

# WHEN DOES PREDICTIVE INVERSE DYNAMICS OUTPERFORM BEHAVIOR CLONING? EXPLORING THE ROLE OF ACTION AND STATE UNCERTAINTY

006 **Anonymous authors**

007 Paper under double-blind review

## ABSTRACT

013 Offline imitation learning aims to train agents from demonstrations without interacting  
 014 with the environment, but standard approaches like behavior cloning (BC) often  
 015 fail when expert demonstrations are limited. Recent work has introduced a class of  
 016 architectures we call predictive inverse dynamics models (PIDM), which combine  
 017 a future state predictor with an inverse dynamics model (IDM) to infer actions to  
 018 reach the predicted future states. While PIDM often outperforms BC, the reasons  
 019 behind its benefits remain unclear. In this paper, we analyze PIDM in the offline  
 020 imitation learning setting and provide a theoretical explanation: [conditioning the](#)  
 021 [IDM on the predicted future state reduces variance, whereas predicting the future](#)  
 022 [state introduces bias. We establish conditions on the state predictor bias for PIDM](#)  
 023 [to achieve lower prediction error and higher sample efficiency than BC](#), with the  
 024 gap widening when additional data sources are available. The efficiency gain is  
 025 characterized by the variance of actions conditioned on future states, highlighting  
 026 PIDM’s ability to reduce uncertainty in states where future context is informative.  
 027 We validate these insights empirically under more general conditions in 2D navigation  
 028 tasks using human demonstrations, where BC requires up to five times (three  
 029 times on average) more samples than PIDM to reach comparable performance.  
 030 Finally, we extend our evaluation to a complex 3D environment in a modern video  
 031 game with high-dimensional visual inputs and stochastic transitions, showing BC  
 032 requires over 66% more samples than PIDM in a realistic setting.

## 1 INTRODUCTION

035 Offline imitation learning aims to learn closed-loop control policies that replicate expert behavior  
 036 using only pre-collected data, without access to a reward function or further interaction with the  
 037 environment. This paradigm has broad applicability across domains such as robotics (Schaal, 1999;  
 038 Fang et al., 2019), autonomous driving (Pan et al., 2020), and gaming (Pearce & Zhu, 2022; Pearce  
 039 et al., 2023; Schäfer et al., 2023). A prominent line of research in imitation learning focuses  
 040 on one- or few-shot generalization, where models are pretrained on large-scale datasets spanning  
 041 diverse tasks (Duan et al., 2017), with the goal of adapting to new tasks from only a handful of  
 042 demonstrations. However, collecting such large-scale expert demonstrations is often costly, time-  
 043 consuming, or infeasible—particularly in specialized domains like robotics, where data acquisition is  
 044 expensive and task-specific. As a result, many real-world applications lack the scale of data required  
 045 to train or adapt large models using standard imitation learning techniques.

046 In contrast to approaches that rely on extensive pretraining, we focus on the low-data regime, where  
 047 only few demonstrations are available for the target task, and no additional data can be assumed. This  
 048 setting is increasingly relevant in the current AI landscape, where large foundation models are trained  
 049 on massive datasets, yet aligning them to new domains with limited supervision remains a significant  
 050 challenge.

051 The most common offline imitation learning approach is behavior cloning (BC) (see Figure 2a),  
 052 which can exhibit complex behavior (Osa et al., 2018; Pearce & Zhu, 2022; Florence et al., 2022) but  
 053 typically relies on the availability of many demonstrations per task. Recent work has introduced a  
 promising alternative to BC, which we refer to as predictive inverse dynamics models (PIDMs) (Du



#2 Grab health marker



#7 Avoid obstacle



#10 Hit the gong

(a) Selected milestones of "Tour" task in 3D world



(b) Sample efficiency

066  
067  
068  
069  
070  
071  
072  
073  
074  
075  
076  
077  
078  
079  
080  
081  
082  
083  
084  
085  
086  
087  
088  
089  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
100  
101  
102  
103  
104  
105  
106  
107

Figure 1: (a) Visualization of selected milestones from the complex "Tour" task in a 3D world with video input, stochastic transitions, and real-time inference. (b) Sample efficiency curves (mean  $\pm$  std) for PIDM and BC. BC requires 66% more samples to achieve 80% success rate on average.

et al., 2023; Xie et al., 2025; Tian et al., 2025). PIDM integrates two components: a state predictor, which forecasts plausible future states, and an inverse dynamics model (IDM), which infers the actions needed to reach those states (see Figure 2d). This modular design offers a key advantage—it allows leveraging diverse data sources, including action-free demonstrations and non-expert data. By augmenting a small set of expert demonstrations with such additional data, PIDM has demonstrated strong empirical performance (Xie et al., 2025). Interestingly, Xie et al. (2025) also reported that PIDM can significantly improve upon BC even when no additional data sources were available, suggesting the promise of PIDM for the low-data regime. However, the underlying reasons for their sample efficiency remain unclear. Is there something intrinsic to the PIDM architecture that enables this advantage? Under what conditions can we expect such gains to consistently emerge?

In this work, we analyze PIDM and provide theoretical insights into why decomposing the decision-making problem into a state predictor and an IDM can lead to significant sample efficiency improvements over BC. Specifically, PIDM can achieve comparable or superior performance using fewer expert demonstrations. First, we show that the prediction error of an optimal estimator for PIDM is always less than or equal to that of BC, resulting in a non-negative performance gap in favor of PIDM even in the small-data regime. This gap is characterized by the expected conditional variance of actions given all possible future states. We then extend the analysis to arbitrary estimators and highlight a key advantage of the PIDM architecture: a bias-variance tradeoff. Conditioning on a future state reduces the total variance by removing the conditional variance mentioned above; however, predicting a future state induces bias, reducing the effective gap. This bias-variance tradeoff also appears when comparing the sample efficiency of BC and PIDM, and we provide conditions on the state predictor bias for PIDM to be at least as sample-efficient than BC.

Second, we provide empirical evidence that the predicted sample efficiency gains apply to more general conditions, including the small-data regime, with no additional data sources, and general modeling approaches, like neural networks. We perform experiments on a benchmark of four 2D navigation tasks in a state-based environment, using a dataset of human demonstrations, and observe that BC requires between  $1.3\times$  and  $4\times$  more demonstrations than PIDM. The simplicity of the environment allows us to understand how the theory works in practice by looking at the prediction error gap per state. It also allows us to isolate the efficiency gains due to the predicted error gap from the representational benefits of IDM shown in previous work (Lamb et al., 2023; Koul et al., 2023; Levine et al., 2024; Islam et al., 2022).

Finally, once we have built intuition as to *why* the PIDM decomposition is effective, we extend our investigation to complex tasks that require imitating complex navigation tasks, from image inputs, in a 3D world with stochastic transitions, in real-time using human demonstrations. In this real-world setting, sample efficiency is critical since obtaining human demonstrations is costly, and real-time requirements introduce additional constraints on the solution. In this setting, we continue to observe



Figure 2: (a) BC learns a policy conditioned on the current state. (b) IDM learns a policy conditioned on the current and future state  $k$  steps ahead. (c) Forward models predict a future state (representation) given a state and action. Both (b) IDM and (c) forward models can serve as auxiliary objectives to learn effective state representations. (d) PIDM represents an alternative to BC consisting of a state predictor, akin to an action-free forward model, that predicts future state representations, and an IDM policy. The state encoder alleviates the dependence on ground-truth future states at evaluation time.

substantial efficiency gains — BC requires 66% more samples than PIDM, demonstrating that the predicted performance gap is relevant for real-world applications.

## 2 RELATED WORK

**Inverse dynamics models.** Inverse dynamics models (IDMs) predict the initial action that initiates a sequence leading to a transition from the current state to a future state  $k$  steps ahead. As a direct *imitation learning* mechanism, multi-step inverse objectives are commonly used to train policies or transferable encoders on high-dimensional observations; the inverse loss filters out exogenous factors (Mhammedi et al., 2023; Efroni et al., 2022; Lamb et al., 2023) and learns rich state representations which can later support policy learning or be reused across tasks. To enable efficient training, we focus on architectures, in which states are encoded into a latent space with a state encoder (see Figure 2b). Both the state predictor and the IDM policy operate in this latent space.

**Forward models.** Forward models (see Figure 2c) can be added as auxiliary objectives to improve learned representations (Levine et al., 2024). Alternatively, a forward model can be learned for planning purposes, e.g. using reinforcement learning (Thrun et al., 1990; Hafner et al., 2025) or model-predictive control (Zhou et al., 2024; Bar et al., 2025). They are different from the state predictor of PIDM in two ways. First, forward models require action input, while the state predictor is conditioned on the current state only. Second, forward models usually generate the next state, while the state predictor generates future states  $k \geq 1$  steps ahead.

**Predictive inverse dynamics models.** Recent works have combined a state predictor with an IDM to learn generalizable policies. Inspired by diffusion models for video generation, Du et al. (2023) trained a diffusion model to predict future images conditioned on task descriptions, operating directly in image space. To simplify learning, Xie et al. (2025) proposed using compact image representations, enabling state predictors to train action-free demonstrations and IDMs on diverse, action-labeled trajectories. Tian et al. (2025) proposed end-to-end training, using the IDM objective to guide the state predictor. These approaches showed PIDM outperforms BC and other baselines. Our work provides theoretical and empirical insight into why decomposing future state and action prediction leads to this performance gain.

**Behavior cloning and trajectory modeling.** Recent analysis (Foster et al., 2024) argues that many practical implementations of BC, which rely on a log-loss, are implicitly modeling the whole state-action sequence. Our work complements such analysis by providing evidence that explicitly modeling part of the trajectory, the future state in the PIDM case, can improve sample efficiency.

162 **3 PRELIMINARIES**

164 **Problem setting.** We consider the problem setting of an MDP defined by  $(\mathbb{S}, \mathbb{A}, \mathcal{T}, \mathcal{R}, d_0)$  of  
 165 state space  $\mathbb{S}$ ; action space  $\mathbb{A}$ ; transition function  $\mathcal{T} : \mathbb{S} \times \mathbb{A} \mapsto \mathcal{P}(\mathbb{S})$ , where  $\mathcal{P}(\cdot)$  is a probability  
 166 measure; reward function  $\mathcal{R} : \mathbb{S} \times \mathbb{A} \mapsto \mathbb{R}$ ; and initial state distribution  $d_0$ . To interact with the  
 167 MDP, we first sample an initial state  $s_0 \sim P_0$ . Then, at each time step, we sample an action  
 168  $a_t \sim \pi(\cdot | s_t)$  from the policy  $\pi : \mathbb{S} \mapsto \mathcal{P}(\mathbb{A})$ . Given this action, the environment transitions to a  
 169 new state  $s_{t+1} \sim \mathcal{T}(\cdot | s_t, a_t)$  and provides a reward  $r = \mathcal{R}(s_t, a_t)$ . Let  $\mathcal{D}$  denote the resulting data  
 170 distribution. For this work, we assume no access to the reward signal and consider the offline imitation  
 171 learning setting, in which we are given a dataset of trajectories of states and actions generated by  
 172 following some unknown expert policy  $\pi^*$ . Our goal is to learn a policy that is as close as possible to  
 173  $\pi^*$ . We consider two architectures: BC and PIDM.

174 **BC** treats offline imitation learning as a supervised learning problem and trains a policy to imitate  
 175 the actions in the dataset given the most recent state. It consists of a single block, the policy (see  
 176 Figure 2a), which can be trained to minimize the following loss between the action distribution  
 177 induced by the learned policy  $\pi_\mu$  and the ground truth actions under the data distribution:

$$\mathcal{L}_{\text{BC}}(\pi_\mu) = \mathbb{E}_{(s_t, a_t) \sim \mathcal{D}, \hat{a}_t \sim \pi_\mu(\cdot | s_t)} [\ell(\hat{a}_t, a_t)] \quad (1)$$

178 for some dissimilarity measure, denoted generically as  $\ell$ . There are multiple choices on how BC  
 179 approximates the policy distribution that offer different fidelity and complexity tradeoffs, ranging  
 180 from simple but effective point estimates to rich but complex generative models that can capture  
 181 distributions with multiple modes.

182 **PIDM** consists of two main submodels (see Figure 2d): a state predictor,  $p$ , that predicts future states  
 183 for some horizon  $k$ , and an inverse dynamics model (IDM) policy,  $\pi_\xi$ , that predicts the next action  
 184 needed to get from the current observation to the future observation in  $k$  steps. They [can be](#) trained  
 185 using the following losses:

$$\mathcal{L}_{\text{SP}}(p) = \mathbb{E}_{(s_t, s_{t+k}) \sim \mathcal{D}, \hat{s}_{t+k} \sim p(\cdot | s_t)} [\ell(\hat{s}_{t+k}, s_{t+k})], \quad (2)$$

$$\mathcal{L}_{\text{IDM}}(\pi_\xi) = \mathbb{E}_{(s_t, a_t) \sim \mathcal{D}, \hat{s}_{t+k} \sim p(\cdot | s_t), \hat{a}_t \sim \pi_\xi(\cdot | s_t, \hat{s}_{t+k})} [\ell(\hat{a}_t, a_t)]. \quad (3)$$

186 However, this is just one alternative, since PIDM offers many design choices beyond how to ap-  
 187 proximate the distributions. For instance, the state predictor and IDM can be trained jointly—as  
 188 suggested by (2)–(3), with the action conditioned on the predictor’s output—or they can be learned  
 189 independently. Alternatively, the models might be obtained in a lazy manner, without an explicit  
 190 loss function. Both the state predictor and IDM can use the same datasets or leverage different data  
 191 sources. Furthermore, predictions for state and action can be conditioned directly on the input space,  
 192 or an encoder can be introduced so that both submodels share a common latent space (see Figure 2d).  
 193 In Section 5, we focus on the case where both submodels use the same dataset, share a common latent  
 194 space, and the state-predictor is an instance-based (lazy) model.

195 Section 4 provides insights on the potential benefits that the PIDM architecture can provide over BC.

201 **4 THEORETICAL ANALYSIS**

203 The PIDM approach can be seen as a decomposition of BC with explicit modeling of future states:

$$\pi_\mu(a_t | s_t) = \int_{\mathbb{S}} p^*(s_{t+k} | s_t) \pi_\xi(a_t | s_t, s_{t+k}) ds_{t+k}, \quad (4)$$

205 where  $p^*$  denotes the true future state distribution. Intuitively, this decomposition can simplify the  
 206 learning of a policy whenever the conditioning on the future state in the IDM policy provides useful  
 207 information to identify which action to take. In this section, we study the potential gains of PIDM  
 208 over BC. All proofs are in Appendix A.

209 For simplicity, we consider the case where the BC and IDM policies are single-point estimators that  
 210 approximate the expected action. Let  $\bar{\mu}(s_t) \triangleq \mathbb{E}[a_t | s_t]$  and  $\bar{\xi}(s_t, s_{t+k}) \triangleq \mathbb{E}[a_t | s_t, s_{t+k}]$  be the  
 211 optimal estimators for  $\pi_\mu$  and  $\pi_\xi$ , respectively.

212 Introduce the predicted error gap between the estimators of the BC and IDM policies:

$$\Delta \triangleq \text{EPE}(\bar{\mu}) - \text{EPE}(\bar{\xi}), \quad (5)$$

216 where  $\text{EPE}(\cdot)$  is the expected prediction error, which for a random variable  $\mathbf{y}|\mathbf{x}$  and an estimator  
 217  $\zeta(\mathbf{x})$  is given by:  $\text{EPE}(\zeta) \triangleq \mathbb{E}_{\mathbf{x}} \left[ (\mathbf{y} - \zeta(\mathbf{x}))^2 \right]$ .  
 218

219 Our first result quantifies  $\Delta$  in terms of the uncertainty in  $\mathbf{a}_t$  due to uncertainty in  $\mathbf{s}_{t+k}$ .  
 220

221 **Theorem 1.** *For optimal estimators  $\bar{\mu}$  and  $\bar{\xi}$ , The predicted error gap is given by:*

$$222 \quad \Delta = \mathbb{E}_{\mathbf{s}_t} \left[ \text{Var}_{\mathbf{s}_{t+k}|\mathbf{s}_t} (\mathbb{E}[\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}]) \right] \geq 0. \quad (6)$$

224 Theorem 1 shows that knowing  $\mathbf{s}_{t+k}$  can increase the prediction accuracy of  $\mathbf{a}_t$ . However, this  
 225 improvement assumes access to the exact state predictor distribution. When we only have access  
 226 to an approximate state predictor, denoted  $\hat{p}$ , the estimator of the IDM policy will generate actions  
 227 conditioned on samples of the form  $(\mathbf{s}_t, \mathbf{s}'_{t+k})$  with  $\mathbf{s}'_{t+k} \sim \hat{p}(\cdot | \mathbf{s}_t)$ . This distribution shift ( $p^* \neq \hat{p}$ )  
 228 introduces bias. In other words, the estimator of the PIDM policy has two sources of bias: the bias  
 229 that is intrinsic to the IDM policy estimator and the additional bias due to the distribution shift of  
 230 the state predictor. This additional bias reduces the predicted error gap, as shown in the following  
 231 corollary that extends Theorem 1 to any (non-optimal) estimator. Let  $\mathbb{E}_{\mathcal{D}_n}[\cdot]$  denote expectation  
 232 over datasets with i.i.d samples from the true data distribution, i.e.,  $\mathcal{D}_n \triangleq \left\{ (\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+k}) \stackrel{\text{i.i.d.}}{\sim} \mathcal{D} \right\}_{t=1}^n$ ;  
 233 while  $\mathbb{E}_{\mathcal{D}_{\hat{p},m}}[\cdot]$  emphasizes expectation over datasets under an approximate state predictor, i.e.,  
 234  $\mathcal{D}_{\hat{p},m} \triangleq \left\{ (\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}'_{t+k}) \mid (\mathbf{s}_t, \mathbf{a}_t) \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}, \mathbf{s}'_{t+k} \sim \hat{p}(\cdot | \mathbf{s}_t) \right\}_{t=1}^m$ . The i.i.d. assumption simplifies the  
 235 analysis and is a valid approximation for fast mixing chains. Introduce also shortcuts for the bias:  
 236

$$237 \quad b_{\mu}^2(\hat{\mu}) \triangleq \mathbb{E}_{\mathbf{s}_t} \left[ (\mathbb{E}_{\mathcal{D}_n}[\hat{\mu}(\mathbf{s}_t)] - \bar{\mu}(\mathbf{s}_t))^2 \right], \quad (7)$$

$$239 \quad b_{\xi}^2(\hat{\xi}_{\hat{p}}) \triangleq \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} \left[ \left( \mathbb{E}_{\mathcal{D}_{\hat{p},m}} \left[ \hat{\xi}_{\hat{p}}(\mathbf{s}_t, \mathbf{s}_{t+k}) \right] - \bar{\xi}(\mathbf{s}_t, \mathbf{s}_{t+k}) \right)^2 \right]. \quad (8)$$

241 **Corollary 1.** *Let  $\hat{\mu}$  and  $\hat{\xi}_{\hat{p}}$  be the estimator of the BC and IDM policies obtained with  $\mathcal{D}_n$  and  $\mathcal{D}_{\hat{p},m}$ ,  
 242 respectively. Let the difference in the estimators' own variance and bias be given by:*

$$244 \quad \delta \triangleq \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\hat{\mu}(\mathbf{s}_t))] - \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} \left[ \text{Var} \left( \hat{\xi}_{\hat{p}}(\mathbf{s}_t, \mathbf{s}_{t+k}) \right) \right], \quad (9)$$

$$246 \quad \beta \triangleq b_{\mu}^2(\hat{\mu}) - b_{\xi}^2(\hat{\xi}_{\hat{p}}). \quad (10)$$

247 And let  $\Delta$  be given by (6). Then, the predictor error gap is given by:  
 248

$$249 \quad \hat{\Delta}_{\hat{p}} \triangleq \text{EPE}(\hat{\mu}) - \text{EPE} \left( \hat{\xi}_{\hat{p}} \right) = \Delta + \delta + \beta. \quad (11)$$

251 Corollary 1 shows how the PIDM architecture introduces a bias-variance tradeoff:  $\Delta$  represents the  
 252 variance reduction of the IDM policy due to knowing the future state; while  $\beta \leq 0$  represents the  
 253 additional bias induced by an approximate state predictor, assuming both estimators have similar  
 254 intrinsic bias (as required for a fair comparison). Corollary 1 also motivates the use of two additional  
 255 data sources. First, by using additional action-free demonstrations of the same task to train a  
 256 more accurate state predictor model, we can reduce the bias due to  $\hat{p}$  and make  $\beta \rightarrow 0$ . Second,  
 257 additional expert demonstrations from different tasks in the same environment, or even non-expert  
 258 demonstrations when  $k = 1$ , can be used to reduce the variance of  $\hat{\xi}_{\hat{p}}$  and make  $\delta > 0$ .  
 259

260 The next results connect the prediction error gap with sample efficiency gains. We assume asymptotic  
 261 efficiency for simplicity, which implies that the MSE of the estimator decreases approximately  
 262 linearly with the number of samples. Let  $F_{\mu}$  and  $F_{\xi}$  denote the Fisher information for  $\pi_{\mu}$  and  $\pi_{\xi}$ ,  
 263 respectively. Let  $\gtrsim$  denote greater than or approximately equal to.

263 **Theorem 2.** *Let  $\hat{\mu}_n$  and  $\hat{\xi}_{\hat{p},m}$  be asymptotically efficient estimator of the BC and IDM policies  
 264 obtained with  $\mathcal{D}_n$  and  $\mathcal{D}_{\hat{p},m}$ , respectively, where  $n$  and  $m$  denote the minimum number of samples  
 265 required to achieve error level  $\varepsilon$ . Let  $F_{\mu}$  and  $F_{\xi}$  exist, and let  $\pi_{\xi}$  satisfy regularity conditions (for  
 266 differentiating under the integral sign). Then, for large enough  $n$  and  $m$ , we have:*

$$267 \quad \eta \triangleq \frac{n}{m} \approx \frac{F_{\xi}}{F_{\mu}} \frac{\left( \frac{\partial}{\partial \mu} b_{\mu}(\hat{\mu}_n) + 1 \right)^2}{\left( \frac{\partial}{\partial \xi} b_{\xi}(\hat{\xi}_{\hat{p},m}) + 1 \right)^2} \left( 1 + \frac{\Delta + b_{\mu}^2(\hat{\mu}_n) - b_{\xi}^2(\hat{\xi}_{\hat{p},m})}{\varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] - b_{\mu}^2(\hat{\mu}_n)} \right). \quad (12)$$

270 Theorem 2 shows the same bias-variance tradeoff as with the EPE gap:  $\Delta$  is the variance reduction  
 271 that increases the sample efficiency gain and  $b_\xi$  is the bias term that reduces it (by scaling down and  
 272 subtraction). Based on this result, the following theorem and corollary provide conditions under  
 273 which PIDM is guaranteed to be at least as sample efficiency as BC.

274 **Theorem 3.** *Under the conditions of Theorem 2, assume the following condition holds:*

$$276 \quad b_\xi^2(\hat{\xi}_{\hat{p},m}) + (\bar{\varepsilon} - b_\mu^2(\hat{\mu}_n)) \frac{\left(\frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1\right)^2}{\left(\frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1\right)^2} \leq \bar{\varepsilon} + \Delta, \quad (13)$$

280 where  $\bar{\varepsilon} \triangleq \varepsilon - \mathbb{E}_{s_t} [\text{Var}(\mathbf{a}_t | s_t)]$ . Then:  $\eta \gtrsim 1$ .

282 Although the result in Theorem 3 may appear complex at first glance, it is actually quite intuitive. For  
 283 example, when the bias derivatives are small, Equation (13) simplifies to:

$$284 \quad b_\xi^2(\hat{\xi}_{\hat{p},m}) - b_\mu^2(\hat{\mu}_n) \leq \Delta. \quad (14)$$

286 Assuming both estimators have similar intrinsic bias (as required for a fair comparison), Equation (14)  
 287 implies that for PIDM to be more sample efficient than BC, the bias induced by an approximate state  
 288 predictor must not exceed the variance reduction achieved by conditioning on the future state. Given  
 289 this intuition, the following result follows naturally.

290 **Corollary 2.** *Under the conditions of Theorem 2, if  $\hat{\xi}_{\hat{p},m}$  is asymptotically unbiased, then:  $\eta \gtrsim 1$ .*

292 Although these conditions have been derived for large enough samples, *they rely on the asymptotic covariance, which is often a good predictor of finite-time performance (see discussion in Appendix A.6)*.  
 293 Indeed, Section 5 provides empirical evidence that efficiency gains hold even in the small-data regime.  
 294 Furthermore, experiments in Appendix D.3 also confirm the predicted role of the state predictor bias  
 295 under limited data.

## 297 5 EXPERIMENTS

300 To better understand how the EPE efficiency gains predicted in Section 4 manifest in task completion  
 301 efficiency gains in practice, we perform experiments in a 2D navigation environment, where we can  
 302 easily analyze the properties of datasets and policies. We then conduct experiments in a 3D world  
 303 that require precise execution of a complex task from images to validate our findings under real-world  
 304 conditions.

### 306 5.1 ENVIRONMENTS

308 **2D navigation environment.** We consider four tasks of varying complexity within a 2D navigation  
 309 environment, visualized in Figure 3, in which the agent needs to reach a sequence of goals. The tasks  
 310 are fully observable with low-dimensional states containing the x- and y-position of the agent as well  
 311 as the positions of all goals, and whether they have already been reached. This simplified setting  
 312 allow us to study the efficiency gains of PIDM over BC due to its action decomposition, isolated  
 313 from other gains resulting from improved representations reported in prior work (Lamb et al., 2023;  
 314 Koul et al., 2023; Levine et al., 2024). The agent chooses actions in  $[-1, 1]^2$  for its movement, and  
 315 the transitions are stochastic with Gaussian noise  $\mathcal{N}(0, 0.2)$  added to the actions. For each task, a  
 316 human player collected a dataset of 50 trajectories by navigating the agent to reach all goals using a  
 317 controller. The datasets naturally contain some variability in actions in any given state as visualized  
 318 by the human trajectories shown in Figure 3. We refer to Appendix B for more details on each human  
 319 dataset. *To identify the impact of the action variability in the data collection policy on BC and PIDM,*  
 320 *we conduct further experiments in the same tasks using datasets collected with a deterministic A\**  
 321 *planner policy (see Appendix D).*

322 **3D world.** For a complex environment under real-world conditions, we constructed a dataset  
 323 comprising human gameplay demonstrations within a modern 3D video game titled "Bleeding  
 Edge", developed by Ninja Theory. The environment corresponds to the "Dojo" practice level. It  
 324 features a third-person perspective with a freely controllable camera, where the camera orientation



Figure 3: Visualization of 2D navigation environment. (a) Tasks require the agent (blue box) to navigate to reach the goals (red boxes) in a particular order. (b) - (e) Visualizations of all four tasks and the traces of the 50 trajectories within the datasets.

directly affects the agent's movement direction, introducing a non-trivial perception-action coupling. Observations are captured as raw video frames, which are processed through a pre-trained image encoder to obtain embeddings that facilitate efficient learning. These embeddings are subsequently passed to the networks of the algorithms. In our experiments, we use the pre-trained ViT-B/16 Theia vision encoder (Shang et al., 2024). The action space contains continuous actions  $[-1, 1]^4$  to control the x- and y-movement of the controlled character and the camera. State transitions occur asynchronously at 30 FPS and require real-time inference. Due to the game's deployment on a remote server in a distant cloud region, transitions are stochastic, affected by variable latency and visual artifacts. Within the environment we consider a task we refer to as "Tour" that consists of  $\sim 36$  seconds of precise navigation with 11 milestones, testing the agents' capability to steer and stay on track while avoiding obstacles and reacting at objects of interests (see Figure 1a for visualization of some milestones and Appendix C.2 for the complete list).

## 5.2 ALGORITHMS

**Model architecture.** In the 2D navigation environment with fully observable states, we train MLP networks for the encoder and policy networks of BC and PIDM, and use  $k = 1$  for PIDM. In contrast, the complex 3D world task is partially observable with inputs being video frames that are first being processed by a pre-trained vision encoder. The policy then receives a stack of vision encoder embeddings for three frames spanning one second to approximate a single state. BC and PIDM policies are then conditioned on these stacked representations for the current state and, in the case of PIDM, for the future state. To leverage the representational benefits of multi-step IDM (Lamb et al., 2023; Koul et al., 2023), we train the PIDM policy using  $k \in \{1, 6, 11, 16, 21, 26\}$  for this task and additionally condition the PIDM policy network on a one-hot encoding of  $k$ . During evaluation, we query the PIDM policy and state predictor with  $k = 1$ . For BC and PIDM, we use the *tanh* activation function on the action logits to get actions in the desired  $[-1, 1]$  range.

**State predictor.** We consider two state predictors. In the 2D navigation environment, we leverage an instance-based learning model (Keogh, 2010) for a deterministic state predictor:

$$p(s_t) = s_{\tau^*+k}^{i^*} \quad \text{with} \quad (\tau^*, i^*) \triangleq \arg \min_{\tau, i} \|s_t - s_{\tau}^i\|^2, \quad (15)$$

with  $s_{\tau}^i$  referring to the state at time step  $\tau$  in demonstration  $i$  of the training dataset. In short, the state predictor first queries for the nearest state within any training demonstration, as measured by the Euclidean distance, and then predicts the state  $k$  steps ahead of that state within the same training demonstration. In the 2D navigation environment, we further constrain the query for the nearest state to only match states in which the same goal needs to currently be reached. Computation of this lookup is efficient for the small-data regime considered in our work.

In the complex 3D world task, we consider a simplified state predictor that is conditioned on the time step  $t$  and a single training demonstration, denoted with superscript  $i$ , and returns the state  $s_{t+k}^i$  within that training demonstration. Despite its simplicity, we find that even this simple state predictor can enable effective evaluation when paired with an IDM model.

**Training details.** To train the policies, we sample batches of 4096  $(s_t, a_t)$  or  $(s_t, a_t, s_{t+k})$  tuples for BC and IDM policies, respectively, using ground-truth states and actions from training demon-



Figure 4: Performance per number of training demonstrations for BC and PIDM in four tasks trained on human datasets. Lines and shading correspond to the average and standard deviation across **20 seeds**. We further visualize the number of samples required by PIDM and BC to reach 90% of the highest achievable performance with vertical dotted lines.

Table 1: **Maximum reached goal ratio and sample efficiency ratios of PIDM over BC for 2D navigation tasks and average across tasks.**

| Task                                | Four room   | Zigzag      | Maze        | Multiroom   | Average |
|-------------------------------------|-------------|-------------|-------------|-------------|---------|
| max BC $\uparrow$                   | <b>0.98</b> | <b>0.97</b> | <b>0.95</b> | <b>0.99</b> | –       |
| max PIDM $\uparrow$                 | <b>0.99</b> | <b>0.98</b> | <b>0.99</b> | <b>0.98</b> | –       |
| $\eta_{\text{PIDM}}(80\%) \uparrow$ | 4.0         | 2.0         | 5.0         | 2.0         | 3.25    |
| $\eta_{\text{PIDM}}(90\%) \uparrow$ | 4.0         | 2.0         | 4.0         | 4.0         | 3.5     |
| $\eta_{\text{PIDM}}(95\%) \uparrow$ | 4.0         | 1.33        | <b>5.0</b>  | <b>1.5</b>  | 3.00    |

strations. All networks are optimized end-to-end for 100 000 optimization steps from the BC and IDM losses defined in Equation (1) and Equation (3) using the Adam optimizer. For further details on hyperparameter tuning and architectures used in the 2D navigation and complex video game environments, please refer to Appendix B and Appendix C, respectively.

### 5.3 SAMPLE EFFICIENCY GAINS FOR 2D NAVIGATION

To study the sample efficiency gains of PIDM, we train a BC and PIDM on each dataset with varying numbers of trajectories, namely (1, 2, 5, 10, 20, 30, 40, 50). Our performance metric is the fraction of reached goals in the right order. For each task and number of training demonstrations, we train BC and PIDM for 20 random seeds, and evaluate four checkpoints throughout training of each seed using 50 rollouts. We report aggregate results over the average performance of **20 seeds** for the best checkpoint for each task and number of training demonstrations.

To summarize efficiency gains, we compute efficiency ratios  $\eta_{\text{PIDM}}$  for each task, given by

$$\eta_{\text{PIDM}}(c) = \frac{n(\text{BC}, c)}{n(\text{PIDM}, c)}, \quad (16)$$

where  $n(A, x)$  is the average number of samples required by algorithm A to reach at least a fraction  $c$  (expressed as a percentage) of the task’s maximum attainable performance. In other words, we compute the ratio of the number of samples needed by BC and PIDM to obtain similar performance. Figure 4 visualizes the percentage of reached goals for BC and PIDM across varying number of samples, and Table 1 summarizes efficiency ratios, showing significant sample efficiencies for IDM over BC, as predicted by the analysis in Section 4. We find BC requires up to 5× more demonstrations than PIDM to achieve comparable performance, and 3× on average across tasks. **When training on less diverse demonstrations collected by a deterministic A\* planner, we find that the sample efficiency gains of PIDM over BC are further amplified, as shown in Appendix D.**

### 5.4 FUTURE CONDITIONING AS A VARIANCE REDUCTION OPPORTUNITY

Our theoretical insights of Theorem 1 and Theorem 2 indicate that states, in which there is high uncertainty on the action due to uncertainty in the future state, as given by  $\Delta(s)$ , are key to potential



Figure 5: Visualized state-wise EPE gaps  $\Delta(s)$  from Equation (17) computed for each dataset. We observe large gaps in states surrounding the goals where human actions are more diverse.



Figure 6: Visualization of IDM policies when queried for representative states and possible future states in each cardinal and diagonal direction for all four tasks. Predicted actions spread out in states where the dataset exhibits large  $\Delta(s)$ .

sample efficiency gains of PIDM over BC. What effect do these states have on the learned IDM policy, and how might they lead to improved efficiency?

To answer this question, we qualitatively analyze the learned PIDM policies in each task, and compute the EPE gaps for any particular state  $s_t = s$  within our datasets:

$$\Delta(s) \triangleq \text{Var}_{s_{t+k}|s}(\mathbb{E}[\mathbf{a}_t | s, s_{t+k}]), \text{ such that: } \Delta = \mathbb{E}_{s_t}[\Delta(s_t)]. \quad (17)$$

To approximate  $\Delta(s)$  for continuous states in our 2D environment, we discretize the map with  $K$ -means clustering over states and then compute the sample variance over actions grouped by centroid and future states within each dataset. Figure 5 visualizes the estimated values of  $\Delta(s)$  for each dataset, with 500 clusters being computed to group states. Interestingly, we observe that the human movement exhibits significantly larger action variability in states surrounding the goals which the player has to navigate to.

To qualitatively analyze the PIDM policies, we train them with all available training demonstrations. We obtain representative states by taking the centroids of  $K$ -means clustering (using  $K = 75$  for maze and multiroom and  $K = 50$  for four room and zigzag) and computing eight possible future states that are reachable within  $K = 1$  step into each cardinal or diagonal direction. Then, we condition the PIDM policy with the 8 possible futures per centroid. Figure 6 visualizes the actions predicted by the PIDM policy for each centroid and future state pair. We can clearly see that the actions from the same centroid state are pointing in various directions only whenever the centroid state is close to a goal or other states with large  $\Delta(s)$ , as visualized in Figure 5. This result shows that the PIDM policy learns to attend to the future state in states where the



Figure 7: Correlation of state-wise action variance  $\Delta(s)$  and the variance of PIDM policies.

486 future state helps to reduce uncertainty over the action prediction, which is precisely where Theorem 1  
 487 predicts a potential performance gain for PIDM. In contrast, in states where the action variability  
 488 within the dataset is minimal, the PIDM policy exhibits significantly less diversity in predicted actions  
 489 as seen by states in which most arrows point in a similar direction.

490 Figure 7 further connects our newly gained understanding to Theorem 1 by showing the correlation  
 491 between state-wise action variability  $\Delta(s)$  and the variance of the PIDM policy for varying future  
 492 states, indicating that the PIDM policy exhibits higher variance for states with higher  $\Delta(s)$ , meaning  
 493 PIDM has learned to model as predicted by our theory. The variance of the IDM policy is computed  
 494 for representative centroid states over eight future states.

## 497 5.5 SAMPLE EFFICIENCY GAINS IN A 3D WORLD

498 After building an intuition for the efficiency gains of PIDM over BC both from a theoretical perspective,  
 499 and under general conditions in a simplified environment, we now demonstrate similar benefits  
 500 in a complex task that is representative of real-world applications. We consider the complex task that  
 501 we name "Tour" as described in Section 5.1 in which the agent needs to navigate from images in the  
 502 3D world of a modern video game that requires real-time inference, with stochastic transitions, and  
 503 where success is defined by achieving 11 milestones (see also Appendix C.2).

504 To compare agent performance on this task, BC and PIDM are trained using 5, 15, 20, 25 and 30  
 505 demonstrations. Our performance metric is the percentage of milestones that have been reached. We  
 506 train BC and PIDM for 5 random seeds, and evaluate the latest checkpoint of each seed with 10  
 507 rollouts, giving a total of 50 values of the performance metric per number of demonstrations for each  
 508 algorithm. Figure 1b shows PIDM achieves 95% success (on average) at the end of training, and a  
 509 success rate of 87% with 15 demonstrations, while BC requires 25 demonstrations to reach a 81%  
 510 success rate, so BC requires  $\eta_{\text{PIDM}}(80\%) = 1.66$  times more samples than BC to reach a success  
 511 rate of 80%. This confirms the potential of PIDM to improve sample efficiency over BC even in the  
 512 small-data regime. Moreover, when additional data sources are available, we expect these efficiency  
 513 gains to increase.

## 556 6 CONCLUSION

557 This work analyzes the performance advantages of predictive inverse dynamics models (PIDM) as an  
 558 alternative to behavior cloning (BC) for offline imitation learning, particularly in low-data regimes.  
 559 Through theoretical analysis and empirical experiments, we shed light onto the advantages of PIDM  
 560 observed in prior studies: PIDM [introduces a bias-variance tradeoff](#), reducing action prediction  
 561 error and increasing sample efficiency by conditioning on future states—especially in regions of  
 562 high uncertainty—[at the cost of bias from an approximate state predictor](#). Moreover, we establish  
 563 [conditions on the state predictor bias under which PIDM is guaranteed to outperform BC](#). Finally,  
 564 We formally motivate the use of additional data sources when available. Empirical results across  
 565 navigation tasks in 2D and 3D environments confirmed sample efficiency gains, with BC requiring up  
 566 to 5× more demonstrations than PIDM to achieve comparable performance. Interestingly, qualitative  
 567 analysis showed that learned PIDM policies attend to future states only when they provide informative  
 568 context for reducing prediction variance. Altogether, this work provides a principled explanation  
 569 for PIDM’s effectiveness and offers insights that pave the way for more efficient imitation learning  
 570 methods that leverage state prediction and future conditioning.

571 Although we focused on point estimators of the policy distribution for both BC and PIDM, which is  
 572 a fair comparison, [previous studies showed that PIDM outperforms BC with richer policy classes,](#)  
 573 [like a diffusion model](#) (Xie et al., 2025) or a transformer (Tian et al., 2025), even when they use  
 574 the same dataset. Those result suggest the bias-variance we have unveiled is a feature of the PIDM  
 575 architecture, independent on the modeling choices. Moreover, although the conditions that guarantee  
 576 PIDM being more sample-efficient than BC have been derived for large enough samples, we have  
 577 provided empirical evidence of sample efficiency gains hold and that they are affected by the state  
 578 predictor bias even in the small-data regime (see Appendix A.6 and Appendix D.3).

540 REFERENCES  
541

542 Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models. In  
543 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15791–15801, 2025.

544 Thomas M Cover. *Elements of Information Theory*, 2nd Ed. John Wiley & Sons, Ltd, 2005.  
545

546 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and  
547 Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in neural*  
548 *information processing systems*, 36:9156–9172, 2023.

549 Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya  
550 Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. *Advances in neural*  
551 *information processing systems*, 30, 2017.

552 Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.  
553 Provably filtering exogenous distractors using multistep inverse dynamics. In *International*  
554 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=RQLLzMcfQu>.

555 Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. Survey of imitation  
556 learning for robotic manipulation. *International Journal of Intelligent Robotics and Applications*,  
557 3(4):362–369, 2019.

558 Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian  
559 Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In  
560 *Conference on Robot Learning*, pp. 158–168, 2022.

561 Dylan J. Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding  
562 horizon in imitation learning. In *Advances in Neural Information Processing Systems*, volume 37,  
563 pp. 120602–120666, 2024.

564 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks  
565 through world models. *Nature*, pp. 1–7, 2025.

566 Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra  
567 Misra, Xin Li, Harm Van Seijen, Remi Tachet des Combes, et al. Agent-controller representations:  
568 Principled offline rl with rich exogenous information. *arXiv preprint arXiv:2211.00164*, 2022.

569 Eamonn Keogh. *Instance-Based Learning*, pp. 549–550. Springer US, 2010.

570 Anurag Koul, Shivakanth Sujit, Shaoru Chen, Ben Evans, Lili Wu, Byron Xu, Rajan Chari, Riashat  
571 Islam, Raihan Seraj, Yonathan Efroni, et al. Pclast: Discovering plannable continuous latent states.  
572 In *International Conference on Machine Learning*, 2023.

573 W.H. Kwon and S.H. Han. *Receding Horizon Control: Model Predictive Control for State Models*.  
574 Springer London, 2005.

575 Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster,  
576 Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery  
577 of control-endogenous latent states with multi-step inverse models. *Transactions on Machine*  
578 *Learning Research*, 2023. ISSN 2835-8856.

579 Alexander Levine, Peter Stone, and Amy Zhang. Multistep inverse is not all you need. *Reinforcement*  
580 *Learning Journal*, 2:884–925, 2024.

581 Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi-step  
582 inverse kinematics: An efficient and optimal approach to rich-observation RL. In Andreas Krause,  
583 Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett  
584 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of  
585 *Proceedings of Machine Learning Research*, pp. 24659–24700. PMLR, 23–29 Jul 2023. URL  
586 <https://proceedings.mlr.press/v202/mhammedi23a.html>.

594 Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.  
 595 An algorithmic perspective on imitation learning. *Foundations and Trends® in Robotics*, 7(1-2):  
 596 1–179, 2018.

597

598 Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A Theodorou,  
 599 and Byron Boots. Imitation learning for agile autonomous driving. *The International Journal of  
 600 Robotics Research*, 39(2-3):286–302, 2020.

601 Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. In *IEEE  
 602 Conference on Games*, pp. 104–111, 2022.

603

604 Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,  
 605 Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating  
 606 human behaviour with diffusion models. In *International Conference on Learning Representations*,  
 607 2023.

608 Stefan Schaal. Is imitation learning the route to humanoid robots? *Trends in cognitive sciences*, 3(6):  
 609 233–242, 1999.

610 Lukas Schäfer, Logan Jones, Anssi Kanervisto, Yuhan Cao, Tabish Rashid, Raluca Georgescu, David  
 611 Bignell, Siddhartha Sen, Andrea Treviño Gavito, and Sam Devlin. Visual encoders for imitation  
 612 learning in modern video games. In *Workshop on Adaptive and Learning Agents*, 2023.

613

614 Jinghuan Shang, Karl Schmeckpeper, Brandon B. May, Maria Vittoria Minniti, Tarik Kelestemur,  
 615 David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot  
 616 learning. In *8th Annual Conference on Robot Learning*, 2024.

617 Sebastian Thrun, Knut Möller, and Alexander Linden. Planning with an adaptive world model.  
 618 *Advances in neural information processing systems*, 3, 1990.

619

620 Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, and Jiangmiao Pang. Pre-  
 621 dictive inverse dynamics models are scalable learners for robotic manipulation. In *International  
 622 Conference on Learning Representations*, 2025.

623 Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation  
 624 learning. In *International Conference on Machine Learning*, 2025.

625

626 Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained  
 627 visual features enable zero-shot planning. *arXiv preprint arXiv:2411.04983*, 2024.

628

## 629 A PROOFS

### 631 A.1 PROOF OF THEOREM 1

633 **Theorem 1.**  $\Delta = \mathbb{E}_{\mathbf{s}_t} [\text{Var}_{\mathbf{s}_{t+k}|\mathbf{s}_t} (\mathbb{E} [\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}])] \geq 0$ .

635 *Proof:* The prediction error for these estimators is given by:

$$637 \text{EPE}(\bar{\mu}) = \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t} \left[ (\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t))^2 \right], \quad (18)$$

$$638 \text{EPE}(\bar{\xi}) = \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+k}} \left[ (\mathbf{a}_t - \bar{\xi}(\mathbf{s}_t, \mathbf{s}_{t+k}))^2 \right]. \quad (19)$$

640 We can rewrite the EPE by using iterated expectation and replacing the definitions of optimal  
 641 estimators:

$$643 \text{EPE}(\bar{\mu}) = \mathbb{E}_{\mathbf{s}_t} \left[ \mathbb{E}_{\mathbf{a}_t|\mathbf{s}_t} \left[ (\mathbf{a}_t - \mathbb{E} [\mathbf{a}_t | \mathbf{s}_t])^2 \right] \right] \\ 644 = \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] \quad (20)$$

$$646 \text{EPE}(\bar{\xi}) = \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} \left[ \mathbb{E}_{\mathbf{a}_t|(\mathbf{s}_t, \mathbf{s}_{t+k})} \left[ (\mathbf{a}_t - \mathbb{E} [\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}])^2 \right] \right], \\ 647 = \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})]. \quad (21)$$

648 We can further simplify Equation (20). First, we apply the law of total variance to  $\text{Var}(\mathbf{a}_t | \mathbf{s}_t)$ :  
 649  
 650

$$\text{Var}(\mathbf{a}_t | \mathbf{s}_t) = \mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})] + \text{Var}_{\mathbf{s}_{t+k} | \mathbf{s}_t} (\mathbb{E}[\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}]). \quad (22)$$

651 Second, we take the expectation over  $\mathbf{s}_t$ :

$$\mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] = \mathbb{E}_{\mathbf{s}_t} [\mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})]] + \mathbb{E}_{\mathbf{s}_t} [\text{Var}_{\mathbf{s}_{t+k} | \mathbf{s}_t} (\mathbb{E}[\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}])]. \quad (23)$$

652 Third, we simplify the first term of the r.h.s.:

$$\mathbb{E}_{\mathbf{s}_t} [\mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})]] = \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})]. \quad (24)$$

653 Finally, we have:

$$\mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] = \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})] + \mathbb{E}_{\mathbf{s}_t} [\text{Var}_{\mathbf{s}_{t+k} | \mathbf{s}_t} (\mathbb{E}[\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}])]. \quad (25)$$

654 Now, we can easily compute the performance gap between the MSEs of both estimators:

$$\begin{aligned} \text{EPE}(\bar{\mu}) - \text{EPE}(\bar{\xi}) &= \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] - \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})] \\ &= \mathbb{E}_{\mathbf{s}_t} [\text{Var}_{\mathbf{s}_{t+k} | \mathbf{s}_t} (\mathbb{E}[\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}])]. \end{aligned} \quad (26)$$

■

## 664 A.2 PROOF OF COROLLARY 1

665  
 666 **Corollary 1.** Let  $\hat{\mu}$  and  $\hat{\xi}_{\hat{\rho}}$  be the estimator of the BC and IDM policies obtained with  $\mathcal{D}_n$  and  $\mathcal{D}_{\hat{\rho},m}$ ,  
 667 respectively. Let the difference in the estimators' own variance and bias be given by:

$$\delta \triangleq \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\hat{\mu}(\mathbf{s}_t))] - \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\hat{\xi}_{\hat{\rho}}(\mathbf{s}_t, \mathbf{s}_{t+k}))], \quad (27)$$

$$\beta \triangleq b_{\mu}^2(\hat{\mu}) - b_{\xi}^2(\hat{\xi}_{\hat{\rho}}). \quad (28)$$

671 And let  $\Delta$  be given by (6). Then, the predictor error gap is given by:

$$\hat{\Delta} \triangleq \text{EPE}(\hat{\mu}) - \text{EPE}(\hat{\xi}) = \Delta + \delta + \beta. \quad (29)$$

672 *Proof:* The EPE can be expressed as the sum of the irreducible variance and the estimator's own  
 673 variance and bias. We do the derivation here for completeness:

$$\begin{aligned} \text{EPE}(\hat{\mu}) &= \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t, \mathcal{D}_n} \left[ (\mathbf{a}_t - \hat{\mu}(\mathbf{s}_t))^2 \right] \\ &= \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t, \mathcal{D}_n} \left[ (\mathbf{a}_t - \hat{\mu}(\mathbf{s}_t) + \bar{\mu}(\mathbf{s}_t) - \bar{\mu}(\mathbf{s}_t))^2 \right] \\ &= \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t, \mathcal{D}_n} \left[ ((\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t)) + (\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t)))^2 \right] \\ &= \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t} \left[ (\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t))^2 \right] + \mathbb{E}_{\mathbf{s}_t, \mathcal{D}_n} \left[ (\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t))^2 \right] \\ &\quad + 2\mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t, \mathcal{D}_n} [(\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t))(\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t))]. \end{aligned} \quad (30)$$

686 The first term is the expected conditional variance:

$$\begin{aligned} \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t} \left[ (\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t))^2 \right] &= \mathbb{E}_{\mathbf{s}_t} \left[ \mathbb{E}_{\mathbf{a}_t | \mathbf{s}_t} \left[ (\mathbf{a}_t - \mathbb{E}[\mathbf{a}_t | \mathbf{s}_t])^2 \right] \right] \\ &= \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)]. \end{aligned} \quad (31)$$

690 The cross-term vanishes:

$$\begin{aligned} \mathbb{E}_{\mathbf{s}_t, \mathbf{a}_t} [(\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t))(\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t))] &= \mathbb{E}_{\mathbf{s}_t} [\mathbb{E}_{\mathbf{a}_t | \mathbf{s}_t} [\mathbf{a}_t - \bar{\mu}(\mathbf{s}_t)](\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t))] \\ &= \mathbb{E}_{\mathbf{s}_t} [(\mathbb{E}[\mathbf{a}_t | \mathbf{s}_t] - \bar{\mu}(\mathbf{s}_t))(\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t))] \\ &= 0. \end{aligned} \quad (32)$$

695 The second term decomposes in the expected variance and expected bias terms:

$$\begin{aligned} \mathbb{E}_{\mathbf{s}_t, \mathcal{D}_n} [(\bar{\mu}(\mathbf{s}_t) - \hat{\mu}(\mathbf{s}_t))^2] &= \mathbb{E}_{\mathbf{s}_t} \left[ \mathbb{E}_{\mathcal{D}_n} \left[ (\mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)] - \hat{\mu}(\mathbf{s}_t) + \bar{\mu}(\mathbf{s}_t) - \mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)])^2 \right] \right] \\ &= \mathbb{E}_{\mathbf{s}_t} \left[ \mathbb{E}_{\mathcal{D}_n} \left[ (\mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)] - \hat{\mu}(\mathbf{s}_t))^2 \right] \right] + \mathbb{E}_{\mathbf{s}_t} \left[ \mathbb{E}_{\mathcal{D}_n} \left[ (\bar{\mu}(\mathbf{s}_t) - \mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)])^2 \right] \right] \\ &\quad + 2\mathbb{E}_{\mathbf{s}_t} [\mathbb{E}_{\mathcal{D}_n} [(\mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)] - \hat{\mu}(\mathbf{s}_t))(\bar{\mu}(\mathbf{s}_t) - \mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t))]] \\ &= \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\hat{\mu}(\mathbf{s}_t))] + \mathbb{E}_{\mathbf{s}_t} \left[ (\bar{\mu}(\mathbf{s}_t) - \mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)])^2 \right], \end{aligned} \quad (33)$$

702 where the cross-term also vanished. Putting the terms together, we have:  
 703

$$704 \text{EPE}(\hat{\mu}) = \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] + \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\hat{\mu}(\mathbf{s}_t))] + \mathbb{E}_{\mathbf{s}_t} [(\bar{\mu}(\mathbf{s}_t) - \mathbb{E}_{\mathcal{D}_n} [\hat{\mu}(\mathbf{s}_t)])^2]. \quad (34)$$

706 Following the same approach for  $\hat{\xi}_{\hat{p}}$ , we have:  
 707

$$708 \text{EPE}(\hat{\xi}_{\hat{p}}) = \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})] + \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\hat{\xi}_{\hat{p}}(\mathbf{s}_t, \mathbf{s}_{t+k}))] \\ 709 + \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [(\bar{\xi}(\mathbf{s}_t, \mathbf{s}_{t+k}) - \mathbb{E}_{\mathcal{D}_{\hat{p},m}} [\hat{\xi}_{\hat{p}}(\mathbf{s}_t, \mathbf{s}_{t+k})])^2]. \quad (35)$$

712 Subtracting (35) from (34) and grouping terms according to (6) and (27)–(28) concludes the proof. ■  
 713

### 714 A.3 PROOF OF THEOREM 2

715 We need the information inequality for any estimator, which is given by the following standard result.

716 **Lemma 1.** *Consider a distribution  $f_\theta(\cdot)$  with parameter  $\theta$  and Fisher information  $F_\theta$ . The MSE  
 717 of any estimator  $\hat{\theta}$  of  $\theta$ , obtained from  $n$  samples drawn i.i.d. from  $f_\theta(\cdot)$ , satisfies this information  
 718 inequality:*

$$721 \mathbb{E} \left[ (\hat{\theta} - \theta)^2 \right] \geq \frac{\left( \frac{\partial}{\partial \theta} b_\theta(\hat{\theta}) + 1 \right)^2}{n F_\theta} + b_\theta^2(\hat{\theta}). \quad (36)$$

725 *Proof:* See, e.g., Cover (2005, Chapter 11) and combine Equation (11.290), which states the information  
 726 inequality for any estimator for a single sample, with Equation (11.279), which defines the  
 727 Fisher information for  $n$  i.i.d. random variables. ■

728 We are now ready to proof Theorem 2.

729 **Theorem 2.** *Let  $\hat{\mu}_n$  and  $\hat{\xi}_{\hat{p},m}$  be asymptotically efficient estimator of the BC and IDM policies  
 730 obtained with  $\mathcal{D}_n$  and  $\mathcal{D}_{\hat{p},m}$ , respectively, where  $n$  and  $m$  denote the minimum number of samples  
 731 required to achieve error level  $\varepsilon$ . Let  $F_\mu$  and  $F_\xi$  exist, and let  $\pi_\xi$  satisfy regularity conditions (for  
 732 differentiating under the integral sign.) Then, for large enough  $n$  and  $m$ , we have:*

$$734 \eta \triangleq \frac{n}{m} \approx \frac{F_\xi}{F_\mu} \frac{\left( \frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1 \right)^2}{\left( \frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1 \right)^2} \left( 1 + \frac{\Delta + b_\mu^2(\hat{\mu}_n) - b_\xi^2(\hat{\xi}_{\hat{p},m})}{\varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] - b_\mu^2(\hat{\mu}_n)} \right). \quad (37)$$

738 *Proof:* Asymptotic efficiency means that for large enough number of samples, the MSE approximately  
 739 meets the lower bound in Lemma 1 with equality. Hence, from (34) and (36), we have:  
 740

$$741 \text{EPE}(\hat{\mu}_n) = \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] + \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\hat{\mu}_n(\mathbf{s}_t))] + b_\mu^2(\hat{\mu}_n) \\ 742 \approx \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] + \frac{\left( \frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1 \right)^2}{n F_\mu} + b_\mu^2(\hat{\mu}_n). \quad (38)$$

746 Since  $\text{EPE}(\hat{\mu}_n) = \varepsilon$ , we can solve for  $n$ :

$$748 n \approx \frac{\left( \frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1 \right)^2}{F_\mu (\varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t)] - b_\mu^2(\hat{\mu}_n))}. \quad (39)$$

751 Following the same reasoning for  $\text{EPE}(\hat{\xi}_{\hat{p},m})$ , we get:  
 752

$$753 m \approx \frac{\left( \frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1 \right)^2}{F_\xi (\varepsilon - \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k})] - b_\xi^2(\hat{\xi}_{\hat{p},m}))}. \quad (40)$$

756 Note that (slightly abused notation) the bias derivative terms are given by:  
 757

$$758 \quad \frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) \triangleq \frac{\partial}{\partial \mu} \mathbb{E}_{\mathbf{s}_t} [E_{\mathcal{D}_n} [\hat{\mu}_n(\mathbf{s}_t)] - \bar{\mu}(\mathbf{s}_t)], \quad (41)$$

$$761 \quad \frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) \triangleq \frac{\partial}{\partial \xi} \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} \left[ \mathbb{E}_{\mathcal{D}_{\hat{p},m}} [\hat{\xi}_{\hat{p},m}(\mathbf{s}_t, \mathbf{s}_{t+k})] - \bar{\xi}(\mathbf{s}_t, \mathbf{s}_{t+k}) \right]. \quad (42)$$

763 Using the definition of the sample efficiency ratio, we have:  
 764

$$766 \quad \eta \triangleq \frac{n}{m} \\ 767 \quad \approx \frac{F_\xi}{F_\mu} \frac{\left( \frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1 \right)^2}{\left( \frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1 \right)^2} \left( \frac{\varepsilon - \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t, \mathbf{s}_{t+k})] - b_\xi^2(\hat{\xi}_{\hat{p},m})}{\varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t)] - b_\mu^2(\hat{\mu}_n)} \right). \quad (43)$$

772 From the first line of (26), we obtain this identity:  
 773

$$774 \quad \mathbb{E}_{\mathbf{s}_t, \mathbf{s}_{t+k}} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t, \mathbf{s}_{t+k})] = \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t)] - \Delta. \quad (44)$$

776 Expanding (44) in (43) and adding and subtracting  $b_\mu^2(\hat{\mu}_n)$  to the numerator yields:  
 777

$$779 \quad \eta \approx \frac{F_\xi}{F_\mu} \frac{\left( \frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1 \right)^2}{\left( \frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1 \right)^2} \left( \frac{\varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t)] - b_\mu^2(\hat{\mu}_n) + b_\mu^2(\hat{\mu}_n) - b_\xi^2(\hat{\xi}_{\hat{p},m}) + \Delta}{\varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t)] - b_\mu^2(\hat{\mu}_n)} \right). \quad (45)$$

783 Simplifying terms concludes the proof. ■  
 784

#### 786 A.4 PROOF OF THEOREM 3

788 We need the following lemma that shows that the ratio of Fisher information for the estimators of the  
 789 BC and IDM policies is greater than or equal to one.

790 **Lemma 2.** *Assume  $F_\mu$  and  $F_\xi$  exist. Under regularity conditions (for differentiating under the  
 791 integral sign), we have:  $\frac{F_\xi}{F_\mu} \geq 1$ .*

794 *Proof:* Since BC policy can be obtained as the marginal of the IDM policy, it is convenient to write  
 795  $\pi_{\mu(\xi)}$  and make explicit that the BC policy parameter is a function of the IDM policy parameter:

$$797 \quad \pi_{\mu(\xi)}(\mathbf{a}_t \mid \mathbf{s}_t) = \int_{\mathcal{S}} p^*(\mathbf{s}_{t+k} \mid \mathbf{s}_t) \pi_\xi(\mathbf{a}_t \mid \mathbf{s}_t, \mathbf{s}_{t+k}) d\mathbf{s}_{t+k}. \quad (46)$$

800 The Fisher information for the BC and IDM policies is given by:  
 801

$$802 \quad F_\mu \triangleq \mathbb{E} \left[ \left( \frac{\partial}{\partial \xi} \ln \pi_{\mu(\xi)}(\mathbf{a}_t \mid \mathbf{s}_t) \right)^2 \right], \quad (47)$$

$$805 \quad F_\xi \triangleq \mathbb{E} \left[ \left( \frac{\partial}{\partial \xi} \ln \pi_\xi(\mathbf{a}_t \mid \mathbf{s}_t, \mathbf{s}_{t+k}) \right)^2 \right]. \quad (48)$$

808 We treat the state predictor as fixed, meaning that we compute the curvature of the log-likelihood  
 809 with respect to  $\pi_\xi$  while holding  $p^*$  constant. Hence, we can expand the term  $\frac{\partial}{\partial \xi} \ln \pi_{\mu(\xi)}(\mathbf{a}_t \mid \mathbf{s}_t)$  in

810 (46) as follows:

$$\begin{aligned}
 812 \quad & \frac{\partial}{\partial \xi} \ln \pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t) = \frac{\frac{\partial}{\partial \xi} \pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t)}{\pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t)} \\
 813 \quad & = \frac{\frac{\partial}{\partial \xi} \int_{\mathbb{S}} p^*(s_{t+k} | s_t) \pi_{\xi}(a_t | s_t, s_{t+k}) ds_{t+k}}{\pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t)} \\
 814 \quad & = \frac{\int_{\mathbb{S}} p^*(s_{t+k} | s_t) \left( \frac{\partial}{\partial \xi} \pi_{\xi}(a_t | s_t, s_{t+k}) \right) ds_{t+k}}{\pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t)} \\
 815 \quad & = \frac{\int_{\mathbb{S}} p^*(s_{t+k} | s_t) \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \left( \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \right) ds_{t+k}}{\pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t)} \\
 816 \quad & = \frac{\int_{\mathbb{S}} P(s_{t+k} | s_t, a_t) \left( \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \right) ds_{t+k}}{\pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t)} \\
 817 \quad & = \mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t, \mathbf{a}_t} \left[ \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \right], \tag{49}
 \end{aligned}$$

818 where we commuted the partial derivative and the integral (allowed by the regularity conditions);  
 819 used Bayes to obtain the following distribution:

$$P(s_{t+k} | s_t, a_t) \triangleq \frac{p^*(s_{t+k} | s_t) \pi_{\xi}(a_t | s_t, s_{t+k})}{\pi_{\mu(\xi)}(a_t | s_t)}; \tag{50}$$

820 and used this identity:

$$\frac{\partial}{\partial \xi} \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) = \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}). \tag{51}$$

821 In summary:

$$\frac{\partial}{\partial \xi} \ln \pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t) = \mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t, \mathbf{a}_t} \left[ \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \right]. \tag{52}$$

822 By Jensen's inequality, we have:

$$\begin{aligned}
 823 \quad & \left( \frac{\partial}{\partial \xi} \ln \pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t) \right)^2 = \mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t, \mathbf{a}_t} \left[ \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \right]^2 \\
 824 \quad & \leq \mathbb{E}_{\mathbf{s}_{t+k} | \mathbf{s}_t, \mathbf{a}_t} \left[ \left( \frac{\partial}{\partial \xi} \ln \pi_{\xi}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{s}_{t+k}) \right)^2 \right]. \tag{53}
 \end{aligned}$$

825 Since the inequality in (53) holds pointwise, taking expectation on both sides keeps the direction of  
 826 the inequality:

$$\begin{aligned}
 827 \quad & F_{\mu} = \int p(s_t) \pi_{\mu(\xi)}(a_t | s_t) \left( \frac{\partial}{\partial \xi} \ln \pi_{\mu(\xi)}(\mathbf{a}_t | \mathbf{s}_t) \right)^2 da_t ds_t \\
 828 \quad & \leq \int p(s_t) \pi_{\mu(\xi)}(a_t | s_t) P(s_{t+k} | s_t, a_t) \left[ \left( \frac{\partial}{\partial \xi} \ln \pi_{\xi}(a_t | s_t, s_{t+k}) \right)^2 \right] ds_{t+k} da_t ds_t \\
 829 \quad & = \int p(s_t) \pi_{\mu(\xi)}(a_t | s_t) \frac{p^*(s_{t+k} | s_t) \pi_{\xi}(a_t | s_t, s_{t+k})}{\pi_{\mu(\xi)}(a_t | s_t)} \left[ \left( \frac{\partial}{\partial \xi} \ln \pi_{\xi}(a_t | s_t, s_{t+k}) \right)^2 \right] ds_{t+k} da_t ds_t \\
 830 \quad & = \int p(s_t) p^*(s_{t+k} | s_t) \pi_{\xi}(a_t | s_t, s_{t+k}) \left[ \left( \frac{\partial}{\partial \xi} \ln \pi_{\xi}(a_t | s_t, s_{t+k}) \right)^2 \right] ds_{t+k} da_t ds_t \\
 831 \quad & = F_{\xi}. \tag{54}
 \end{aligned}$$

832 We conclude that  $F_{\xi} \geq F_{\mu}$ , or equivalently:  $F_{\xi}/F_{\mu} \geq 1$ . ■

833 We are ready to prove Theorem 3.

864 **Theorem 3.** *Under the conditions of Theorem 2, assume the following condition holds:*

$$866 \quad \bar{\varepsilon} + \Delta \geq b_\xi^2(\hat{\xi}_{\hat{p},m}) + (\bar{\varepsilon} - b_\mu^2(\hat{\mu}_n)) \frac{\left(\frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1\right)^2}{\left(\frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1\right)^2}, \quad (55)$$

870 where  $\bar{\varepsilon} \triangleq \varepsilon - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t)]$ . Then:  $\eta \gtrsim 1$ .

872 *Proof:* We need to find the conditions on the bias term  $b_\xi$  that make (37) greater than or equal to one:

$$874 \quad \frac{F_\xi}{F_\mu} \frac{\left(\frac{\partial}{\partial \mu} b_\mu(\hat{\mu}_n) + 1\right)^2}{\left(\frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1\right)^2} \left(1 + \frac{\Delta + b_\mu^2(\hat{\mu}_n) - b_\xi^2(\hat{\xi}_{\hat{p},m})}{\bar{\varepsilon} - \mathbb{E}_{\mathbf{s}_t} [\text{Var}(\mathbf{a}_t \mid \mathbf{s}_t)] - b_\mu^2(\hat{\mu}_n)}\right) \geq 1. \quad (56)$$

878 Lemma 2 ensures that  $\frac{F_\xi}{F_\mu} \geq 1$ , so it doesn't affect the inequality. Hence, we just have to rearrange  
879 terms to obtain (55).  $\blacksquare$

## 881 A.5 PROOF OF COROLLARY 2

883 **Corollary 2.** *Under the conditions of Theorem 2, if  $\hat{\xi}_{\hat{p},m}$  is asymptotically unbiased, then  $\eta \gtrsim 1$ .*

885 *Proof:* The terms dependent on  $b_\mu$  can only reduce the gap in the inequality (by subtracting from and  
886 scaling down the contribution of  $b_\xi$ ). Hence, making  $b_\mu = 0$  ensures a more conservative condition,  
887 which only depends on  $b_\xi$ :

$$889 \quad b_\xi^2(\hat{\xi}_{\hat{p},m}) + \bar{\varepsilon} \left(\frac{\partial}{\partial \xi} b_\xi(\hat{\xi}_{\hat{p},m}) + 1\right)^2 \leq \bar{\varepsilon} + \Delta. \quad (57)$$

892 Since the estimators are asymptotically unbiased, for large enough  $n$  and  $m$ , we have:  $b_\xi(\hat{\xi}) \approx 0$ .  
893 Using this approximation in (57) reduces the inequality to:  $\Delta \geq 0$ , which is always guaranteed, as  
894 stated by Theorem 1.  $\blacksquare$

## 895 A.6 DISCUSSION ON FINITE-TIME PERFORMANCE

898 The asymptotic covariance often predicts finite-time performance well, as the Central Limit Theorem  
899 approximation is accurate for moderately large number of samples. For instance, the Berry–Esseen  
900 theorem states that, for i.i.d. samples, the convergence rate towards asymptotic normality is  $1/\sqrt{n}$ ,  
901 where  $n$  is the number of samples.

902 How this impacts our results is most clearly seen in the asymptotically unbiased case discussed in  
903 Corollary 2, where  $\eta \geq 1$  holds because  $\frac{F_\xi}{F_\mu} \geq 1$  (see Lemma 2). Since the Fisher information  
904 is the inverse of the asymptotic covariance, this ratio implies that the IDM estimators' asymptotic  
905 covariance is no larger than that of BC. This is a fundamental fact in any data regime.

906 Furthermore, Corollary 1 and Theorem 2 show the same bias-variance tradeoff for EPE and sample  
907 efficiency: the variance reduction of the IDM increases the gap, while the state predictor introduces  
908 bias that reduces the gap. Combining the facts that Corollary 1 holds for any number of samples  
909 and that the fundamental mechanism is the same for both Corollary 1 and Theorem 2 suggests that  
910 Theorem 2, hence Theorem 3 and Corollary 2 should also hold more generally than in the asymptotic  
911 regime. Indeed, Section 5 and Appendix D.3 provide empirical evidence of efficiency gains and of  
912 the role of the state predictor bias even in the small-data regime.

## 914 B DETAILS FOR 2D NAVIGATION ENVIRONMENT AND EXPERIMENTS

916 In this section, we describe further details about the 2D navigation environment and the experiments  
917 in this setting.

918  
 919 Table 2: Statistics of all four 2D navigation tasks and the human datasets. The first four columns  
 920 correspond to properties of the tasks, given by the number of goals, maximum number of time steps  
 921 to complete the task, and the state dimensionality, while the last four columns correspond to the total  
 922 number of trajectories/ time steps within the collected dataset (across all 50 trajectories) and statistics  
 923 over the trajectory length.

| 924 Task  | 925 Num goals | 926 Max time steps | 927 $ s $ | 928 Total steps | 929 Trajectory length |         |         |
|-----------|---------------|--------------------|-----------|-----------------|-----------------------|---------|---------|
|           |               |                    |           |                 | 930 Min               | 931 Avg | 932 Max |
| Four room | 4             | 200                | 14        | 5821            | 103                   | 116.42  | 154     |
| Zigzag    | 6             | 150                | 20        | 4009            | 66                    | 80.18   | 106     |
| Maze      | 10            | 300                | 32        | 9785            | 176                   | 195.70  | 227     |
| Multiroom | 6             | 500                | 20        | 12 961          | 241                   | 259.22  | 314     |

### 933 B.1 ADDITIONAL ENVIRONMENT DETAILS

934 Tasks within the 2D navigation environment specify a layout of the environment and differ in the  
 935 number of goals. The general setting stays the same with each task specifying an order to its goals  
 936 and the agent needs to reach a goal before being able to reach any subsequent goals. This setup makes  
 937 these tasks punishing since missing any goal will mean that subsequent goals cannot be reached  
 938 anymore unless the agent returns back to the currently required goal. An episode within any task  
 939 finishes after all goals have been reached, or after a maximum number of time steps has been reached.  
 940 The state dimensionality, number of goals, and maximum number of time steps for each task is listed  
 941 in Table 2.

942 In all tasks, we introduce stochasticity in the transition function through Gaussian noise. Instead of  
 943 displacing the agent based on its selected action  $a \in [-1, 1]^2$  alone, we displace the agent based on  
 944 clipped noise-added actions:

$$945 \quad \text{clip}(a + \epsilon, -1, 1) \quad \text{with} \quad \epsilon \sim \mathcal{N}(0, 0.2 \cdot \mathbf{1}) \quad (58)$$

946 We emphasize that the sampled noise is *not* modifying the actions but rather modeled as part of  
 947 the environment, meaning that, from the perspective of the agent, the environment transitions are  
 948 stochastic given a state and action. The agent will bounce off any walls that it collides with with  
 949 walls being visualized as black bars in all figures.

### 950 B.2 DATASET DETAILS

951 Table 2 shows statistics for each 2D navigation task and the collected human dataset. During data  
 952 collection, the human player was instructed to collect high-quality trajectories that reach all goals as  
 953 fast as possible. The player controlled the movement of the controllable agent using the joystick of a  
 954 gamepad controller. We note that the player was unaware of the data analyses that we conducted to  
 955 avoid any risk of introducing bias.

### 956 B.3 HYPERPARAMETER SEARCH

957 To ensure fair comparison, we conducted a comparable hyperparameter search for both BC and PIDM  
 958 in the multiroom task using 50 training demonstrations. First, we conducted a hyperparameter search  
 959 over the model architecture considering sixteen different sizes of the MLP network architecture,  
 960 the use of normalization in the network (either batch normalization, layer normalization, or no  
 961 normalization), and learning rate with three constant candidate learning rates ( $1e^{-6}, 1e^{-5}, 1e^{-4}$ ). The  
 962 considered architectures consisted of any of five MLP blocks before any potential normalization layer  
 963 and any of the five MLP blocks after the normalization. The considered network blocks were:

- 964 1. MLP(256)
- 965 2. MLP(256, 128)
- 966 3. MLP(512, 256)
- 967 4. MLP(512, 1024, 256)

972 5. MLP(1024, 2048, 512)  
973974 From this search, we identified a single network architecture that performed best for BC and among  
975 the best for PIDM to keep for consistent comparisons thereafter. The architecture consists of network  
976 block MLP(512, 1024, 256) followed by batch normalization before MLP(256, 2) with the last 2D  
977 layer outputting the action logits. We apply ReLU activation in between all layers and *tanh* activation  
978 to the output logits.979 After fixing the network architecture, we still found some training instability for BC and IDM so  
980 we decided to further tune the learning rate for BC and IDM by searching over 14 learning rate  
981 configurations defined by their initial learning rate, and potential learning rate scheduling, and  
982 considered each configuration with and without gradient norm clipping. We first tuned the learning  
983 rate configuration for BC and IDM in multiroom after which we found IDM training to be stable  
984 across tasks. For BC, we further tuned the learning rate for each individual task to obtain stable  
985 training results. The identified learning rates are shown in the table below.986  
987 Table 3: Learning rate configuration for each task and algorithm988  
989  
990  
991  
992  
993

| Task      | BC configuration                                                                  | IDM configuration  |
|-----------|-----------------------------------------------------------------------------------|--------------------|
| Four room | Linear decay $1e^{-3} \rightarrow 1e^{-6}$ over 50 000 steps + grad norm clipping | constant $1e^{-5}$ |
| Zigzag    | Linear decay $1e^{-4} \rightarrow 1e^{-6}$ over 50 000 steps + grad norm clipping | constant $1e^{-5}$ |
| Maze      | Linear decay $1e^{-4} \rightarrow 1e^{-6}$ over 50 000 steps + grad norm clipping | constant $1e^{-5}$ |
| Multiroom | Linear decay $1e^{-4} \rightarrow 1e^{-6}$ over 50 000 steps                      | constant $1e^{-5}$ |

994  
995 C DETAILS FOR COMPLEX TASK IN 3D-WORLD  
996997 C.1 DATASET DETAILS  
9981000 The dataset consists of 30 demonstrations collected by a human playing the game. Table 4 shows the  
1001 number of steps and length (seconds) of the demonstrations in the dataset.1002  
1003 Table 4: Statistics of demonstrations of "Tour" task.1004  
1005  
1006  
1007

| Task | Total steps |                   |      | Trajectory length (in seconds) |                  |       |
|------|-------------|-------------------|------|--------------------------------|------------------|-------|
|      | Min         | Avg               | Max  | Min                            | Avg              | Max   |
| Tour | 1006        | $1067.2 \pm 29.4$ | 1139 | 33.83                          | $35.91 \pm 0.99$ | 38.29 |

1008  
1009 C.2 ADDITIONAL ENVIRONMENT DETAILS  
10101011 Table 5 contains the 11 milestones required to complete the "Tour" task.  
10121013  
1014 C.3 EVALUATION PROTOCOL  
10151016 Two human experts that were familiar with the task evaluated all the rollouts. The evaluation was blind  
1017 to avoid cognitive bias, since the evaluators did not know whether the rollout they were evaluating  
1018 corresponded to BC or PIDM. For each rollout, they checked if the agent achieved every milestone of  
1019 the task, scoring with value 1 if the milestone was achieved and 0 otherwise, so the maximum score  
1020 per rollout is 11 (the number of milestones). However, we report performance in terms of % of this  
1021 maximum score.  
1022

1026

1027

1028 Table 5: Milestones of "Tour" task in Bleeding Edge with corresponding thumbnails

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

| #  | Milestone                                             | Thumbnail                                                                             |
|----|-------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1  | Start off with a sharp left 180° turn                 |    |
| 2  | Navigate towards the first health marker and grab it  |    |
| 3  | Cross the main floor of the Dojo                      |    |
| 4  | Take a left onto the ramp                             |    |
| 5  | Turn while going up and stay on the ramp for 6-7 secs |   |
| 6  | Right turn and navigate the corridor                  |  |
| 7  | Circumvent the box by steering left                   |  |
| 8  | Navigate towards the second health marker and grab it |  |
| 9  | Pass through the final corridor                       |  |
| 10 | Hit the Gong                                          |  |
| 11 | Stop and don't move anymore                           |  |

1080 C.4 ADDITIONAL ALGORITHMIC DETAILS  
10811082 C.4.1 VISION ENCODER  
10831084 We use "theia-base-patch16-224-cddsv" from Huggingface as pretrained vision encoder. The vision  
1085 encoder remains frozen during training (and evaluation). Each video frame is passed to this encoder,  
1086 which generates an embedding vector of length 768. This embedding vector of the current frame is  
1087 the input to the BC policy. While the embedding of the current and future frames are the input to the  
1088 state encoder of the PIDM.1089 C.4.2 HYPERPARAMETER SEARCH  
10901091 To ensure fair comparison and some degree of generalization, we conducted a comparable hyperpa-  
1092 rameter search for both BC and PIDM in a different more complex task, with more milestones, for  
1093 which none of the algorithms could achieve 100% performance after being trained with a dataset of  
1094 30 demonstrations. We used the results from the hyperparameter search in the 2D environment as a  
1095 basis, with ReLu activations in between all layers and batch normalization at the output of the state  
1096 encoder. The output was a *tanh* activation. We evaluated two different sizes of the MLP network  
1097 architecture, under two learning rates. The considered MLP network blocks were:  
10981099 1. State encoder: MLP(1024, 512, 512), Policy: MLP(512, 256)  
1100 2. State encoder: MLP(1024, 2048, 1024, 512, 512), Policy: MLP(512, 512, 256)  
11011102 We also tried two learning rates per algorithm, namely linear decay  $1e-3 \rightarrow 1e-6$  and  $5e-5$  for PIDM,  
1103 and linear decay  $1e-4 \rightarrow 1e-6$  and  $1e-4$  for BC, with decay for 60,000 steps. Other hyperparameters  
1104 that remained constant were: training lasted 60,000 steps, optimization algorithm was Adam with  
1105 standard parameters ( $\beta_1 = 0.9$ ,  $\beta_2 = 0.999$ ,  $\epsilon = 1e-8$ ), and batch size was 4096.  
11061107 We observed the small network blocks with linear decay was the best combination, and BC (88%)  
1108 achieved slightly higher average performance than PIDM (86%) for that task, but not statistically  
1109 significant. For training in the "Tour" task, we used this configuration and used the rest of the  
1110 parameters used for the hyperparameter search, with the only exception of the number of training  
1111 steps, which we increased to 100,000 and we could see the loss had converged and remained stable  
1112 after 60,000 (which is when the linear decay stops).  
11131114 D EXPERIMENTS UNDER DETERMINISTIC TARGET POLICY  
11151116 Our experiments in the 2D navigation environment so far used human demonstrations for all tasks.  
1117 Human demonstrations are naturally stochastic which might add further complexity to learning a  
1118 policy from these demonstrations in addition to the stochastic transitions of the environment. In this  
1119 section, we conduct additional experiments within the same four tasks but with policies being trained  
1120 on demonstrations collected from a deterministic A\* planner.  
11211122 D.1 DATA COLLECTION AND DATASET DETAILS  
11231124 **A\* planner.** Given a state, the A\* planner computes an optimal plan to the next unreached goal and  
1125 executes the first action along this plan. We note that this planning process is executed under average  
1126 transitions which are noise-free since the Gaussian noise added within the transition function of the  
1127 environment has zero mean (see Appendix B.1 for more details). To ensure that the planner is able to  
1128 react to noise, we re-compute the plan to the next goal at every step, as in Receding Horizon Control  
1129 (Kwon & Han, 2005).1130 **A\* datasets.** Table 6 shows statistics for each 2D navigation task and the collected A\* planner  
1131 datasets. We also visualize the 50 collected demonstrations of the human and A\* planner for each of  
1132 the tasks in Figure 8. From this visualization, we can see that the A\* demonstrations tend to exhibit  
1133 significantly lower variance in their trajectories, a trend that is particularly apparent in the more  
complex Maze and Multiroom tasks, leading to a more narrow state visitation distribution.



Figure 8: Traces of the 50 human (blue) and  $A^*$  planner (orange) trajectories within all four 2D navigation tasks.

Table 6: Statistics of all four 2D navigation tasks and the  $A^*$  planner datasets. The first four columns correspond to properties of the tasks, given by the number of goals, maximum number of time steps to complete the task, and the state dimensionality, while the last four columns correspond to the total number of trajectories/ time steps within the collected dataset (across all 50 trajectories) and statistics over the trajectory length.

| Task      | Num goals | Max time steps | $ s $ | Total steps | Trajectory length |        |     |
|-----------|-----------|----------------|-------|-------------|-------------------|--------|-----|
|           |           |                |       |             | Min               | Avg    | Max |
| Four room | 4         | 200            | 14    | 6148        | 115               | 122.96 | 131 |
| Zigzag    | 6         | 150            | 20    | 3820        | 71                | 76.4   | 85  |
| Maze      | 10        | 300            | 32    | 9777        | 186               | 195.54 | 207 |
| Multiroom | 6         | 500            | 20    | 13 146      | 245               | 262.92 | 277 |

## D.2 HYPERPARAMETER SEARCH FOR $A^*$ DATA

Similar to the hyperparameter tuning on human datasets for 2D navigation tasks (Appendix B.3), we observe that BC is less stable and more sensitive to learning rate variations when trained on  $A^*$  planner demonstrations. To improve stability and evaluation robustness, we performed a search over 10 learning rate configurations in the Multiroom task using a training dataset of 50 demonstrations. These configurations were chosen based on those that yielded the highest evaluation performance in our original tuning for human datasets.

The best result for BC in Multiroom was achieved with a linear decay from  $1e^{-3}$  to  $1e^{-6}$  over 100 000 steps without gradient clipping. However, BC remained less robust on  $A^*$  demonstrations. In contrast, PIDM showed stable performance across learning rates, so we used the same constant rate of  $1e^{-5}$  as in the experiments with the human dataset.

To ensure reliable results despite BC’s instability, we trained and evaluated each algorithm with 50 random seeds, compared to 20 seeds for the human data evaluation.

## D.3 EVALUATION RESULTS FOR 2D NAVIGATION WITH DETERMINISTIC TARGET POLICY

**PIDM with human vs  $A^*$  demonstrations.** To assess the impact of the narrower data distribution of the  $A^*$  planner datasets on PIDM, we follow the methodology described in Section 5. For each task, PIDM is trained using 1, 2, 5, 10, 20, 30, 40 and 50 randomly sampled demonstrations for 50 random seeds. We evaluate four checkpoints throughout training per seed using 50 rollouts and report aggregate performance for the best checkpoint of each task and number of training demonstrations.

Figure 9 compares PIDM’s evaluation performance in the four 2D navigation tasks when trained on human vs  $A^*$  planner datasets. PIDM models trained on  $A^*$  demonstrations are notably more sample efficient, achieving high performance with as few as just one training demonstration. Table 7 further



Figure 9: Performance per number of training demonstrations for PIDM in four tasks trained on human and  $A^*$  planner demonstrations. Lines and shading correspond to the average and standard deviation across 20 and 50 seeds, respectively.



Figure 10: Error of the 2D navigation state predictor (as defined in Equation (15)) on held-out trajectories when trained on the human and  $A^*$  planner demonstrations. Lines and shading correspond to the average and standard deviation across 50 seeds that determine the sampling of demonstrations used for training, respectively.

highlights this trend by showing the sample efficiency ratios between PIDM trained on the  $A^*$  planner and human datasets.

**State predictor error.** Why is PIDM notably more efficient when trained on the narrower data distribution of  $A^*$  planner demonstrations compared to human demonstrations? We hypothesize that the instance-based state predictor (see Equation (15)) provides more accurate future state predictions when trained on  $A^*$  data. For states in held-out  $A^*$  trajectories, the predictor is more likely to find similar states in the training set. Additionally, the  $A^*$  collection policy is deterministic, resulting in lower action variability than the human policy. To investigate this hypothesis, we compute the state predictor error compared to ground-truth future states in held-out trajectories for each dataset and varying number of demonstrations. We consider multiple sizes  $n \in \{1, 2, 5, 10, 20, 30, 40, 45\}$ . For each  $n$ , we randomly sample 50 different subsets of the 50 available trajectories that are used to learn the state predictor (i.e. the instance-based state predictor defined in Equation (15) will lookup closest states and predicted future states within these trajectories), and use the remaining  $(50 - n)$  demonstrations as held-out. From these held-out trajectories, we take all states and predict a future state with the state predictor and compare the predicted future state with the ground-truth.

Table 7: Maximum reached goal ratio and sample efficiency ratios of PIDM trained on  $A^*$  planner demonstrations over PIDM trained on human demonstrations for 2D navigation tasks and average across tasks.

| Task                                         | Four room | Zigzag | Maze | Multiroom | Average |
|----------------------------------------------|-----------|--------|------|-----------|---------|
| max PIDM (Planner) $\uparrow$                | 1.00      | 0.99   | 0.99 | 1.00      | –       |
| max PIDM (Human) $\uparrow$                  | 0.99      | 0.98   | 0.99 | 0.98      | –       |
| $\eta_{\text{PIDM(Planner)}}(80\%) \uparrow$ | 5.0       | 5.0    | 2.0  | 5.0       | 4.25    |
| $\eta_{\text{PIDM(Planner)}}(90\%) \uparrow$ | 5.0       | 10.0   | 2.5  | 5.0       | 5.625   |
| $\eta_{\text{PIDM(Planner)}}(95\%) \uparrow$ | 10.0      | 15.0   | 0.5  | 20.0      | 11.375  |



Figure 11: Sample efficiency of PIDM and BC in Multiroom, trained on  $A^*$  planner data.

Figure 10 visualizes the state prediction error vs number of training demonstrations for each task and human and  $A^*$  datasets. As expected, the state prediction error decreases as the number of demonstrations grows, but plateaus before 45 demonstrations. Crucially, the state state predictor error is notably lower for  $A^*$  data, especially with few demonstrations, where the gap is largest. This reduced error correlates with the higher sample efficiency observed on the  $A^*$  planner dataset (see Figure 9), providing empirical evidence for the effect of state predictor bias predicted by theoretical analysis, even in the small-data regime.

**PIDM vs BC trained on  $A^*$  demonstrations.** In Section 5.3 we showed that PIDM is notably more efficient than BC when trained on human demonstrations. Figure 9 further demonstrates that PIDM achieves even greater sample efficiency when trained on the  $A^*$  dataset, and this is correlated with the lower bias of the state predictor in this setting. Does BC similarly benefit similarly from the narrower distribution of  $A^*$  data?

Figure 11 compares the sample efficiency for PIDM and BC in the Multiroom task when trained on  $A^*$  data, aggregated across 50 random seeds. While PIDM clearly benefits, BC is negatively affected by the narrow data distribution, resulting in less stable training and overall lower sample efficiency compared to BC trained on the human data.