFN implementation from the following hosted79

endpoint: 3. TabPFN internally models the full distribution of the target values, allowing for flexible80

aggregation into point prediction (explained in detail in Appendix A.2.1). Given that our evaluation81

metric (MASE, described in 4) is a scaled variant of mean absolute error (MAE), we configure82

TabPFN to use the median prediction, which minimizes MAE [Schwertman et al., 1990]. All other83

settings are kept at their defaults. Additional configuration details are provided in Appendix A.2.2.84

Baselines We evaluate the performance of TabPFN-TS against a diverse set of baselines, including85

statistical, deep-learning, and pre-trained models. From the statistical forecasting literature Hyndman86

[2018], we include SeasonalNaive, AutoETS, AutoARIMA and AutoTheta. For neural forecasting87

baselines, we compare against DeepAR and TFT [Lim et al., 2021], while the pre-trained models88

include Chronos-Mini and Chronos-Large. Implementation details are provided in Appendix A.3.89

Evaluation Metrics We follow the evaluation protocol outlined by Ansari et al. [2024] and Shchur90

et al. [2023]. Point forecast accuracy is assessed using the mean absolute scaled error (MASE)91

[Hyndman and Koehler, 2006], which scales the absolute forecast error by the historical seasonal92

error of the time series. Consistent with Ansari et al. [2024], we aggregate the relative scores using93

the geometric mean.94

3https://github.com/automl/tabpfn-client.
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4.1 Main Results95

TabPFN-TS outperforms all baselines (see Figure 2). With only 11M parameters, it surpasses96

Chronos-Mini (20M) by 7.7% and shows a modest improvement over Chronos-Large (710M, with97

65 times more parameters) by 3.0%. For further insights, we provide complementary information in98

the Appendix A.4, including raw MASE scores for individual datasets (Table 2), visualizations of99

TabPFN-TS’ predictions (Figure 6 and 7), and a latency comparison across models (Table 3).100

4.2 Ablations101
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In this section, we conduct a series of ablations to better under-102

stand the surprisingly strong performance of TabPFN-TS.103

Which features are the best? We experimented with various104

features for time series forecasting with TabPFN, including105

a running index, raw calendar features (e.g. day of the week106

represented as 0-6), and sine-cosine transformed calendar fea-107

tures. The results, outlined in Figure 3, show that using only108

the index, similar to how Chronos is prompted, yields subpar109

performance. In contrast, TabPFN performs significantly better110

when calendar features are present.111

Can Any Tabular Regressor Achieve This? To assess112

whether the effectiveness of our method stems from general113

tabular regression or from TabPFN, we replaced TabPFN with114

the default CatBoost regressor, keeping the rest of the pipeline115

unchanged. As shown in Figure 4, CatBoost falls short of116

our performance and is even outperformed by Seasonal Naive.117

While boosted trees have shown strong results in forecasting118

[Januschowski et al., 2022], they are typically used as global119

model and rely on lag and aggregate features. This suggests120

TabPFN’s unique capability as a tabular foundation model for121

time series forecasting.122

Chronos' Zero-shot vs In-domain Performance Unlike123

TabPFN, Chronos is pre-trained on real-world time series data,124

with overlap in our evaluation datasets. To better compare the125

performances, we grouped the results into in-domain and zero-126

shot categories based on the data split from Chronos’s paper.127

As shown in Figure 5, Chronos outperforms TabPFN-TS on the128

datasets it was pre-trained on, suggesting that additional dataset-129

specific training can improve performance when computational130

resources are available. However, in zero-shot settings — where131

Chronos has not been trained on the dataset — TabPFN-TS sig-132

nificantly outperforms Chronos, underscoring its strength as a133

foundation model for time series forecasting.134

5 Conclusion135

In this paper, we presented evidence suggesting that tabular136

foundation models, like TabPFN, may be general enough to be137

the incumbent for time series datasets. By using a simple set of138

timestamp-derived features, our approach matches or slightly139

outperforms Chronos-T5 (Large), which, to our knowledge,140

is one of the strongest time series foundation models. This141

demonstrates the potential of tabular foundation models in time142

series forecasting, though further research is needed to confirm143

their broader applicability.144

4



References145

A. Alexandrov, K. Benidis, M. Bohlke-Schneider, V. Flunkert, J. Gasthaus, T. Januschowski, D. C.146

Maddix, S. Rangapuram, D. Salinas, J. Schulz, L. Stella, A. C. Türkmen, and Y. Wang. GluonTS:147

Probabilistic Time Series Modeling in Python. arXiv preprint arXiv:1906.05264, 2019.148

A. F. Ansari, L. Stella, C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S. Rangapuram,149

S. P. Arango, S. Kapoor, et al. Chronos: Learning the language of time series. arXiv preprint150

arXiv:2403.07815, 2024.151

K. Benidis, S. S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix, C. Turkmen, J. Gasthaus, M. Bohlke-152

Schneider, D. Salinas, L. Stella, et al. Deep learning for time series forecasting: Tutorial and153

literature survey. ACM Computing Surveys, 55(6):1–36, 2022.154

S. Dooley, G. S. Khurana, C. Mohapatra, S. V. Naidu, and C. White. Forecastpfn: Synthetically-155

trained zero-shot forecasting. Advances in Neural Information Processing Systems, 36, 2024.156

P. Gijsbers, M. L. P. Bueno, S. Coors, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren.157

Amlb: an automl benchmark. Journal of Machine Learning Research, 25(101):1–65, 2024. URL158

http://jmlr.org/papers/v25/22-0493.html.159

N. Gruver, M. Finzi, S. Qiu, and A. G. Wilson. Large language models are zero-shot time series160

forecasters. Advances in Neural Information Processing Systems, 36, 2024.161

N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. Tabpfn: A transformer that solves small162

tabular classification problems in a second. In The Eleventh International Conference on Learning163

Representations, 2023.164

R. Hyndman. Forecasting: principles and practice. OTexts, 2018.165

R. J. Hyndman and A. B. Koehler. Another look at measures of forecast accuracy. International166

Journal of Forecasting, 22(4):679–688, 2006. ISSN 0169-2070. doi: https://doi.org/10.1016/167

j.ijforecast.2006.03.001. URL https://www.sciencedirect.com/science/article/pii/168

S0169207006000239.169

T. Januschowski, Y. Wang, K. Torkkola, T. Erkkilä, H. Hasson, and J. Gasthaus. Forecasting with170

trees. International Journal of Forecasting, 38(4):1473–1481, 2022.171

Y. Liang, H. Wen, Y. Nie, Y. Jiang, M. Jin, D. Song, S. Pan, and Q. Wen. Foundation models for time172

series analysis: A tutorial and survey. In Proceedings of the 30th ACM SIGKDD Conference on173

Knowledge Discovery and Data Mining, pages 6555–6565, 2024.174

B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister. Temporal fusion transformers for interpretable multi-175

horizon time series forecasting. International Journal of Forecasting, 37(4):1748–1764, 2021.176

K. Rasul, A. Ashok, A. R. Williams, A. Khorasani, G. Adamopoulos, R. Bhagwatkar, M. Biloš,177

H. Ghonia, N. V. Hassen, A. Schneider, et al. Lag-llama: Towards foundation models for time178

series forecasting. arXiv preprint arXiv:2310.08278, 2023.179

D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski. Deepar: Probabilistic forecasting with180

autoregressive recurrent networks. International journal of forecasting, 36(3):1181–1191, 2020.181

N. C. Schwertman, A. Gilks, and J. Cameron. A simple noncalculus proof that the median minimizes182

the sum of the absolute deviations. The American Statistician, 44(1):38–39, 1990.183

O. Shchur, C. Turkmen, N. Erickson, H. Shen, A. Shirkov, T. Hu, and Y. Wang. AutoGluon-184

TimeSeries: AutoML for probabilistic time series forecasting. In International Conference on185

Automated Machine Learning, 2023.186

G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo. Unified training of universal time187

series forecasting transformers. arXiv preprint arXiv:2402.02592, 2024.188

L. Yang, Y. Wang, X. Fan, I. Cohen, J. Chen, Y. Zhao, and Z. Zhang. Vitime: A visual intelligence-189

based foundation model for time series forecasting, 2024. URL https://arxiv.org/abs/2407.190

07311.191

5

http://jmlr.org/papers/v25/22-0493.html
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://arxiv.org/abs/2407.07311
https://arxiv.org/abs/2407.07311
https://arxiv.org/abs/2407.07311


A Appendix192

A.1 Dataset193

Table A.1 provides the complete list of datasets used in our empirical evaluation. All datasets are194

sourced from Alexandrov et al. [2019].195

196

197
Table 1: Datasets used for evaluation and their respective statistics.

Dataset Domain Freq. Prediction Length Num. Series Series Length
min avg max

car_parts retail M 12 2674 51 51 51
cif_2016 banking M 12 72 28 98 120
covid_deaths healthcare D 30 266 212 212 212
electricity_weekly energy W 8 321 156 156 156
fred_md economics M 12 107 728 728 728
hospital healthcare M 12 767 84 84 84
kdd_cup_2018 nature H 48 270 9504 10897 10920
m1_monthly various M 18 617 48 90 150
m1_quarterly various Q 8 203 18 48 114
m1_yearly various A 6 181 15 24 58
m3_monthly various M 18 1428 66 117 144
m3_other various A 8 174 71 76 104
m3_quarterly various Q 8 756 24 48 72
m3_yearly various A 6 645 20 28 47
m4_daily various D 14 4227 107 2371 9933
m4_hourly various H 48 414 748 901 1008
m4_weekly various W 13 359 93 1035 2610
nn5_daily finance D 56 111 791 791 791
nn5_weekly finance W 8 111 113 113 113
pedestrian_counts finance H 48 66 576 47459 96424
tourism_monthly finance M 24 366 91 298 333
tourism_quarterly various Q 8 427 30 99 130
tourism_yearly various A 4 518 11 24 47
vehicle_trips transport D 7 329 70 128 243
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A.2 Technical Overview of TabPFN198

A.2.1 A brief overview of TabPFN’s working principle199

TabPFN approaches tabular regression by predicting a probability distribution over possible target200

values, rather than a single deterministic output. In the context of time series forecasting, when201

provided with a future timestamp, TabPFN generates a probability distribution for the corresponding202

target value.203

This probabilistic approach allows flexibility in obtaining point forecasts. Users can aggregate the204

distribution using methods such as the mean or median, depending on the forecasting objective. The205

use of a full probability distribution enables better uncertainty quantification and provides a more206

robust forecast compared to single-point predictions.207

Additionally, TabPFN is naturally suited to quantile prediction in forecasting, as it can directly predict208

the probability of different quantiles. However, in this paper, we focus on point accuracy, leaving209

quantile accuracy for future work.210

A.2.2 Implementation of TabPFN211

The implementation of TabPFN, available through a hosted endpoint4 supports datasets with up to212

10K data points and 500 features. It allows users to configure various internals, such as pre-processing,213

model selection, and ensembling.214

For our experiments, we selected the 2noar4o2 model due to its superior empirical performance and215

configured the regressor to perform median prediction. The following code snippets demonstrate this216

setup.217

from tabpfn_client import TabPFNRegressor218

219

tabpfn = TabPFNRegressor(model_path="2noar4o2")220

221

tabpfn.fit(X_train, y_train)222

pred = tabpfn.predict_full(y_train)["median"]223

A.3 Baselines Implementation224

After verifying that our results for Seasonal Naive aligned with those reported by Shchur et al. [2023],225

we sourced the remaining baseline results, except for the Chronos variants, from their paper. We226

re-evaluated Chronos-Mini and Chronos-Large on an NVIDIA V100 machine for further comparison.227

For Seasonal Naive, Chronos-Mini, and Chronos-Large, we utilized the AutoGluon forecasting library228

[Shchur et al., 2023] with default settings.229

4https://github.com/automl/tabpfn-client
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A.4 Additional Results230

This section complements the main result (4.1) by providing additional details to the experimental231

results.232

A.4.1 Mean Absolute Scaled Error (MASE) Scores233

Table 2 presents the raw MASE scores for all models across the datasets. Additionally, we report the234

average rank of each model, with lower ranks indicating better overall performance.235

236

237
Table 2: MASE scores of all models on various time-series datasets. Lower is better.

Tabular Time-Series Deep Learning Statistical
Foundation Model Foundation Model Time-Series Model Time-Series Model

Tab
PFN-T

S

Chro
no

s-L
arg

e

Chro
no

s-M
ini

Dee
pA

R

TFT
Auto

ARIM
A

Auto
ETS

Auto
The

ta

Sea
so

na
lN

aiv
e

car_parts 0.796 0.823 0.821 0.749 0.751 1.118 1.133 1.208 1.127
cif_2016 0.885 1.000 1.040 1.278 1.372 1.069 0.898 1.006 1.289
covid_deaths 6.471 7.580 7.569 7.166 5.192 6.029 5.907 7.719 8.977
electricity_hourly 1.335 1.119 1.113 1.251 1.389 - 1.465 - 1.230
electricity_weekly 1.704 1.723 1.865 2.447 2.861 3.009 3.076 3.113 3.037
fred_md 0.521 0.499 0.469 0.634 0.901 0.478 0.505 0.564 1.101
hospital 0.757 0.808 0.813 0.771 0.814 0.820 0.766 0.764 0.921
kdd_cup_2018 0.727 0.734 0.728 0.841 0.844 - 0.988 1.010 0.975
m1_monthly 1.040 1.093 1.186 1.117 1.534 1.152 1.083 1.092 1.314
m1_quarterly 1.664 1.735 1.794 1.742 2.099 1.770 1.665 1.667 2.078
m1_yearly 3.684 4.390 5.106 3.674 4.318 3.870 3.950 3.659 4.894
m3_monthly 0.853 0.861 0.903 0.960 1.062 0.934 0.867 0.855 1.146
m3_other 2.123 2.023 2.092 2.061 1.926 2.245 1.801 2.009 3.089
m3_quarterly 1.096 1.203 1.282 1.198 1.176 1.419 1.121 1.119 1.425
m3_yearly 2.696 3.060 3.462 2.694 2.818 3.159 2.695 2.608 3.172
m4_daily 1.290 1.118 1.122 1.145 1.176 1.153 1.228 1.149 1.452
m4_hourly 0.790 0.694 0.762 1.484 3.391 1.029 1.609 2.456 1.193
m4_weekly 2.058 2.039 2.146 2.418 2.625 2.355 2.548 2.608 2.777
nn5_daily 0.764 0.832 0.923 0.812 0.789 0.935 0.870 0.878 1.011
nn5_weekly 0.878 0.945 0.970 0.915 0.884 0.998 0.980 0.963 1.063
pedestrian_counts 0.318 0.262 0.300 0.309 0.373 - 0.553 - 0.369
tourism_monthly 1.432 1.758 1.936 1.461 1.719 1.585 1.529 1.666 1.631
tourism_quarterly 1.587 1.665 1.812 1.599 1.830 1.655 1.578 1.648 1.699
tourism_yearly 3.066 3.686 4.176 3.476 2.916 4.044 3.183 2.992 3.552
vehicle_trips 1.147 1.170 1.260 1.162 1.227 1.427 1.301 1.284 1.302
Average Rank 2.500 4.083 5.417 4.083 5.583 5.955 4.500 4.739 7.750
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A.4.2 Visualization of Prediction on Real Time-series Datasets238

We visualize TabPFN-TS’s predictions on 12 datasets selected for their high variance in MASE239

scores, representing significant differences in model performance. For each dataset, we choose the240

time series where TabPFN-TS’s MASE score falls closest to the 50%, 75%, and 95% percentiles of241

the MASE distribution.242
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Figure 6: Visualization of TabPFN-TS’s predictions on M4 Hourly, Pedestrian Counts, Covid Deaths,
Electricity Weekly, FredMD, and Car Parts.
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Figure 7: Visualization of TabPFN-TS’s predictions on CIF 2016, M1 Monthly, Tourism Monthly,
Tourism Yearly, M3 Other, and M1 Yearly.
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A.4.3 Comparison of Forecast Latency244

Table 3 shows the time taken by each model to complete evaluation on each dataset. For pre-trained245

models, this primarily reflects inference time, while for deep learning and statistical model, it includes246

both training (or statistical computation) and inference time.247

This comparison reveals that, despite requiring no training or fine-tuning, TabPFN-TS takes248

significantly longer to perform inference across all time series data. This is mainly due to TabPFN’s249

lack of batch inference capability for time series data, where the training set (or history) is not fixed.250

As a result, each time series must be processed individually. Reducing forecast latency by enabling251

batch inference is a key area for future improvement.252

253

254
Table 3: Latency comparison of models, measured in seconds. Lower is better.

Tabular Time-Series Deep Learning Statistical
Foundation Model Foundation Model Time-Series Model Time-Series Model

Tab
PFN-T

S

Chro
no

s-L
arg

e

Chro
no

s-M
ini

Dee
pA

R

TFT
Auto

ARIM
A

Auto
ETS

Auto
The

ta

Sea
so

na
lN

aiv
e

car_parts 6155 250 19 416 555 146 35 42 0
cif_2016 152 15 6 246 372 27 32 39 0
covid_deaths 563 107 10 475 529 86 29 40 0
electricity_weekly 833 39 7 188 395 19 27 28 0
fred_md 338 38 7 406 331 146 41 33 1
hospital 1570 85 9 277 458 56 42 42 0
kdd_cup_2018 2910 239 22 746 711 - 981 1367 1
m1_monthly 1318 116 11 331 369 92 50 43 0
m1_quarterly 434 24 6 352 326 20 31 40 0
m1_yearly 325 17 6 252 313 16 26 27 0
m3_monthly 3287 250 18 306 355 239 60 45 1
m3_other 318 22 6 302 358 16 27 26 0
m3_quarterly 1624 61 8 274 360 32 35 42 0
m3_yearly 1147 41 8 354 321 21 27 27 0
m4_daily 13302 1355 90 407 503 1708 1979 1516 2
m4_hourly 1363 334 28 554 657 5093 107 49 0
m4_weekly 1087 116 12 334 468 38 32 79 0
nn5_daily 330 106 12 437 655 151 31 35 0
nn5_weekly 234 16 6 219 384 16 27 27 0
pedestrian_counts 12131 61 11 810 999 - 291 - 1
tourism_monthly 1107 126 13 266 457 615 46 42 0
tourism_quarterly 850 46 7 218 378 56 34 41 0
tourism_yearly 901 27 6 211 347 20 27 27 0
vehicle_trips 761 67 8 306 439 65 37 41 0
Average 2210 148 14 362 460 394 169 161 0
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