
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN DOES PREDICTIVE INVERSE DYNAMICS OUTPER-
FORM BEHAVIOR CLONING? EXPLORING THE ROLE OF
ACTION AND STATE UNCERTAINTY

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline imitation learning aims to train agents from demonstrations without inter-
acting with the environment, but standard approaches like behavior cloning (BC)
often fail when expert demonstrations are limited. Recent work has introduced a
class of architectures we call predictive inverse dynamics models (PIDM), which
combine a future state predictor with an inverse dynamics model to infer actions
to reach the predicted future states. Although PIDM can be considered a form
of behavioral cloning (in the sense of Bayes-optimality), it often outperforms
conventional BC in practice. Although PIDM has shown promise, its benefits
remain poorly understood. In this work, we analyze PIDM in the offline imita-
tion learning setting and provide a theoretical explanation: under a perfect state
predictor, the prediction error of PIDM can be lower than that of conventional
BC, even in low-data regimes, and this gap increases when additional data sources
can be leveraged. This efficiency gain is characterized by the variance of actions
conditioned on future states, highlighting PIDM’s ability to reduce uncertainty
in states where future context is informative. We further demonstrate how this
uncertainty reduction translates into sample efficiency improvements. We validate
these insights empirically under more general conditions in 2D navigation tasks
using human demonstrations, where BC requires on average 2.8 more samples than
PIDM to reach comparable performance. Finally, we extend our evaluation to a
complex 3D environment in a modern video game with high-dimensional visual
inputs, and stochastic transitions, where BC requires over 66% more samples than
PIDM in a realistic setting.

1 INTRODUCTION

Offline imitation learning aims to learn closed-loop control policies that replicate expert behavior
using only pre-collected data, without access to a reward function or further interaction with the
environment. This paradigm has broad applicability across domains such as robotics (Schaal, 1999;
Fang et al., 2019), autonomous driving (Pan et al., 2020), and gaming (Pearce & Zhu, 2022; Pearce
et al., 2023; Schäfer et al., 2023). A prominent line of research in imitation learning focuses
on one- or few-shot generalization, where models are pretrained on large-scale datasets spanning
diverse tasks (Duan et al., 2017), with the goal of adapting to new tasks from only a handful of
demonstrations. However, collecting such large-scale expert demonstrations is often costly, time-
consuming, or infeasible—particularly in specialized domains like robotics, where data acquisition is
expensive and task-specific. As a result, many real-world applications lack the scale of data required
to train or adapt large models using standard imitation learning techniques.

In contrast to approaches that rely on extensive pretraining, we focus on the low-data regime, where
only a few demonstrations are available for the target task, and no additional data can be assumed.
This setting is increasingly relevant in the current AI landscape, where large foundation models are
trained on massive datasets, yet aligning them to new domains with limited supervision remains a
significant challenge.

The most common offline imitation learning approach is behavior cloning (BC) (see Figure 2a),
which can exhibit complex behavior (Osa et al., 2018; Pearce & Zhu, 2022; Florence et al., 2022) but

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

#2 Grab health marker #5 Cross the ramp

#7 Avoid obstacle #10 Hit the gong

(a) Selected milestones of "Tour" task in 3D world

5 10 15 20 25 30
Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Sc

or
e

BC
PIDM

(b) Sample efficiency

Figure 1: (a) Visualization of selected milestones from the complex "Tour" task in a 3D world with
video input, stochastic transitions, and real-time inference. (b) Sample efficiency curves (mean ± std)
for PIDM and BC. BC requires 66% more samples to achieve 80% success rate on average.

typically relies on the availability of many demonstrations per task. Recent work has introduced a
promising alternative to BC, which we refer to as predictive inverse dynamics models (PIDMs) (Du
et al., 2023; Xie et al., 2025; Tian et al., 2025). PIDM integrates two components: a state predictor,
which forecasts plausible future states, and an inverse dynamics model (IDM), which infers the
actions needed to reach those states (see Figure 2d). This modular design offers a key advantage—it
allows leveraging diverse data sources, including action-free demonstrations and non-expert data. By
augmenting a small set of expert demonstrations with such additional data, PIDM has demonstrated
strong empirical performance (Xie et al., 2025). Interestingly, Xie et al. (2025) also reported that
PIDM can significantly improve upon BC even when no additional data sources were available,
suggesting the promise of PIDM for the low-data regime. However, the underlying reasons for their
sample efficiency remain unclear. Is there something intrinsic to the PIDM architecture that enables
this advantage? Under what conditions can we expect such gains to consistently emerge?

In this work, we analyze PIDM and provide theoretical insights into why decomposing the decision-
making problem into a state predictor and an IDM can lead to significant sample efficiency improve-
ments over BC. Specifically, PIDM can achieve comparable or superior performance using fewer
expert demonstrations. First, we show that the prediction error of an optimal estimator for PIDM is
always less than or equal to that of BC, resulting in a non-negative performance gap in favor of PIDM
even in the small data regime. This gap is characterized by the expected conditional variance of
actions given all possible future states, averaged over the current state distribution. Under additional
assumptions, we show that the uncertainty reduction can provide sample efficiency gains.

Second, we provide empirical evidence that the predicted sample efficiency gains apply to more
general conditions, including the small data regime, with no additional data sources, and general
modeling approaches, like neural networks. We perform experiments on a benchmark of four 2D
navigation tasks in a state-based environment, using a dataset of human demonstrations, and observe
that BC requires between 1.3× and 4× more demonstrations than PIDM. The simplicity of the
environment allows us to understand how the theory works in practice by looking at the prediction
error gap per state. It also allows us to isolate the efficiency gains due to the predicted error gap from
the representational benefits of IDM shown in previous work (Lamb et al., 2023; Koul et al., 2023;
Levine et al., 2024; Islam et al., 2022).

Finally, once we have built intuition as to why the PIDM decomposition is effective, we extend our
investigation to complex tasks that require imitating complex navigation tasks, from image inputs, in
a 3D world with stochastic transitions, in real-time using human demonstrations. In this real-world
setting, sample efficiency is critical since obtaining human demonstrations is costly, and real-time
requirements introduce additional constraints on the solution. In this setting, we continue to observe
substantial efficiency gains — BC requires 66% more samples than PIDM —, demonstrating that the
predicted performance gap is relevant for real-world applications.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Policy

(a) Behavior Cloning

Encoder Policy

(b) Multi-step IDM

Encoder Forward
Model

(c) Forward model

Encoder Policy

State
Predictor

(d) PIDM

Figure 2: (a) BC learns a policy conditioned on the current state. (b) IDM learns a policy conditioned
on the current and future state k steps ahead. (c) Forward models predict a future state (representation)
given a state and action. Both (b) IDM and (c) forward models can serve as auxiliary objectives to
learn effective state representations. (d) PIDM represents an alternative to BC consisting of a state
predictor, akin to an action-free forward model, that predicts future state representations, and an IDM
policy. The state encoder alleviates the dependence on ground-truth future states at evaluation time.

2 RELATED WORK

Inverse dynamics models. Inverse dynamics models (IDMs) predict the initial action that initiates
a sequence leading to a transition from the current state to a future state k steps ahead. As a
direct imitation learning mechanism, multi-step inverse objectives are commonly used to train
policies or transferable encoders on high-dimensional observations; the inverse loss filters out
exogenous factors (Mhammedi et al., 2023; Efroni et al., 2022; Lamb et al., 2023) and learns rich
state representations which can later support policy learning or be reused across tasks. To enable
efficient training, we focus on architectures, in which states are encoded into a latent space with a
state encoder (see Figure 2b). Both the state predictor and the IDM policy operate in this latent space.

Forward models. Forward models (see Figure 2c) can be added as auxiliary objectives to improve
learned representations (Levine et al., 2024). Alternatively, a forward model can be learned for
planning purposes, e.g. using reinforcement learning (Thrun et al., 1990; Hafner et al., 2025) or
model-predictive control (Zhou et al., 2024; Bar et al., 2025). They are different from the state
predictor of PIDM in two ways. First, forward models require action input, while the state predictor
is conditioned on the current state only. Second, forward models usually generate the next state,
while the state predictor generates future states k ≥ 1 steps ahead.

Predictive inverse dynamics models. Recent works have combined a state predictor with an IDM
to learn generalizable policies. Inspired by diffusion models for video generation, Du et al. (2023)
trained a diffusion model to predict future images conditioned on task descriptions, operating directly
in image space. To simplify learning, Xie et al. (2025) proposed using compact image representations,
enabling state predictors to train action-free demonstrations and IDMs on diverse, action-labeled
trajectories. Tian et al. (2025) proposed end-to-end training, using the IDM objective to guide the
state predictor. These approaches showed PIDM outperforms BC and other baselines. Our work
provides theoretical and empirical insight into why decomposing future state and action prediction
leads to this performance gain.

Behavior cloning and trajectory modeling. Recent analysis (Foster et al., 2024) argues that
many practical implementations of BC, which rely on a log-loss, are implicitly modeling the whole
state-action sequence. Our work complements such analysis by providing evidence that explicitly
modeling (part of) the trajectory, the future state in the PIDM case, can improve sample efficiency.

3 PRELIMINARIES

Problem setting. We consider the problem setting of an MDP defined by (S,A, T ,R, d0) of state
space S; action space A; transition function T : S×A 7→ P(S), where P(·) is a probability measure;
reward function R : S × A 7→ R; and initial state distribution d0. To interact with the MDP, we
first sample an initial state s0 ∼ d0. Then, at each time step, we sample an action at ∼ π(· | st)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

from the policy π : S 7→ P(A). Given this action, the environment transitions to a new state
st+1 ∼ T (· | st, at) and provides a reward r = R(st, at). For this work, we assume no access to
the reward signal and consider the offline imitation learning setting in which we are given a dataset
of N trajectories of states and actions D = {(s0, a0, s1, a1, . . . , sT−1, aT−1, sT }Ni=1 generated by
following some unknown expert policy π∗. Our goal is to learn a policy π that is as close as possible
to π∗. We consider two architectures, BC and PIDM.

BC treats offline imitation learning as a supervised learning problem and trains a policy to imitate the
actions in the dataset given the most recent state. It consists of a single block, the policy (see Figure
2a), which can be trained to minimize the following loss:

LBC(πµ) = E(st,at)∼D,ât∼πµ(·|st) [d(ât,at)] (1)

for some measure of dissimilarity, d, between the action distribution induced by the learned policy
πµ and the ground truth actions under the dataset distribution. There are multiple design choices on
how BC approximates the policy distribution that offer different fidelity and complexity tradeoffs,
ranging from simple but effective point estimates to rich but complex generative models that can
capture distributions with multiple modes.

PIDM consists of two submodels (see Figure 2d): a state predictor, p, that predicts future states
for some horizon k, and an inverse dynamics model (IDM) policy, πξ, that predicts the next action
needed to get from the current observation to the future observation in k steps. Similar to BC, there
are multiple design choices. In addition to how to approximate the distributions, the two submodels
can be trained from the same or different datasets to leverage additional data sources. We focus on
the case where they are trained with the same dataset, using the following losses:

LSP(p) = E(st,st+k)∼D,ŝt+k∼p(·|st) [d(ŝt+k, st+k)] , (2)

LIDM(πξ) = E(st,at,st+k)∼D,ât∼πξ(·|st,st+k) [d(ât,at)] . (3)

4 THEORETICAL ANALYSIS

The PIDM approach can be seen as a decomposition of BC with explicit modeling of future states:

πµ(at | st) =
∫
S
p(st+k | st)πξ(at | st, st+k)dst+k. (4)

Intuitively, this decomposition can simplify the learning of a policy whenever the conditioning on the
future state in the IDM policy provides useful information to identify which action to take. In this
section, we study some potential gains of PIDM over BC when we assume access to a state predictor.
All proofs are in Appendix A.

For simplicity, we consider the case where the BC and IDM policies are single-point estimators that
approximate the expected action. Let µ(st) ≜ E[at | st] and ξ(st, st+k) ≜ E[at | st, st+k] be the
optimal estimators for πµ and πξ, respectively.

Introduce the predicted error gap between the estimators of the BC and IDM policies:

∆ ≜ EPE(µ)− EPE(ξ), (5)

where EPE(·) is the expected prediction error, which for a random variable y|x and an estimator
ζ(x) is given by: EPE(ζ) ≜ Ex

[
(y − ζ(x))

2
]
.

Our first result quantifies ∆ in terms of the uncertainty in at due to uncertainty in st+k.

Theorem 1. For optimal estimators µ and ξ, The predicted error gap is given by:

∆ = Est

[
Varst+k|st

(E [at | st, st+k])
]
≥ 0. (6)

Theorem 1 shows that knowing st+k can increase the prediction accuracy of at. However, this
improvement assumes access to a state predictor model. Hence, it can be seen as the ideal case that
upper bounds the potential gain that can be achieved when the state predictor model has to be learned.

We can also derive the predicted error gap under the assumption that the estimators are unbiased,
though not necessarily optimal.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Corollary 1. Let µ̂(st) and ξ̂(st, st+k) be unbiased estimators for πµ and πξ, respectively. Let δ̂
denote the difference in the estimators’ own variance:

δ̂ ≜ Est
[Var (µ̂ (st))]]− Est,st+k

[
Var

(
ξ̂ (st, st+k)

)]
. (7)

Then, we have:
∆̂ ≜ EPE (µ̂)− EPE

(
ξ̂
)
= ∆+ δ̂. (8)

The first term in (8), ∆, is the reduction in variance due to knowing st+k, as given by (6), while δ̂
compares the model uncertainties.

Note that both Theorem 1 and Corollary 1 naturally motivates the use additional data sources. The
former shows that action-free data can be used to train a more accurate state predictor model that
closes the distance to an upper bound. The latter shows that demonstrations for different tasks in the
same environment — or even non-optimal demonstrations when k = 1 — can be used to reduce the
variance of ξ̂, increasing δ̂, which leads to a larger gap ∆̂.

The next result connects the prediction error gap with sample efficiency gains. We assume asymptotic
efficiency for simplicity, which implies that the variance of the estimator decreases approximately
linearly with the number of samples, and can be expressed for any unbiased estimator ζ̂ of some
parameter ζ as: Var(ζ̂) ≈ Cζ

n for large enough n, where Cζ > 0 is the inverse of the Fisher
information for the ζ parameter being estimated.

Theorem 2. Let µ̂n(st) and ξ̂m(st, st+k) be unbiased, asymptotically efficient estimators for the
BC and IDM policies, respectively, where n and m denote the minimum number of samples required
to achieve error level ε. Then, for large enough n and m, we have:

η ≜
n

m
≈ Cµ

Cξ

(
1 +

∆

ε− Est [Var(at | st)]

)
≥ 0. (9)

The theoretical results of this section provide insights on the potential gains that the PIDM architecture
can provide. Although they have been derived under simplifying assumptions, Section 5 provides
empirical evidence that efficiency gains hold in practice, under general conditions.

5 EXPERIMENTS

To better understand how the efficiency gains predicted in Section 4 manifest in practice, we perform
experiments in a 2D navigation environment, where we can easily analyze the properties of datasets
and policies. We then conduct experiments in a 3D world that require precise execution of a complex
task from images to validate our findings under real-world conditions.

5.1 ENVIRONMENTS

2D navigation environment. We consider four tasks of varying complexity within a 2D navigation
environment, visualized in Figure 3, in which the agent needs to reach a sequence of goals. The tasks
are fully observable with low-dimensional states containing the x- and y-position of the agent as well
as the positions of all goals, and whether they have already been reached. This simplified setting
allow us to study the efficiency gains of PIDM over BC due to its action decomposition, isolated
from other gains resulting from improved representations reported in prior work (Lamb et al., 2023;
Koul et al., 2023; Levine et al., 2024). The agent chooses actions in [−1, 1]2 for its movement, and
the transitions are stochastic with Gaussian noise N (0, 0.2) added to the actions. For each task, a
human player collected a dataset of 50 trajectories by navigating the agent to reach all goals using a
controller. The datasets naturally contain some variability in actions in any given state as visualized
by the human trajectories shown in Figure 3. We refer to Appendix B for more details on each dataset.

3D world. For a complex environment under real-world conditions, we constructed a dataset
comprising human gameplay demonstrations within a modern 3D video game titled "Bleeding
Edge", developed by Ninja Theory. The environment corresponds to the "Dojo" practice level. It
features a third-person perspective with a freely controllable camera, where the camera orientation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2

3

1

(a) 2D Navigation task (b) Four room (c) Zigzag (d) Maze (e) Multiroom

Figure 3: Visualization of 2D navigation environment. (a) Tasks require the agent (blue box) to
navigate to reach the goals (red boxes) in a particular order. (b) - (e) Visualizations of all four tasks
and the traces of the 50 trajectories within the datasets.

directly affects the agent’s movement direction, introducing a non-trivial perception-action coupling.
Observations are captured as raw video frames, which are processed through a pre-trained image
encoder to obtain embeddings that facilitate efficient learning. These embeddings are subsequently
passed to the networks of the algorithms. In our experiments, we use the pre-trained ViT-B/16
Theia vision encoder (Shang et al., 2024). The action space contains continuous actions [−1, 1]4 to
control the x- and y-movement of the controlled character and the camera. State transitions occur
asynchronously at 30 FPS and require real-time inference. Due to the game’s deployment on a remote
server in a distant cloud region, transitions are stochastic, affected by variable latency and visual
artifacts. Within the environment we consider a task we refer to as "Tour" that consists of ∼36
seconds of precise navigation with 11 milestones, testing the agents’ capability to steer and stay on
track while avoiding obstacles and reacting at objects of interests (see Figure 1a for visualization of
some milestones and Appendix C.2 for the complete list).

5.2 ALGORITHMS

Model architecture. In the 2D navigation environment with fully observable states, we train
MLP networks for the encoder and policy networks of BC and PIDM, and use k = 1 for PIDM.
In contrast, the complex 3D world task is partially observable with inputs being video frames that
are first being processed by a pre-trained vision encoder. The policy then receives a stack of vision
encoder embeddings for three frames spanning one second to approximate a single state. BC and
PIDM policies are then conditioned on these stacked representations for the current state and, in the
case of PIDM, for the future state. To leverage the representational benefits of multi-step IDM (Lamb
et al., 2023; Koul et al., 2023), we train the PIDM policy using k ∈ {1, 6, 11, 16, 21, 26} for this task
and additionally condition the PIDM policy network on a one-hot encoding of k. During evaluation,
we query the PIDM policy and state predictor with k = 1. For BC and PIDM, we use the tanh
activation function on the action logits to get actions in the desired [−1, 1] range.

State predictor. We consider two state predictors. In the 2D navigation environment, we leverage
an instance-based learning model (Keogh, 2010) for a deterministic state predictor:

p(st) = si
⋆

τ⋆+k with (τ⋆, i⋆) ≜ argmin
τ,i

||st − siτ ||2, (10)

with siτ referring to the state at time step τ in training trajectory i. In short, the state predictor first
queries for the nearest state within any training trajectory, as measured by the Euclidean distance,
and then predicts the state k steps ahead of that state within the same training trajectory. In the 2D
navigation environment, we further constrain the query for the nearest state to only match states in
which the same goal needs to currently be reached. Computation of this lookup is efficient for the
small data regime considered in our work.

In the complex 3D world task, we consider a simplified state predictor that is purely based on the
time step and a single fixed training trajectory, denoted with superscript i. At time step t, the state
predictor returns the state sit+k within that training trajectory. Despite its simplicity, we find that even
this simple state predictor can enable effective evaluation when paired with a trained IDM model.

Training details. To train the policies, we sample batches of 4096 (st, at) or (st, at, st+k) tuples
for BC and IDM policies, respectively, using ground-truth states and actions from training trajectories.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Training trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 re

ac
he

d
go

al
s

BC
PIDM

(a) Four room

0 10 20 30 40 50
Training trajectories

BC
PIDM

(b) Zigzag

0 10 20 30 40 50
Training trajectories

BC
PIDM

(c) Maze

0 10 20 30 40 50
Training trajectories

BC
PIDM

(d) Multiroom

Figure 4: Performance per number of training trajectories for BC and PIDM in four tasks trained on
human datasets. Lines and shading correspond to the average performance and standard deviation
across 500 evaluations. We further visualize the number of samples required by PIDM and BC to
reach 95% of the highest achievable performance with vertical dotted lines.

Table 1: Sample efficiency ratios of PIDM over BC for 2D navigation tasks and average across tasks

Task Four room Zigzag Maze Multiroom average

ηPIDM(95%) ↑ 4.0 1.33 3.0 3.0 2.83

All networks are optimized end-to-end for 100 000 optimization steps from the BC and IDM losses
defined in Equation (1) and Equation (3) using the Adam optimizer. For further details on hyperpa-
rameter tuning and architectures used in the 2D navigation and complex video game environments,
please refer to Appendix B and Appendix C, respectively.

5.3 SAMPLE EFFICIENCY GAINS FOR 2D NAVIGATION

To study the sample efficiency gains of PIDM, we train a BC and PIDM on each dataset with varying
numbers of trajectories, namely (1, 2, 5, 10, 20, 30, 40, 50). Our performance metric is the fraction
of reached goals in the right order. For each task and number of training trajectories, we train BC and
PIDM for ten random seeds, and evaluate four checkpoints throughout training of each seed using 50
rollouts, giving a total of 500 values of the performance metrics per checkpoint. We report aggregate
results over these 500 values for the best checkpoint for each task and number of training trajectories.

To summarize efficiency gains, we compute efficiency ratios ηPIDM for each task, given by

ηPIDM(c) =
n(BC, cmax)

n(PIDM, cmax)
, (11)

where n(A, x) is the number of samples required by algorithm A to reach at least performance x
and max denotes the maximum performance achievable in the task. In other words, we compute the
ratio of the number of samples that BC and PIDM require to obtain the achievable performance up
to a factor of c < 1. Figure 4 visualizes the percentage of reached goals for BC and PIDM across
varying number of samples, and Table 1 summarizes 95% efficiency ratios, showing significant
sample efficiencies for IDM over BC, as predicted by the analysis in Section 4. We find the efficiency
gains to be most significant in the four room where BC requires 4× more demonstrations than PIDM
(40 vs 10) to achieve comparable performance.

5.4 FUTURE CONDITIONING AS A VARIANCE REDUCTION OPPORTUNITY

Our theoretical insights of Theorem 1 and Theorem 2 indicate that states, in which there is high
uncertainty on the action due to uncertainty in the future state, as given by ∆(s), are key to potential
sample efficiency gains of PIDM over BC. What effect do these states have on the learned IDM
policy, and how might they lead to improved efficiency?

To answer this question, we qualitatively analyze the learned PIDM policies in each task, and compute
the EPE gaps for any particular state st = s within our datasets:

∆(s) ≜ Varst+k|s (E [at | s, st+k]) , such that: ∆ = Est [∆(s)]. (12)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Four room Zigzag Maze Multiroom

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(s)

Figure 5: Visualized state-wise EPE gaps ∆(s) from Equation (12) computed for each dataset. We
observe large gaps in states surrounding the goals where human actions are more diverse.

(a) Four room (b) Zigzag (c) Maze (d) Multiroom

Figure 6: Visualization of IDM policies when queried for representative states and possible future
states in each cardinal and diagonal direction for all four tasks. Predicted actions spread out in states
where the dataset exhibits large ∆(s).

To approximate ∆(s) for continuous states in our 2D environment, we discretize the map with k-
means clustering over states and then compute the sample variance over actions grouped by centroid
and future states within each dataset. Figure 5 visualizes the estimated values of ∆(s) for each
dataset, with 500 clusters being computed to group states. Interestingly, we observe that the human
movement exhibits significantly larger action variability in states surrounding the goals which the
player has to navigate to.

10 5 10 4 10 3 10 2 10 1 100

(s)

101

102

Va
r s t

+
1(

(
s t

,s
t+

1)
)

Four room
Maze
Multiroom
Zigzag

Figure 7: Correlation of state-wise action variance
∆(s) and the variance of PIDM policies.

To qualitatively analyze the PIDM policies, we
train them with all available training trajectories.
We obtain representative states by taking the
centroids of k-means clustering (using k = 75
for maze and multiroom and k = 50 for four
room and zigzag) and computing eight possible
future states that are reachable within k = 1 step
into each cardinal or diagonal direction. Then,
we condition the PIDM policy with the 8 possi-
ble futures per centroid. Figure 6 visualizes the
actions predicted by the PIDM policy for each
centroid and future state pair. We can clearly see
that the actions from the same centroid state are
pointing in various directions only whenever the
centroid state is close to a goal or other states
with large ∆(s), as visualized in Figure 5. This
result shows that the PIDM policy learns to at-
tend to the future state in states where the future
state helps to reduce uncertainty over the action
prediction, which is precisely where Theorem 1 predicts a potential performance gain for PIDM. In
contrast, in states where the action variability within the dataset is minimal, the PIDM policy exhibits
significantly less diversity in predicted actions as seen by states in which most arrows point in a
similar direction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7 further connects our newly gained understanding to Theorem 1 by showing the correlation
between state-wise action variability ∆(s) and the variance of the PIDM policy for varying future
states, indicating that the PIDM policy exhibits higher variance for states with higher ∆(s), meaning
PIDM has learned to model as predicted by our theory. The variance of the IDM policy is computed
for representative centroid states over eight future states.

5.5 SAMPLE EFFICIENCY GAINS IN A 3D WORLD

After building an intuition for the efficiency gains of PIDM over BC both from a theoretical perspec-
tive, and under general conditions in a simplified environment, we now demonstrate similar benefits
in a complex task that is representative of real-world applications. We consider the complex task that
we name "Tour" as described in Section 5.1 in which the agent needs to navigate from images in the
3D world of a modern video game that requires real-time inference, with stochastic transitions, and
where success is defined by achieving 11 milestones (see also Appendix C.2).

To compare agent performance on this task, BC and PIDM are trained using 5, 15, 20, 25 and 30
demonstrations. Our performance metric is the percentage of milestones that have been reached. We
train BC and PIDM for 5 random seeds, and evaluate the latest checkpoint of each seed with 10
rollouts, giving a total of 50 values of the performance metric per number of demonstrations for each
algorithm. Figure 1b shows PIDM achieves 95% success (on average) at the end of training, and a
success rate of 87% with 15 demonstrations, while BC requires 25 demonstrations to reach a 81%
success rate, so BC requires ηPIDM(80%) = 1.66 times more samples than BC to reach a success rate
of 80%. This confirms the potential of PIDM to improve sample efficiency over BC even in the small
data regime. Moreover, when additional data sources are available, we expect these efficiency gains
to increase.

6 CONCLUSION

This work analyzed the performance advantages of predictive inverse dynamics models (PIDM) as an
alternative to behavior cloning (BC) for offline imitation learning, particularly in low-data regimes.
Through theoretical analysis and empirical experiments, we shed light onto the advantages of PIDM
observed in prior work, proving that PIDM can reduce action prediction error by conditioning on
future states, especially in regions of high uncertainty. Empirical results across navigation tasks
in 2D and 3D environments confirmed sample efficiency gains, with BC requiring up to 4× more
demonstrations than PIDM to achieve comparable performance. Interestingly, qualitative analysis
showed that learned PIDM policies attend to future states only when they provide informative context
for reducing prediction variance. Altogether, this work provides a principled explanation for PIDM’s
effectiveness and offers insights that pave the way for more efficient imitation learning methods that
leverage state prediction and future conditioning.

On the other hand, although we proved that PIDM is solving a problem that is not harder than BC,
more work is needed to understand under which conditions PIDM is superior to BC. In particular, the
impact of learning the future state distribution remains unclear and it is not evident whether learning
this distribution is easier or more robust than directly learning actions. Additionally, the quality of the
state predictor can significantly affect overall performance. Moreover, we focused on point estimators
of the policy distribution for both BC and PIDM, which is a fair comparison, but it is unclear whether
the observed sample efficiency gains of PIDM over BC would remain for a richer policy class (e.g.,
using diffusion models). These limitations highlight important directions for future work, including
better understanding the trade-offs in learning state predictors, modeling choices, and extending the
theory to more general settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 15791–15801, 2025.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in neural
information processing systems, 36:9156–9172, 2023.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural
information processing systems, 30, 2017.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Provably filtering exogenous distractors using multistep inverse dynamics. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=RQLLzMCefQu.

Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. Survey of imitation
learning for robotic manipulation. International Journal of Intelligent Robotics and Applications,
3(4):362–369, 2019.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on Robot Learning, pp. 158–168, 2022.

Dylan J. Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
horizon in imitation learning. In Advances in Neural Information Processing Systems, volume 37,
pp. 120602–120666, 2024.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, pp. 1–7, 2025.

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra
Misra, Xin Li, Harm Van Seijen, Remi Tachet des Combes, et al. Agent-controller representations:
Principled offline rl with rich exogenous information. arXiv preprint arXiv:2211.00164, 2022.

Eamonn Keogh. Instance-Based Learning, pp. 549–550. Springer US, 2010.

Anurag Koul, Shivakanth Sujit, Shaoru Chen, Ben Evans, Lili Wu, Byron Xu, Rajan Chari, Riashat
Islam, Raihan Seraj, Yonathan Efroni, et al. Pclast: Discovering plannable continuous latent states.
In International Conference on Machine Learning, 2023.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster,
Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery
of control-endogenous latent states with multi-step inverse models. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856.

Alexander Levine, Peter Stone, and Amy Zhang. Multistep inverse is not all you need. Reinforcement
Learning Journal, 2:884–925, 2024.

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi-step
inverse kinematics: An efficient and optimal approach to rich-observation RL. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 24659–24700. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/mhammedi23a.html.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A Theodorou,
and Byron Boots. Imitation learning for agile autonomous driving. The International Journal of
Robotics Research, 39(2-3):286–302, 2020.

10

https://openreview.net/forum?id=RQLLzMCefQu
https://openreview.net/forum?id=RQLLzMCefQu
https://proceedings.mlr.press/v202/mhammedi23a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tim Pearce and Jun Zhu. Counter-strike deathmatch with large-scale behavioural cloning. In IEEE
Conference on Games, pp. 104–111, 2022.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. In International Conference on Learning Representations,
2023.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive sciences, 3(6):
233–242, 1999.

Lukas Schäfer, Logan Jones, Anssi Kanervisto, Yuhan Cao, Tabish Rashid, Raluca Georgescu, David
Bignell, Siddhartha Sen, Andrea Treviño Gavito, and Sam Devlin. Visual encoders for imitation
learning in modern video games. In Workshop on Adaptive and Learning Agents, 2023.

Jinghuan Shang, Karl Schmeckpeper, Brandon B. May, Maria Vittoria Minniti, Tarik Kelestemur,
David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot
learning. In 8th Annual Conference on Robot Learning, 2024.

Sebastian Thrun, Knut Möller, and Alexander Linden. Planning with an adaptive world model.
Advances in neural information processing systems, 3, 1990.

Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, and Jiangmiao Pang. Pre-
dictive inverse dynamics models are scalable learners for robotic manipulation. In International
Conference on Learning Representations, 2025.

Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation
learning. In International Conference on Machine Learning, 2025.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. ∆ = Est

[
Varst+k|st

(E [at | st, st+k])
]
≥ 0.

Proof: The prediction error for these estimators is given by:

EPE(µ) = Est,at

[
(at − µ(st))

2
]
, (13)

EPE(ξ) = Est,at,st+k

[(
at − ξ(st, st+k)

)2]
. (14)

We can rewrite the EPE by using iterated expectation and replacing the definitions of optimal
estimators:

EPE(µ) = Est

[
Eat|st

[
(at − E [at | st])2

]]
= Est

[Var(at | st)] (15)

EPE(ξ) = Est,st+k

[
Eat|(st,st+k)

[
(at − E[at | st, st+k])

2
]]

,

= Est,st+k
[Var(at | st, st+k)] . (16)

We can further simplify Equation (15). First, we apply the law of total variance to Var(at | st):

Var(at | st) = Est+k|st
[Var(at | st, st+k)] + Varst+k|st

(E[at | st, st+k]) . (17)

Second, we take the expectation over st:

Est [Var(at | st)] = Est

[
Est+k|st

[Var(at | st, st+k)]
]
+ Est

[
Varst+k|st

(E[at | st, st+k])
]
.

(18)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Third, we simplify the first term of the r.h.s.:

Est

[
Est+k|st

[Var(at | st, st+k)]
]
= Est,st+k

[Var(at | st, st+k)]. (19)

Finally, we have:

Est
[Var(at | st)] = Est,st+k

[Var(a | st, st+k)] + Est

[
Varst+k|st

(E[at | st, st+k])
]
. (20)

Now, we can easily compute the performance gap between the MSEs of both estimators:

EPE(µ)− EPE(ξ) = Est
[Var(at | st)]− Est,st+k

[Var(at | st, st+k)]

= Est

[
Varst+k|st

(E[at | st, st+k)
]
. (21)

A.2 PROOF OF COROLLARY 1

Corollary 1. Let µ̂(st) and ξ̂(st, st+k) be unbiased estimators for the BC and IDM policies,
respectively. Let δ̂ denote the difference in the estimators’ own variance:

δ̂ ≜ Est
[Var (µ̂ (st))]]− Est,st+k

[
Var

(
ξ̂ (st, st+k)

)]
. (22)

Then, we have:

∆̂ ≜ EPE (µ̂)− EPE
(
ξ̂
)
= ∆+ δ̂. (23)

Proof: Since the estimators are unbiased, we know that:

E [µ̂(st)] = E [at | st] ,

E
[
ξ̂(st, st+k)

]
= E [at | st, st+k] . (24)

We can express at = E[at | st] + ε where ε is a zero-mean random variable, possibly dependent on
st. Using the definition of µ from Theorem 1, the EPE can be expressed as the sum of the irreducible
variance and the estimator’s own variance:

EPE(µ̂) = Est,at

[
(at − µ̂(st))

2
]

= Est,at

[
(at − µ̂(st) + µ(st)− µ(st))

2
]

= Est,at

[
((at − µ(st)) + (µ(st)− µ̂(st)))

2
]

= Est,at

[
(at − µ(st))

2
]
+ Est

[
(µ(st)− µ̂(st))

2
]

+ 2Est,at [(at − µ(st)) (µ(st)− µ̂(st))]

= Est
[Var(at | st)] + Est

[Var(µ̂(st))] , (25)

where the cross-term vanishes since Eε [ε | st] = 0:

Est,at
[(at − µ(st)) (µ(st)− µ̂(st))] = Est,ε [(ε+ µ(st)− µ(st)) (µ(st)− µ̂(st))]

= Est,ε [ε (µ(st)− µ̂(st))]

= Est
[Eε [ε | st] (µ(st)− µ̂(st))]

= 0. (26)

Following the same approach for ξ, we have:

EPE(ξ̂) = Est,st+k
[Var(at | st, st+k)] + Est,st+k

[
Var(ξ̂(st, st+k))

]
. (27)

Subtracting (27) from (25) and grouping terms according to definitions (5) and (22) concludes the
proof.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 2

Theorem 2. Let µ̂n(st) and ξ̂m(st, st+k) be unbiased, asymptotically efficient estimators for the
BC and IDM policies, respectively, where n and m denote the minimum number of samples required
to achieve error level ε. Then, for large enough n and m, we have:

η ≜
n

m
≈ Cµ

Cξ

(
1 +

∆

ε− Est [Var(at | st)]

)
≥ 0. (28)

Proof: From (25) and using the asymptotic variance approximation:
EPE(µ̂n) = Est [Var(at | st)] + Est [Var(µ̂(st))]

≈ Est
[Var(at | st)] +

Cµ

n
. (29)

Since EPE(µ̂n) = ε, we can solve for n:

n ≈ Cµ

ε− Est
[Var(at | st)]

. (30)

Following the same reasoning for EPE(ξ̂)m), we get:

m ≈ Cξ

ε− Est,st+k
[Var(at | st, st+k)]

. (31)

Using the definition of the sample efficiency ratio, we have:

η ≜
n

m

≈ Cµ

Cξ

(
ε− Est,st+k

[Var(at | st, st+k)]

ε− Est
[Var(at | st)]

)
. (32)

From the first line of (21), We can obtain this identity:
Est,st+k

[Var(at | st, st+k)] = Est
[Var(at | st)]−∆. (33)

By expanding it in (32) and simplifying terms, we get (28). Finally, we just need to ensure the fraction
is non-negative. To do so, note that

ε ≥ max{Est
[Var(at | st)] ,Est,st+k

[Var(at | st, st+k)]} ≥ 0, (34)
since the prediction error cannot be smaller than irreducible error.

B DETAILS FOR 2D NAVIGATION ENVIRONMENT AND EXPERIMENTS

In this section, we describe further details about the 2D navigation environment and the experiments
in this setting.

B.1 ADDITIONAL ENVIRONMENT DETAILS

Tasks within the 2D navigation environment specify a layout of the environment and differ in the
number of goals. The general setting stays the same with each task specifying an order to its goals
and the agent needs to reach a goal before being able to reach any subsequent goals. This setup makes
these tasks punishing since missing any goal will mean that subsequent goals cannot be reached
anymore unless the agent returns back to the currently required goal. An episode within any task
finishes after all goals have been reached, or after a maximum number of time steps has been reached.
The state dimensionality, number of goals, and maximum number of time steps for each task is listed
in Table 2.

In all tasks, we introduce stochasticity in the transition function through Gaussian noise. Instead of
displacing the agent based on its selected action a ∈ [−1, 1]2 alone, we displace the agent based on
clipped noise-added actions:

clip(a+ ϵ,−1, 1) with ϵ ∼ N (0, 0.2 · 1) (35)
We emphasize that the sampled noise is not modifying the actions but rather modeled as part of
the environment, meaning that, from the perspective of the agent, the environment transitions are
stochastic given a state and action. The agent will bounce off any walls that it collides with with
walls being visualized as black bars in all figures.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Statistics of all four 2D navigation tasks and the human datasets. The first four columns
correspond to properties of the tasks, given by the number of goals, maximum number of time steps
to complete the task, and the state dimensionality, while the last four columns correspond to the total
number of trajectories/ time steps within the collected dataset (across all 50 trajectories) and statistics
over the trajectory length.

Task Num goals Max time steps |s| Total steps Trajectory length
Min Avg Max

Four room 4 200 14 5821 103 116.42 154
Zigzag 6 150 20 4009 66 80.18 106
Maze 10 300 32 9785 176 195.70 227
Multiroom 6 500 20 12 961 241 259.22 314

B.2 DATASET DETAILS

Table 2 shows statistics for each 2D navigation task and the collected human dataset. During data
collection, the human player was instructed to collect high-quality trajectories that reach all goals as
fast as possible. The player controlled the movement of the controllable agent using the joystick of a
gamepad controller. We note that the player was unaware of the data analyses that we conducted to
avoid any risk of introducing bias.

B.3 HYPERPARAMETER SEARCH

To ensure fair comparison, we conducted a comparable gridsearch for both BC and PIDM in the
multiroom task using 50 training trajectories. First, we conducted a gridsearch over the model archi-
tecture considering sixteen different sizes of the MLP network architecture, the use of normalization
in the network (either batch normalization, layer normalization, or no normalization), and learning
rate with three constant candidate learning rates (1e−6, 1e−5, 1e−4. The considered architectures
consisted of any of five MLP blocks before any potential normalization layer and any of the five MLP
blocks after the normalization. The considered network blocks were:

1. MLP(256)

2. MLP(256, 128)

3. MLP(512, 256)

4. MLP(512, 1024, 256)

5. MLP(1024, 2048, 512)

From this search, we identified a single network architecture that performed best for BC and among
the best for PIDM to keep for consistent comparisons thereafter. The architecture consists of network
block MLP(512, 1024, 256) followed by batch normalization before MLP(256, 2) with the last 2D
layer outputting the action logits. We apply ReLU activation in between all layers and tanh activation
to the output logits.

After fixing the network architecture, we still found some training instability for BC and IDM so
we decided to further tune the learning rate for BC and IDM by searching over 14 learning rate
configurations defined by their initial learning rate, and potential learning rate scheduling, and
considered each configuration with and without gradient norm clipping. We first tuned the learning
rate configuration for BC and IDM in multiroom after which we found IDM training to be stable
across tasks. For BC, we further tuned the learning rate for each individual task to obtain stable
training results. The identified learning rates are shown in the table below.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Learning rate configuration for each task and algorithm

Task BC configuration IDM configuration

Four room Linear decay 1e−3 → 1e−6 over 50 000 steps + grad norm clipping constant 1e−5

Zigzag Linear decay 1e−4 → 1e−6 over 50 000 steps + grad norm clipping constant 1e−5

Maze Linear decay 1e−4 → 1e−6 over 50 000 steps + grad norm clipping constant 1e−5

Multiroom Linear decay 1e−4 → 1e−6 over 50 000 steps constant 1e−5

C DETAILS FOR COMPLEX TASK IN 3D-WORLD

C.1 DATASET DETAILS

The dataset consists of 30 demonstrations collected by a human playing the game. Table 4 shows the
number of steps and length (seconds) of the demonstrations in the dataset.

Table 4: Statistics of demonstrations of "Tour" task.

Total steps Trajectory length (in seconds)

Task Min Avg Max Min Avg Max

Tour 1006 1067.2± 29.4 1139 33.83 35.91± 0.99 38.29

C.2 ADDITIONAL ENVIRONMENT DETAILS

Table 5 contains the 11 milestones required to complete the "Tour" task.

C.3 EVALUATION PROTOCOL

Two human experts that were familiar with the task evaluated all the rollouts. The evaluation was blind
to avoid cognitive bias, since the evaluators did not know whether the rollout they were evaluating
corresponded to BC or PIDM. For each rollout, they checked if the agent achieved every milestone of
the task, scoring with value 1 if the milestone was achieved and 0 otherwise, so the maximum score
per rollout is 11 (the number of milestones). However, we report performance in terms of % of this
maximum score.

C.4 ADDITIONAL ALGORITHMIC DETAILS

C.4.1 VISION ENCODER

We use "theia-base-patch16-224-cddsv" from Huggingface as pretrained vision encoder. The vision
encoder remains frozen during training (and evaluation). Each video frame is passed to this encoder,
which generates an embedding vector of length 768. This embedding vector of the current frame is
the input to the BC policy. While the embedding of the current and future frames are the input to the
state encoder of the PIDM.

C.4.2 GRID SEARCH

To ensure fair comparison and some degree of generalization, we conducted a comparable grid search
for both BC and PIDM in a different more complex task, with more milestones, for which none of the
algorithms could achieve 100% performance after being trained with a dataset of 30 demonstrations.
We used the results from the grid search in the 2D environment as a basis, with ReLu activations in
between all layers and batch normalization at the output of the state encoder. The output was a tanh
activation. We evaluated two different sizes of the MLP network architecture, under two learning
rates. The considered MLP network blocks were:

1. State encoder: MLP(1024, 512, 512), Policy: MLP(512, 256)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2. State encoder: MLP(1024, 2048, 1024, 512, 512), Policy: MLP(512, 512, 256)

We also tried two learning rates per algorithm, namely linear decay 1e-3 → 1e-6 and 5e-5 for PIDM,
and linear decay 1e-4 → 1e-6 and 1e-4 for BC, with decay for 60,000 steps. Other hyperparameters
that remained constant where: training lasted 60,000 steps, optimization algorithm was Adam with
standard parameters (β1 = 0.9, β2 = 0.999, ϵ = 1e-8), and batch size was 4096. Moreover, We also
use as suggested by the grid search in the 2D environment.

We observed the small network blocks with linear decay was the best combination, and BC (88%)
achieved slightly higher average performance than PIDM (86%) for that task, but not statistically
significant. For training in the "Tour" task, we used this configuration and used the rest of the
parameters used for the grid search, with the only exception of the number of training steps, which
we increased to 100,000 and we could see the loss had converged and remained stable after 60,000
(which is when the linear decay stops).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Milestones of "Tour" task in Bleeding Edge with corresponding thumbnails

Milestone Thumbnail

1 Start off with a sharp left 180◦ turn

2 Navigate towards the first health marker and grab it

3 Cross the main floor of the Dojo

4 Take a left onto the ramp

5 Turn while going up and stay on the ramp for 6-7 secs

6 Right turn and navigate the corridor

7 Circumvent the box by steering left

8 Navigate towards the second health marker and grab it

9 Pass through the final corridor

10 Hit the Gong

11 Stop and don’t move anymore

17

	Introduction
	Related Work
	Preliminaries
	Theoretical Analysis
	Experiments
	Environments
	Algorithms
	Sample Efficiency Gains for 2D Navigation
	Future Conditioning as a Variance Reduction Opportunity
	Sample Efficiency Gains in a 3D World

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2

	Details for 2D Navigation Environment and Experiments
	Additional Environment Details
	Dataset Details
	Hyperparameter Search

	Details for Complex Task in 3D-World
	Dataset Details
	Additional Environment Details
	Evaluation Protocol
	Additional Algorithmic Details
	Vision encoder
	Grid search

