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ABSTRACT

Diffusion models have excelled in the realm of image generation, owing to their
expansive parameter space. However, this complexity introduces efficiency chal-
lenges. Most users only exploit a fraction of the available capabilities for special-
ized image categories. In this paper, we introduce Mixture of Expert Diffusion
Models (MoEDM), a tailored and efficient strategy for large-scale diffusion mod-
els specific to certain applications. By employing dynamic routing, MoEDM
selectively activates only indispensable neurons, thereby optimizing runtime perfor-
mance for specialized tasks while minimizing computational costs. Our MoEDM
doubles the sampling speed without compromising efficacy across various applica-
tions. Moreover, MoEDM’s modular design allows straightforward incorporation
of state-of-the-art optimization methods such as DPM-Solver and Latent Diffusion.
Empirical assessments, validated by FID and KID scores, confirm the advantages
of MoEDM in terms of both efficiency and robustness.

1 INTRODUCTION

In the realm of machine learning, the allure of massive, versatile models often eclipses the practi-
cal considerations of resource constraints and application specificity. Leveraging state-of-the-art
diffusion models like SDXL-1.0 (Podell et al., 2023) with their staggering 3.5 billion parameters
to fulfill nearly any image generation requirements may seem like the ideal strategy; however, this
approach often proves to be a computational quagmire. The issue is exacerbated in real-world
deployments, as these behemoth models struggle with efficient sampling, thereby magnifying the
need for resource-optimized solutions tailored to specific application contexts. Despite the advent
of various optimization techniques, including fast samplers like DPM-Solver (Lu et al., 2022) and
lightweight architectures like Latent Diffusion (Rombach et al., 2022), the primary challenge remains
unaddressed: the customization of models to meet user-specific requirements.

While, do users truly hunger for such an all-encompassing arsenal? As described in Figure 1, in
specialized use-cases like rendering images of cats and dogs for a pet store, deploying a general-
purpose diffusion model is not just inefficient but egregiously wasteful. This excess in model
complexity does more than consume valuable computational resources; it also undermines the
efficiency of sampling procedures. Therefore, there is a compelling case for crafting streamlined,
purpose-built models that maximize computational efficiency without sacrificing utility.

Navigating the path to this optimal blend of efficiency and functionality is complex, fraught with
hurdles including the inherent time-dependent complexities associated with diffusion models. While
some existing efficiency-centric solutions, such as parameter pruning (Liu et al., 2018), offer static
but partial relief, these are generally tailored for feed-forward architectures and often fall short in
preserving the performance attributes of diffusion models. Furthermore, Parameter-Efficient Fine-
Tuning (PEFT) offers swift personalized fine-tuning (Zaken et al., 2021; Hu et al., 2021), it remains
unable to shed the excessive computational load in the sampling process stemming from a multitude
of parameters.

In this study, we present Mixture of Expert Diffusion Models (MoEDM), a resource-efficient method-
ology for tailoring large-scale diffusion models with minimal computational cost. Leveraging the
concept of dynamic routing, as established in prior research (Han et al., 2021), MoEDM enhances the
efficacy of task-centric diffusion models by judiciously activating pertinent neurons. Initially, our
approach involves the identification and removal of non-essential parameters, thereby streamlining
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Figure 1: Teaser of MoEDM, and its comparison with traditional full-size diffusion models. The
substantial number of parameters designed to accommodate various functions is inefficient for users
seeking a personalized yet faster generative model.

the model for a designated task. The remaining neurons are then strategically clustered into multiple
pathways and fine-tuned through task-specific image datasets. During the sampling stage, only a
singular pathway is engaged, substantially lowering computational demands. Through this approach,
MoEDM offers a nuanced yet efficient solution for developing task-specific diffusion models that
maintain robust performance without sacrificing computational efficiency.

MoEDM yields considerable advantages, notably a 100% enhencement in sampling velocity, owing
to a drastic curtailment of active parameters. This enhancement is accomplished without sacrific-
ing model efficacy, corroborated by empirical evaluations on ImageNet (Deng et al., 2009) and
FFHQ (Karras et al., 2017). Specifically, we employ MoEDM in a range of applications—from subset
creation in ImageNet and domain adaptation to FFHQ, to text-to-image synthesis—consistently
realizing gains in sampling efficiency without any trade-off in quality. By focusing on the dynamic
architectures, we can minimize computational overhead without sacrificing either versatility or
reliability, which is crucial for engineering lean yet robust, application-specific diffusion models.

The main contributions of our work are summarized as follows:

• We unveil MoEDM, a personalized algorithm that simultaneously minimizes computational
burden and expedites the sampling procedure in diffusion models. Crucially, MoEDM
enhances the inference efficiency for designated tasks, maintaining intact the task-specific
performance metrics.

• Through meticulous interpretability assessments and judiciously crafted ablation tests, we
validate the robustness and adaptability of our methodology. These examinations further
elucidate the intrinsic advantages conferred by our computational simplifications, especially
in the realm of personalized applications.

• By micro-managing model parameters, MoEDM opens a new frontier for navigating the
intricate landscape of diffusion model deployment. Its versatility is evidenced by seamless
integration with existing, user-friendly models like DPM-Solver (Lu et al., 2022) and Latent
Diffusion (Rombach et al., 2022), underscoring its exceptional scalability and cooperative
efficacy.
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Figure 2: Overview of MoEDM, and its comparison with full-size models and lightweight models
w/o dynamic. Neither full-size models nor naive-lightweight models can simultaneously achieve
both high-quality image generation and faster sampling speed. With dynamic routing mechanism,
MoEDM delivers a 2× sampling speed increase while maintaining the generation of high-quality
images.

2 RELATED WORK

Diffusion Models Diffusion models have gained significant traction as robust generative tools (Ho
et al., 2020; Rombach et al., 2022; Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Kumari
et al., 2022). Notwithstanding their prowess, the computational burden imposed by their extensive
parameter sets renders them challenging to deploy in real-world applications. To mitigate these
shortcomings, fast sampling methods like DDIM (Song et al., 2020) and DPM-Solver (Lu et al.,
2022) aim to optimize the inference steps, thus accelerating the reverse denoising process. Latent
Diffusion (Rombach et al., 2022) adopts a different approach by relocating the diffusion process to
the latent space, which results in a more lightweight and efficient model. While these strategies make
strides in inference speedup, they do not fundamentally tackle the crux of the problem—exorbitant
parameterization—which is often a bottleneck in tailored applications. In this paper, we propose
to squeeze diffusion models, addressing the core challenge of excessive parameterization. This
parameter-level adaptation not only alleviates the computational burden but also resonates with
specific user requirements that are often overlooked by existing solutions.

Network Pruning In accordance with our research objectives, various techniques have been
devised to optimize lightweight neural network models, specifically model pruning (Han et al., 2015;
Molchanov et al., 2016; He et al., 2017; Liu et al., 2021). The essence of model pruning lies in
identifying and eliminating parameters that have a minimal influence on model performance. For
instance, value-based methods assess parameter significance through their numerical magnitudes (Han
et al., 2015). In contrast, gradient-based methods evaluate parameter importance by examining
associated gradient values (Liu et al., 2021). While these techniques demonstrate substantial efficacy
in optimizing single-step feed-forward neural networks, they are less applicable to diffusion models.
Diffusion models introduce unique computational intricacies (Li et al., 2023); they require multiple
iterations of the same neural network model across sequential time steps, classifying them as recurrent
or multi-step models. Consequently, there is still a dearth of straightforward and viable lightweight
optimization techniques in the domain of diffusion models. Still focusing on generic diffusion models,
the optimization strength of existing works (Kim et al., 2023; Yang et al., 2023) cannot achieve a
qualitative leap.

Dynamic Models Conventional model pruning techniques primarily focus on the irrevocable
elimination of parameters, resulting in an unalterable decline in model performance. In contrast,
dynamic models (Han et al., 2021; Wang et al., 2018; Lin et al., 2017; Liu & Deng, 2018) present
a flexible architecture, adapting in real-time based on the input data. Pioneering works in this
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domain include Wide-DeepMoE (Wang et al., 2020), which elevates performance metrics through
both parameter expansion and customized parameter sets tailored for different input samples. This
paradigm aligns with the principles of dynamic routing (Han et al., 2021; Cai et al., 2021; Li et al.,
2020), thereby optimizing performance without inflating the parameter count for each computational
pass. Diffusion models, by their very nature, resonate with the ethos of dynamic models; they execute
diverse computations contingent on the temporal sequence of input samples. However, there remains
a lacuna concerning the integration of the Mixture of Experts (MoE) approach within diffusion
models. Existing attempts (Balaji et al., 2022; Podell et al., 2023) often deploy a rigid architecture,
effectively rendering the entire model as a singular “expert”. To address this limitation, our work
draws inspiration from Wide-DeepMoE and augments the efficiency of lightweight diffusion models
by morphing them into dynamic routing architectures at the layer level.

3 METHOD

Our approach, Mixture of Expert Diffusion Models (MoEDM), depicted in Figure 2, leverages
tailored resource-efficient models to expedite sampling for each user’s specific task. To sustain
performance while reducing computational overhead, we introduce dynamic routing strategies into
the model architecture. The remainder of this section elucidates our design philosophy and the
underlying algorithm.

3.1 PARAMETER SCORING

To prune less essential parameters tailored to a specific task, we employ a scoring mechanism to
evaluate the importance of parameters within an already well-trained model, focusing particularly on
the convolutional layers, which constitute approximately 80% of the model’s parameters. Notably,
the layers at the UNet’s extremities have fewer parameters compared to those in the middle (e.g., in
Guided Diffusion (Dhariwal & Nichol, 2021), 256 channels vs 1024 channels in a layer). We refer to
the layers having the highest number of channels as “mid-layers ” throughout this paper. Intuitively
speaking, parameters at extremities interface directly with input and output images, suggesting their
potential criticality. On the other hand, mid-layers, despite their expansive parameter space, are
more susceptible to containing redundant elements. Several conventional techniques optimized
for feed-forward models, like value-based (Han et al., 2015) and gradient-based (Liu et al., 2021)
algorithms, yield sub-optimal results on diffusion models, and the distribution of pruned parameters
diverged significantly from our initial hypothesis.

Consequently, we turn to a rudimentary yet efficacious scoring metric, Sc, to better understand
parameter significance within diffusion models. For each channel in diffusion models, c, we simulate
the consequence of its removal by setting it to zero. We define the distribution, pθ(ϵ, g), as the
generation of images from Gaussian noise ϵ under a particular guidance g using a pre-trained
diffusion model, and pθ′

c
(ϵ, g) as that using the same model with channel, c, set to zero. In this case,

Sc is defined as follows:

Sc := ∥pθ(ϵ, g)− pθ′
c
(ϵ, g)∥1 (1)

A higher value of Sc signifies that omitting channel c substantially influences the model’s output,
thereby serving as a reliable indicator for parameter significance. Empirical evidence further strength-
ens our claim: regardless of the discard ratio or the guidance applied, more than 90% of the parameters
flagged for elimination belong to the middle layers of the network. This observation establishes a
robust foundation for the techniques proposed in our framework, hereby referred to as MoEDM.

3.2 MIXTURE OF EXPERT DIFFUSION MODELS

Discard Layers Lightweighting the models at the channel level offers precision but also introduces
additional computational overhead due to the integration of group normalization layers and complex
inter-layer connections. Consequently, we introduce a targeted strategy to discard superfluous
parameters, namely discarding parameters at the layer level. We construct a gating vector, denoted as
G. Each element Gi in this vector is multiplicatively combined with the output from the corresponding
i-th layer in the diffusion model. For those mid-layers holding the most parameters (e.g. 1024 channels

4



Under review as a conference paper at ICLR 2024

Discard
unimportant params

Mixture of
Experts

Gt1 t2
G

Use various layers at
various time steps

Figure 3: Method overview. MoEDM first discards mid-layers which is unimportant but contains the
most channels. Next, we expand the remaining layers into "Mixture of Experts". During the sampling
process, a training-free gated strategy directly activate an "expert" based on the input time step, t.

each layer in Guided Diffusion), we directly discard them. Subsequently, the Gi corresponding to the
remaining layers is temporarily set to 1 before expansion. Our results affirm that this layer-pruning
approach leads to substantial gains in sampling speed without significant crash in model performance.
Thus, the strategy effectively navigates the trade-off between efficiency and capability, establishing it
as a feasible optimization technique for diffusion models.

MoEDM We propose the integration of "Mixture of Experts" (MOE) (Wang et al., 2020) into the
existing diffusion models to maintain their performance. We leverage layer discarding and expand
just the remaining layers, rather than the entire lightweight model. This introduces greater flexibility
into the system, evident in our rewritten gated vector G, which now adjusts based on the time step t.
Our formula for the output of layer i, Oi, is therefore as follows:

Oi = G(t)i,κ · Oi,κ(x, t, g)|G(t)i,κ=1,G(t)i,p̸=κ=0 (2)

This architecture ensures that only one of the ki expanded parts is activated at each time step, thereby
eliminating any additional computational overhead.

Specifically, we first discard mid-layers with the highest number of channels. They usually hold
more than 70% of the parameters. Subsequently, each remaining layer, li, will be transferred into
a super-layer. Such a super-layer encompasses ki separate layers (li,0, li,1, ..., li,ki−1) structured
identically to li. During the sampling process with a total of T time steps, for the first T

ki
time steps,

li,0 will be directly activated by the training-free gate in Equation 2, G(t1)i,0 = 1, to process the
images. And li,1 will process the images in the second T

ki
time steps where G(t2)i,1 = 1, and so on.

Similarly, during the fine-tuning process, only the images input corresponding to the time step of
layer li,k will be used to compute the gradient for that particular layer. While, the gradients computed
using other images will be set to zero, or other better strategies in the future work.

However, employing a dynamic gated mechanism in diffusion models is not without challenges.
Specifically, the mechanism could regress to a static state (Wang et al., 2020). Fortunately, in diffusion
models, the time step t is always known, allowing for targeted activation based on t. This makes the
gated mechanism of MoEDM a training-free approach. Additionally, by simply modifying the gated
mechanism, we are able to set any expansion ratio for any layer at will, highlighting the system’s
adaptability.

Although our initial tests indicate success, there remains room for further refinement, specifically
in the automated training of an optimal layer expansion strategy. For example, we can assign larger
amplification multiples for layers near both ends. This will form the cornerstone of our future research
endeavors.

Distillation Undoubtedly, data quality is a pivotal factor when fine-tuning MoEDM with a little
dataset. Certain sub-classes within the ImageNet contain low-quality images, necessitating the
inclusion of additional high-quality images from other sub-classes during fine-tuning. For example,
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a fraction (3/8) of training batch comes from from other high-quality sub-classes. However, many
high-quality data categories usually remain off-limits to general users. To address this, we introduce
a distillation technique in the training process, leveraging Latent Diffusion as a higher resolution
base. Specifically, we use the full-scale Latent Diffusion model to generate sufficient task-specific
images (e.g., 1,000 images), which then serve as a new training set for MoEDM. This leads to the
redefinition of the optimization target, L′

d, formulated as:

L′
d =∥ O′(zt, t, g)−O(zt, t, g) ∥2 (3)

Here, O′ and O represent the output from MoEDM and the full-size model, respectively. In the
context of category label tasks, we employ the specific label as a query to gather the required
images. For text-image (text-to-image) tasks, we enlist the assistance of the Generative Pre-trained
Transformer (OpenAI, 2023). Specifically, we furnish GPT-3.5 with structured prompts designed to
generate a diverse array of textual descriptions, facilitating the collection of images centered around a
predefined theme. Importantly, we promise to ensure that the generated images are fully randomized.

Summary Our proposed method initially eliminates a substantial portion of parameters by pruning
redundant layers, thereby markedly accelerating the sampling process for targeted applications.
Following this, we integrate the mechanism of dynamic routing to refine the fidelity of generated
images, achieving this improvement without incurring extra computational burden.

4 EXPERIMENTS

In this section, we report the experimental results of our MoEDM across multiple tasks. These tasks
encompass category-specific image generation, domain shift and text-to-image generation tasks. Our
training experiments are conducted on 8 NVIDIA A100 GPUs, each equipped with 80GB of memory.
And the image samplings are executed on a single NVIDIA A100 GPU. For more details, including
hyper-parameters, parameters count and memory usage, please refer to our Supplementary Material.

4.1 SETUP

The MoEDM framework builds on existing work in both Guided Diffusion (Dhariwal & Nichol,
2021) and Latent Diffusion (Rombach et al., 2022). Guided Diffusion serves as a foundational model
for tasks involving category labels. To showcase the adaptability of MoEDM, we integrate it with
Latent Diffusion, applying it to both category-label and text-to-image tasks. Furthermore, we employ
DPM-Solver (Lu et al., 2022) and DDIM (Song et al., 2020) to facilitate accelerated sampling and
underline the seamless compatibility of our approach with prevalent diffusion models.

Baselines We compare our MoEDM with the corresponding full-size diffusion models. We have
also integrated several classical experiments into our list of baseline models. These include training
MoEDM from scratch, fully fine-tuning, BitFit (Zaken et al., 2021) of PEFT (Parameter Efficient
Fine-Tuning) and partial blocks fine-tuning of PEFT. Due to constraints in paper presentation space,
we only present the experimental results of these last 4 baselines on the most challenging and
representative Domain Shift task.

Evaluation Metrics We evaluate our method mainly on FID (Parmar et al., 2022) on 20,000
generated images with the ImageNet and FFHQ dataset. However, due to the constrained size of
the Imagenet dataset (1,300 images per class), the computed FID results are not entirely precise.
Therefore, we also report the KID (Salimans et al., 2016) results and offer additional visualizations
to aid in evaluating the quality of images generated by MoEDM. Simultaneously, the Runtime also
serve as a crucial evaluation metric. When calculating the runtime, we uniformly use a batch size of
4 for sampling.

4.2 PARAMETER SCORING

We identify parameters holding minimal significance for a specific task in Guided Diffusion 256×256
using Equation 1. We compare this result with the classical value-based method (Han et al., 2015) and
gradient-based (Liu et al., 2021) method. And we also calculate the percentage from mid-layers of all

6



Under review as a conference paper at ICLR 2024

discarded parameters. Experimental results suggest that mid-layers hold least overall significance,
allowing us to implement our MoEDM by discarding mid-layers. For detailed experimental results,
please refer to Table 4 in the Appendix.

4.3 MIXTURE OF EXPERT DIFFUSION MODELS

4.3.1 GUIDED DIFFUSION

Subsets of ImageNet We first conduct experiments with MoEDM based on Guided Diffusion at
various resolutions with subsets of ImageNet as specific tasks, where we randomly select subsets
including artificialities, animals and plants. We quantitatively evaluate the performance of MoEDM
using FID (↓), KID (↓) and Average Time Feedforward (↓), while also conducting manual obser-
vations of the visualizations generated by models. We report these experimental results in Table1.
In addition, we demonstrate the visualization of the images in Figure 7 in the Appendix. Note that
layers in these MoEDM models utilize an expand ratio of 2×.

Table 1: FID (↓), KID (↓) and average time feedforward (↓) using MoEDM based on Guided
Diffusion on 3 random subsets of ImageNet, including artificialities, animals and plants. The symbols
1, 2, 3 and 4 respectively denote ImageNet’s subsets of "School bus", "Cauliflower", "African
elephant" and "Golden retriever". The symbol * denotes that we introduce images from other subsets
in the training set as a way to illustrate the importance of the quality of training data.

Resolution Label FID ↓ KID ↓ Average Time
FeedForward ↓

Full-size MoEDM Full-size MoEDM Full-size MoEDM
64× 64 7791 44.80 38.16 0.029 0.022 70.2 ms 32.1 ms
64× 64 9382 55.09 50.22 0.051 0.049 70.2 ms 32.1 ms
64× 64 3863 67.57 62.53 0.046 0.041 70.2 ms 32.1 ms

256× 256 2074 21.92 25.92 0.034 0.035 129.4 ms 112.0 ms
256× 256∗ 2074 21.92 22.21 0.034 0.033 129.4 ms 112.0 ms

At a resolution of 64× 64, MoEDM consistently outperforms full-size Guided Diffusion in specific
tasks, showing improvements in both FID and KID scores. Furthermore, MoEDM also delivers a
2× sampling speed for each inference step. However, at a resolution of 256× 256, while MoEDM
achieves comparable performance, the improvement in sampling speed is not as significant. In
pixel space, parameters at extremities of Guided Diffusion handles significantly larger-sized images
compared to mid-layers. This leads to a situation where those important layers with fewer parameters
perform far more computation compared to mid-layers. Fortunately, Latent Diffusion transfers the
diffusion process to the latent space, eliminating such issues.

Domain Shift For images not existing in the original training sets, our MoEDM can efficiently
learn the image distribution in new data. We use Guided Diffusion at a resolution of 64× 64 trained
on ImageNet, and transfer it to FFHQ. We report these experimental results in Table 2. For the
visualization of generated images, please refer to the Appendix. Note that layers in these MoEDM
models utilize an expand ratio of 2×. In this task, MoEDM achieves outstanding FID and KID scores
with only a fraction of the training iterations, and it also doubles the sampling speed.

Baselines and Ablation Experiments In this challenging and representative task of Domain Shift,
we report the results of MoEDM compared to baseline models, along with the results of ablation
experiments. According to Table 2, training a MoEDM from scratch will not lead to a significant
improvement in the model’s performance, but it will incur substantial additional fine-tuning iterations;
while methods like fully fine-tuning and PEFT can achieve good results, they fail to address the
fundamental issue of the large number of parameters during the sampling stage, which limits the
improvement in sampling speed.

In our ablation experiments, we ablate two components of MoEDM to show their contribution. On
the one hand, as shown at the third line of Table 2, the model’s performance is significantly below
the acceptable standard demonstrated by the full-size models. On the other hand, to be undisputed,

7



Under review as a conference paper at ICLR 2024

Table 2: FID (↓), KID (↓) and average time feedforward (↓) using MoEDM based on Guided
Diffusion on the task of domain shift from ImageNet to FFHQ. Furthermore, we provide our ablation
experiments and multiple baseline experiments in this challenging and representative task. Our
baselines include fully fine-tuning, training MoEDM from scratch, BitFit of PEFT and partially
fine-tuning of PEFT.

Method Ratio of Param
to be Trained FID ↓ KID ↓ Average Time

FeedForward ↓
Fine-tuning
Iterations ↓

MoEDM 0.29 22.45 0.019 32.1 ms 1,100
Fully Fine-tune 1.0 23.85 0.020 70.2 ms 1,200
MoEDM w/o Dynamic 0.29 30.12 0.027 32.1 ms 1,500
MoEDM from scratch 0.29 22.70 0.020 32.1 ms 3,500
BitFit (PEFT) 0.006 36.69 0.032 70.2 ms 10,000
Partially Fine-tune (PEFT) 0.29 23.75 0.019 70.2 ms 1,100

without discarding a significant portion of parameters, diffusion models cannot enhance the sampling
speed anymore, and it might even escalate the training cost within the dynamic routing framework.

4.3.2 LATENT DIFFUSION

As outlined in Section 4.3.1, Latent Diffusion makes it possible for MoEDM to function effectively at
high resolutions. At the same time, Latent Diffusion serves as a classical lightweight diffusion model,
and experiments using MoEDM based on Latent Diffusion demonstrate its exceptional performance
and compatibility. Furthermore, owing to the inclusion of the distillation approach, we will also
include the baseline results of distillation in Table 7.

Subsets of ImageNet We first conduct experiments with MoEDM based on Latent Diffusion
at a resolutions of 256 × 256 with subsets of ImageNet as specific tasks. At the same time, we
also compare the experimental results of whether distillation is introduced or not. We report these
experimental results in Table 3. We also demonstrate the visualization of the images in Figure 9 in
the Appendix. Note that layers in these MoEDM models utilize an expand ratio of 2×.

Table 3: FID (↓), KID (↓) and average time feedforward (↓) using MoEDM based on Latent Diffusion
on subsets of ImageNet task and text-to-image task. The symbols 1, 2 and 3 respectively denote
ImageNet’s subsets of "Cheeseburger", "Head cabbage" and "Black swan". The symbol 3* denotes
the experimental results of MoEDM trained without distillation, as a controlled experiment. The
symbol 4 denotes various forms of prompts centered around a fixed character. Note that we use the
same MoEDM model to generate images with these different prompts.

Guidance FID ↓ KID ↓ Average Time
Feedforward ↓

Full-size MoEDM Full-size MoEDM Full-size MoEDM

Label 9331 32.02 31.63 0.019 0.017 68.82 ms 35.11 ms
Label 9362 63.62 60.85 0.033 0.031 68.82 ms 35.11 ms
Label 1003 12.64 10.94 0.005 0.004 68.82 ms 35.11 ms
Label 1003∗ 12.64 67.90 0.005 0.052 68.82 ms 35.11 ms
Text Prompt 4 - - - - 73.36 ms 37.21 ms

Compared to MoEDM w/o distillation, the integration of distillation has led to a notable enhancement
in the performance of MoEDM. Compared to full-size models, whether it’s FID or KID scores in
specific tasks, MoEDM outperformes full-size models and provides a 2× sampling speed..

Text-to-image To further demonstrate the value of MoEDM in real-world applications, we conduct
experiments involving text-to-image generation. The primary distinction between label-to-image and
text-to-image tasks lies in the ability of text-to-image tasks to amalgamate different concepts within
a single image. In MoEDM, a specific task is defined as a fixed concept in different environment
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concepts. Given that the pre-trained model has acquired the skill of merging different concepts, we
can directly fine-tune MoEDM with images featuring diverse concepts, rather than using completely
fixed prompts. Given the constraints of FID and Clipscore in text-to-image tasks, we propose to
evaluate the quality of image generation in this task by human eyes. We report the enhancement of
the sampling speed in Table 3. In Figure 4 and 5, we present the visualization of generated images,
and we also present more visualization results in Section D in the Appendix. They all yield positive
results, providing robust support for our MoEDM.

(a) A street sign reads ’DDPM’ (b) ’HELLO’ on a street sign (c) A street sign reads ’Dog’

MoEDM

Full-
size

Figure 4: Visualization of images generated by the same MoEDM based on Latent Diffusion 256×256
on the task of text-to-image. We use common words as prompts to fine-tune MoEDM, and make sure
the presentation uses words that do not appear in the training data at all.

(a) A painting of a squirrel (b) A painting of a squirrel (c) A painting of a squirrel
eating a burger eating cheese eating a pizza

MoEDM

Full-
size

Figure 5: Visualization of paintings of a squirrel eating various fast food generated by the same
MoEDM based on Latent Diffusion 256× 256 on the task of text-to-image. We train MoEDM using
images of "a painting of a squirrel is eating" and various common fast food instead of training with
images of fixed prompts, "a painting of a squirrel eating [food]".

Uneven Expansion As mentioned in Section 3.2, utilizing an identical ratio of expansion for all
remaining layers might not be the optimal strategy. Training such a strategy is not easy, so we
provisionally try manual specify expansion ratio for different layers. We report detailed experimental
results in Table 7 in the Appendix, please refer it for more details.

5 DISCUSSION

In conclusion, we have proposed a novel method (MoEDM) for lightening and customizing personal-
ized diffusion models, which is a new effective perspective for addressing deployment challenges
of diffusion models. Our MoEDM makes a notable reduction in parameters and enhancement in
sampling speed for specific tasks while preserving the performance of image generation. Moreover,
MoEDM can be seamlessly integrated with various existing user-friendly diffusion models, e.g.,
DPM-Solver (Lu et al., 2022), DDIM (Song et al., 2020) and Latent Diffusion (Rombach et al.,
2022), demonstrating its excellent scalability. While, the strict one-hot gated strategy and the uniform
expansion strategy in fine-tuning imposes limitations on the efficiency of the fine-tuning procedure.
Addressing these challenges could potentially involve employing techniques such as parameter or
gradient sharing, alongside training an expansion strategy. These aspects will constitute the primary
focus of our forthcoming research endeavors.
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Ethics Statement Our work aims to model specific data distributions within a larger dataset. Due
to the exclusive fine-tuning on targeted data, potential biases in these subsets may be magnified in the
resulting models. Consequently, diffusion models could perpetuate existing biases when projecting
target data. To mitigate these risks, we incorporate methods such as image detection (Zha et al., 2023)
and data adaptation (Gao et al., 2022).

Reproducibility Statement To enhance the reproducibility of our research, we have taken the
following steps:

• A comprehensive description of our methodology is provided in Section 3.2.
• All experiments, discussed in Section 4, utilize publicly accessible datasets and model

checkpoints.
• The Supplementary Material contains the complete codebase.

These measures facilitate straightforward replication of our study.
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A SCORE OF LAYERS

In this section, we will present more detailed relationship between the significance of parameters in
Guided Diffusion 256× 256 and the quality of the generated images. We identify parameters holding
minimal significance for a specific task using Equation 1, and subsequently set the designated number
of parameters to zero (equivalent to discarding them). We compare this result with the classical
value-based method (Han et al., 2015) and gradient-based (Liu et al., 2021) method. We also calculate
the percentage from mid-layers of all discarded parameters. We report the experimental results for
parameter scoring in Table 4. Note that the results in Table 4 are obtained directly through sampling
after parameter discarding, without any additional training.

Table 4: FID (↓) of different scoring methods at a low discard ratio in Guided Diffusion 256× 256.
Here we discard insignificant parameters provided by 3 scoring methods and directly calculate the FID
of the generated images without any additional training. We also count the proportion of insignificant
parameters from mid-layers to determine whether these layers held the least significance.

Method Discard
Ratio FID ↓ Percentage

from Mid-layers

Full-size - 21.92 -

Value-based 0.10 459.35 0.49
Grad-based 0.10 412.31 0.69
Ours 0.10 28.27 0.94
Ours 0.20 89.37 0.90

When the discard ratio is as low as 0.1, the classical approach based on feedforward models becomes
ineffective. While, our approach can, to a certain extent, maintain the model’s performance. In
comparison with the other two methods, most of parameters discarded by our approach originate
from mid-layers.

In addition, we present a more intuitive visualization of the results. In Figure 6, the height of each
histogram show the proportion of parameters from the current layer in the total discarded parameters.

Discard Ratio grows up

Value-based
Method

0.05 0.1 0.2

Grad-based
Method

Our
Method

Figure 6: The relationship between the significance of parameters in Guided Diffusion 256× 256
and the quality of the generated images. The higher histogram shows the more discarded parameters
come from the current block. When the discarded parameters are concentrated in middle layers, the
model tends to generate significantly higher-quality images.

From this standpoint, the model’s performance can be optimally preserved when the most of the
discarded parameters are drawn from mid-layers.
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B HYPER-PARAMETERS

Here we report the key hyper-parameters of MoEDM in Table 5. We follow the hyper-parameters
used in Guided Diffusion and Latent Diffusion. Discarding a substantial number of parameters and
focusing on specialized tasks, the fine-tuning process of MoEDM requires only very few iterations.

Table 5: The training hyper-parameters of full-size diffusion models and the fine-tuning hyper-
parameters of MoEDM.

Model Image Size Batch Size Learning Rate Training Iteration

Guide Diffusion 64× 64 2,048 3e-4 540,000
Latent Diffusion 256× 256 1,200 1e-4 178,000
Latent Diffusion (text-to-image) 256× 256 1,200 1e-4 390,000

MoEDM (Guided) 64× 64 2,048 3e-4 1,800
MoEDM (Latent) 256× 256 1,200 1e-4 2,500
MoEDM (Latent, text-to-image) 256× 256 1,200 1e-4 3,000

C COMPUTATIONAL REQUIREMENTS

Runtime memory requirement is essential to a modern machine learning application. After discarding
unimportant parameters in diffusion models and expanding the remaining layers, we emphasize that
these operations do not result in an increase in memory usage. Instead, there is some relief in terms
of memory usage. We report the discard ratio (↑) and the memory usage (↓) of MoEDM in Table 6.
Note that we use a batch size of 4 when reporting the memory usage.

Table 6: The discard ratio and the memory usage of full-size diffusion models and MoEDM.

Model Image Size Discard Ratio ↑ Memory Usage↓
Guided Diffusion 64× 64 Full size 3965M
Latent Diffusion 256× 256 Full size 5603M
Latent Diffusion (text-to-image) 256× 256 Full size 9167M

MoEDM (Guided) 64× 64 0.71 3689M
MoEDM (Latent) 256× 256 0.77 4094M
MoEDM (Latent, text-to-image) 256× 256 0.84 7261M

D IMAGE VISUALIZATION

Here we demonstrate the visualizations of images generated by MoEDM in Figure 7, 8, 9, 10, 11.

E DISCARD RATIO

Here we present images generated by MoEDM with different discard ratios in Figure 12. All of these
models have undergone sufficient training. Even MoEDM with the highest discard ratio (a) ensures
faithful generation of the specified contents, albeit with some minor details at the edges possibly
missing.

F UNEVEN EXPANSION

As mentioned in Section 3.2, utilizing an identical ratio of expansion for all remaining layers might
not be the optimal strategy. Training such a strategy is not easy, so we provisionally try manual
specify expansion ratio for different layers.
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(a) School bus (b) Cauliflower (c) African elephant

MoEDM

Full-
size

Figure 7: Visualization of images generated by MoEDM based on Guided Diffusion 64 × 64 on
3 random subsets of ImageNet, including artificialities, animals and plants. The first row presents
images generated by MoEDM, and the second row presents images generated by full-size Guided
Diffusion with a same random seed.

MoEDM

Full-
size

W/O
dynamic

Figure 8: Visualization of images generated by MoEDM based on Guided Diffusion 64× 64 on the
specifc task of domain shift from ImageNet to FFHQ. The first row presents images generated by
MoEDM, and the second row presents images generated by full-size Guided Diffusion with a same
random seed.

Table 7: FID (↓) and KID (↓) when us-
ing uniform expansion and uneven ex-
pansion in MoEDM.

Expansion Strategy FID ↓ KID ↓
Uniform 2× 10.94 0.004
Uneven 11.51 0.005
w/o Dynamic 16.82 0.008

We allocate a 2× expansion ratio to the 6 layers posi-
tioned closer to the input-output stages within the re-
maining 12 layers of Latent Diffusion. Simultaneously,
the other 6 layers will not be expanded at all. We com-
pare it with experiments involving uniform expansion
with a 2× ratio and a baseline w/o dynamic, respectively.
We report the experimental results in Table 7.

The uneven expansion maintains model’s performance and effectively decreases the quantity of
parameters requiring training and storage. This result has reinforced our determination to optimizing
expansion strategies in the future.
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(a) Label 933, Cheeseburger (b) Label 936, Head cabbage (c) Label 100, Black swan

MoEDM

Full-
size

Figure 9: Visualization of images generated by MoEDM based on Latent Diffusion 256× 256 on
3 random subsets of ImageNet, including artificialities, animals and plants. The first row presents
images generated by MoEDM, and the second row presents images generated by full-size Latent
Diffusion with a same random seed.

(a) A blue leaf (b) A pink leaf (c) A red leaf

MoEDM

Full-
size

Figure 10: Visualization of images of leaves in different colors generated by the same MoEDM based
on Latent Diffusion 256× 256 on the task of text-to-image. Here, we train MoEDM using images of
"a leaf", "red color", "blue color" and various common colors instead of training with images of fixed
prompts, "a [color] leaf".

(a) Trained with images of "a cat" and "a cartoon dog" (b) Trained with images of "a cartoon cat"

MoEDM

Full-
size

Figure 11: Visualization of images of a cartoon cat generated by MoEDM based on Latent Diffusion
256 × 256 on the task of text-to-image. Here, we train MoEDM using images of "a cat" and "a
cartoon dog". MoEDM acquires the style of cartoon from cartoon dogs and accurately applies it
when tasked with creating "a cartoon cat".

(a) Size of 11% (b) Size of 16% (c) Size of 27%

Feedforward Time: 37.21ms Feedforward Time: 41.13ms Feedforward Time: 49.85ms

Figure 12: Visualization of images generated by MoEDM with different discard ratios.
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