Under review as a conference paper at ICLR 2026

WHEN DOES PREDICTIVE INVERSE DYNAMICS OUTPER-
FORM BEHAVIOR CLONING? EXPLORING THE ROLE OF
ACTION AND STATE UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline imitation learning aims to train agents from demonstrations without inter-
acting with the environment, but standard approaches like behavior cloning (BC)
often fail when expert demonstrations are limited. Recent work has introduced a
class of architectures we call predictive inverse dynamics models (PIDM), which
combine a future state predictor with an inverse dynamics model to infer actions
to reach the predicted future states. Although PIDM can be considered a form
of behavioral cloning (in the sense of Bayes-optimality), it often outperforms
conventional BC in practice. Although PIDM has shown promise, its benefits
remain poorly understood. In this work, we analyze PIDM in the offline imita-
tion learning setting and provide a theoretical explanation: under a perfect state
predictor, the prediction error of PIDM can be lower than that of conventional
BC, even in low-data regimes, and this gap increases when additional data sources
can be leveraged. This efficiency gain is characterized by the variance of actions
conditioned on future states, highlighting PIDM’s ability to reduce uncertainty
in states where future context is informative. We further demonstrate how this
uncertainty reduction translates into sample efficiency improvements. We validate
these insights empirically under more general conditions in 2D navigation tasks
using human demonstrations, where BC requires on average 2.8 more samples than
PIDM to reach comparable performance. Finally, we extend our evaluation to a
complex 3D environment in a modern video game with high-dimensional visual
inputs, and stochastic transitions, where BC requires over 66% more samples than
PIDM in a realistic setting.

1 INTRODUCTION

Offline imitation learning aims to learn closed-loop control policies that replicate expert behavior
using only pre-collected data, without access to a reward function or further interaction with the
environment. This paradigm has broad applicability across domains such as robotics (Schaall [1999;
Fang et al.;|2019)), autonomous driving (Pan et al., [2020), and gaming (Pearce & Zhu\|2022; |Pearce
et al., 2023; [Schifer et al., [2023). A prominent line of research in imitation learning focuses
on one- or few-shot generalization, where models are pretrained on large-scale datasets spanning
diverse tasks (Duan et al., 2017), with the goal of adapting to new tasks from only a handful of
demonstrations. However, collecting such large-scale expert demonstrations is often costly, time-
consuming, or infeasible—particularly in specialized domains like robotics, where data acquisition is
expensive and task-specific. As a result, many real-world applications lack the scale of data required
to train or adapt large models using standard imitation learning techniques.

In contrast to approaches that rely on extensive pretraining, we focus on the low-data regime, where
only a few demonstrations are available for the target task, and no additional data can be assumed.
This setting is increasingly relevant in the current Al landscape, where large foundation models are
trained on massive datasets, yet aligning them to new domains with limited supervision remains a
significant challenge.

The most common offline imitation learning approach is behavior cloning (BC) (see Figure [2a)),
which can exhibit complex behavior (Osa et al., [2018; [Pearce & Zhul 2022} |Florence et al., [2022) but

Under review as a conference paper at ICLR 2026

1.0 i
1
T
|
o 0.8 /—
o 1
A i
06] i
O 1
N i
€04 i
S i
= i
0.2 — BC
PIDM
0.0— ‘ : : | ‘
5 5 10 15 20 25 30
#7 Avoid obstacle #10 Hit the gong Training Trajectories
(a) Selected milestones of "Tour" task in 3D world (b) Sample efficiency

Figure 1: (a) Visualization of selected milestones from the complex "Tour" task in a 3D world with
video input, stochastic transitions, and real-time inference. (b) Sample efficiency curves (mean =+ std)
for PIDM and BC. BC requires 66% more samples to achieve 80% success rate on average.

typically relies on the availability of many demonstrations per task. Recent work has introduced a
promising alternative to BC, which we refer to as predictive inverse dynamics models (PIDMs)
et al.l 2023} [Xie et al.l 2025} [Tian et al.| 2025)). PIDM integrates two components: a state predictor,
which forecasts plausible future states, and an inverse dynamics model (IDM), which infers the
actions needed to reach those states (see Figure[2d). This modular design offers a key advantage—it
allows leveraging diverse data sources, including action-free demonstrations and non-expert data. By
augmenting a small set of expert demonstrations with such additional data, PIDM has demonstrated
strong empirical performance 2025). Interestingly, also reported that
PIDM can significantly improve upon BC even when no additional data sources were available,
suggesting the promise of PIDM for the low-data regime. However, the underlying reasons for their
sample efficiency remain unclear. Is there something intrinsic to the PIDM architecture that enables
this advantage? Under what conditions can we expect such gains to consistently emerge?

In this work, we analyze PIDM and provide theoretical insights into why decomposing the decision-
making problem into a state predictor and an IDM can lead to significant sample efficiency improve-
ments over BC. Specifically, PIDM can achieve comparable or superior performance using fewer
expert demonstrations. First, we show that the prediction error of an optimal estimator for PIDM is
always less than or equal to that of BC, resulting in a non-negative performance gap in favor of PIDM
even in the small data regime. This gap is characterized by the expected conditional variance of
actions given all possible future states, averaged over the current state distribution. Under additional
assumptions, we show that the uncertainty reduction can provide sample efficiency gains.

Second, we provide empirical evidence that the predicted sample efficiency gains apply to more
general conditions, including the small data regime, with no additional data sources, and general
modeling approaches, like neural networks. We perform experiments on a benchmark of four 2D
navigation tasks in a state-based environment, using a dataset of human demonstrations, and observe
that BC requires between 1.3x and 4x more demonstrations than PIDM. The simplicity of the
environment allows us to understand how the theory works in practice by looking at the prediction
error gap per state. It also allows us to isolate the efficiency gains due to the predicted error gap from
the representational benefits of IDM shown in previous work (Lamb et al.} 2023}, [Koul et al.,[2023;

[Cevine et al.}, 2024} Tslam et al., 2022).

Finally, once we have built intuition as to why the PIDM decomposition is effective, we extend our
investigation to complex tasks that require imitating complex navigation tasks, from image inputs, in
a 3D world with stochastic transitions, in real-time using human demonstrations. In this real-world
setting, sample efficiency is critical since obtaining human demonstrations is costly, and real-time
requirements introduce additional constraints on the solution. In this setting, we continue to observe
substantial efficiency gains — BC requires 66% more samples than PIDM —, demonstrating that the
predicted performance gap is relevant for real-world applications.

Under review as a conference paper at ICLR 2026

> Encoder | > ¥ Poli é
H a ncoaer olIC a.

(a) Behavior Cloning (b) Multi-step IDM

State

Predictor > Pk

v

NS . .
s —» Encoder a: F&Z’Laerld $p1 St = Encoder —» ¢y ——» Policy }—)at

(c) Forward model (d) PIDM

Figure 2: (a) BC learns a policy conditioned on the current state. (b) IDM learns a policy conditioned
on the current and future state £ steps ahead. (c) Forward models predict a future state (representation)
given a state and action. Both (b) IDM and (c¢) forward models can serve as auxiliary objectives to
learn effective state representations. (d) PIDM represents an alternative to BC consisting of a state
predictor, akin to an action-free forward model, that predicts future state representations, and an IDM
policy. The state encoder alleviates the dependence on ground-truth future states at evaluation time.

2 RELATED WORK

Inverse dynamics models. Inverse dynamics models (IDMs) predict the initial action that initiates
a sequence leading to a transition from the current state to a future state k steps ahead. As a
direct imitation learning mechanism, multi-step inverse objectives are commonly used to train
policies or transferable encoders on high-dimensional observations; the inverse loss filters out
exogenous factors (Mhammedi et al., [2023} |Efroni et al., [2022} |[Lamb et al.,[2023)) and learns rich
state representations which can later support policy learning or be reused across tasks. To enable
efficient training, we focus on architectures, in which states are encoded into a latent space with a
state encoder (see Figure 2b). Both the state predictor and the IDM policy operate in this latent space.

Forward models. Forward models (see Figure[2c) can be added as auxiliary objectives to improve
learned representations (Levine et al, 2024). Alternatively, a forward model can be learned for
planning purposes, e.g. using reinforcement learning (Thrun et al.| [1990; [Hafner et al., |2025) or
model-predictive control (Zhou et al., [2024; Bar et al., [2025). They are different from the state
predictor of PIDM in two ways. First, forward models require action input, while the state predictor
is conditioned on the current state only. Second, forward models usually generate the next state,
while the state predictor generates future states k > 1 steps ahead.

Predictive inverse dynamics models. Recent works have combined a state predictor with an IDM
to learn generalizable policies. Inspired by diffusion models for video generation, Du et al.| (2023)
trained a diffusion model to predict future images conditioned on task descriptions, operating directly
in image space. To simplify learning, Xie et al.|(2025)) proposed using compact image representations,
enabling state predictors to train action-free demonstrations and IDMs on diverse, action-labeled
trajectories. [Tian et al.| (2025) proposed end-to-end training, using the IDM objective to guide the
state predictor. These approaches showed PIDM outperforms BC and other baselines. Our work
provides theoretical and empirical insight into why decomposing future state and action prediction
leads to this performance gain.

Behavior cloning and trajectory modeling. Recent analysis (Foster et al., [2024) argues that
many practical implementations of BC, which rely on a log-loss, are implicitly modeling the whole
state-action sequence. Our work complements such analysis by providing evidence that explicitly
modeling (part of) the trajectory, the future state in the PIDM case, can improve sample efficiency.

3 PRELIMINARIES

Problem setting. We consider the problem setting of an MDP defined by (S, A, T, R, dg) of state
space S; action space A; transition function 7 : S x A — P(S), where P(-) is a probability measure;
reward function R : S x A — R; and initial state distribution dy. To interact with the MDP, we
first sample an initial state so ~ dg. Then, at each time step, we sample an action a; ~ (- | s¢)

Under review as a conference paper at ICLR 2026

from the policy 7 : S — P(A). Given this action, the environment transitions to a new state
st41 ~ T (- | st,a:) and provides a reward r = R(s¢, at). For this work, we assume no access to
the reward signal and consider the offline imitation learning setting in which we are given a dataset
of N trajectories of states and actions D = {(so, ag, s1,a1,...,87—1,a1-1, sT}lNzl generated by
following some unknown expert policy 7*. Our goal is to learn a policy 7 that is as close as possible
to m*. We consider two architectures, BC and PIDM.

BC treats offline imitation learning as a supervised learning problem and trains a policy to imitate the
actions in the dataset given the most recent state. It consists of a single block, the policy (see Figure
@, which can be trained to minimize the following loss:

Lrc(m) = B, a0)~ ai~r, (-|s,) [d(@t, at)] (1)

for some measure of dissimilarity, d, between the action distribution induced by the learned policy
7, and the ground truth actions under the dataset distribution. There are multiple design choices on
how BC approximates the policy distribution that offer different fidelity and complexity tradeoffs,
ranging from simple but effective point estimates to rich but complex generative models that can
capture distributions with multiple modes.

PIDM consists of two submodels (see Figure 2d)): a state predictor, p, that predicts future states
for some horizon k, and an inverse dynamics model (IDM) policy, 7¢, that predicts the next action
needed to get from the current observation to the future observation in k steps. Similar to BC, there
are multiple design choices. In addition to how to approximate the distributions, the two submodels
can be trained from the same or different datasets to leverage additional data sources. We focus on
the case where they are trained with the same dataset, using the following losses:

Lsp(P) = E(s, 4 1)~D,50 45~ (-|s0) [A(8t4k: Se1k)] 2

EIDM(Wg) =]E(st,at,st+k)~]D),dtNﬂg(~|st,st+k) [d(dt, at)} . 3)

4 THEORETICAL ANALYSIS
The PIDM approach can be seen as a decomposition of BC with explicit modeling of future states:

mula | s¢) = /p(3t+k | s¢)me(ag | s¢,804k)dS14k- 4)
S

Intuitively, this decomposition can simplify the learning of a policy whenever the conditioning on the
future state in the IDM policy provides useful information to identify which action to take. In this
section, we study some potential gains of PIDM over BC when we assume access to a state predictor.
All proofs are in Appendix [A]

For simplicity, we consider the case where the BC and IDM policies are single-point estimators that
approximate the expected action. Let 7i(s;) = E[a; | s¢] and £(s¢, s;11) = E[a; | s¢, 5441 be the
optimal estimators for 7, and 7¢, respectively.

Introduce the predicted error gap between the estimators of the BC and IDM policies:

A £ EPE(m) — EPE(E), (5)
where EPE(-) is the expected prediction error, which for a random variable y|x and an estimator
¢(x) is given by: EPE(C) £ E, [(y — C(m))z] .

Our first result quantifies A in terms of the uncertainty in a; due to uncertainty in syy.
Theorem 1. For optimal estimators Ti and &, The predicted error gap is given by:

A =E,, [Varg,,, s, (Ela: | s¢,8041])] > 0. (6)
Theorem [T shows that knowing s, can increase the prediction accuracy of a,. However, this

improvement assumes access to a state predictor model. Hence, it can be seen as the ideal case that
upper bounds the potential gain that can be achieved when the state predictor model has to be learned.

We can also derive the predicted error gap under the assumption that the estimators are unbiased,
though not necessarily optimal.

Under review as a conference paper at ICLR 2026

Corollary 1. Let [i(s;) and §(s¢, St+1) be unbiased estimators for m, and m¢, respectively. Let 6
denote the difference in the estimators’ own variance:

3 2 R, [Var (fi (0)]] — Eay a0, [Var (E (0, st+k)>} : %)

Then, we have:
A 2 EPE (ji) — EPE (g) —A+5 8)

The first term in @I), A, is the reduction in variance due to knowing s;, as given by @), while &
compares the model uncertainties.

Note that both Theorem [I]and Corollary [I| naturally motivates the use additional data sources. The
former shows that action-free data can be used to train a more accurate state predictor model that
closes the distance to an upper bound. The latter shows that demonstrations for different tasks in the
same environment — or even non-optimal demonstrations when & = 1 — can be used to reduce the

variance of E increasing 5, which leads to a larger gap A.

The next result connects the prediction error gap with sample efficiency gains. We assume asymptotic
efficiency for simplicity, which implies that the variance of the estimator decreases approximately

linearly with the number of samples, and can be expressed for any unbiased estimator (of some

parameter (as: Var(f) ~ % for large enough n, where C¢c > 0 is the inverse of the Fisher
information for the { parameter being estimated.

Theorem 2. Let ji,(8;) and Em(st, St+k) be unbiased, asymprtotically efficient estimators for the
BC and IDM policies, respectively, where n. and m denote the minimum number of samples required
to achieve error level . Then, for large enough n and m, we have:

= S e (1 T TR, Var(ar | st)]> = 0. ©)

The theoretical results of this section provide insights on the potential gains that the PIDM architecture
can provide. Although they have been derived under simplifying assumptions, Section [5|provides
empirical evidence that efficiency gains hold in practice, under general conditions.

5 EXPERIMENTS

To better understand how the efficiency gains predicted in Section | manifest in practice, we perform
experiments in a 2D navigation environment, where we can easily analyze the properties of datasets
and policies. We then conduct experiments in a 3D world that require precise execution of a complex
task from images to validate our findings under real-world conditions.

5.1 ENVIRONMENTS

2D navigation environment. We consider four tasks of varying complexity within a 2D navigation
environment, visualized in Figure[3] in which the agent needs to reach a sequence of goals. The tasks
are fully observable with low-dimensional states containing the x- and y-position of the agent as well
as the positions of all goals, and whether they have already been reached. This simplified setting
allow us to study the efficiency gains of PIDM over BC due to its action decomposition, isolated
from other gains resulting from improved representations reported in prior work (Lamb et al., 2023}
Koul et al., 2023; [Levine et al.,[2024). The agent chooses actions in [—1, 1]2 for its movement, and
the transitions are stochastic with Gaussian noise N(0, 0.2) added to the actions. For each task, a
human player collected a dataset of 50 trajectories by navigating the agent to reach all goals using a
controller. The datasets naturally contain some variability in actions in any given state as visualized
by the human trajectories shown in Figure[3] We refer to Appendix [B]for more details on each dataset.

3D world. For a complex environment under real-world conditions, we constructed a dataset
comprising human gameplay demonstrations within a modern 3D video game titled "Bleeding
Edge", developed by Ninja Theory. The environment corresponds to the "Dojo" practice level. It
features a third-person perspective with a freely controllable camera, where the camera orientation

Under review as a conference paper at ICLR 2026

(a) 2D Navigation task (b) Four room (c) Zigzag (d) Maze (e) Multiroom

Figure 3: Visualization of 2D navigation environment. (a) Tasks require the agent (blue box) to
navigate to reach the goals (red boxes) in a particular order. (b) - (e) Visualizations of all four tasks
and the traces of the 50 trajectories within the datasets.

directly affects the agent’s movement direction, introducing a non-trivial perception-action coupling.
Observations are captured as raw video frames, which are processed through a pre-trained image
encoder to obtain embeddings that facilitate efficient learning. These embeddings are subsequently
passed to the networks of the algorithms. In our experiments, we use the pre-trained ViT-B/16
Theia vision encoder (Shang et al.,[2024)). The action space contains continuous actions [—1, 1]4 to
control the x- and y-movement of the controlled character and the camera. State transitions occur
asynchronously at 30 FPS and require real-time inference. Due to the game’s deployment on a remote
server in a distant cloud region, transitions are stochastic, affected by variable latency and visual
artifacts. Within the environment we consider a task we refer to as "Tour" that consists of ~36
seconds of precise navigation with 11 milestones, testing the agents’ capability to steer and stay on
track while avoiding obstacles and reacting at objects of interests (see Figure[Th for visualization of
some milestones and Appendix [C.2]for the complete list).

5.2 ALGORITHMS

Model architecture. In the 2D navigation environment with fully observable states, we train
MLP networks for the encoder and policy networks of BC and PIDM, and use k£ = 1 for PIDM.
In contrast, the complex 3D world task is partially observable with inputs being video frames that
are first being processed by a pre-trained vision encoder. The policy then receives a stack of vision
encoder embeddings for three frames spanning one second to approximate a single state. BC and
PIDM policies are then conditioned on these stacked representations for the current state and, in the
case of PIDM, for the future state. To leverage the representational benefits of multi-step IDM (Lamb
et al.,[2023; [Koul et al.,[2023), we train the PIDM policy using k € {1,6, 11,16, 21,26} for this task
and additionally condition the PIDM policy network on a one-hot encoding of k. During evaluation,
we query the PIDM policy and state predictor with £ = 1. For BC and PIDM, we use the tanh
activation function on the action logits to get actions in the desired [—1, 1] range.

State predictor. We consider two state predictors. In the 2D navigation environment, we leverage
an instance-based learning model (Keogh, 2010) for a deterministic state predictor:

p(st) = si;+k with (7%,i*) £ argmiiant — 543, (10)
T,

with s’ referring to the state at time step T in training trajectory i. In short, the state predictor first
queries for the nearest state within any training trajectory, as measured by the Euclidean distance,
and then predicts the state k steps ahead of that state within the same training trajectory. In the 2D
navigation environment, we further constrain the query for the nearest state to only match states in
which the same goal needs to currently be reached. Computation of this lookup is efficient for the
small data regime considered in our work.

In the complex 3D world task, we consider a simplified state predictor that is purely based on the
time step and a single fixed training trajectory, denoted with superscript i. At time step ¢, the state
predictor returns the state s’ . Within that training trajectory. Despite its simplicity, we find that even
this simple state predictor can enable effective evaluation when paired with a trained IDM model.

Training details. To train the policies, we sample batches of 4096 (s;, at) or (8¢, at, St4r) tuples
for BC and IDM policies, respectively, using ground-truth states and actions from training trajectories.

Under review as a conference paper at ICLR 2026

.

°

°
S

Percentage reached goals
5

°

— BC
PIDM

— BC
PIDM

@
A

PIDM

T
]
i
i
i
i
i
i
i
i
i
i
i
i
I
]

30

70 R s

°

¥ ¥
0 10 20 30 40 50 0 10 20 30 40 50 [10 50 [10

20 20
Training trajectories Training trajectories Training trajectories Training trajectories

(a) Four room (b) Zigzag (c) Maze (d) Multiroom
Figure 4: Performance per number of training trajectories for BC and PIDM in four tasks trained on
human datasets. Lines and shading correspond to the average performance and standard deviation

across 500 evaluations. We further visualize the number of samples required by PIDM and BC to
reach 95% of the highest achievable performance with vertical dotted lines.

Table 1: Sample efficiency ratios of PIDM over BC for 2D navigation tasks and average across tasks

Task Four room Zigzag Maze Multiroom average
nPIDM(95%) T 4.0 1.33 3.0 3.0 2.83

All networks are optimized end-to-end for 100 000 optimization steps from the BC and IDM losses
defined in Equation (I)) and Equation (3) using the Adam optimizer. For further details on hyperpa-
rameter tuning and architectures used in the 2D navigation and complex video game environments,
please refer to Appendix [B|and Appendix |C| respectively.

5.3 SAMPLE EFFICIENCY GAINS FOR 2D NAVIGATION

To study the sample efficiency gains of PIDM, we train a BC and PIDM on each dataset with varying
numbers of trajectories, namely (1, 2, 5, 10, 20, 30, 40, 50). Our performance metric is the fraction
of reached goals in the right order. For each task and number of training trajectories, we train BC and
PIDM for ten random seeds, and evaluate four checkpoints throughout training of each seed using 50
rollouts, giving a total of 500 values of the performance metrics per checkpoint. We report aggregate
results over these 500 values for the best checkpoint for each task and number of training trajectories.

To summarize efficiency gains, we compute efficiency ratios npipy for each task, given by

n(BC, c max
UPIDM(C) = ” ()

_ 11
(PIDM, ¢ max)’ (ah

where n(A, z) is the number of samples required by algorithm A to reach at least performance x
and max denotes the maximum performance achievable in the task. In other words, we compute the
ratio of the number of samples that BC and PIDM require to obtain the achievable performance up
to a factor of ¢ < 1. Figure[d] visualizes the percentage of reached goals for BC and PIDM across
varying number of samples, and Table [I] summarizes 95% efficiency ratios, showing significant
sample efficiencies for IDM over BC, as predicted by the analysis in Section[d] We find the efficiency
gains to be most significant in the four room where BC requires 4 x more demonstrations than PIDM
(40 vs 10) to achieve comparable performance.

5.4 FUTURE CONDITIONING AS A VARIANCE REDUCTION OPPORTUNITY

Our theoretical insights of Theorem [T| and Theorem [2] indicate that states, in which there is high
uncertainty on the action due to uncertainty in the future state, as given by A(s), are key to potential
sample efficiency gains of PIDM over BC. What effect do these states have on the learned IDM
policy, and how might they lead to improved efficiency?

To answer this question, we qualitatively analyze the learned PIDM policies in each task, and compute
the EPE gaps for any particular state s; = s within our datasets:

A(s) £ Var,,,, s (Eaq | s, s144]), such that: A = Eg, [A(s)]. (12)

Under review as a conference paper at ICLR 2026

Four room Zigzag Maze Multiroom
0 |

Il B = =)

Figure 5: Visualized state-wise EPE gaps A(s) from Equation computed for each dataset. We
observe large gaps in states surrounding the goals where human actions are more diverse.

H EH =H =
(a) Four room (b) Zigzag (c) Maze (d) Multiroom

Figure 6: Visualization of IDM policies when queried for representative states and possible future
states in each cardinal and diagonal direction for all four tasks. Predicted actions spread out in states
where the dataset exhibits large A(s).

To approximate A(s) for continuous states in our 2D environment, we discretize the map with k-
means clustering over states and then compute the sample variance over actions grouped by centroid
and future states within each dataset. Figure El visualizes the estimated values of A(s) for each
dataset, with 500 clusters being computed to group states. Interestingly, we observe that the human
movement exhibits significantly larger action variability in states surrounding the goals which the
player has to navigate to.

To qualitatively analyze the PIDM policies, we
train them with all available training trajectories.
We obtain representative states by taking the *a
centroids of k-means clustering (using k = 75 . *

for maze and multiroom and & = 50 for four
room and zigzag) and computing eight possible
future states that are reachable within £ = 1 step
into each cardinal or diagonal direction. Then,
we condition the PIDM policy with the 8 possi-
ble futures per centroid. Figure[6] visualizes the
actions predicted by the PIDM policy for each e o Four room
centroid and future state pair. We can clearly see . il
that the actions from the same centroid state are o Zigzag
pointing in various directions only whenever the 1o Tos 1o o o ft
centroid state is close to a goal or other states Als)

with large A(s), as visualized in Figure[5] This
result shows that the PIDM policy learns to at-
tend to the future state in states where the future
state helps to reduce uncertainty over the action
prediction, which is precisely where Theorem [I] predicts a potential performance gain for PIDM. In
contrast, in states where the action variability within the dataset is minimal, the PIDM policy exhibits
significantly less diversity in predicted actions as seen by states in which most arrows point in a
similar direction.

.95, 8¢
O SIS O 95
S20eS o 0 00

102 e -o o« e

Vars,, (mg(- | St Ste+1))

[]

Figure 7: Correlation of state-wise action variance
A(s) and the variance of PIDM policies.

Under review as a conference paper at ICLR 2026

Figure [7] further connects our newly gained understanding to Theorem [I] by showing the correlation
between state-wise action variability A(s) and the variance of the PIDM policy for varying future
states, indicating that the PIDM policy exhibits higher variance for states with higher A(s), meaning
PIDM has learned to model as predicted by our theory. The variance of the IDM policy is computed
for representative centroid states over eight future states.

5.5 SAMPLE EFFICIENCY GAINS IN A 3D WORLD

After building an intuition for the efficiency gains of PIDM over BC both from a theoretical perspec-
tive, and under general conditions in a simplified environment, we now demonstrate similar benefits
in a complex task that is representative of real-world applications. We consider the complex task that
we name "Tour" as described in Section [5.1]in which the agent needs to navigate from images in the
3D world of a modern video game that requires real-time inference, with stochastic transitions, and
where success is defined by achieving 11 milestones (see also Appendix[C.2).

To compare agent performance on this task, BC and PIDM are trained using 5, 15, 20, 25 and 30
demonstrations. Our performance metric is the percentage of milestones that have been reached. We
train BC and PIDM for 5 random seeds, and evaluate the latest checkpoint of each seed with 10
rollouts, giving a total of 50 values of the performance metric per number of demonstrations for each
algorithm. Figure[Tp shows PIDM achieves 95% success (on average) at the end of training, and a
success rate of 87% with 15 demonstrations, while BC requires 25 demonstrations to reach a 81%
success rate, so BC requires 7pipm (80%) = 1.66 times more samples than BC to reach a success rate
of 80%. This confirms the potential of PIDM to improve sample efficiency over BC even in the small
data regime. Moreover, when additional data sources are available, we expect these efficiency gains
to increase.

6 CONCLUSION

This work analyzed the performance advantages of predictive inverse dynamics models (PIDM) as an
alternative to behavior cloning (BC) for offline imitation learning, particularly in low-data regimes.
Through theoretical analysis and empirical experiments, we shed light onto the advantages of PIDM
observed in prior work, proving that PIDM can reduce action prediction error by conditioning on
future states, especially in regions of high uncertainty. Empirical results across navigation tasks
in 2D and 3D environments confirmed sample efficiency gains, with BC requiring up to 4x more
demonstrations than PIDM to achieve comparable performance. Interestingly, qualitative analysis
showed that learned PIDM policies attend to future states only when they provide informative context
for reducing prediction variance. Altogether, this work provides a principled explanation for PIDM’s
effectiveness and offers insights that pave the way for more efficient imitation learning methods that
leverage state prediction and future conditioning.

On the other hand, although we proved that PIDM is solving a problem that is not harder than BC,
more work is needed to understand under which conditions PIDM is superior to BC. In particular, the
impact of learning the future state distribution remains unclear and it is not evident whether learning
this distribution is easier or more robust than directly learning actions. Additionally, the quality of the
state predictor can significantly affect overall performance. Moreover, we focused on point estimators
of the policy distribution for both BC and PIDM, which is a fair comparison, but it is unclear whether
the observed sample efficiency gains of PIDM over BC would remain for a richer policy class (e.g.,
using diffusion models). These limitations highlight important directions for future work, including
better understanding the trade-offs in learning state predictors, modeling choices, and extending the
theory to more general settings.

Under review as a conference paper at ICLR 2026

REFERENCES

Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 15791-15801, 2025.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in neural
information processing systems, 36:9156-9172, 2023.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural
information processing systems, 30, 2017.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Provably filtering exogenous distractors using multistep inverse dynamics. In Infernational
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
1d=RQLLzMCefQu.

Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. Survey of imitation
learning for robotic manipulation. International Journal of Intelligent Robotics and Applications,
3(4):362-369, 2019.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158—168, 2022.

Dylan J. Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
horizon in imitation learning. In Advances in Neural Information Processing Systems, volume 37,
pp. 120602-120666, 2024.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1-7, 2025.

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra
Misra, Xin Li, Harm Van Seijen, Remi Tachet des Combes, et al. Agent-controller representations:
Principled offline rl with rich exogenous information. arXiv preprint arXiv:2211.00164, 2022.

Eamonn Keogh. Instance-Based Learning, pp. 549-550. Springer US, 2010.

Anurag Koul, Shivakanth Sujit, Shaoru Chen, Ben Evans, Lili Wu, Byron Xu, Rajan Chari, Riashat
Islam, Raihan Seraj, Yonathan Efroni, et al. Pclast: Discovering plannable continuous latent states.
In International Conference on Machine Learning, 2023.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster,
Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery
of control-endogenous latent states with multi-step inverse models. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856.

Alexander Levine, Peter Stone, and Amy Zhang. Multistep inverse is not all you need. Reinforcement
Learning Journal, 2:884-925, 2024.

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi-step
inverse kinematics: An efficient and optimal approach to rich-observation RL. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 24659-24700. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/mhammedi23a.htmll

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1-179, 2018.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A Theodorou,
and Byron Boots. Imitation learning for agile autonomous driving. The International Journal of
Robotics Research, 39(2-3):286-302, 2020.

10

https://openreview.net/forum?id=RQLLzMCefQu
https://openreview.net/forum?id=RQLLzMCefQu
https://proceedings.mlr.press/v202/mhammedi23a.html

Under review as a conference paper at ICLR 2026

Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. In /EEE
Conference on Games, pp. 104-111, 2022.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. In International Conference on Learning Representations,

2023.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233-242, 1999.

Lukas Schifer, Logan Jones, Anssi Kanervisto, Yuhan Cao, Tabish Rashid, Raluca Georgescu, David
Bignell, Siddhartha Sen, Andrea Trevifio Gavito, and Sam Devlin. Visual encoders for imitation
learning in modern video games. In Workshop on Adaptive and Learning Agents, 2023.

Jinghuan Shang, Karl Schmeckpeper, Brandon B. May, Maria Vittoria Minniti, Tarik Kelestemur,
David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot
learning. In 8th Annual Conference on Robot Learning, 2024.

Sebastian Thrun, Knut Méller, and Alexander Linden. Planning with an adaptive world model.
Advances in neural information processing systems, 3, 1990.

Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, and Jiangmiao Pang. Pre-
dictive inverse dynamics models are scalable learners for robotic manipulation. In International
Conference on Learning Representations, 2025.

Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation
learning. In International Conference on Machine Learning, 2025.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

A PROOFS

A.1 PROOF OF THEOREMII]
Theorem 1. A = E,, [Var,,,, s, (E[a; | s¢,si44])] > 0.

Proof: The prediction error for these estimators is given by:

EPE() = Eq,.q, |(a: —7i(s:))’] (13)

EPE(f) = ESt,at,St+k [(at - E(St, 3t+k))2} . (14)

We can rewrite the EPE by using iterated expectation and replacing the definitions of optimal
estimators:

EPE() = E, [Eat‘st [(at ~Ela; | St])QH

= E;, [Var(a: | st)] (15)
EPE() = Eorx [Barl(orers | (@ — Elas | 81, s04])?]]
= Est13t+k [Var(at | St, stJrk)] . (16)

We can further simplify Equation . First, we apply the law of total variance to Var(a; | s;):
Var(a; | s¢) = Es,,, s, [Var(a; | s¢, s¢41)] + Varg,,, |s, (Elas | 8¢, 8¢41]) - (17)
Second, we take the expectation over s;:

Est [Var(at | st)] = Est [ESH_HS*; [Var(at | St’st+k)]] +]E'3t [Va'rsm-k\st (E[at | St, St+k])] .
(18)

11

Under review as a conference paper at ICLR 2026

Third, we simplify the first term of the r.h.s.:
Es, [Es,,,|s, [Var(a; | s¢, si14)]] = Es, s, [Var(as | si, Se4)]. (19)
Finally, we have:
E, [Var(a; | s¢)] = Es, s, [Var(a | s;, st41)] + Es, [VarsHk‘St (Ela; | st,st+k])] . (0)

Now, we can easily compute the performance gap between the MSEs of both estimators:

EPE(f) — EPE() = Es, [Var(ay | s¢)] — Es, s, [Var(as | s¢, si14)]
=E,, [VarsHMst (Ela | st,stJrk)] . (21

A.2 PROOF OF COROLLARY[T]

o~

Corollary 1. Ler ji(s:) and £(S¢, Sty1) be unbiased estimators for the BC and IDM policies,
respectively. Let § denote the difference in the estimators’ own variance:

52 By, [Var (7 (s0)]] = Ea, o0y [Var (€ (e s04))] (22)
Then, we have:

A 2 EPE (7)) — EPE (E) —A+5 (23)

Proof: Since the estimators are unbiased, we know that:
E[f(s,)] = Ela; | 5],
E [g(st, s,H_k)} =E[a; | s¢, Stk] - (24)
We can express a; = E[a; | s¢] + € where € is a zero-mean random variable, possibly dependent on
s¢. Using the definition of &z from Theorem[I] the EPE can be expressed as the sum of the irreducible
variance and the estimator’s own variance:
EPE(f) = Bo,.a, |(ar — fi(s1))’]

= Eova, (@0 — fils0) + Filse) — 7i(51)°]

= Eova, |((a0 = Ti(s0)) + (7(s0) — fi(s)))?]

= Eoya, [(@0 — 7i(30)°] +Es, [(7(s0) — fi(s2))’]

+ 2Es, a, [(ar —7i(s1)) (i(se) — 1i(s1))]
= Eg, [Var(a: | s¢)] + Es, [Var(i(s:))], (25)

where the cross-term vanishes since E¢ [e | s¢] = 0:

Es,a, [(@e — 1i(s¢)) (A(st) — Hi(se))] = Es, e [(€ + Blse) — B(se)) (7(se) — 11(se))]

= Es, c [e (B(st) — 1i(s¢))]

=Es, [Ec[e | s¢] (R(st) — 11(s1))]

=0. (26)

Following the same approach for £, we have:
EPE() = Es, 5,0 [Var(as | st,8¢41)] + Eg, s, [Var(g(st, 3t+k))} . 27

Subtracting (27) from (23)) and grouping terms according to definitions (3)) and (22)) concludes the
proof. []

12

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM[2]

Theorem 2. Let [i,,(s;) and Em(Su St+k) be unbiased, asymptotically efficient estimators for the
BC and IDM policies, respectively, where n and m denote the minimum number of samples required
to achieve error level . Then, for large enough n and m, we have:

s n Oy A
" m Ce (+ e — Eg, [Var(a; | st)]> - (28)

Proof: From (23) and using the asymptotic variance approximation:
EPE(fin) = Es, [Var(a; | s¢)] + Es, [Var(ji(s:))]

C
~ Eg, [Var(a: | s¢)] + ?" (29)
Since EPE(fi,,) = &, we can solve for n:
C
~ ’ . (30)
e — Eg, [Var(a | s¢)]
Following the same reasoning for EPE(E)ym), we get:
Ce
m A . (31)
€ = Es, 5.4 [Var(as | se, s144)]
Using the definition of the sample efficiency ratio, we have:
a2
m
e (5 —Es, 5, [Var(a | sy, 3t+k)]) . (32)
3 e — Eg, [Var(a: | s¢)]

From the first line of (21), We can obtain this identity:
Est7st+k [Var(at | St, St+k)] = Est [Var(at | St)] — A. (33)

By expanding it in (32) and simplifying terms, we get (28). Finally, we just need to ensure the fraction
is non-negative. To do so, note that

e > max{E,, [Var(a; | s;)],Es, s,., [Var(a; | s¢, si4%)]} >0, (34)
since the prediction error cannot be smaller than irreducible error. []

B DETAILS FOR 2D NAVIGATION ENVIRONMENT AND EXPERIMENTS

In this section, we describe further details about the 2D navigation environment and the experiments
in this setting.

B.1 ADDITIONAL ENVIRONMENT DETAILS

Tasks within the 2D navigation environment specify a layout of the environment and differ in the
number of goals. The general setting stays the same with each task specifying an order to its goals
and the agent needs to reach a goal before being able to reach any subsequent goals. This setup makes
these tasks punishing since missing any goal will mean that subsequent goals cannot be reached
anymore unless the agent returns back to the currently required goal. An episode within any task
finishes after all goals have been reached, or after a maximum number of time steps has been reached.
The state dimensionality, number of goals, and maximum number of time steps for each task is listed
in Table 21

In all tasks, we introduce stochasticity in the transition function through Gaussian noise. Instead of
displacing the agent based on its selected action a € [—1, 1]? alone, we displace the agent based on
clipped noise-added actions:

clip(a+e¢,—1,1) with e~ AN(0,0.2-1) (35)
We emphasize that the sampled noise is not modifying the actions but rather modeled as part of
the environment, meaning that, from the perspective of the agent, the environment transitions are

stochastic given a state and action. The agent will bounce off any walls that it collides with with
walls being visualized as black bars in all figures.

13

Under review as a conference paper at ICLR 2026

Table 2: Statistics of all four 2D navigation tasks and the human datasets. The first four columns
correspond to properties of the tasks, given by the number of goals, maximum number of time steps
to complete the task, and the state dimensionality, while the last four columns correspond to the total
number of trajectories/ time steps within the collected dataset (across all 50 trajectories) and statistics
over the trajectory length.

Trajectory length

Task Num goals Max time steps |s| Total steps Min =~ Avg Max
Four room 4 200 14 5821 103 116.42 154
Zigzag 6 150 20 4009 66 80.18 106
Maze 10 300 32 9785 176 195.70 227
Multiroom 6 500 20 12961 241 259.22 314

B.2 DATASET DETAILS

Table [shows statistics for each 2D navigation task and the collected human dataset. During data
collection, the human player was instructed to collect high-quality trajectories that reach all goals as
fast as possible. The player controlled the movement of the controllable agent using the joystick of a
gamepad controller. We note that the player was unaware of the data analyses that we conducted to
avoid any risk of introducing bias.

B.3 HYPERPARAMETER SEARCH

To ensure fair comparison, we conducted a comparable gridsearch for both BC and PIDM in the
multiroom task using 50 training trajectories. First, we conducted a gridsearch over the model archi-
tecture considering sixteen different sizes of the MLP network architecture, the use of normalization
in the network (either batch normalization, layer normalization, or no normalization), and learning
rate with three constant candidate learning rates (1e =%, 1e=°, 1e~%. The considered architectures
consisted of any of five MLP blocks before any potential normalization layer and any of the five MLP
blocks after the normalization. The considered network blocks were:

1. MLP(256)
2. MLP(256, 128)
3. MLP(512, 256)
4. MLP(512, 1024, 256)

5. MLP(1024, 2048, 512)

From this search, we identified a single network architecture that performed best for BC and among
the best for PIDM to keep for consistent comparisons thereafter. The architecture consists of network
block MLP(512, 1024, 256) followed by batch normalization before MLP(256, 2) with the last 2D
layer outputting the action logits. We apply ReLU activation in between all layers and tanh activation
to the output logits.

After fixing the network architecture, we still found some training instability for BC and IDM so
we decided to further tune the learning rate for BC and IDM by searching over 14 learning rate
configurations defined by their initial learning rate, and potential learning rate scheduling, and
considered each configuration with and without gradient norm clipping. We first tuned the learning
rate configuration for BC and IDM in multiroom after which we found IDM training to be stable
across tasks. For BC, we further tuned the learning rate for each individual task to obtain stable
training results. The identified learning rates are shown in the table below.

14

Under review as a conference paper at ICLR 2026

Table 3: Learning rate configuration for each task and algorithm

Task BC configuration IDM configuration
Four room Linear decay 1le=3 — 1e~% over 50 000 steps + grad norm clipping constant le~?
Zigzag Linear decay le=* — 1e~5 over 50 000 steps + grad norm clipping constant le~?
Maze Linear decay le~* — 1e~% over 50 000 steps + grad norm clipping constant le~?
Multiroom Linear decay le~% — 1e=6 over 50 000 steps constant le~®

C DETAILS FOR COMPLEX TASK IN 3D-WORLD

C.1 DATASET DETAILS

The dataset consists of 30 demonstrations collected by a human playing the game. Table 4| shows the
number of steps and length (seconds) of the demonstrations in the dataset.

Table 4: Statistics of demonstrations of "Tour" task.

Total steps Trajectory length (in seconds)
Task Min Avg Max Min Avg Max
Tour 1006 1067.2 £ 29.4 1139 33.83 3591+0.99 38.29

C.2 ADDITIONAL ENVIRONMENT DETAILS

Table [5|contains the 11 milestones required to complete the "Tour" task.

C.3 EVALUATION PROTOCOL

Two human experts that were familiar with the task evaluated all the rollouts. The evaluation was blind
to avoid cognitive bias, since the evaluators did not know whether the rollout they were evaluating
corresponded to BC or PIDM. For each rollout, they checked if the agent achieved every milestone of
the task, scoring with value 1 if the milestone was achieved and 0 otherwise, so the maximum score
per rollout is 11 (the number of milestones). However, we report performance in terms of % of this
maximum score.

C.4 ADDITIONAL ALGORITHMIC DETAILS

C.4.1 VISION ENCODER

We use "theia-base-patch16-224-cddsv" from Huggingface as pretrained vision encoder. The vision
encoder remains frozen during training (and evaluation). Each video frame is passed to this encoder,
which generates an embedding vector of length 768. This embedding vector of the current frame is
the input to the BC policy. While the embedding of the current and future frames are the input to the
state encoder of the PIDM.

C.4.2 GRID SEARCH

To ensure fair comparison and some degree of generalization, we conducted a comparable grid search
for both BC and PIDM in a different more complex task, with more milestones, for which none of the
algorithms could achieve 100% performance after being trained with a dataset of 30 demonstrations.
We used the results from the grid search in the 2D environment as a basis, with ReLu activations in
between all layers and batch normalization at the output of the state encoder. The output was a tanh
activation. We evaluated two different sizes of the MLP network architecture, under two learning
rates. The considered MLP network blocks were:

1. State encoder: MLP(1024, 512, 512), Policy: MLP(512, 256)

15

Under review as a conference paper at ICLR 2026

2. State encoder: MLP(1024, 2048, 1024, 512, 512), Policy: MLP(512, 512, 256)

We also tried two learning rates per algorithm, namely linear decay le-3 — le-6 and 5e-5 for PIDM,
and linear decay le-4 — 1e-6 and le-4 for BC, with decay for 60,000 steps. Other hyperparameters
that remained constant where: training lasted 60,000 steps, optimization algorithm was Adam with
standard parameters (81 = 0.9, f2 = 0.999, ¢ = 1e-8), and batch size was 4096. Moreover, We also
use as suggested by the grid search in the 2D environment.

We observed the small network blocks with linear decay was the best combination, and BC (88%)
achieved slightly higher average performance than PIDM (86%) for that task, but not statistically
significant. For training in the "Tour" task, we used this configuration and used the rest of the
parameters used for the grid search, with the only exception of the number of training steps, which
we increased to 100,000 and we could see the loss had converged and remained stable after 60,000
(which is when the linear decay stops).

16

Under review as a conference paper at ICLR 2026

Table 5: Milestones of "Tour" task in Bleeding Edge with corresponding thumbnails

Milestone Thumbnail

1 Start off with a sharp left 180° turn

2 Navigate towards the first health marker and grab it

3 Cross the main floor of the Dojo

4 Take a left onto the ramp

5 Turn while going up and stay on the ramp for 6-7 secs

6 Right turn and navigate the corridor

7 Circumvent the box by steering left

8 Navigate towards the second health marker and grab it

9 Pass through the final corridor

10 Hit the Gong

11 Stop and don’t move anymore

17

	Introduction
	Related Work
	Preliminaries
	Theoretical Analysis
	Experiments
	Environments
	Algorithms
	Sample Efficiency Gains for 2D Navigation
	Future Conditioning as a Variance Reduction Opportunity
	Sample Efficiency Gains in a 3D World

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2

	Details for 2D Navigation Environment and Experiments
	Additional Environment Details
	Dataset Details
	Hyperparameter Search

	Details for Complex Task in 3D-World
	Dataset Details
	Additional Environment Details
	Evaluation Protocol
	Additional Algorithmic Details
	Vision encoder
	Grid search

