
Proceedings of Machine Learning Research vol 284:1–19, 2025 19th Conference on Neurosymbolic Learning and Reasoning

Neurosymbolic Learning in Structured Probability Spaces: A
Case Study

Ole Fenske ole.fenske@uni-rostock.de

Sebastian Bader sebastian.bader@uni-rostock.de

Thomas Kirste thomas.kirste@uni-rostock.de

Hybrid Methods for Artificial Intelligence and Machine Learning, University of Rostock, Germany

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

This paper examines the impact of neurosymbolic learning on sequence analysis in Struc-
tured Probability Spaces (SPS), comparing its effectiveness against a purely neural ap-
proach. Sequence analysis in SPS is challenging due to the combinatorial explosion of
states and the difficulty of obtaining sufficient annotated training samples. Additionally,
in SPS, the set of realizations with non-zero support is often a scattered, non-trivial subset
of the Cartesian product of variables, adding complexity to learning and inference. The
problem of sequence analysis in SPS emerges, for example, in reconstructing the activities
of goal-directed agents from noisy and ambiguous sensor data. We explore the potential
of neurosymbolic methods, which integrate symbolic background knowledge with neural
learning, to constrain the hypothesis space and improve learning efficiency. Specifically, we
conduct a simulation study in human activity recognition using DeepProbLog as a repre-
sentative for neurosymbolic learning. Our results demonstrate that incorporating symbolic
knowledge improves sample efficiency, generalization, and zero-shot learning, compared to
a purely neural approach. Furthermore, we show that neurosymbolic models maintain ro-
bust performance under data scarcity while offering enhanced interpretability and stability.
These findings suggest that neurosymbolic learning provides a promising foundation for se-
quence analysis in complex, structured domains, where purely neural approaches struggle
with insufficient training data and limited generalization ability.

1. Introduction

In this paper, we compare the efficiency of neurosymbolic vs. purely neural sequence mod-
eling in Structured Probability Spaces (SPS). Such spaces often contain combinatorial or
highly structured objects, making probabilistic filtering challenging due to complex dynam-
ics and high space complexity. A notable example is Human Activity Recognition (HAR),
where internal structure and temporal dependencies increase difficulty. While purely neural
methods have shown success in HAR (Minh Dang et al., 2020; Chen et al., 2021), they typ-
ically require extensive labeled data—problematic in applications with limited annotation.
To mitigate data scarcity, domain-specific background knowledge can be leveraged. Past
work (Krüger et al., 2013, 2014) has used symbolic knowledge for inference in SPS, yet
these methods rarely integrate deep learning components that excel at modeling complex
observations. DeepProbLog (Manhaeve et al., 2018) now addresses this gap, combining
neural and symbolic-probabilistic approaches.
Our study uses DeepProbLog (and a purely neural baseline) to explore three core learn-
ing abilities important for SPS: Sample Efficiency, Generalizability and Zero-Shot Learning.

© 2025 O. Fenske, S. Bader & T. Kirste.

Fenske Bader Kirste

The remainder of this paper is organized as follows: Section 2 outlines learning in SPS. Sec-
tion 3 introduces DeepProbLog as a framework for neurosymbolic AI. Section 4 presents
our application scenario and method. Section 5 discusses the experiments and findings.
Finally, Section 6 concludes and proposes future work.

2. Learning in Structured Probability Spaces

Many real-world systems—ranging from route planning to goal-directed human activi-
ties—exhibit structurally constrained dynamics. In such Structured Probability Spaces
(SPS), valid state transitions follow specific rules. This means that valid state sequences
are a small scattered subset of the Cartesian product over all sequences of state variables.
Therefore, learning in such spaces is challenging due to (1) the exponential growth of po-
tential state sequences and (2) the non-availability of annotated data on infeasible events,
which cannot occur in practice.

2.1. Logic vs. Deep Learning

Logic-based approaches, especially those integrating probabilistic reasoning (e.g., PSDDs
(Kisa et al., 2014), ProbLog (De Raedt et al., 2007) or CCBM (Krüger, 2016)), leverage
domain knowledge to limit the hypothesis space, leading to more efficient inference. For
instance, Krüger et al. (2014) showed that such an approach can scale to large state spaces,
containing more than 108 states. Their CCBM system (Krüger, 2016) uses the Planning Do-
main Definition Language to constrain the search space to valid states only. Such methods
offer efficient inference (constraining valid events reduces computational overhead) and en-
hanced interpretability (explicit domain knowledge illuminates system behavior). However,
they typically require detailed manual modeling and cannot automatically learn features
from raw sensor data.
Neural network models (e.g., CNNs, RNNs) in contrast, excel at extracting features
from raw sensor data (Chen et al., 2021; Wan et al., 2020), showing success in recognizing
activities from noisy sensor data. Unified models combine multiple neural architectures to
classify simple and complex activities simultaneously (Huan et al., 2022; Mekruksavanich
et al., 2022a,b; Bouton-Bessac et al., 2023), whereas separated models first detect simpler
actions and then infer more complex activities (Peng et al., 2018; Cheng et al., 2018; Chen
et al., 2023) from the simpler ones. While these methods automate feature learning, they
rely on large datasets, which is often impractical in domains with annotation scarcity. Fur-
thermore, they ignore domain constraints, thus failing to exploit structural knowledge which
can hinder generalization and interpretability of such systems.

2.2. Motivation for a Neurosymbolic Approach

As can be seen, both approaches (Logic and Deep Learning) complement each other in their
strengths and weaknesses. Neurosymbolic (NeSy) AI merges these paradigms, aiming to:
(1) Improve sample efficiency by incorporating domain rules, (2) enhance generalization
via structural constraints and (3) increase robustness and interpretability, bridging the gap
between explicit reasoning and automatic feature learning.
These claims are also supported by Darwiche (2016), who frames such an integration as

2

NeSy4SPS

”learning from data and knowledge”. Additionally, he argues that logic can also be used
for factoring the respective structured probability space into a tractable representation,
allowing not only learning but also reasoning in a more efficient way. This synergy promises
more robust learning in SPS, prompting our comparative investigation of neurosymbolic
methods versus purely neural baselines.

3. DeepProbLog in a Nutshell

DeepProbLog (Manhaeve et al., 2018) is a framework for NeSy-AI and extends the prob-
abilistic logic language ProbLog (De Raedt et al., 2007) by integrating neural predicates
directly into the ProbLog language. This allows neural networks to provide probability
estimates for specific logical facts, merging data-driven feature learning with probabilistic
symbolic reasoning.

3.1. From Prolog to ProbLog

Prolog is a logic programming language that uses facts and rules (e.g., a. b :- a.) to
determine whether a query (e.g., b.) follows from a program. ProbLog adds probabilistic
annotations to Prolog facts, inducing a probability distribution over all “deterministic”
programs. Consider the ProbLog program L = “0.7::a. b:-a.” This represents the
idea that the fact a is contained with probability 0.7 in the program. The two resulting
deterministic programs, are given by a: L{a} = “a. b:-a.” and a: L{} = “b:-a.”. The
probability of a query for the given program being true is then computed by summing over
all deterministic programs where the query holds, weighted by their respective probabilities.
A more detailed explanation about the syntax and semantics of ProbLog is provided in
Appendix A.

3.2. Neural Predicates in DeepProbLog

DeepProbLog extends ProbLog by connecting a neural network’s outputs to probabilis-
tic facts in a ProbLog program. Consider a classification problem where O is a set of
observations, X = {x1, . . . , xC} a set of C class labels, and P (x | o) the probability that
observation o ∈ O is of class x ∈ X . For a vector of observations o = o1:T , ot ∈ O, we
could take the probabilities θtc = P (xc | ot) and then use these probabilities (which sum
to one for a given t) to define a so-called annotated disjunction (AD) for each t, given
by θt1::class(t,x1); . . . θtC::class(t,xC). Such an AD declares that the C facts are
mutually exclusive; exactly one of them is contained in a deterministic program. The fact
class(t,xc) states that observation ot is of class xc. The value θtc is the probability that
this fact holds. Computing the values θtc can in principle be performed in a preprocessing
step, which generates a list of T annotated disjunctions (with C elements each) that are
added to the rest of the ProbLog program prior to further processing. (Indeed, the values
θtc can be pictured as a T by C matrix, one row for each observation, one column for each
class label.)
This concept is implemented in DeepProbLog by so-called neural annotated disjunctions
(nADs). Assume there is a function O(o), given by a neural network, that produces a
parameter matrix (θtc) from an observation vector o. A nAD using O is then declared by:

3

Fenske Bader Kirste

nn(O,[Ot],Xc,[x1,. . .,xC])::class(Ot,Xc).

The list [x1,. . .,xC] labels the columns of the θtc matrix. This nAD is then replaced by
its respective AD when DeepProbLog grounds a program with respect to a query. In
this way DeepProbLog seamlessly embeds neural predictions (e.g., from CNNs or RNNs)
into a larger probabilistic-symbolic model, enabling end-to-end neurosymbolic inference and
learning. For further details about learning in DeepProbLog see Appendix B.

4. Method

We demonstrate how DeepProbLog can leverage symbolic domain knowledge alongside
neural inference. After outlining a simplified indoor activity scenario, we show how to
encode it within DeepProbLog and discuss the resulting probabilistic model.

4.1. Example domain

We adapt the scenario from Krüger et al. (2012), where a single person performs tasks in a
small room (see Figure 1). The user’s goals—printing documents and making coffee—must
follow certain constraints (e.g., carrying only one item at a time, ensuring that printer and
coffee machine are refilled with paper or water). The state of the system is defined by
multiple state variables:

• Location L∈{door,paper stack,printer,water tap,coffee machine}

• Printed status P∈{printed,notPrinted}

• what the user holds H∈{nothing,paper,water,coffee}

• Status of printer PP∈{paper,noPaper}

• Status of coffee machine MW∈{water,noWater}

The user can perform several actions: go to another location, fetching paper or water,
replenish paper or water, making coffee or simply doing nothing. In total the user can
apply 12 actions (5 actions for going to another location and the 7 actions that can be
performed at the different locations). For each state of the system, the user can apply
exactly 5 of these 12 actions (go to the other 4 locations or 1 of the location dependent
actions). Moreover, we simulate low-resolution sensor data (1-channel 8x8 thermal images)
to indicate the person’s position, focusing on how to robustly model action sequences rather
than handling high-dimensional inputs. An example of such sensor data can be seen in
Figure 2.

4.2. Implementation in DeepProbLog

To encode this domain, we define a state(L,P,H,PP,MW) predicate which variables are
equivalent to the state variables already defined for our domain. The actions in our do-
main can be described by precondition-effect rules used in the Planning Domain Definition
Language (PDDL). The print action for example is defined in PDDL as follows:

4

NeSy4SPS

Figure 1: Floor plan of the room with lo-
cations and applicable actions.

Figure 2: A data sample with three thermal
images.

(: a c t i on p r i n t
: p r e cond i t i on (and

(not pr in ted)
(has p r i n t e r paper)
(at p r i n t e r))

: e f f e c t (pr in ted))

To implement such a precondition-effect rule in DeepProbLog we use a simple predicate
action(AT,ST1,ST), where AT describes the name of the corresponding action, ST1 defines
how the world has to look like to apply the action AT (=preconditions) and ST describes
how the world changes after applying AT (=effect). For our print action the corresponding
predicate in DeepProbLog looks like the following:

ac t i on (pr int ,
s t a t e (p r in t e r , notPrinted ,H, hasPaper ,MW) ,
s t a t e (p r in t e r , pr inted , H, hasPaper ,MW)) .

In general the action predicates are deterministic. This means that we can apply exactly
one action for every situation (combination of old state ST1 and new state ST) we can
encounter. In contrast, the observations (in our case location L) we make are probabilistic
in nature and draw their distribution directly from a concrete sensor measurement yt. For
this purpose we use a neural annotated disjunction to implement a predicate that defines a
probability distributions over possible observations in DeepProbLog:

nn(net ,YT,L , [door , paperStack , p r in t e r , waterTap , co f f eeMachine]) : : obs (T,YT,L) .

As it can be seen, the nAD maps a thermal image YT to a location L. A simple CNN net (de-
tailed in Subsection 5.2) outputs the probabilities for the labels of L, which DeepProbLog
then treats as the probabilities of the corresponding facts obs(T,YT,L).

5

Fenske Bader Kirste

To compute the probabilities over final states P (ST |y1:T , s0) we use the following recursive
rule:

f i l t e r (0 , [] , s t a t e (door , notPrinted , nothing , noPaper , noWater)) .

f i l t e r (T , [YT|YS] ,ST):−
T1 i s T−1,
f i l t e r (T1 ,YS, ST1) ,
a c t i on (AT, ST1 ,ST) ,
ST == s t a t e (L , , , ,) ,
obs (T,YT,L) .

The filter(0,[],...) predicate defines the initial state s0 of the system. The recursive
rule filter(T,[YT|YS],ST) is then just unrolled and aligns the single actions AT with the
observed location L in obs(T,YT,L) by enforcing equality of the location in state ST (which
results from applying AT for state ST1) with the observed location. For additional details
what kind of probabilistic model results from this approach, please see Appendix C.

5. Evaluation

We designed three experiments to compareDeepProbLog with a purely neural CNN-RNN
baseline in our Structured Probability Space (SPS) domain. Each experiment highlights a
different learning challenge: sample efficiency, generalization, and zero-shot learning.

5.1. Task and Hypotheses

All experiments use a 3-step prediction task. We start from a known state s0 (as given by
filter(0,[],state(door,notPrinted,nothing,noPaper,noWater))). As already men-
tioned in this model, each state allows a subset of five actions. After three steps, this yields
125 possible action sequences which can result in 15 possible final states. Depending on
the experiment we either want to compute the distribution over final states or over possible
action sequences.
We examine three hypotheses tied to key learning properties:

1. H1 (Sample Efficiency): Adding symbolic constraints reduces the data required to
achieve a given performance level.

2. H2 (Generalizability): When symbolic knowledge is present, the system is still able
to correctly recognize final states for which a certain amount of action sequences have
been removed from train data.

3. H3 (Zero-Shot Learning): The model recognizes final states that never appeared in
training, provided it has seen training samples for all possible observations and has
symbolic knowledge.

5.2. Experimental Setup

Data. We generated 3750 synthetic training samples for each experiment. As we have 125
possible action sequences and 15 final states this equals to 30 samples for each sequence
or 250 samples for each final state (depending on the experiment). Each training sample

6

NeSy4SPS

consists of three thermal images and is associated with the states and the underlying action
sequence (as can be seen in Figure 2). Depending on the hypothesis tested, we remove/with-
hold certain sequences or states from the training set in a controlled manner. The test set is
generated independently for each experiment and contains in total 750 samples (6 samples
for each action sequence).
Models. Our DeepProbLog model uses a CNN which processes each thermal image,
yielding probabilities over five possible locations (door, printer, etc.). The symbolic part
then uses logical predicates to constrain which actions and state transitions are valid, ef-
fectively filtering out impossible sequences. The final state distribution is computed by
unrolling these transitions over three time steps. The CNN-RNN baseline model uses a
slightly different CNN that extracts a latent representation from each image. An RNN then
models sequential dependencies directly in a purely neural way, predicting the final state
distribution after three steps. This setup allows direct comparison of how symbolic knowl-
edge affects performance on various data reduction scenarios. A more detailed description
of the used neural networks can be found in Appendix D.
Hyperparameters. For training both models we use a learning rate of 0.001 and early
stopping with a patience of 4. The model training for a respective train set is repeated five
times by using different seeds for initializing its weights before training. The performance
after a single training session is measured by the Macro-F1-Score on the respective test set.
As we execute training multiple times with different initial weights, we then take the mean
of the resulting Macro-F1-Scores and also compute its standard deviation.

5.3. Experiment 1: Sample Efficiency

Figure 3: Results of experiment 1 using our DeepProbLog (DPL) approach and a CNN-
RNN baseline model.

Objective of this experiment is to test H1, which concerns the effect of background knowl-
edge in sample efficiency. Specifically, we assume that the neurosymbolic model requires less
training data than the neural model in order to reach optimal performance. To test this, we
remove increasing amounts of training data and monitor the resulting model performance.

7

Fenske Bader Kirste

Procedure. We start with a train set with 30 samples for each action sequence. We re-
moved 5 samples at a time until 10 only remain. Afterwards we decrease the number of
sample for each action sequence by 1 until only 5 remain. Both models are retrained and
tested for each of the reduced train datasets. The test set remains untouched.
Results. In Figure 3 we can see the results for both approaches. The x-axis shows how
many samples for each sequence are excluded from the train set and the y-axis displays
the Mean Macro-F1-Score on the test set. As it can be seen DeepProbLog maintains a
high Macro-F1-Score even with 25 of 30 training samples removed for each action sequence
(which equals 16.6% of the initial train data set). The CNN-RNN’s Macro-F1-Scores start
to drop notably as only 50% of all training samples are removed. Thus, H1 is supported:
symbolic constraints help preserve performance under limited data. Moreover, the standard
deviations show that DeepProbLog is more stable across random weight initializations,
suggesting that the addition of symbolic knowledge not only aids sample efficiency, but also
stability of the model.

5.4. Experiment 2: Generalizability

Figure 4: Results of experiment 2 using our DeepProbLog (DPL) approach and a CNN-
RNN baseline model.

Objective of this experiment is to test H2, concerning the generalization ability. Specifically,
we assume that the neurosymbolic model is better able to correctly recognize final states
for which a certain amount of action sequences have been removed from train data. To test
this, we remove an increasing amount of sequences from the training data for each final
state and monitor model performance on all final states.
Procedure. As in experiment 1 we start with the complete train data. We increase the
percentage of withhold action sequences for each final state from the train data by 10% until
we removed 90% of all sequences. Afterwards, we delete 95% and 99% of all sequences. In
this experiment we additionally vary the seeds used for removing a certain percentage of
sequences to eliminate the possibility of good or bad performance due to a bad deletion
order. As in experiment 1 both models are retrained and tested for each of the reduced

8

NeSy4SPS

train datasets and the test set remains untouched.
Results. In Figure 4 we can see the results for this experiment. DeepProbLog consis-
tently performed well, even with 99% of all sequences removed from the train set. The
performance of the CNN-RNN approach starts to degrade as 50% of all sequences are re-
moved. It even becomes worse when 70% of all sequences are deleted from the training
data. Based on these results we can confirm H2: symbolic domain knowledge aids in infer-
ring valid transitions despite missing entire action sequences. Moreover, variance analyses
indicated that the CNN-RNN’s initial parameter seed had a large effect on final perfor-
mance, whereas DeepProbLog was not sensitive to its initial weights, thus supporting the
same claim already made in Experiment 1.

5.5. Experiment 3: Zero-Shot learning

Figure 5: Results of experiment 3 using our DeepProbLog (DPL) approach and a CNN-
RNN baseline model.

The third experiment tests hypothesis H3. In this context we want to analyse how well a
model can recognize final states that never appeared in the training data. To this end we
systematically remove complete final states from the training set. Through this procedure,
we can analyze the zero-shot learning abilities of both models for previously unseen final
states.
Procedure. We start with a training data set that consists of 15 final states with 250
samples for each state. We then remove one final state (with all of their samples) after the
other, until only 1 final state remains in the train set. Both models are then retrained for
each of the reduced train sets and tested on a separate test set which still contains samples
for all valid final states and remains untouched throughout the whole experiment.
Results. In Figure 5 we can see the overall results for this experiment. DeepProbLog can
successfully identify unseen final states, provided all relevant location observations appear
somewhere in the training data. DeepProbLog ’s accuracy starts to decrease when only 2
final states are left. This happens because the two final states do no longer contain sensor
data for all 5 location observations we can make. Nevertheless, the CNN-RNN struggled

9

Fenske Bader Kirste

right from the beginning and its performance decreases linear with the amount of removed
final states, likely because it attempts to learn a direct mapping from sensor data sequences
to final states without paying attention to the logical constraints inherent in the domain.
Overall, we conclude H3 holds, especially when training data retain coverage of all possible
observations.

5.6. Summary and Limitations

From the experiments we can conclude that neurosymbolic learning in general is well suited
for learning within SPS. The symbolic knowledge helps in limiting the hypotheses space
to the space of possible events only and therefore can increase sample efficiency as shown
with experiment 1. Moreover, the use of symbolic knowledge helps with generalizing to pre-
viously unseen action sequences and states by allowing the learner to focus on extracting
observations from the raw sensor data rather than also learning the constraints inherent in
an SPS. Experiment 2 and 3 have shown this.
Nevertheless, our studies also have some limitations. First, we used a fairly simple and
small domain which only consists of 125 states and 12 actions, as it is well known that
DeepProbLog (as many other NeSy approaches) has scalibility issues (it has to unroll the
respective SPS completely in time to process a query). However, this issue is addressed by
the recently published Relational Neurosymbolic Markov Models (NeSy-MMs) (Smet et al.,
2024), which marginalize over previous time steps. Therefore, future work could apply
this technique to more complex scenarios, such as the one used by Krüger et al. (2014),
to see how well NeSy-AI can already scale to real-world scenarios. Second, the modeling
task itself can also quickly become more complicated (and therefore error-prone) when an-
alyzing such bigger domains. This calls for methods that can automatically extract such
models from, for example, textual data (Stoev et al., 2023), which could be combined with
NeSy-AI approaches. Last, our study only includes DeepProbLog as a representative for
neurosymbolic learning, as we want to show how NeSy-AI can tackle the different challenges
related to learning within SPS. Although, comparing a broader range of NeSy system (e.
g. DeepSeaProbLog (Smet et al., 2023), Logic Neural Networks (Riegel et al., 2020), Logic
Tensor Networks (Badreddine et al., 2022), etc.) against each other for different problem se-
tups (e.g. discrete-continuous, sequential, SPS, etc.) could highlight new insights regarding
which approach is best suited for what kind of environment/task.

6. Conclusion

In this paper, we explored the benefits of neurosymbolic learning in SPS. By using Deep-
ProbLog as a representative for neurosymbolic learning, we have shown how such a system
can be used for the task of sequential state estimation from noisy sensor data. Moreover,
through controlled experiments, we evaluated multiple learning hypotheses and compared
the NeSy approach with a purely neural baseline, highlighting the advantages of incorporat-
ing symbolic knowledge into the learning process and inference. Future work could address
the points outlined in Subsection 5.6, such as testing more sophisticated approaches for
larger domains or extracting symbolic knowledge automatically from data. Overall, this
paper contributes towards the direction of using NeSy-AI for inference and learning in SPS,
thus paving the way for more intelligible recognition systems.

10

NeSy4SPS

References

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. 303:103649, 2022. ISSN 0004-3702. doi: 10.1016/j.artint.2021.103649.
URL https://www.sciencedirect.com/science/article/pii/S0004370221002009.

Emma Bouton-Bessac, Lakmal Meegahapola, and Daniel Gatica-Perez. Your day in your
pocket: Complex activity recognition from smartphone accelerometers. In Athana-
sios Tsanas and Andreas Triantafyllidis, editors, Pervasive Computing Technologies for
Healthcare, pages 247–258. Springer Nature Switzerland, 2023. ISBN 978-3-031-34586-9.
doi: 10.1007/978-3-031-34586-9 17.

Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu. Deep
Learning for Sensor-based Human Activity Recognition: Overview, Challenges, and Op-
portunities. ACM Computing Surveys, 54(4):77:1–77:40, May 2021. ISSN 0360-0300. doi:
10.1145/3447744. URL https://dl.acm.org/doi/10.1145/3447744.

Xinchao Chen, Meng Li, Dong Wang, Renzhuo Wang, Jiaqi Zeng, and Zhikai
Xu. A CNN-LSTM-based dual-task neural network for power operator ac-
tivity detection. In 2023 International Conference on Advances in Elec-
trical Engineering and Computer Applications (AEECA), pages 388–392,
2023. doi: 10.1109/AEECA59734.2023.00075. URL https://ieeexplore.

ieee.org/abstract/document/10512096?casa_token=z7FRaPk3p94AAAAA:

iXltdI-SpCS5utK2C3ujtqXwp8Ten0WMRc0HriWH2EmqgEfSqYDIYL6ZqYAcqltk7EONbQXzGQ.

Weihao Cheng, Sarah Erfani, Rui Zhang, and Kotagiri Ramamohanarao. Predicting com-
plex activities from ongoing multivariate time series. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, IJCAI’18, pages 3322–3328. AAAI
Press, 2018. ISBN 978-0-9992411-2-7.

Adnan Darwiche. Three modern roles for logic in AI. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS’20,
pages 229–243. Association for Computing Machinery, 2016. ISBN 978-1-4503-7108-7. doi:
10.1145/3375395.3389131. URL https://dl.acm.org/doi/10.1145/3375395.3389131.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: a probabilistic prolog and
its application in link discovery. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 2468–2473, San Francisco, CA, USA, 2007.
Morgan Kaufmann Publishers Inc. event-place: Hyderabad, India.

Ruohong Huan, Chengxi Jiang, Luoqi Ge, Jia Shu, Ziwei Zhan, Peng Chen,
Kaikai Chi, and Ronghua Liang. Human complex activity recognition
with sensor data using multiple features. 22(1):757–775, 2022. ISSN
1558-1748. doi: 10.1109/JSEN.2021.3130913. URL https://ieeexplore.

ieee.org/abstract/document/9627702?casa_token=pC7VqBLFhbcAAAAA:

VJhum8rOjfbo4-n7sREDhubOl0kPyUvfeNRntPAaMODkFFLKNM5NiLR5aE24IyZ77WqeyZQ9Xg.
Conference Name: IEEE Sensors Journal.

11

https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://dl.acm.org/doi/10.1145/3447744
https://ieeexplore.ieee.org/abstract/document/10512096?casa_token=z7FRaPk3p94AAAAA:iXltdI-SpCS5utK2C3ujtqXwp8Ten0WMRc0HriWH2EmqgEfSqYDIYL6ZqYAcqltk7EONbQXzGQ
https://ieeexplore.ieee.org/abstract/document/10512096?casa_token=z7FRaPk3p94AAAAA:iXltdI-SpCS5utK2C3ujtqXwp8Ten0WMRc0HriWH2EmqgEfSqYDIYL6ZqYAcqltk7EONbQXzGQ
https://ieeexplore.ieee.org/abstract/document/10512096?casa_token=z7FRaPk3p94AAAAA:iXltdI-SpCS5utK2C3ujtqXwp8Ten0WMRc0HriWH2EmqgEfSqYDIYL6ZqYAcqltk7EONbQXzGQ
https://dl.acm.org/doi/10.1145/3375395.3389131
https://ieeexplore.ieee.org/abstract/document/9627702?casa_token=pC7VqBLFhbcAAAAA:VJhum8rOjfbo4-n7sREDhubOl0kPyUvfeNRntPAaMODkFFLKNM5NiLR5aE24IyZ77WqeyZQ9Xg
https://ieeexplore.ieee.org/abstract/document/9627702?casa_token=pC7VqBLFhbcAAAAA:VJhum8rOjfbo4-n7sREDhubOl0kPyUvfeNRntPAaMODkFFLKNM5NiLR5aE24IyZ77WqeyZQ9Xg
https://ieeexplore.ieee.org/abstract/document/9627702?casa_token=pC7VqBLFhbcAAAAA:VJhum8rOjfbo4-n7sREDhubOl0kPyUvfeNRntPAaMODkFFLKNM5NiLR5aE24IyZ77WqeyZQ9Xg

Fenske Bader Kirste

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic sen-
tential decision diagrams. In Proceedings of the Fourteenth International Conference on
Principles of Knowledge Representation and Reasoning, KR’14, pages 558–567. AAAI
Press, 2014. ISBN 978-1-57735-657-8.

Frank Krüger. Activity, context and intention recognition with computational causal be-
havior models, 2016. Published: seit 11/09.

Frank Krüger, Alexander Steiniger, Sebastian Bader, and Thomas Kirste. Evaluating the
robustness of activity recognition using computational causal behavior models. In Pro-
ceedings of the International Workshop on Situation, Activity and Goal Awareness held
at Ubicomp 2012, pages 1066–1074. ACM, 2012. doi: 10.1145/2370216.2370443.

Frank Krüger, Kristina Yordanova, Albert Hein, and Thomas Kirste. Plan synthesis for
probabilistic activity recognition. In Proceedings of the 5th International Conference on
Agents and Artificial Intelligence (ICAART 2013), pages 283–288, 2013. doi: 10.5220/
0004256002830288.

Frank Krüger, Martin Nyolt, Kristina Yordanova, Albert Hein, and Thomas Kirste. Com-
putational state space models for activity and intention recognition. a feasibility study.
9(11):e109381, 2014. doi: 10.1371/journal.pone.0109381.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester,
and Luc De Raedt. DeepProbLog: Neural Probabilistic Logic Program-
ming. In Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://papers.nips.cc/paper/2018/hash/

dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html.

Sakorn Mekruksavanich, Anuchit Jitpattanakul, Sakorn Mekruksavanich, and Anuchit Jit-
pattanakul. RNN-based deep learning for physical activity recognition using smartwatch
sensors: A case study of simple and complex activity recognition. 19(6):5671–5698,
2022a. ISSN 1551-0018. doi: 10.3934/mbe.2022265. URL http://www.aimspress.

com/article/doi/10.3934/mbe.2022265. Cc license type: cc by Number: mbe-19-06-
265 Primary atype: Mathematical Biosciences and Engineering Subject term: Research
article Subject term id: Research article.

Sakorn Mekruksavanich, Anuchit Jitpattanakul, Kanokwan Sitthithakerngkiet, Phichai
Youplao, and Preecha Yupapin. ResNet-SE: Channel attention-based deep residual net-
work for complex activity recognition using wrist-worn wearable sensors. 10:51142–
51154, 2022b. ISSN 2169-3536. doi: 10.1109/ACCESS.2022.3174124. URL https:

//ieeexplore.ieee.org/abstract/document/9771436. Conference Name: IEEE Ac-
cess.

L. Minh Dang, Kyungbok Min, Hanxiang Wang, Md. Jalil Piran, Cheol Hee Lee, and
Hyeonjoon Moon. Sensor-based and vision-based human activity recognition: A compre-
hensive survey. 108:107561, 2020. ISSN 0031-3203. doi: 10.1016/j.patcog.2020.107561.
URL https://www.sciencedirect.com/science/article/pii/S0031320320303642.

12

https://papers.nips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
https://papers.nips.cc/paper/2018/hash/dc5d637ed5e62c36ecb73b654b05ba2a-Abstract.html
http://www.aimspress.com/article/doi/10.3934/mbe.2022265
http://www.aimspress.com/article/doi/10.3934/mbe.2022265
https://ieeexplore.ieee.org/abstract/document/9771436
https://ieeexplore.ieee.org/abstract/document/9771436
https://www.sciencedirect.com/science/article/pii/S0031320320303642

NeSy4SPS

Liangying Peng, Ling Chen, Zhenan Ye, and Yi Zhang. AROMA: A deep multi-task learning
based simple and complex human activity recognition method using wearable sensors. 2
(2):74:1–74:16, 2018. doi: 10.1145/3214277. URL https://dl.acm.org/doi/10.1145/

3214277.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Is-
mail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma,
Shajith Ikbal, Hima Karanam, Sumit Neelam, Ankita Likhyani, and Santosh Srivastava.
Logical neural networks. 2020. URL http://arxiv.org/abs/2006.13155.

Lennert De Smet, Pedro Zuidberg Dos Martires, Robin Manhaeve, Giuseppe Marra, An-
gelika Kimmig, and Luc De Readt. Neural probabilistic logic programming in discrete-
continuous domains. In Proceedings of the Thirty-Ninth Conference on Uncertainty in
Artificial Intelligence, pages 529–538. PMLR, 2023. URL https://proceedings.mlr.

press/v216/de-smet23a.html. ISSN: 2640-3498.

Lennert De Smet, Gabriele Venturato, Luc De Raedt, and Giuseppe Marra. Relational
neurosymbolic markov models, 2024. URL http://arxiv.org/abs/2412.13023.

Teodor Stoev, Tomasz Sosnowski, and Kristina Yordanova. A tool for automated generation
of domain specific symbolic models from texts. In 2023 IEEE International Conference
on Pervasive Computing and Communications Workshops and other Affiliated Events
(PerCom Workshops), pages 276–278, 2023. doi: 10.1109/PerComWorkshops56833.2023.
10150252. URL https://ieeexplore.ieee.org/abstract/document/10150252. ISSN:
2766-8576.

Shaohua Wan, Lianyong Qi, Xiaolong Xu, Chao Tong, and Zonghua Gu. Deep learning
models for real-time human activity recognition with smartphones. 25(2):743–755, 2020.
ISSN 1572-8153. doi: 10.1007/s11036-019-01445-x. URL https://doi.org/10.1007/

s11036-019-01445-x.

13

https://dl.acm.org/doi/10.1145/3214277
https://dl.acm.org/doi/10.1145/3214277
http://arxiv.org/abs/2006.13155
https://proceedings.mlr.press/v216/de-smet23a.html
https://proceedings.mlr.press/v216/de-smet23a.html
http://arxiv.org/abs/2412.13023
https://ieeexplore.ieee.org/abstract/document/10150252
https://doi.org/10.1007/s11036-019-01445-x
https://doi.org/10.1007/s11036-019-01445-x

Fenske Bader Kirste

Appendix A. Probabilistic Syntax and Semantics of ProbLog

ProbLog extends Prolog syntax by allowing to annotate facts with probabilities. Con-
sider the ProbLog program L = “0.7::a. b:-a.” This represents the idea that the fact
a is contained with probability 0.7 in the program. Such a program is called a probabilistic
logic program. The semantics of the probabilistic program L is a probability distribution
over queries. This can be explained as follows: ProbLog (conceptually) creates two de-
terministic programs, one including the probabilistic fact a: L{a} = “a. b:-a.” and one
without a: L{} = “b:-a.”. The probabilities for these programs are given by the probabil-
ity annotations of L: P (L{a}) = 0.7 and P (L{}) = 0.3. The probability that a query q is a
logical consequence of L is then simply given by P (L |= q) = 0.7 · [L{a} |= q]+0.3 · [L{} |= q].
For instance, P (“b.”) = 0.7 · [L{a} |= “b.”] + 0.3 · [L{} |= “b.”] = 0.7 · 1 + 0.3 · 0 = 0.7.

In general, let L be a ProbLog program with K annotated facts θk::αk, with A =
{α1, . . . αK} being the set of all such facts. Let α ⊆ A, be a subset of these facts. Then

the probability of this choice is given by πα =
∏K

k=1 θ
[αk∈α]
k · (1 − θk)

[αk ̸∈α]. The 2K

choices α ⊆ A enumerate all deterministic programs Lα that can be generated from L.
By construction,

∑
α⊆A πα = 1. So, π is a sound distribution over the Lα. If we consider

“L |= q” as a Boolean random variable and L as a random variable with realizations Lα,
we obtain:

P (L |= q) =
∑
α⊆A

P (L |= q, L=Lα)

=
∑
α⊆A

P (L |= q |L=Lα) · P (L=Lα)

=
∑
α⊆A

[Lα |= q] · πα.

(1)

Eq. (1) suggests the following procedure. Using a suitable inference method, such as
Prolog, we compute [Lα |= q] for all realizations Lα of L and sum the weighted results.
However, this procedure clearly is very inefficient. To solve this, ProbLog transforms (1)
into an arithmetic circuit that provides efficient evaluation (see (De Raedt et al., 2007)).

Appendix B. Parameter learning in DeepProbLog

In a probabilistic logic program with K parameters θ = θ1:K , it may be of interest to
estimate these parameters from training data. In DeepProbLog, gradient descent is used.
We here discuss, how this is realized.

B.1. Finding the Objective

Eq. (1) introduced P (L |= q), the function defined by a ProbLog program L for a query
q. We now write this as Pq(θ) to make explicit its dependence on the parameters. In the
previous section, we have introduced the parameter computation O(o), which itself may also
depend on a parameter vector ϕ. Here, we also make the parameter dependence explicit by
writing Oo(ϕ).

14

NeSy4SPS

To simplify things, let us assume that Oo(ϕ) produces all parameters required by Pq

(maybe simply by passing some values of ϕ unchanged to its output). Parameter estimation
thus can focus on ϕ.

For a given query q with associated observation vector oq, DeepProbLog uses ϕ to
compute ûq, an estimate of the true probability uq of q being a logical consequence of L, by

ûq = (Pq ◦Ooq)(ϕ) (2)

B.2. The Loss Function

The probability that q is the logical consequence of a random program sampled from L is
described by a Bernoulli random variable with distribution parameter uq. The value ûq
approximates uq. If uq is the training target, we can use the objective of minimizing the
Kullback-Leibler divergence between the target distribution defined by uq and the estimated
distribution given by ûq. This is achieved by minimizing the cross entropy. For two Bernoulli
random variables with parameters u and û, this is h(u, û) = u · log û+ (1− u) · log(1− û).
Writing this as hu(û) and combining it with (2) gives the complete objective:

Jq,uq ,oq(ϕ) = (

loss︷ ︸︸ ︷
huq ◦ Pq ◦Ooq)(ϕ) (3)

The composition huq ◦ Pq contains the computation of the estimated probability of q being
a logical consequence and the comparison of this estimate to a target probability via cross
entropy. From the viewpoint of the neural network O, this composite simply constitutes
the loss function.

B.3. The Training Loss

Given a sequence of N training triples (qn,on, un), we minimize the average loss:

J(ϕ) =
1

N

N∑
n=1

(

lossn︷ ︸︸ ︷
hun ◦ Pqn ◦Oon)(ϕ) (4)

Often, the target values un are simply 1 or 0, stating that qn has found to be true (or false)
in training data collection.

B.4. The Jacobian of J(ϕ)

The Jacobian of an objective function evaluated at the current parameter values is the
basis for parameter estimation by gradient descent. By the chain rule (and linearity of
differentiation), the Jacobian of J is

JJ(ϕ) =
1

N

N∑
n=1

Jlossn (θn)︷ ︸︸ ︷
Jhn(ûn) · JPn(θn) ·JOn(ϕ)︸ ︷︷ ︸

Jn(ϕ)

(5)

where Jhn is the Jacobian of hun (which is a simple scalar), JPn the Jacobian of Pqn , and
JOn the Jacobian of Oon , with θn = Oon(ϕ) and ûn = Pqn(θn).

15

Fenske Bader Kirste

B.5. Performing Training

JJ(ϕ) is computed as follows: For all samples (qn,on, un): (1) Compute θn = Oon(ϕ) by the
neural network (which also prepares for computing JOn(ϕ) by backward-mode autograd).
(2) Compute ûn = Pqn(θn) using the arithmetic circuit, giving also JPn(θn) by forward-
mode autograd. (3) Compute cross entropy hun(ûn) and Jacobian Jhn(ûn) = un

ûn
− 1−un

1−ûn
.

(4) Compute loss Jacobian Jlossn(θn) = Jhn(ûn) ·JPn(θn). (5) Push Jlossn(θn) back into the
neural network to get Jn(ϕ). (In PyTorch, this is done by torch.autograd.backward(θn,grad tensors=

Jlossn(θn)).) (6) Sum all Jn(ϕ) and divide by N . The whole training process can be also
seen in Figure 6.

Figure 6: The inference and learning process in DeepProbLog.

Appendix C. Probabilistic model of our approach

A Maximum-Entropy-Markov-Model is a simple Maximum-Entropy classifier (e. g. multi-
variate logistic regression) but adds additional dependencies/transitions between the latent
variables we want to predict. Therefore we assume that the unknown values Xt we want
to predict are organized in a Markov chain rather then being conditionally independent
from each other. This allows us to model the temporal dependencies, like in a HMM, but
reversing the causal relation between Xt and yt. The computation of P (XT |y0:T) can now
be done in the following way:

P (XT |y0:T) =
P (XT , y0:T)

P (y0:T)

=

∑
XT−1

P (XT , XT−1, y0:T)

P (y0:T)

=
∑
XT−1

P (XT |XT−1, yT)P (XT−1|y0:T−1)

=
∑

X0:T−1

T∏
t=0

P (Xt|Xt−1, yt)

16

NeSy4SPS

Our approach further extends this standard MEMM such that Xt itself is a Structured
Probability Space, meaning that it is composed of hidden random variables for the state
St, the applied action At and the observation Ot, which have several dependencies and
constraints. The state St for example depends on the applied action At and the former
state St−1. The action At whereas is dependent on the observation Ot and the former state
St−1. The observation itself only depends on yt (which is in our scenario a thermal image)
and has no other temporal dependencies. The resulting model can be seen at the right in
Figure 7.

Figure 7: (Left) A standard MEMM, (Right) Our extended version.

Furthermore, we introduce an additional random variable Ot which reflects the symbolic
observation we can derive from yt. Given the model in Figure 7, we can factor:

P (At|St−1, yt) =
∑
Ot

P (At, Ot|St−1, yt)

=
∑
Ot

P (At|Ot, St−1, yt)P (Ot|St−1, yt)

=
∑
Ot

P (At|Ot, St−1)P (Ot|yt)

where we assume that yt is continuous and Ot discrete in nature. Following the example
domain given in Subsection 4.1 yt represents a thermal image and Ot the location of the
person for time step t.
We now can factor P (ST |y1:T , s0) in the following fashion

P (ST |y1:T , s0) =
∑

S1:T−1,
A1:T ,
O1:T

T∏
t=1

P (St|St−1, At)P (At|Ot, St−1)P (Ot|yt)

17

Fenske Bader Kirste

letting DeepProbLog handle the summation over all possible worlds via probabilistic logic
inference. Therefore, this approach captures domain constraints (via symbolic rules) while
automatically learning needed features (via neural predicates) from data.

Appendix D. Model architectures

As already mentioned DeepProbLog and the baseline CNN-RNN approach both use a
convolutional neural network (CNN). The DeepProbLog CNN processes an 8×8 single-
channel input image and is structured as follows: The input image is first processed by a
2D convolutional layer that employs a 3×3 kernel with a padding of 1. This layer extracts a
set of feature maps, yielding an output tensor with dimensions 3x8x8 and uses ReLU as an
activation function. A subsequent max-pooling operation with a 2x2 kernel and a stride of 2
reduces the spatial resolution to 3x4x4. The reduced tensor is then passed through a second
2D convolutional layer, which is configured identically to the first. This operation expands
the feature representation, producing an output of size 6x4x4. A second max-pooling layer
is applied to further down-sample the tensor to dimensions 6x2x2. The resulting tensor
is flattened into a 24-dimensional vector. This vector is fed into a fully connected (feed-
forward) network that comprises a hidden layer with 12 neurons activated by the ReLU
function, followed by an output layer of 5 neurons, where the Softmax activation is used to
generate class probabilities.
For the baseline CNN-RNN model (which can be seen in Figure 10), the architecture of
the CNN slightly differs. As it can be seen in Figure 9 it also uses a 2D convolutional
layer that employs a 3×3 kernel with a padding of 1. This layer extracts a set of feature
maps, yielding an output tensor with dimensions 16x8x8. On this tensor the CNN applies
Batch Normalization, before applying the ReLU function. Afterwards the resulting tensor
is processed by a second 2D convolutional layer, which is configured identically to the first,
but uses 6 channels, thus resulting the tensor into 32x8x8 shape. This tensor is flattened
into a 2048 dimensional vector and reduced to 5 dimensions by a fully connected layer.
The CNN output serves as the input to a recurrent neural network (RNN) layer, which
consists of 15 neurons and contains a total of 315 trainable parameters. This RNN is
designed to capture temporal dependencies over the sequential data. The final hidden
state from the RNN is then transmitted to a linear layer with 15 neurons. Each neuron
in this layer corresponds to one of the 15 distinct final states that can be observed after
three discrete time steps. This detailed architecture ensures that the network is capable
of extracting robust spatial features (e. g. the position of the protagonist) and effectively
modeling temporal dynamics.

Figure 8: The architecture of the CNN used for the DeepProbLog model.

18

NeSy4SPS

Figure 9: The architecture of the CNN used for the CNN-RNN model.

Figure 10: The overall architecture of the CNN-RNN model.

19

	Introduction
	Learning in Structured Probability Spaces
	Logic vs. Deep Learning
	Motivation for a Neurosymbolic Approach

	DeepProbLog in a Nutshell
	From Prolog to ProbLog
	Neural Predicates in DeepProbLog

	Method
	Example domain
	Implementation in DeepProbLog

	Evaluation
	Task and Hypotheses
	Experimental Setup
	Experiment 1: Sample Efficiency
	Experiment 2: Generalizability
	Experiment 3: Zero-Shot learning
	Summary and Limitations

	Conclusion
	Probabilistic Syntax and Semantics of ProbLog
	Parameter learning in DeepProbLog
	Finding the Objective
	The Loss Function
	The Training Loss
	The Jacobian of J()
	Performing Training

	Probabilistic model of our approach
	Model architectures

