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ABSTRACT

Detecting somatic mutations in tumors is fundamental to improving our under-
standing of cancer and to recommend customized treatment strategies. In clinical
settings, next-generation sequencing is performed predominantly on tumor biop-
sies that have undergone formalin fixation and paraffin embedding (FFPE), which
allows laboratories to store and transport samples at room temperature without
significantly affecting their morphology. However, the FFPE process is known to
cause chemical changes in DNA and significantly affects the accuracy of variant
calling algorithms, which are primarily developed for research-grade fresh frozen
(FF) samples. Hence, there is a mismatch between software tools used in research
settings and what is needed in clinical settings. Here we develop FFPENet, a con-
volutional neural network (CNN) trained to identify and remove FFPE artifacts in
the output of somatic variant callers on FFPE tumor samples. FFPENet encodes
raw reads overlapping each mutation in a multi-channel tensor input and fine-tunes
a CNN pre-trained on a large number of FF tumor whole genome samples using a
multi-sector cohort of patient-matched FF and FFPE tumor samples. We demon-
strate the improved effectiveness of this approach over existing methods by bench-
marking on a multi-sector whole-exome sequencing (WES) cohort of lung cancer.
Models will be released at https://github.com/skandlab/VarNet.

1 INTRODUCTION

Identification of mutations in cancer genomes is an important step in the study of cancer genomics to
improve our understanding as well as treatment of cancer. Formalin-fixed paraffin-embedded (FFPE)
tumor tissue biopsies are commonly used for translational research and clinical diagnostics as they
enable economical storage and transportation of biological samples. Next-generation sequencing
(NGS) of DNA derived from FFPE tumor samples is frequently performed for both research as well
as therapeutic purposes (Figure 1). However, the FFPE preservation process introduces significant
DNA damage that results in misread bases during NGS. This makes the accurate determination of
somatic mutations from FFPE tumor samples significantly more challenging compared to research
grade fresh-frozen (FF) tumor samples (Oh et al., 2015; Srinivasan et al., 2002). FFPE artifacts tend
to occur at low-allele-frequencies and the most prominent of these are C→T/G→A changes due to
the hydrolytic deamination of cytosines (Steiert et al., 2023). FFPE artifacts especially confound the
detection of true low-allele-frequency somatic mutations that could be of clinical relevance.

Simply filtering low-allele-frequency mutation calls may mislead downstream clinical analysis. Ex-
isting somatic mutation callers such Strelka2 (Kim et al., 2018), Mutect2 (Cibulskis et al., 2013),
Varscan (Koboldt et al., 2012), Vardict (Lai et al., 2015), Freebayes-somatic (Garrison & Marth,
2012) and VarNet (Krishnamachari et al., 2022) are usually developed and benchmarked on research-
grade FF tumor samples, which do not contain significant DNA damage. Hence, their performance
significantly degrades on FFPE tumor samples mainly due to the presence of a large proportion of
false-positive mutations or artifacts in their outputs (Steiert et al., 2023; Yost et al., 2012). Mutation
callers can be evaluated on FFPE tumor samples using matched FF samples derived from the same
patient and tumor. Mutation calls identified in FFPE samples but absent in the matched FF tumor
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Figure 1: Next-generation sequencing of formalin-fixated paraffin-embedded (FFPE) tumor biopsies
is frequently performed for translational research and clinical diagnostics.

samples are considered putative FFPE artifacts (de Schaetzen van Brienen et al., 2020), although
intra-tumor heterogeneity (ITH) may introduce complexity.

Here we develop FFPENet, a deep transfer learned model that filters out artifacts from the outputs of
callers such as VarNet, Strelka2 and Mutect2 on FFPE tumor samples. As FFPE tumor datasets with
established ground truth mutations are lacking, we hypothesize that a transfer learning approach
using a model pre-trained on a large number of FF tumor samples would be effective in removing
FFPE artifacts. Hence, we use VarNet (Krishnamachari et al., 2022), a convolutional neural network,
as the pre-trained deep learning model for training FFPENet as it was trained on a large number
(> 300) of cancer whole genomes comprising multiple cancer types. We also hypothesize that
encoding aligned sequencing reads in a multi-channel image-like representation would enable such
an approach without having to manually encode FFPE related signatures. We demonstrate using
a cohort of matched FF and FFPE lung cancer samples that FFPENet can significantly improve
accuracy compared to existing methods.

2 RELATED WORK

As most popular somatic variant callers are optimized for FF tumor samples, their performance sig-
nificantly degrades on FFPE samples due to a large number of false-positive mutation artifacts. Re-
cent work has attempted to improve the quality of variant call-sets by performing post-hoc removal
of artifacts from the outputs of popular variant callers. For example, IdeaFix (Tellaetxe-Abete et al.,
2021) filters likely mutation artifacts from the output of Mutect2 using a decision tree-based ap-
proach exploiting multiple features such as read pair orientation bias, genomic context and variant
allele frequency. IdeaFix annotates C→T/G→A calls made by Mutect2 as either true variants or
artifacts. SOBDetector (Diossy et al., 2021) proposed a method to filter artifacts from the output of
any mutation caller using the strand orientation bias feature. FFPolish (Dodani et al., 2022) pro-
posed a logistic regression model of multiple features including variant allele frequency and variant
read-quality metrics to filter artifacts from the outputs of mutation callers. Other work has also pro-
posed using mutation calls made by any two callers on FFPE tumor samples as a simple baseline to
reduce artifacts (de Schaetzen van Brienen et al., 2020). This strategy however would not exclude
artifacts that are misclassified as mutations by more than one caller. cisCall is a tool for variant call-
ing from Illumina sequencing data from FFPE samples (Kato et al., 2018). In our work, we adapt
VarNet (Krishnamachari et al., 2022) as it is an accurate end-to-end deep learning based somatic
variant caller that can be fine-tuned on new datasets1.

3 FFPENET

FFPE artifacts are associated with many features of the sequencing data such as their position in
reads, genomic context, orientation bias etc. For example, FFPE deaminations have been observed
to be enriched at the ends of molecules, due to an increased sensitivity to deaminate at overhanging
ends (Briggs et al., 2007; Lindahl & Nyberg, 1972). As FFPE tumor samples with established
ground truth mutations are scarce, we use a transfer learning approach using a deep learning model,
VarNet (Krishnamachari et al., 2022). VarNet is an accurate model pre-trained on a large number of
FF tumor whole genome samples, hence, it is expected to have learned useful low-level features that
are relevant for variant calling. VarNet’s image-based encoding of raw sequencing data surrounding

1Pre-trained models were retrieved from https://github.com/skandlab/VarNet
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Figure 2: Multi-channel representation of aligned tumor and normal reads for each candidate variant.

mutation candidates enables the model to learn to multiple features to filter artifacts. Features of
each aligned read i.e. base, base quality, mapping quality, strand bias, are numerically encoded in
a tensor input to the convolutional neural network (Figure 2). The FFPENet model is initialized
with pre-trained weights from the VarNet model and is further fine-tuned to remove artifacts from
VarNet’s output on FFPE samples. FFPENet is run as a post-processing step after variant calls are
first generated by a somatic variant caller. Hence, it is computationally inexpensive to run.

We trained FFPENet using 9-fold cross validation using a cohort of nine patients with matched FF
and FFPE tumor samples as well as matched germline samples. In each cross-validation fold, we
left out one patient for testing. We report aggregated results across all test samples below. We used
cross-validation to choose the following training hyper-parameters, 1) number of fully-connected
layers to fine-tune 2) learning-rate 3) label-smoothing parameter 4) weight-decay parameter and 5)
training batch-size. The hyper-parameters search ranges are detailed in the Appendix (Table 3).

Figure 3: Matched FF and FFPE tumor samples were sequenced to create a dataset to train FFPENet
to differentiate between mutations and artifacts.

3.1 TRAINING DATA

We obtained whole-exome-sequencing (WES) data for a cohort of nine lung cancer patients with
matched FF and FFPE tumor biopsies as well as matched normal samples. The FF and FFPE samples
were derived from tumor biopsies taken at the same time. We generated mutation calls for both FF
and FFPE tumor samples using VarNet, Strelka2 and Mutect2. For each patient and variant caller,
mutation calls made in the FFPE tumor sample but not in any matched FF sample are considered
putative FFPE artifacts. Mutation calls made in both FF and FFPE tumor samples are considered
somatic mutations as shared mutations are unlikely to be due to FFPE damage. We used this strategy
to create a labeled class-balanced dataset of FFPE tumor samples to train a model to differentiate
between somatic mutations and FFPE artifacts (Figure 3).
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Figure 4: Precision/recall curves for SNV calling using a) VarNet b) Strelka2 c) Mutect2 and d)
top-4 callers. Solid circles in the curves indicate the highest F1 accuracy.

3.2 MULTI-SECTOR DATA

Intra-tumor heterogeneity (ITH) is an important factor in the treatment and study of tumors. ITH
refers to distinct cell populations within a tumor leading to differences in drug sensitivity, tumor
growth rate and prognosis. Hence, it is important to identify mutations in different cell populations
within a tumor. Sub-clonal mutations in tumors can occur at low enough variant allele frequencies
(VAF) that they can be mistaken for FFPE-related artifacts if not found in the matched FF samples
derived from other distinct cell populations within the tumor. This can introduce incorrectly labeled
data in our training set. To mitigate this issue, we used multi-sector (multi-region) whole exome
sequencing of tumors in our cohort to help differentiate between FFPE artifacts and sub-clonal
variants. Hence, we defined FFPE artifacts as variants identified in the FFPE tumor sample but not
in any matched FF sample. We obtained 3-4 FF sectors per matched tumor sample to provide a
broad view of the heterogeneity within the tumor. In the absence of multi-sector data, it would be
difficult to differentiate artifacts from real sub-clonal variants in the FFPE tumor sample. To the best
of our knowledge, this is a novel approach in the study of FFPE-artifacts and has not been reported
before.

3.3 EVALUATION

We defined a ground-truth mutation set to evaluate variant calling accuracy on the FFPE tumor sam-
ples using a combination of variant calls identified in the matched FF samples. We treated variants
called by both SMuRF (Huang et al., 2019) and VarNet on the matched FF samples as ground-truth
(union of variant calls in multiple frozen sectors). To ensure fair representation of all the baseline
variant callers included in this study (Strelka2, Mutect2, Varscan, Vardict, Freebayes, and VarNet),
we established the ground-truth mutation set using the intersection of calls made by SMuRF, an
ensemble of five methods, and VarNet on the matched FF samples. For each benchmarked method,
we classified variants it detects in an FFPE tumor sample but not found in the ground-truth mutation
set as false positives (FPs). The formulas used to compute the accuracy metrics of callers are:

recall =
Caller ∩ (VarNet ∩ SMuRF)

VarNet ∩ SMuRF

precision =
Caller ∩ (VarNet ∩ SMuRF)

Caller
F1 = Harmonic mean(recall, precision)

4 RESULTS

Using the matched FF samples and the definitions above, we evaluated FFPENet and other existing
methods i.e. SOBDetect, FFPolish and IdeaFix, based on their ability to retain true somatic muta-
tions while filtering out artifacts in FFPE tumor samples. We applied each of these methods to the
mutation calls made by each baseline variant caller on FFPE tumor samples2. At its default predic-
tion threshold, VarNet (Krishnamachari et al., 2022) produced a large number of artifacts (20,222)

2IdeaFix (Tellaetxe-Abete et al., 2021) only supports Mutect2.
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Table 1: Performance of callers on SNV calling. True Positives (TPs) and False Positive (FPs)
calls are defined using the definition above. F1 scores are calculated using both the default PASS
threshold (Default F1) and the best threshold (Max F1) of each caller.

Caller Truth TPs FPs Default F1 Max F1
VarNet 1,226 379 20,222 0.035 0.247
VarNet + FFPENet 1,226 298 367 0.315 0.322
VarNet + SOBDetect 1,226 379 13,374 0.050 0.259
VarNet + FFPolish 1,226 275 1,001 0.220 0.259
Strelka2 1,226 399 16,645 0.044 0.163
Strelka2 + FFPENet 1,226 273 141 0.333 0.339
Strelka2 + SOBDetect 1,226 398 13,211 0.054 0.175
Mutect2 1,226 356 34,166 0.020 0.341
Mutect2 + FFPENet 1,226 280 93 0.350 0.363
Mutect2 + SOBDetect 1,226 355 27,330 0.025 0.341
Mutect2 + IdeaFix 1,226 334 4,523 0.110 0.342
Vardict 1,226 387 20,537 0.035 0.035
Vardict + SOBDetect 1,226 386 17,646 0.040 0.040
Varscan 1,226 389 19,727 0.036 0.096
Varscan + SOBDetect 1,226 389 18,230 0.039 0.097
Freebayes 1,226 360 32,324 0.021 0.032
Freebayes + SOBDetect 1,226 360 26,094 0.026 0.032
SMuRF 1,226 484 314,054 0.003 0.081
SMuRF + SOBDetect 1,226 482 283,246 0.003 0.082

on all nine FFPE tumor samples combined (Table 1), leading to a low F1-score (0.035). Running
FFPENet on the output of VarNet significantly reduced the number of artifacts (367 vs 20,222) lead-
ing to a higher F1-score for VarNet + FFPENet compared to VarNet (0.315 vs 0.035) (Table 1). At
the default prediction threshold, FFPENet provided less recall than VarNet alone (0.243 vs 0.309).
However, FFPENet is able to provide higher recall with better precision when its prediction thresh-
old is modified (Figure 4). We note that none of the callers exceeded 40% recall (sensitivity). This
is due to the fact that the ground-truth SNVs are defined using the union of multiple sectors in the
matched frozen tumor. The FFPE tumor sample is not expected to carry all mutations found in mul-
tiple sectors due to intra-tumor heterogeneity. These results suggest that callers are likely identifying
the clonal mutations that are found in both the FFPE sample as well as the matched frozen samples.

FFPENet significantly enhances the performance of VarNet, Strelka2, and Mutect2 compared to
other post-processing methods such as SOBDetect, FFPolish, and IdeaFix (Figure 4 and Table 1).
At their default score thresholds, most variant callers tend to generate an excessive number of false-
positive mutation calls. By applying FFPENet, we observed substantial improvements in the preci-
sion and overall performance of VarNet, Strelka2, and Mutect2.

Table 2: Percentage improvement in F1 scores by applying FFPE post-processing methods to base-
line variant callers (computed at default and optimal score thresholds). FFPENet achieves the highest
improvements in performance per caller.

Baseline Caller FFPENet (ours) SOBDetect FFPolish IdeaFix

Default F1 Best F1 Default F1 Best F1 Default F1 Best F1 Default F1 Best F1

VarNet 800.00% 30.36% 42.86% 4.86% 528.57% 4.86% - -
Strelka2 656.82% 107.98% 22.73% 7.36% - - - -
Mutect2 1650.00% 6.45% 25.00% 0.00% - - 450.00% 0.29%
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Figure 5: a) Input representation (only base channel is shown) and b) importance heatmap of an
FFPE artifact presented to FFPENet. The model is able to identify variant alleles in the candidate
mutation site.

To provide a comprehensive evaluation, we report both the default performance of each method
and the maximum F1 score achieved by varying the score threshold. This is important because
downstream studies typically rely on the default quality thresholds set by each caller. Moreover,
tuning these thresholds on new test samples is challenging in the absence of ground-truth mutations.
Our results underscore the need for caution when using default quality thresholds for FFPE tumor
samples. We recommend either optimizing the quality threshold for each caller or using a post-
processing tool such as FFPENet to refine variant calls.

Among all tested approaches, the combination of Mutect2 + FFPENet yielded the highest F1 ac-
curacy on our test samples, both at default and optimized quality thresholds. Notably, three of the
top four performing methods incorporated FFPENet, highlighting its effectiveness (Figure 4d). A
detailed summary of FFPENet’s performance improvements when applied to baseline variant callers
is presented in Table 2.

4.1 INTERPRETING FFPENET

After training FFPENet, we analyzed the features learned by the model by visualizing the ”im-
portance” it assigns to different input ”pixels” using Guided Backpropagation (Springenberg et al.,
2015). This method highlights the input regions that most strongly influence the model’s predictions,
allowing us to interpret its decision-making process.

Our analysis revealed that FFPENet has automatically learned to recognize variant alleles at the
candidate mutation site while also attending to contextual mutational patterns at other genomic po-
sitions (Figure 5). This suggests that the model is not only detecting individual variants but is also
leveraging broader mutational signatures that are indicative of FFPE-related artifacts. By captur-
ing these spatial dependencies, FFPENet can distinguish FFPE artifacts from genuine variants more
effectively. This approach contrasts with other methods, which rely on explicitly encoding only a
predefined set of known FFPE-related properties. Instead of being constrained by hand-engineered
features, FFPENet autonomously discovers FFPE-specific signatures directly from sequencing data.
This flexibility enables it to potentially uncover novel artifact patterns that may not have been pre-
viously characterized.

5 CONCLUSION

As FFPE tumor datasets with established ground truth are scarce, we hypothesized that a transfer
learning approach using a model pre-trained on a large number of FF samples would be effective.
We also hypothesized that encoding sequencing reads in a multi-channel image-like representation
would enable such an approach without needing to manually encode FFPE related signatures. We
used a novel approach using multi-sector tumor sequencing data to train and evaluate somatic vari-
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ant calling in FFPE tumor samples. We demonstrated that FFPENet learned useful features for
identifying FFPE artifacts from raw data and outperformed existing methods when combined with
state-of-the-art somatic variant callers such as Strelka2, VarNet and Mutect2. Our work is a step
towards improving the utility of sequencing FFPE-preserved tumor biopsies for translational and
basic research. Future work involves training our model on larger cohorts for robust performance
across cancer types.
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ice Moussy, Zuzana Gerber, Peter M Abuja, Kurt Zatloukal, Christoph Röcken, Trine Folser-
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Table 3: Hyperparameters search space for training FFPENet model.

Parameter Random distribution

Learning rate 10Uniform(−5.5,−2)

Fine-tune dense layers only RandomChoice([false, true])
Number of dense layers to finetune RandomChoice([1, 2, 3, 4])
Reinitialize weights of fine-tuned layers RandomChoice([false, true])
Optimizer RandomChoice([Adam,SGD])

Weight decay 10Uniform(−6,−3)

Batch size 2Uniform(4,7)

Label smoothing parameter Uniform(0, 0.1)
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