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Abstract
To detect unauthorized training data usage in train-
ing large-scale generative models, membership
inference attacks (MIAs) have proven effective
in distinguishing a single training instance (i.e., a
member) from a single non-training instance (i.e.,
a non-member). This success relies on a memo-
rization effect: Since models overfit training data,
they tend to perform better on a member than
a non-member. However, we find that standard
MIAs fail against distilled generative models (i.e.,
student models) that are usually deployed for ef-
ficiency. This is because student models, trained
exclusively on data generated by large-scale gen-
erative models (i.e., teacher models), lack direct
exposure to the teacher’s original training data,
thereby nullifying the memorization effect. This
finding reveals a serious privacy loophole, where
generation service providers could deploy a stu-
dent model whose teacher was trained on unau-
thorized data, yet claim the deployed model is
“clean” because it was not directly trained on
such data. To fix this loophole, we uncover a
memory chain that persists: the student’s out-
put distribution aligns more with the teacher’s
members than non-members, making unautho-
rized data use detectable. This leads us to posit
that MIAs on distilled generative models should
shift from instance-level scores to distribution-
level statistics. We further propose three prin-
ciples of distribution-based MIAs for detecting
unauthorized training data through distilled gen-
erative models, and validate our position through
an exemplar framework. We lastly discuss the
implications our position leads to.

1. Introduction
Recent advances in large-scale generative models have set
new standards for synthesizing high-quality content across
modalities, such as images (Ho et al., 2020) and languages
(Brown et al., 2020). However, the extensive datasets re-
quired to train these models often contain sensitive infor-

mation from individuals who may not have explicitly con-
sented to the use of their data for model development (Liu
et al., 2024). This concern is particularly pressing given
the widespread adoption of large language models (LLMs)
(Floridi & Chiriatti, 2020) and diffusion models (Ho et al.,
2020; Song et al., 2023). In this context, instance-level mem-
bership inference attacks (I-MIAs) (Carlini et al., 2022),
designed to detect whether a single instance is used in train-
ing, offer a valuable auditing mechanism to detect unautho-
rized data usage. The success of I-MIAs mainly relies on
a phenomenon in training such large-scale generative mod-
els: well-trained models tend to overfit to their training set,
exhibiting different behaviors between training instances
(i.e., called members) and test instances (i.e., called non-
members) (Yeom et al., 2018), which is also known as the
memorization effect (Yeom et al., 2018). It means that I-
MIAs often rely on instance-level scores to distinguish a
member from a non-member.

Motivation. However, recent generative model-based I-
MIAs do not consider another important step in deploying
powerful large-scale generative models: distillation, and, in
this paper, we find that existing I-MIAs fail to find members
when facing a distilled generative model. Distilled gen-
erative models address the critical challenge of efficiently
deploying large-scale generative models, whose high com-
putational demands often require access to hundreds or even
thousands of GPUs (Hu et al., 2024). Specifically, during
distillation, we learn lightweight generative models (a.k.a.
student models) with the data generated by a large-scale
generative model (a.k.a. teacher models). As such, model
distillation enables a two-tier deployment strategy for gen-
eration service providers: teacher models focus on training
student models, while student models serve end-users di-
rectly, reducing inference latency and cost. Yet, this deploy-
ment strategy introduces a critical limitation for I-MIAs.
Since student models are trained only on the outputs of
teacher models, rather than on their original training data
(i.e., members), this setup undermines the memorization
effect that I-MIAs depend on (Fig. 1). Namely, existing
I-MIAs probably do not work when we can only access the
distilled models.

To further verify the above argument, we provide empirical
evidence for this security caveat in Sec. 2. We find that
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Figure 1. Model distillation raises privacy concerns. MIA can detect unauthorized data in the teacher model but fails when only the
student model is available. The reason behind this failure is that the student model is trained with the teacher’s outputs only, rather than
the original data (i.e., members). More importantly, based on the failure of MIAs here, generation-service providers can only publish the
student models as a service, to bypass unauthorized data detection and claim they do not use any unauthorized data for training.

while I-MIAs effectively identify training data in teacher
models (Fig. 2(a)), they consistently fail with student models
(Fig. 2(b)), implying that student models retain insufficient
membership information at the instance level. This finding
poses a serious privacy issue: generation-service providers
can only publish the student models as a service, to bypass
unauthorized data detection and claim they do not use any
unauthorized data for training, causing distilled generative
models to naturally have privacy concerns when they are
deployed (like the Fig. 1 shows).

To address the issue of existing I-MIAs under model dis-
tillation, we discover a distribution-based memory chain
between a student-teacher pair: student-generated data ex-
hibit a significantly stronger distributional alignment with
teacher’s members than non-members, making it possible
to determine if a student model has knowledge from unau-
thorized data. Specifically, a consistent statistical pattern–
distances to non-member data concentrate at higher values
than to member data, suggesting that the student preserves
statistical signals exhibiting stronger alignment with the
teacher’s member distribution than non-member distribu-
tions, despite the failure of I-MIAs. Thus, to reliably audit
the privacy violation of distilled generative models, we posit
the following statement in the field of generative models.

Position: Membership Inference Attacks (MIAs)
for distilled generative models should shift from
instance-level scores to distribution-level statistics.

Based on the position above, we suggest that auditing up-
stream privacy violation risks on distilled generative mod-
els should be evaluated based on the distribution of data
instances rather than individual instances due to the discov-
ered memory chain between a student-teacher pair, namely
distribution-level MIA (D-MIA). In Sec. 4, we further estab-
lish three principles that D-MIAs should follow to maximize
their effectiveness. Following these principles, we build an
exemplar framework to illustrate how these principles can
be applied in practice (See App. B). We finally discuss the
broader implications of privacy regulation and responsi-

ble AI deployment that D-MIA leads to, highlighting both
opportunities and challenges in the evolving landscape of
generative model auditing (See App. E).

2. I-MIA fails on distilled generative models
This section shows that I-MIAs are ineffective in identifying
member data of large-scale generative models when access
is limited to their distilled student counterparts. For read-
ers unfamiliar with how current I-MIAs attack large-scale
generative models and related work, we provide additional
background information in App. A.

Distilled models for online generation service. Although
large-scale generative models can produce high-quality text
and images, the billion-scale parameters of LLMs and itera-
tive denoise steps of diffusion models lead to high inference
latency (Touvron et al., 2023; Song et al., 2020), presenting
challenges for online deployment of generation services.
Knowledge distillation (Hinton, 2015) offers a compelling
solution, allowing the creation of smaller “student” models
that learn to mimic the output of larger “teacher” models
and achieve gains in inference efficiency without compro-
mising the quality of generation (Hsieh et al., 2023; Gu
et al., 2023). This trend highlights a deployment shift:
lightweight student models serve end-users, while computa-
tionally demanding teacher models are confined to offline
training. However, state-of-the-art distillation practices im-
plement strict separation: student models learn exclusively
from teacher-generated data, with no direct access to the
teacher’s training dataset. We therefore argue that this sep-
aration prevents the student from forming instance-level
memories of the teacher’s members. As a result,

The memorization effect, which I-MIAs rely on, will
not apply to distilled generative models.

Empirical evidence. We thus investigate the impact of dis-
tillation on I-MIAs. Fig. 2(b) shows that the student model’s
reconstruction pattern exhibits no statistically significant
differences between member and non-member images. We
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Table 1. Average performance of MIAs on three generative mod-
els: EDM (teacher), DMD, and Diff-Instruct (students). Metrics
include ASR, AUC, and TPR@FPR=0.05. See App. F for detail.

Model Dataset ASR AUC TPR@FPR=0.05

EDM
CIFAR10 0.596 0.610 0.070
FFHQ 0.584 0.590 0.083
AFHQv2 0.704 0.724 0.230

DMD
CIFAR10 0.515 0.509 0.050
FFHQ 0.515 0.503 0.047
AFHQv2 0.526 0.520 0.063

Diff-Instruct
CIFAR10 0.508 0.505 0.043
FFHQ 0.508 0.509 0.050
AFHQv2 0.509 0.508 0.053

confirm this using four I-MIA methods on a teacher diffu-
sion model EDM (Karras et al., 2022) and its student models
DMD (Yin et al., 2024) and Diff-Instruct (Luo et al., 2024).
Detailed setup is in App. C. Moreover, Tab. 1 shows that
I-MIAs achieve a success rate higher than random guessing
when applied to the teacher model, but perform no better
than random guessing on student models. Since student
models do not directly fit the teacher’s member data, they
may not preserve the instance-level behavioral signature that
I-MIAs typically exploit. Thus, model distillation, primar-
ily developed for efficiency though, provides an inherent
defense against major I-MIAs (Shejwalkar & Houmansadr,
2021; Tang et al., 2022), causing I-MIAs to fail against
distilled models.

3. Does Distillation Really Eliminate
Membership Information?

Although the distilled generative models are trained without
seeing any members of the teacher model, their learning
process could be influenced by these members: the student
trains on data generated by the teacher, who aims to approx-
imate the data distribution from which its members were
drawn. We therefore conjecture the following:

The student, in learning to mimic the teacher’s out-
put distribution, might indirectly learn a distribution
closer to the teacher’s member distribution than to a
distribution of non-members.

We call this potential propagation of distributional character-
istics the memory chain between student and member data,
and empirically confirm its existence.

3.1. Distributional signals survive distillation

We first define a distributional membership signal in the con-
text of distillation as the tendency for a collection of samples
generated by the student model to inherit the teacher’s dis-
tributional bias and, in some statistical sense, appear closer
to the distribution induced by the member data. The key
question now becomes does a student trained on teacher-

generated data indeed preserve such a distributional mem-
bership signal? We test it empirically. Consider three
datasets: student-generated Dgen, teacher’s member data
Dmem and disjoint non-member data Dnon, we evaluate the
distance between Dgen and Dmem against the distance be-
tween Dgen and Dnon across multiple experimental trials
for statistical robustness, randomly sampling subsets D̃gen,
D̃mem, and D̃non from their respective datasets each trial.
We adopt maximum mean discrepancy (MMD) (Gretton
et al., 2012), a kernel-based distance measure between prob-
ability distributions, to quantify distributional similarities
between paired subsets, namely (i) D̃gen and D̃mem, and (ii)
D̃gen and D̃non. We observe a pattern across repeated trials:
The MMD values of (i) cluster at lower magnitudes com-
pared to those of (ii), indicating that the student-generated
data aligns more closely with the teacher’s member distribu-
tion from its non-member counterpart (Fig. 2(c)). This way
we confirm that distribution-level statistics (e.g., distribution
discrepancy) can identify the teacher’s membership informa-
tion undetected at the instance level, even through a distilled
student model. Namely, distributional membership signals
survive under the distillation procedure, and the memory
chain between a student-teacher pair exists.

3.2. Distributional statistics enables reliable
membership inference with LLMs

Distributional statistics amplify instance-level member-
ship signals. Ye et al. (2024) show that LLMs exhibit
characteristic uncertainty patterns across local neighbor-
hoods of training data, revealing membership information
invisible to single-sample analyses. Similarly, Dong et al.
(2024) confirm that membership information lies in set-level
probability distributions rather than individual confidence
scores. Such findings align with our observations: Member-
ship information manifests collectively more obviously than
individual instances.

Distributional information alleviates the FPR issue. The
shift to distributional analysis also addresses a critical flaw
plaguing conventional I-MIAs on LLMs (Zhang et al., 2024).
Zhang et al. (2024) and Meeus et al. (2024) show that I-
MIAs applied to LLMs often yield an unacceptably high
FPR, since computing FPR reliably requires access to “true”
non-member data which, model has never truly seen, even
indirectly. Given that LLMs are trained on massive web-
scale corpora (Liu et al., 2024), which may contain para-
phrases of virtually any public data, guaranteeing such pris-
tine non-exposure is practically impossible. Distributional
approaches, however, are more resilient to this issue by fo-
cusing on aggregate statistical properties of data, such as
token frequency distributions or specific sampling behav-
iors. Even if models see scattered references to non-member
datasets, such exposure proves insufficient to reproduce the
complete statistical signal of a dataset (Choi et al., 2025).

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Position: Membership Inference Attack Should Move On to Distributional Statistics for Distilled Generative Models

Figure 2. Comparison of I-MIAs on teacher model EDM (Karras
et al., 2022) and student model DMD (Yin et al., 2024) using: (a)
ReDiffuse (Li et al., 2024) reveals membership signals in EDM
via distinct reconstruction and re-noising losses between members
and non-members on AFHQv2. (b) Applied to DMD, ReDiffuse
fails to separate member from non-member instances. (c) Student
outputs show stronger distributional alignment with member data
when evaluated as instance sets via MMD (Gretton et al., 2012).

4. Membership Inference Attacks Should
Move On to Distributional Statistics

Our findings in Sec. 3 confirm the existence of a mem-
ory link that links data generated by a student model back
to its teacher’s original member data. This, coupled with
the greater reliability of distribution-level statistics over
instance-level scores, leads us to a central argument: pri-
vacy audits for distilled generative models should shift to
distributional statistics. This section outlines three guiding
principles for such distribution-based MIAs.

4.1. Principles for distributional membership inference

Reflecting on the challenges of I-MIAs (Sec. 2) and the per-
sistence of distributional signals through distillation (Sec. 3),
we propose that effective MIAs, especially where instance-
level cues are weak (as in model distillation), should be
built upon the following principles: (1) Set-based analysis:
Distributional measures are inherently more stable and re-
veal more pronounced signals when computed over sets of
data points rather than isolated instances (Sec. 3.2). MIAs
should leverage this by analyzing collections of samples to
enhance their statistical power. (2) Distributional compar-
ison: The insight from Sec. 3.1 is that a student’s output
distribution is often statistically closer to its teacher’s mem-

ber distribution than to non-member distributions. Effective
MIAs should therefore quantify this statistical divergence to
uncover traces of memorization. (3) Discriminative signals
focus: Effective MIAs should target signals whose discrimi-
native power between members and non-members becomes
more salient at the distributional level, while retaining their
resilience even through transformations, such as model dis-
tillation. To illustrate how these principles can be applied in
practice, we present a pilot implementation called D-MIA,
which adheres to such principles and verifies our position
successfully. See App. B for details and empirical results.

4.2. Alternative view: contexts where I-MIAs remain
relevant

Although distributional approaches effectively address ma-
jor challenges in auditing distilled generative models, practi-
cal constraints highlight the continued relevance of instance-
level MIAs in specific privacy auditing contexts. Building
on our previous findings and alternative views, we conclude
with a discussion of the regulatory and ethical implications
of D-MIA, as detailed in App. E.

When candidate data is scarce. Distributional methods
like D-MIA require a number of samples in a candidate set
to estimate distributional statistics reliably. In practice, data
subjects (e.g., artists) may have only a limited collection
of personal records–perhaps fewer than 10 pieces or even a
single artwork–when they seek an audit to determine if their
data was used to train a generative model. As Tab. 3 shows,
D-MIA’s discriminative power degrades when candidate
set sizes lower down (see App. D.5 for details). On the
contrary, I-MIAs are not limited in this case as they probe
model behavior at the sample level.

Resource considerations. All MIAs need reference data.
However, distributional comparisons might implicitly en-
courage the use of larger reference datasets to ensure robust
statistical estimation. This could increase data storage and
management overhead, potentially conflicting with data min-
imization principles under regulations like GDPR (Mond-
schein & Monda, 2019).

5. Final Remarks
This paper shows that conventional I-MIAs fail on dis-
tilled models, creating a privacy gap by obscuring training
data provenance. We propose shifting from instance-level
scores to distributional statistics, as distillation removes di-
rect memorization but retains exploitable statistical patterns.
Building on this, we introduce principles for distributional
MIAs and validate their effectiveness. We argue this shift
is essential for robust privacy auditing and call for further
research into distributional tools, distillation risks, and re-
defining membership and privacy harm in generative AI.
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A. MIAs for Generative Models
We first introduce some basic concepts and relevant literature in this section. For readers who are familiar with MIAs for
generative models, it is safe to skip this section. MIAs evaluate whether a specific instance is used during model training.
Let X be a data space and Dmem ⊂ X be a member set used to train a generative model G : Z → X that transforms
noises sampled from a latent distribution z ∼ p(z) into synthetic data x = G(z) ∈ X . Given a query sample xq ∈ X , an
MIA constructs a binary classifier A : X ×G→ {0, 1} that predicts the membership attribution of xq as A(xq, G) = 1
if xq ∈ Dmem, and 0 otherwise. Existing MIAs use instance-level scores to distinguish members from non-members, a
strategy we term I-MIA, including reference-based and intrinsic-based methods that are introduced below.

A.1. Brief introduction for instance-level MIAs

Reference-based I-MIAs use carefully constructed reference models to compute a score that can distinguish members
from non-members. Given a target generative model G, one needs to construct n architecture-similar or identical reference
models {Gref

i }ni=1, leading to two complementary sets of models for a query sample xq ,

M1 = {Gref
i : xq ∈ Dmem

i } andM0 = {Gref
i : xq /∈ Dmem

i },

where Dmem
i denotes the training dataset of the i-th reference model. The membership inference decision is then based

on the difference between the target model ϕ(G,x) and these groups. For example, A(x, G) = 1 if a difference metric
∆(x, G) > τ and 0 otherwise, where ∆(x, G) ≜ sim(ϕ(G,x),M1) − sim(ϕ(G,x),M0), sim(·, ·) is a function to
measure the similarity between two models, and τ is the decision threshold.

Intrinsic-based I-MIAs directly leverage the statistical gaps that emerge from target model training. At their core,
these attacks exploit a fundamental memorization tendency of generative models G : Z → X , i.e., the target model
behaves differently between member instances Dmem and non-member instances Dnon, quantified as ∆(x, G) =
Ex∼Dmem [L(x;G)] − Ex′∼Dnon [L(x′;G)] < 0, where L(x;G) is normally the minimal distance between x and the
data generated by G. This statistical gap may manifest differently across generative architectures, leading to model-specific
attack strategies. GAN-Leak (Chen et al., 2020), for example, targets MIA on generative adversarial networks (Goodfellow
et al., 2020) by reconstructing target images through latent optimization, solving LGANLeak(x) = minz∈Z ∥x−G(z)∥22
where members x ∼ Dmem often show lower reconstruction errors.

A.2. How I-MIAs are applied to large-scale generative models?

Large-scale generative model in text domain-LLMs (Guo et al., 2025; Touvron et al., 2023), that are auto-regressive
transformers (Tang et al., 2024) trained on massive text corpora to model the log-likelihood of each next token given its
preceding context. Several MIA strategies have been developed for LLMs. PCA (Ye et al., 2024) detects membership by
comparing the target input with a synthetic version generated by word-swapping. A large log-likelihood gap indicates
membership. The Min-K% (Shokri et al., 2017) computes the average log-likelihood of the k tokens with the least
confidence in a given input. Typically, member data exhibit higher log-likelihoods for these tokens compared to non-
members. Recall (Xie et al., 2024) introduces a non-member prefix to condition the model and quantifies the resulting
change in log-likelihood. If the log-likelihood changes significantly, the data is inferred to be a member sample.

Large-scale generative model in vision domain-Diffusion models (Ho et al., 2020; Song et al., 2020), which operate
through a forward process q(xt|x0) that progressively adds Gaussian noise ϵ ∼ N (0, I) to the input x0 and a reverse
noise removal process pG(x0|xt) that reconstructs the original x0 over time steps t ∈ [0, T ]. Several attacks have been
proposed in this context and have been evaluated on a class of diffusion models, the denoising diffusion probabilistic
model (DDPM) (Ho et al., 2020). According to DDPM objective loss LMSE = ∥ϵG(xt, t)− ϵ∥2, SecMI (Duan et al.,
2023) performs an attack by monitoring this loss across different time-steps t. ReDiffuse (Li et al., 2024) investigates
reconstruction stability under noise perturbations, based on the observation that member data tend to yield more consistent
reconstructions. GSA (Pang et al., 2023) examines gradient dynamics during model retraining and finds that member da

A.3. Large-scale generative models challenge the effectiveness of I-MIAs

I-MIAs face challenges when attacking LLMs. Although I-MIA remains widely used for large-scale generative models,
it is unreliable, specifically for LLMs (Dong et al., 2024; Ye et al., 2024). This is because the extensive training on
massive corpora and substantial model capacity of LLMs would lead to similar behaviors between individual members and
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non-members exploited by I-MIAs (Ye et al., 2024). When processing an input, LLMs consistently produce high-confidence
outputs regardless of whether it is part of training data, reducing the discriminative power of instance-level metrics (Dong
et al., 2024). Moreover, Zhang et al. (2024) argues that I-MIAs on LLMs suffer from unboundable false positive rates
(FPR)—a critical metric for evaluating the validity of MIAs when used as evidence to allege the use of unauthorized
data (Carlini et al., 2022; Zhang et al., 2024). The reason is that LLMs are trained with massive web-scale corpora, such that
there are no ‘true’ individual non-members (as LLMs indirectly learn too much data (Zhang et al., 2024)).

I-MIAs face challenges when attacking diffusion models. In the case of generative models in the visual domain—diffusion
models, several intrinsic-based MIAs have shown promising results on DDPMs (Ho et al., 2020). Since the objective
function of DDPMs encourages models to learn the exact denoising trajectories for every training data, resulting in lower
reconstruction loss for members compared to non-members. However, DDPMs rely on sample-specific and fine-grained
denoising trajectories, making them prone to deviation when the predicted noise contains large errors. To maintain stability,
they require thousands of small incremental denoising steps, which are computationally expensive (Ho et al., 2020). To
reduce the number of denoising steps, more effective consistency-based models incorporate a KL smoothing term to learn
globally consistent denoising trajectories (Kim et al., 2023; Song et al., 2023; Karras et al., 2022). This term encourages
uniformity across samples rather than overfitting to sample-specific paths, thereby reducing the loss gap between member
and non-member data and potentially weakening intrinsic-based MIAs.

B. D-MIA exemplar framework
B.1. D-MIA: an exemplar framework for auditing distilled generative models

To illustrate how these principles can be put into practice, we showcase a pilot implementation called D-MIA, which
considers the following problem setup. Let GT be a teacher model pre-trained on a private member dataset, denoted by
Dmem. Except for them, samples are collectively denoted by Dnon otherwise. We assume access to a student generative
model GS, trained only on the generated data from GT. D-MIA enables set-based analysis by task design. Given a candidate
dataset Dcan, the goal is to determine whether Dcan overlaps with the teacher’s member dataset Dmem.

For distributional comparison, D-MIA quantifies and examines the relative relationship between two quantities: 1) the
distributional distance between candidate datasetDcan and student-generated datasetDgen, and 2) the distributional distance
between known non-member data Dnon and student-generated data Dgen.

To focus on discriminative signals, D-MIA uses a two-stage approach. During training, it optimizes a deep-kernel MMD-
based measure (Liu et al., 2020) to distinguish member from non-member data. This involves training a kernel that maximizes
the distributional separation between known members Dmem and non-members Dnon relative to the student-generated data
Dgen. In evaluation, this learned metric determines whether a particular candidate set Dcan is statistically more similar to
Dgen than to Dnon. If so, Dcan is inferred to likely contain member data (Further technical details are in App. D.2). The
empirical evaluation of D-MIA, presented in App. B.2, demonstrates that the proposed exemplar framework effectively
defends against attacks on distilled generative models.

B.2. Empirical support

D-MIA is effective against distilled generative models. Tab. 2 shows that D-MIA can successfully detect membership
across various distilled models and datasets, even when candidate sets are mixtures of member and non-member data. For
example, against DMD (a state-of-the-art distillation technique), D-MIA achieves near-perfect success rates (ASR ≈ 100%)
across three datasets, significantly outperforming baselines. D-MIA maintains high ASR (≈ 92%) on CIFAR10 with mixed
candidate datasets, while baselines falter to near-random guessing if only 30% of the candidate sets are members. This
confirms D-MIA as a reliable framework for practical scenarios where candidate sets often have unknown compositions of
member and non-member data.

D-MIA can quantify dataset composition. Beyond a binary decision, D-MIA’s output scores correlate positively with the
portion of member data in a candidate set (See App. Fig. 4). Scores tend towards 1 for entirely member-comprised sets and
decrease towards 0.5 as member presence diminishes, suggesting a new role for D-MIA in more granular privacy leakage
analysis.
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Table 2. ASR and AUC results of D-MIA against baselines I-MIA methods SecMI, and ReDiffuse on distilled models across CIFAR10,
FFHQ, and AFHQv2. Rows are color-coded to represent member data proportions: 100%, 50%, and 30%. See Tab. 8 in App. F for the
TPR@FPR=0.05 results.

Dataset
(Member %)

DMD Diff-Instruct

D-MIA SecMI ReDiffuse D-MIA SecMI ReDiffuse

ASR AUC ASR AUC ASR AUC ASR AUC ASR AUC ASR AUC

CIFAR10 (100%) 0.98 0.99 0.60 0.55 0.66 0.66 1.0 1.0 0.65 0.54 0.62 0.62
CIFAR10 (50%) 0.98 0.99 0.59 0.52 0.60 0.60 1.0 1.0 0.59 0.53 0.60 0.60
CIFAR10 (30%) 0.92 0.97 0.53 0.43 0.60 0.59 1.0 1.0 0.53 0.47 0.52 0.55

FFHQ (100%) 1.0 1.0 0.60 0.56 0.56 0.56 1.0 1.0 0.57 0.56 0.78 0.81
FFHQ (50%) 0.99 0.99 0.56 0.54 0.54 0.49 1.0 1.0 0.55 0.52 0.65 0.63
FFHQ (30%) 0.98 0.99 0.56 0.49 0.54 0.48 1.0 1.0 0.55 0.51 0.62 0.59

AFHQv2 (100%) 1.0 1.0 0.61 0.60 0.69 0.71 1.0 1.0 0.56 0.53 0.64 0.62
AFHQv2 (50%) 1.0 1.0 0.59 0.54 0.64 0.61 1.0 1.0 0.53 0.48 0.57 0.52
AFHQv2 (30%) 1.0 1.0 0.56 0.56 0.60 0.61 1.0 1.0 0.48 0.50 0.55 0.50

Table 3. ASR and AUC results of D-MIA evaluated on DMD under varying non-member and candidate dataset sizes. In each configuration,
we equally split Dnon for kernel training and MIA evaluation. All metrics decrease as Dnon and Dcan lower down.

|Dnon| |Dcan| ASR AUC TPR@FPR=0.05

(5000+10000) 5000 0.98 0.99 0.96
(2000+4000) 2000 0.94 0.97 0.88
(600+1200) 600 0.83 0.78 0.70
(300+600) 300 0.75 0.58 0.52

C. Setup for Diffusion Model and Distilled Models
The training configurations for EDM, DMD, and DI are shown in Tab. 4. The specific model architectures will be released
in the upcoming official code. For each dataset, half of the data is randomly selected for training EDM, while the remaining
half is used as non-member data. EDM generates 100,000 samples to distill DMD and DI models. During the distillation
process, the models do not access the training data of EDM.

D. Details of D-MIA Framework
D.1. Preliminaries: MMD and Deep-kernel MMD

This section briefly summarizes the basic knowledge of MMD (Gretton et al., 2012) and its extension, deep-kernel MMD (Liu
et al., 2020). MMD finds common application in areas such as domain adaptation and the evaluation of generative models,
where assessing distributional alignment is important. In this paper, these concepts are used in quantifying the distributional
differences in Section 3 and Section 4. We refer interested readers to the original papers for complete details therein.

Maximum Mean Discrepancy (MMD), proposed by Gretton et al. (2012), is a statistical tool for measuring the distance
between two Borel probability measures, say P and Q, defined on a separable metric space X ⊆ Rd. Consider independent
random variables X,X ′ ∼ P and Y, Y ′ ∼ Q. The squared MMD between P and Q in a Reproducing Kernel Hilbert Space
Hk, induced by a kernel function k : X × X → R, is defined as:

MMD2(P,Q; k) = E[k(X,X ′)] + E[k(Y, Y ′)]− 2E[k(X,Y )].

If k is a characteristic kernel (e.g., Gaussian), then MMD2(P,Q; k) = 0 if and only if P = Q.

Empirical MMD. In practice, the true distributions P and Q are often unknown, and we rely on finite samples drawn from
them. Given i.i.d. samples SX = {xi}ni=1 from P and SY = {yj}mi=1 from Q, an unbiased U-statistic estimator for MMD2
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is

M̂MD
2

u(SX ,SY ; k) =
1

n(n− 1)

n∑
i ̸=l

k(xi, xl) +
1

m(m− 1)

m∑
j ̸=p

k(yi, yj)−
2

nm

n∑
i=1

n∑
j=1

k(xi, yj). (1)

Deep-kernel MMD. Traditional MMD uses a fixed, pre-defined kernel, which may lead to limited expressiveness when the
kernel is not suitable for the task at hand. To address this, Liu et al. (2020) propose to learn a task-relevant representation
θω : X → Z using a neural network parameterized by w. The MMD can then be computed in this learned feature space Z .
As such, the goal of deep-kernel MMD is to find a representation θω that maximizes the MMD, thereby increasing the test
power to detect differences between P and Q.

Following (Liu et al., 2020), let SX = {xi}ni=1 and SY = {yj}ni=1 be samples from P and Q (assuming equal sample sizes
n for simplicity). The empirical estimate for deep-kernel MMD, using a U-statistic, is

M̂MD
2

u(SX ,SY ; kω) :=
1

n(n− 1)

∑
i ̸=j

Hij , (2)

where Hij is the kernel of the U-statistic, defined as

Hij := kω(xi, xj) + kω(yi, yj)− kω(xi, yj)− kω(yi, xj). (3)

Note that the kernel kω(·, ·) itself is a composite function incorporating the learned features:

kω(a, b) = [(1− ϵ) kbase (θω(a), θω(b)) + ϵ] · qbase (a, b) . (4)

Here, w is the feature extractor network (e.g., a multi-layer perceptron). kbase(·, ·) is a base characteristic kernel (e.g.,
Gaussian) applied to the learned features θω(a) and θω(b). In addition, qbase(·, ·) is typically another characteristic kernel
on the original inputs, acting as a sample-pair weighting function that adjusts the influence of each pair in the kernel
computation based on their importance or relevance. The small constant ϵ ∈ [0, 1] helps to ensure kw remains characteristic
(Liu et al., 2020).

Optimizing a deep-kernel MMD. When optimizing the parameters w of the feature network θω to maximize the MMD
estimate, it is often normalized by an estimate of its standard deviation to improve numerical stability and test power. The
objective function is thus:

max
ω
L(ω) = M̂MD

2

u(SX ,SY ; kω)

σ
(
M̂MD

2

u(SX ,SY ; kω)
) , (5)

where σ(·) denotes the standard deviation of the MMD estimator. Since the true variance σ2 is generally unknown, we
estimate it using a regularized estimator σ̂2

λ, given by:

σ̂2
λ =

4

n3

n∑
i=1

 n∑
j=1

Hij

2

− 4

n4

 n∑
i=1

n∑
j=1

Hij

2

+ λ, (6)

where λ is a constant to avoid division by zero. The optimization of w is typically performed using stochastic gradient
ascent on L(w).

D.2. D-MIA illustration

We now introduce the details of D-MIA, a pilot implementation that adheres to the guiding principles (Sec. 4) and verify the
effectiveness of distributional statistics in performing MIA.

Problem setting. Since D-MIA operates with sets of data instances, it is noteworthy to mention that we consider a new
problem setup than conventional I-MIAs.

Let GT : Z → X be a teacher generative model pre-trained on a private member dataset Dmem = {xi}Ni=1, where
xi ∼ Pmem, Pmem is the member data distribution. We have access to a distilled student generative model GS that mimics
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Table 4. Training configurations for different models (EDM, DMD, and DI) across datasets (CIFAR10, FFHQ, and AFHQv2), including
GPU setups, batch sizes, training times, and learning rates.

Model Dataset GPU Batch size Training Time Learning Rate

EDM
CIFAR10 1 × NVIDIA A100 128 5-00:00:00 0.001
FFHQ 4 × NVIDIA A100 256 5-00:00:00 0.0002
AFHQv2 2 × NVIDIA A100 128 5-00:00:00 0.0002

DMD
CIFAR10 1 × NVIDIA A100 128 4-00:00:00 0.00005
FFHQ 1 × NVIDIA A100 64 4-00:00:00 0.00005
AFHQv2 1 × NVIDIA A100 64 4-00:00:00 0.00005

DI
CIFAR10 1 × NVIDIA A100 128 3-00:00:00 0.00001
FFHQ 1 × NVIDIA A100 64 3-00:00:00 0.0001
AFHQv2 1 × NVIDIA A100 64 2-00:00:00 0.0001

GT’s behavior, trained using synthetic samples {GT(zj)}Mj=1 with noises zj ∼ PZ , the distribution over the latent space
(e.g., standard Gaussian). In D-MIAs, we consider set-based prediction: given a candidate dataset Dcan = {x′

j}Nj=1, the
task is to infer if Dcan ∩ Dmem = ∅, i.e., contains member instances.

D-MIA requires two reference datasets: (1) a non-member set Dnon = {x′′
k}Nk=1 of public instances x′′

k ≁ Pmem and
(2) an anchor set Danc = {x∗

l }Ll=1 (e.g., generated by GS) used to facilitate distributional comparison. Moreover, since
private member data is typically inaccessible, we propose to construct a proxy member set D̃mem = {GS(zj)}Nj=1 to
approximate Pmem. At its core, D-MIA aims to detect whether Dcan aligns more closely with D̃mem or Dnon through
relative distributional discrepancy thresholding.

Training a deep-kernel MMD. We first optimize a data-adaptive kernel kω , parameterized by deep neural nets ω (Liu et al.,
2020) to maximize the separation between D̃mem and Dnon in the feature space. For D̃mem, Dnon and Danc, we perform
mini-batch training and randomly sample subsets from each dataset, e.g., Banc = {x∗

b
i.i.d∼ Danc}Bb=1, with respect to the

optimization objective L(ω) defined as

L(ω) =
[
M̂MD

2

u(Banc, B̃mem; kω)
]

︸ ︷︷ ︸
member discrepancy

−
[
M̂MD

2

u(Banc,Bnon; kω)
]

︸ ︷︷ ︸
non-member discrepancy

.

Doing so amplifies the MMD values between non-members and the anchor distribution while minimizing them for member-
like distributions. See Alg. 1 for details.

Detecting membership. In this step, we aim to determine whether Dcan ∩ Dmem = ∅, by computing two MMD statistics

using the trained kernel kω: M (t)
1 ≜ M̂MD

2

u(Banc,Bcan; kω) and M
(t)
2 ≜ M̂MD

2

u(Banc,Bnon; kω) over T Bernoulli trials.
The membership is indicated per trial via I(t) = 1(M1 < M2), and the aggregate membership probability is estimated by
pmem = 1

T

∑
t I(t) (details are in Alg. 2).

Ensembling multiple kernels. To mitigate the variance from finite-sample MMD estimates (Chérief-Abdellatif & Alquier,
2022), we aggregate predictions across m independently trained kernels {k(i)ω }mi=1. For each kernel, we compute pmem)(i)
over n Bernoulli trials as with Alg. 2. We apply a final decision threshold τ to the ensemble mean p̄mem = 1

m

∑
i p

mem
(i) ,

declaring membership of Dcan if p̄mem > τ . See Alg. 3 for detailed illustrations.

D.3. Experimental setup

Dataset and victim Models. We empirically evaluate D-MIA on state-of-the-art distilled generative models, DMD (Yin
et al., 2024) and Diff-Instruct (Luo et al., 2024) on commonly studied MIA benchmarks, CIFAR10 (Krizhevsky et al., 2010),
FFHQ (Karras, 2019), and AFHQv2 (Choi et al., 2020). See detailed setup of victim models in App. C

Baseline settings. D-MIA differs from existing MIA methods and attack targets. To ensure fairness, we adapt existing
methods to the D-MIA setting for experimentation. Specifically, we apply existing MIA methods to each data point in
the dataset to compute a loss-based result. Then we compute the mean loss result of all data points in the dataset. We
randomly sample 50 candidate datasets (with replacement) and 50 non-member datasets (with replacement) and calculate
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Figure 3. Overview of our two-phase MMD-based D-MIA framework, consisting of (1) deep-kernel MMD training phase (top left) and (2)
detecting the Candidate Dataset phase (bottom left). We also propose a kernel ensemble strategy to improve detection robustness (right).

the mean loss for each dataset. Then, we empirically determine an optimal threshold to distinguish between the loss means
of candidate datasets and non-member datasets. Under this setting, we use SecMI and ReDiffuse as baseline methods for
comparison.

Evaluation settings. Before the experiment, each dataset is evenly divided into two subsets: one for member data used
to train the teacher model (EDM) and the other for non-member data (detailed EDM training setup is in App. C). The
teacher model generates 100,000 synthetic samples for the distillation of the student model, ensuring that the student model
never accesses the original training data of the teacher model. We construct an auxiliary non-member dataset by randomly
sampling 15,000 data points from the non-member data of FFHQ and CIFAR10, with 5,000 points used for deep-kernel
training (Alg. 1) and 10,000 for candidate dataset detection (Alg. 2). For AFHQv2, we sample 3,000 non-member data
points, allocating 1,500 for kernel training and 1,500 for candidate detection. To ensure fairness, we randomly discard
15,000 member data points (3,000 for AFHQv2).

To evaluate D-MIA under varying proportions of member data in the candidate datasets, we create candidate datasets with
100%, 50%, and 30% member data. During detection, we randomly sample 5,000 data points (1,500 for AFHQv2) based on
the specified member ratios to construct positive candidate datasets. Additionally, we construct a negative candidate dataset
consisting entirely of non-member data to assess whether it can be distinguished from the positive datasets. Similar to the
baseline setting, we perform 50 rounds of sampling and detection to verify the attack accuracy of D-MIA.

Implementation details of D-MIA The network architecture of the deep-kernel MMD follows the design proposed by Liu
et al. (2020). The training parameters (e.g., bandwidth, learning rate, and epochs) used for attacking different models with
various training datasets are detailed in Tab. 5.

D.4. Key algorithms in D-MIA

This section details the three key steps in D-MIA, each executing a specific algorithm: Deep-Kernel Training (Alg. 1),
Detecting The Candidate Dataset (Alg. 2), and Ensembling Multiple Kernels.

D.5. D-MIA’s reliance on auxiliary non-member and candidate dataset sizes

In D-MIA attacks, the attacker requires a certain amount of non-member data for auxiliary training and testing. Additionally,
the candidate dataset being evaluated must have a sufficient size to obtain accurate distributional information. Therefore, we
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Table 5. Deep-kernel training configurations for distillation models (DI and DMD) across different datasets. “Bandwidth” denotes the
kernel bandwidth used in the deep-kernel MMD loss; “Epoch” indicates the total number of training iterations of deep-kernel; “MMD
learning rate” refers to the learning rate of the deep-kernel MMD training; “H” represents the number of hidden features or layers used in
the feature extractor network; and “x out” is the output dimensionality of the feature extractor network.

Model Dataset Bandwidth Epoch MMD learning rate H x out

DI
CIFAR10 0.1 400 0.000001 450 35
FFHQ 0.4 300 0.000001 450 50
AFHQv2 0.1 400 0.000001 450 35

DMD
CIFAR10 0.0025 300 0.0000001 250 20
FFHQ 0.4 300 0.000001 450 50
AFHQv2 0.1 400 0.000001 450 35

Algorithm 1 Deep-Kernel Training
1: Input: non-member dataset Dnon; one-step generative model GS and encoder Ge of GS ;

standard deviation σ of additive Gaussian noise; learning rate η; epochs E
2: Sg ← {GS(zi) | zi ∼ N (0, I), i = 1, . . . , N}
3: Sg,noisy ← {s+ ϵ | s ∈ Sg, ϵ ∼ N (0, σ2I)}
4: Sa,noisy ← {a+ ϵ | a ∈ Dnon, ϵ ∼ N (0, σ2I)}
5: Sg−e ← {Ge(s) | s ∈ Sg,noisy}
6: Sa−e ← {Ge(a) | a ∈ Sa,noisy}
7: Sample mini-batch Bnon ⊂ Sa−e

8: Sample mini-batch B̃mem ⊂ Sg−e

9: Sample mini-batch Banc ⊂ Sg−e such that Banc ∩ B̃mem = ∅
10: for epoch = 1 to E do
11: M1 ← M̂MD

2

u(Bnon,Banc, kω)
12: M2 ← M̂MD

2

u(B̃mem,Banc, kω)
13: l←M1 −M2

14: ω ← Adam(ω,∇l, η)
15: end for
16: Output: trained kernel kω; anchor features Banc

evaluate the performance of D-MIA on CIFAR10 models for DMD and DI under different auxiliary non-member dataset
sizes and candidate dataset sizes. We evaluated three settings for auxiliary and candidate dataset sizes: auxiliary dataset sizes
of 15,000, 9,000, 6,000, and 3000 paired with candidate dataset sizes of 5,000, 3,000, 2,000, and 1000, respectively. Half of
the auxiliary dataset was used to train the deep-kernel, while the other half was used to support attacks on the candidate
dataset. Positive samples were drawn from member data corresponding to the candidate dataset size, and negative samples
were drawn from non-member data of the same size. Following the previous evaluation, 50 positive and 50 negative samples
were constructed, and D-MIA was applied to distinguish between them.

E. Implications: Lessons from Distillation for Broader MIA
Redefining membership and privacy harm in model life-cycles. D-MIAs compel us to expand the notion of “membership”.
Instead of solely referring to “a specific instance the model was trained on”, membership can also signify “the statistical
property that the model learns from the dataset”. This expanded view is important for understanding privacy harm when
models learn from transformed data–like student models trained on teacher-generated data–that still carry the statistical bias
of the original, potentially sensitive member data. This concern, for example, may not be limited to whether a model can
reproduce a specific photo, but whether it has learned to mimic a creator’s distinct artistic style or absorbed societal biases
from a text corpus, even without memorizing exact data points. This shift highlights the need for a more comprehensive
discussion about privacy risks and what constitutes unauthorized data use in the complex lifecycles of modern AI models.

Strengthening audits for model provenance and countering “model laundering”. As AI models and their training data
become valuable assets, concerns about “model laundering”–the practice of obscuring the use of unauthorized data through
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Algorithm 2 Detecting the Candidate Dataset
1: Input: non-member dataset Dnon; candidate dataset Dcan; anchor features Banc; encoder Ge of GS ;

Gaussian noise std. σ; number of repetitions T ; kernel function kω
2: Sc,noisy ← {c+ ϵ | c ∈ Dcan, ϵ ∼ N (0, σ2I)}
3: Sa,noisy ← {a+ ϵ | a ∈ Dnon, ϵ ∼ N (0, σ2I)}
4: Sc−e ← {Ge(c) | c ∈ Sc,noisy}
5: Sa−e ← {Ge(a) | a ∈ Sa,noisy}
6: Sample mini-batch Bcan ⊂ Sc−e

7: Sample mini-batch Bnon ⊂ Sa−e

8: for t = 1 to T do
9: M t

1 ← M̂MD
2

u(Bcan,Banc, kω)
10: M t

2 ← M̂MD
2

u(Bnon,Banc, kω)
11: I(t) ← 1(M t

1 < M t
2)

12: end for
13: pmem ← 1

T

∑T
t=1 I(t)

14: Output: pmem

Algorithm 3 Ensembling Multiple Kernels
1: Input: anchor features Banc; non-member dataset Dnon; candidate dataset Dcan;

one-step generative model GS and encoder Ge; number of iterations h; threshold τ ;
Gaussian noise std. σ; test repetitions T ; learning rate η; epochs E

2: Initialize kernel set K ← ∅, prediction set R← ∅
3: for i = 1 to h do
4: Train kernel kiω using Algorithm 1
5: Compute pmem

(i) using Algorithm 2
6: K ← K ∪ {kiω}
7: R← R ∪ {pmem

(i) }
8: end for
9: p̄mem ← 1

h

∑h
i=1 p

mem
(i)

10: if p̄mem ≥ τ then
11: D-MIA(Dcan)← 1
12: else
13: D-MIA(Dcan)← 0
14: end if
15: Output: D-MIA(Dcan)

techniques like distillation–are likely to grow. If a teacher model (GT) was trained on copyright-protected or sensitive data,
and a company deploys a student model (GS) claiming that it was trained only on legitimate, teacher-generated data. I-MIAs
on GS would likely find no evidence of the original data misuse in training GT. In contrast, a successful distributional MIA
against GS could reveal that its learned data distribution closely matches that of the potentially problematic dataset used for
GT, thus providing a crucial tool for auditing provenance and detecting such attempts to conceal unauthorized data use.

Distributional MIAs are more secure auditing tools. Recall that I-MIAs seek to identify individual data instances, which
raises a security dilemma as well: tools designed to audit for privacy leakage by spotting specific training examples could,
in the wrong hands, be abused to extract those same sensitive data. D-MIAs mitigate this tension by shifting focus from
individual samples to candidate sets, evaluating alignment with the training distribution. D-MIAs assess whether a candidate
dataset, as a whole, aligns with the training distribution’s characteristics. They can confirm significant data overlap without
pinpointing which specific samples were members. Consequently, even if an attacker understands the distributional MIA
mechanism, they cannot directly use the attack to determine the membership status of individual data points. From a privacy
perspective, this dataset-based evaluation offers a new auditing paradigm with built-in privacy safeguards.
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F. Additional Experimental Results
We conducted a series of experiments to evaluate the effectiveness of different I-MIA methods on various generative
models. Specifically, we extracted half of the data from the CIFAR10, FFHQ, and AFHQv2 datasets to train three EDM
generative models, and then used the data generated by EDM to train DMD and Diff-Instruc. Finally, we applied four
state-of-the-art MIA techniques—GAN-Leak, SecMI, ReDiffuse, and GSA—to attack these models. The ASR and AUC
results are presented in Tab. 6. The TPR values at FPR = 0.05 results are presented in Tab. 7.

Table 6. the ASR and AUC results of various membership inference attack methods across different generative models and datasets.
The table compares four attack methods—GAN-leak, SecMI, ReDiffuse, and GSA—on three generative models: EDM, DMD, and
Diff-Instruc, evaluated on CIFAR-10, FFHQ, and AFHQv2 datasets.

Model/Dataset GAN-leak SecMI Rediffuse GSA

ASR AUC ASR AUC ASR AUC ASR AUC

EDM/CIFAR10 0.536 ± .005 0.523 ± .011 0.588 ± .004 0.601 ± .021 0.579 ± .002 0.603 ± .004 0.622 ± .008 0.626 ± .004
EDM/ffhq 0.524 ± .008 0.518 ± .018 0.551 ± .009 0.564 ± .011 0.541 ± .005 0.553 ± .005 0.662 ± .006 0.654 ± .003
EDM/afhqv 0.543 ± .004 0.532 ± .009 0.604 ± .005 0.622 ± .013 0.604 ± .005 0.644 ± .006 0.906 ± .004 0.908 ± .001

DMD/CIFAR10 0.497 ± .012 0.508 ± .011 0.520 ± .018 0.516 ± .020 0.514 ± .008 0.509 ± .013 0.512 ± .003 0.502 ± .001
DMD/ffhq 0.502 ± .019 0.498 ± .021 0.515 ± .021 0.502 ± .037 0.507 ± .004 0.504 ± .008 0.525 ± .002 0.505 ± .001
DMD/afhqv 0.512 ± .009 0.515 ± .032 0.525 ± .007 0.513 ± .007 0.521 ± .007 0.524 ± .004 0.532 ± .004 0.523 ± .003

Diff-Instruc/CIFAR10 0.502 ± .005 0.497 ± .003 0.507 ± .004 0.501 ± .009 0.514 ± .004 0.511 ± .007 0.503 ± .001 0.503 ± .001
Diff-Instruc/ffhq 0.493 ± .002 0.503 ± .005 0.514 ± .008 0.509 ± .008 0.509 ± .002 0.509 ± .004 0.501 ± .002 0.511 ± .002
Diff-Instruc/afhqv 0.501 ± .009 0.502 ± .006 0.504 ± .005 0.504 ± .008 0.513 ± .003 0.506 ± .005 0.511 ± .005 0.515 ± .002

Figure 4. Distribution analysis of D-MIA outputs
across different member/non-member ratios within the
candidate sets. Results are shown for distilled models
against CIFAR10 (a, c) and FFHQ (b, d), where subfig-
ures (a, b) report the results of DMD, while subfigures
(c, d) present the results of Diff-Instruct.

Table 7. TPR values at FPR = 0.05 for three MIA methods (SecMI,
ReDiffuse, GSA) across different generative models and datasets.

Model Dataset SecMI ReDiffuse GSA

EDM
CIFAR10 0.07 0.06 0.08
FFHQ 0.09 0.07 0.09
AFHQv2 0.11 0.13 0.45

DMD
CIFAR10 0.05 0.05 0.05
FFHQ 0.04 0.05 0.05
AFHQv2 0.06 0.07 0.06

Diff-Instruct
CIFAR10 0.04 0.04 0.05
FFHQ 0.05 0.05 0.05
AFHQv2 0.06 0.05 0.05

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Position: Membership Inference Attack Should Move On to Distributional Statistics for Distilled Generative Models

Table 8. True positive rates (TPR) of D-MIA, SecMI, and Rediffuse at a fixed false positive rate (FPR) of 0.05 under varying member
proportions (30%, 50%, 100%) are reported across three datasets—CIFAR10, FFHQ, and AFHQv2—for both DMD and Diff-Instruct
(DI) models.

Model Dataset Member Ratio DGG-MIA SecMI Rediffuse

DMD

CIFAR10
100% 0.88 0.12 0.10
50% 1.00 0.00 0.00
30% 0.96 0.00 0.02

FFHQ
100% 0.96 0.04 0.04
50% 0.98 0.02 0.04
30% 1.00 0.02 0.08

AFHQV
100% 1.00 0.16 0.26
50% 1.00 0.08 0.12
30% 1.00 0.10 0.16

DI

CIFAR10
100% 1.00 0.02 0.04
50% 1.00 0.02 0.10
30% 1.00 0.02 0.02

FFHQ
100% 1.00 0.12 0.28
50% 1.00 0.04 0.10
30% 1.00 0.08 0.14

AFHQV
100% 1.00 0.04 0.08
50% 1.00 0.00 0.08
30% 1.00 0.04 0.12
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