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ABSTRACT

The analysis of DNA sequences has become increasingly critical in numerous
fields, from evolutionary biology to understanding gene regulation and disease
mechanisms. While machine learning approaches to DNA sequence classification,
particularly deep neural networks, achieve remarkable performance, they typically
operate as black boxes, severely limiting their utility for scientific discovery and
biological insight. Decision trees offer a promising direction for interpretable
DNA sequence analysis, yet they suffer from a fundamental limitation: considering
individual raw features in isolation at each split limits their expressivity, which
results in prohibitive tree depths that hinder both interpretability and generalization
performance. We address this challenge by introducing DEFT, a novel framework
that adaptively generates high-level sequence features during tree construction.
DEFT leverages large language models to propose biologically-informed features
tailored to the local sequence distributions at each node and to iteratively refine
them with a reflection mechanism. Through a comprehensive case study on RNA
polymerase II pausing prediction, we demonstrate that DEFT discovers human-
interpretable sequence features which are highly predictive of pausing, providing
insights into this complex phenomenon.

1 INTRODUCTION

DNA sequences represent the fundamental code of life, storing the genetic instructions essential
for the development and functioning of all organisms. The analysis of DNA sequences has become
increasingly critical in numerous fields, including medical diagnostics, evolutionary and molecular
biology, and personalized medicine. In recent years, machine learning approaches have emerged as
powerful tools for building predictive models with DNA sequences. Supervised learning methods
have proven effective in various genomic tasks, from classifying promoter regions (Le et al., 2019;
Umarov et al., 2019) and splice sites (Scalzitti et al., 2021; Albaradei et al., 2020) to predicting gene
expression and regulatory motifs (Avsec et al., 2021a).

Despite their predictive performance, many machine learning approaches to DNA sequence analysis
- particularly deep learning models - suffer from a critical limitation: their lack of interpretability.
This opacity poses significant challenges in biological research and clinical applications, where
understanding the predictions is crucial for validation against known biological principles, discovery
of novel biological mechanisms, and experimental design guidance.

In contrast to black boxes, decision trees offer inherent interpretability for supervised learning tasks
(Breiman et al., 1984; Quinlan, 1986; 2014). These models recursively partition the input space
through a series of binary decisions, based on the comparison between a specific feature and a learned
threshold at every internal node. Their hierarchical structure provides transparency, as each prediction
can be traced by a path from root to leaf. However, while decision trees are commonly used in
domains such as finance or healthcare (Soleimanian et al., 2012), using them for the analysis of DNA
sequences comes with several challenges. When operating on raw nucleotide features, trees must
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grow deep to capture complex interactions between multiple sequence positions, as each split can only
consider a single position, thereby compromising the interpretability and generalization performance
of the resulting tree. Although manually crafting high-level variables offers an alternative, this
approach remains limited by existing biological knowledge and ignores local data characteristics at
each node during tree construction, which should guide feature generation.

In this work, we address these limitations and propose DEFT (Dynamic Engineering of Features in
Trees), an interpretable and expressive tree-based model for DNA sequence classification. DEFT op-
erates with a top-down tree induction process that progressively grows the tree starting from a root
node. At each internal node, DEFT automatically discovers high-level sequence features that lead to
discriminative splits. It is adaptive, since feature generation is informed by the local data characteris-
tics at each leaf of the tree during induction. Furthermore, it incorporates domain knowledge, thereby
improving search efficiency by favoring features that are biological meaningful.

DEFT achieves this by leveraging Large Language Models (LLMs) as adaptive feature generators,
capitalizing on their in-context learning capabilities (Brown et al., 2020) and prior knowledge acquired
through extensive pretraining (Achiam et al., 2023). At each internal node, the LLM generates both
an interpretable semantic representation and executable code for the proposed feature, guided by the
partial tree structure and task-specific metadata. We also employ an evolution-inspired optimization
scheme in which the LLM iteratively refines candidate features through a self-reflection mechanism
based on the node splitting scores.

We put DEFT in action through a case study on RNA polymerase II (Pol II) pausing, a mechanism
related to critical regulatory processes including co-transcriptional splicing (De La Mata et al., 2003;
Alexander et al., 2010), and transcription termination (Gromak et al., 2006), but whose underlying
mechanisms remain incompletely understood. In particular, we demonstrate that DEFT discovers
biologically meaningful features which accurately characterize Pol II pausing patterns.

Our contributions. (1) Conceptually, we propose DEFT, an interpretable model for DNA
sequence classification that combines the transparency of decision trees with automated feature
generation during tree construction. (2) Technically, we leverage Large Language Models
(LLM) as adaptive feature generators that exploit local node context and task-specific metadata.
We also employ an evolution-inspired optimization scheme in which the LLM iteratively refines
candidate features through a reflection mechanism. (3) Experimentally, we conduct a case
study on Pol II pausing, where DEFT reveals interpretable sequence patterns which are highly
predictive of this regulatory process.

2 BACKGROUND

In this section, we describe decision trees for classification and examine their limitations in the
context of DNA sequence analysis.

2.1 TOP-DOWN TREE INDUCTION FOR CLASSIFICATION

Given a feature space X ⊂ Rd and an output space Y , decision tree induction is the process of
learning a predictor t : X → Y from a dataset Dtrain = {(xi, yi)}Ni=1 of samples in X × Y . The
predictor t is described by a tree structure which recursively partitions X into disjoint regions through
feature-threshold splits at internal nodes, and each leaf region is associated with a prediction value in
Y .

Top-down construction. Decision trees are typically constructed top-down, with methods like CART
Breiman et al. (1984) and ID3 Quinlan (1986) greedily building the tree one node at a time with
axis-aligned splits. These methods select the optimal split at a given node by minimizing a score
based on a node impurity measure Q (e.g., Gini index, misclassification error, or information gain).
Formally, given a subset D of Dtrain, a feature map f : X → R, and a threshold τ , we denote by

DL,(f,τ) = {(x, y) | (x, y) ∈ D, f(x) ≤ τ}
DR,(f,τ) = {(x, y) | (x, y) ∈ D, f(x) > τ}

the subsets formed by splitting D with the feature map f at threshold τ . Furthermore, let s be a
scoring function based on the impurity measure Q, such that:

s(f, τ,D) = wl
f,τQ(DL,(f,τ)) + wr

f,τQ(DR,(f,τ)) (1)
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where the weights wl
f,τ =

|DL,(f,τ)|
|D| and wr

f,τ =
|DR,(f,τ)|

|D| account for the relative sizes of the splits.

For any coordinate index i ∈ [d], we denote by ϕi : X → R the projection along the i-th feature. The
induction process then finds the optimal split (i∗, τ∗) for D by solving:

(i∗, τ∗) ∈ arg min
(i,τ)∈[d]×R

s(ϕi, τ,D) (2)

Equipped with this optimization procedure, top-down approaches progressively grow the tree, starting
from a single root node containing the training set Dtrain. Given a leaf v in the partially constructed
tree corresponding to the subset D ⊂ Dtrain which satisfies all splitting conditions from root to v,
top-down approaches find an optimal split (i∗, τ∗) for D using the criterion defined in Equation (2).
The leaf v then spawns two child nodes containing DL,(ϕi∗ ,τ∗) and DR,(ϕi∗ ,τ∗) respectively, and
the induction process continues with the updated tree, until a stopping criterion is met (e.g. when a
maximum depth is reached).

2.2 LIMITATIONS OF DECISION TREES FOR DNA SEQUENCE ANALYSIS

Decision trees are valuable in many domains given their inherent transparency (Rudin, 2019). Indeed,
their predictions can be simply traced through a sequence of splitting conditions starting from the
root node down to the leaves. This transparency makes them appealing for DNA sequence analysis,
where understanding the predictions of a model is crucial for validating predictions against biological
principles, discovering novel biological mechanisms, and guiding experimental design. However,
leveraging traditional decision trees for DNA sequence analysis presents several key challenges,
which we now detail.

Limited expressivity of raw sequence features. Decision trees can be trained on raw DNA sequence
features after basic preprocessing, such as one-hot encoding of nucleotides or treating them as
ordinal variables (Hastie et al., 2009). However, Equation (2) reveals a fundamental limitation: the
induction process considers positions in isolation at each node, unable to capture interactions between
different sequence positions simultaneously. This limitation creates a tension between expressivity
and interpretability. Since each split considers only a single position, trees must grow deep to capture
complex sequence patterns that depend on multiple nucleotide positions. This compromises the
interpretability that makes decision trees appealing in the first place, since predictions are described
by long sequences of splitting conditions. Furthermore, this complexity also impacts generalization
performance, as deeper trees might capture spurious patterns which do not generalize well at test
time.
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Figure 1: Limitations of con-
ventional trees. Training and
test accuracies versus maxi-
mum tree depth for GC con-
tent classification.

An example. We illustrate these limitations with a simple example.
Given a dataset of DNA sequences, we consider the task of predict-
ing whether or not the GC content is higher than a given threshold.
The GC content is defined as the percentage of nucleotides in the se-
quence that are either G (guanine) or C (cytosine), hence it requires
considering multiple sequence positions simultaneously. As we show
in Figure 1, conventional decision trees struggle with this seemingly
simple task. While they can achieve high training accuracy by grow-
ing deep enough to memorize specific position-by-position patterns,
their test accuracy remains poor. This is a critical limitation since
many biologically meaningful patterns emerge from the joint consid-
eration of multiple nucleotides positions, with examples including
secondary structure formation or binding site motifs.

Constraints of manual feature engineering. A potential solution
to the aforementionned limitation is to manually craft higher-level
features that capture known biological patterns and sequence motifs.
However, this approach faces two fundamental limitations. First, it
remains inherently constrained by current biological knowledge, potentially missing important but
undiscovered sequence patterns—a significant drawback when studying problems whose underlying
biological mechanisms are not yet understood. Second, engineered features are typically designed
in a model-agnostic way, lacking adaptivity to local data characteristics that emerge during tree
induction, and which should inform feature generation.
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Figure 2: DEFT is a tree-based method for interpretable DNA sequence analysis. Left: DEFT dis-
covers high level sequence features that can consider multiple positions simultaneously, constrasting
CART. For example, the feature upstream G content 20 49 operates on a window of positions
highlighted in orange (non-G nucleotides) and blue (G nucleotides). Right: It leverages LLMs to
generate candidate features at each node in a two-step process: first outputting semantic representa-
tions, then converting them into Python executable code. DEFT conditions the generation of features
on the partial tree structure and task-specific metadata.

3 METHOD

In this section, we introduce DEFT, an interpretable tree-based model for DNA sequence analysis that
addresses the limitations of conventional decision trees detailed in Section 2. Our approach combines
the transparency of tree structures while ensuring expressivity through automatically generated
sequence features which yield discriminative splits during tree construction. This makes DEFT’s
predictions readily interpretable through decision paths involving semantically meaningful features.

Adaptive feature generation with LLMs. Naively searching over the space RX of possible feature
maps at every leaf node during tree induction is non-trivial, due to its combinatorial nature and the
high dimensionality of DNA sequences. Instead, our key insight is to leverage Large Language
Models (LLMs) as adaptive feature generators, capitalizing on their prior knowledge acquired through
pretraining and their in-context learning capabilities. Indeed, large language models pretrained on
Internet-scale data, such as GPT4 (Achiam et al., 2023), Claude (Anthropic, 2024), and PALM2
(Anil et al., 2023), have demonstrated marked proficiencies in many tasks including natural language
(Brown et al., 2020), code programs (Chen et al., 2021) and optimization (Yang et al., 2024).
Furthermore, they are powerful hypothesis generators (Wang et al., 2023), making them particularly
suitable for exploring the vast space of feature maps.

Method overview. Our method DEFT performs tree induction in a top-down manner, progressively
growing the tree starting from the root node. At every leaf node of the partially constructed tree,
DEFT generates an initial set of candidate feature maps through a two-step process, first producing
semantic descriptions and then generating corresponding executable code for feature computation.
DEFT then employs an evolution-inspired optimization scheme where the LLM iteratively refines
the candidate features through self-reflection to optimize the splitting criterion. In what follows, we
detail each of these components in turn.

3.1 INITIALIZING THE POPULATION OF CANDIDATE FEATURES

Given a partially constructed tree T and a leaf node v associated with the subset D ⊂ Dtrain, we
seek a feature map f∗ : X → R that is discriminative for D. Unlike traditional top-down approaches
that only search over the set {ϕi}di=1 of raw feature maps (cf. Equation (2)), DEFT explores a richer
space of feature maps in RX by considering the unique characteristics of D. It generates initial
candidate features through a two-step process, first generating semantic representations describing
the candidate features, and then obtaining executable code to compute these candidate features.

Step 1. Obtaining semantic representations. DEFT first generates M semantic representations
{zj}Mj=1, where each triplet zj = (zn

j , z
d
j , z

r
j) provides a human-interpretable specification of a

candidate feature: zn
j provides a concise name (e.g., ”GC content”), zd

j details its computation (e.g.,
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”percentage of G and C nucleotides in the first 20 positions”), and zr
j explains its biological relevance

(e.g., ”GC-rich regions often indicate regulatory elements”). To generate semantic representations
suited to the characteristics of D, we incorporate information from the partial tree structure T and
the leaf v. Specifically, we represent the path from the root node to the leaf v in T as a sequence of
splitting conditions Sv,T defined by Sv,T = {(fl, z̃l, ol, τl)}Ll=1 where L is the path length, and each
tuple consists of a feature map fl : X → R, its semantic representation z̃l, a comparison operator
ol ∈ {≤, >}, and a threshold τl. We then serialize this node context in natural language to obtain a
prompt Snlv,T , using the following few-shot template: ”{z̃nl } {ol} {τl} ({z̃dl })”. In addition to the
node context, we also guide the generation with a task context C in natural language that describes
the input space X , output space Y , and prediction task. We then sample semantic representations of
candidate features from the LLM as zj ∼ LLM(·|Snlv,T , C, Isem), where Isem contains the generation
instructions that specify the expected format.

Step 2. Obtaining executable code. For each semantic representation zj , we generate an executable
implementation of the corresponding feature by prompting the LLM to translate the natural language
representation into Python code as fj ∼ LLM(·|zj , Icode), where Icode contains instructions for
producing valid Python code that computes the feature value for any input in X .

We then define the initial population of candidate features P = {(fj , zj)}Kj=1 ∪ {(ϕi, z̄i)}di=1, where
we incorporate the raw features and their associated semantic representations in addition to the
LLM-generated features.

3.2 ITERATIVE IMPROVEMENT WITH REFLECTION

While the contextual information provided by Sv,T and C guides the generation of the initial candidate
features, it may not be sufficient to obtain highly discriminative features. We therefore propose an
evolution-inspired optimization scheme that iteratively improves feature quality through LLM-based
reflection.

Given a population P of features and their semantic representations for a node with dataset D, we
first evaluate the discriminative power of the features by computing for each (f, z) ∈ P the score
η = minτ∈R s(f, τ,D), where s depends on an impurity measure Q (cf. Equation (1)). We then
create a few-shot prompt Pnl by serializing each feature (f, z) with its score η following the template

”Score: {η}, Feature name: {zn}, Feature description: {zd}, Feature code: {f}”.

To obtain better features, we define a set of instructions I comprising two distinct prompt instructions:
one for exploration, which directs the LLM to propose features distinct from P , and one for exploita-
tion, which guides the LLM to analyze and refine patterns from the highest-performing in-context
features. These instructions also incorporate constraints regarding the interpretability of the generated
features, an aspect that we investigate in Appendix C.1. For each instruction Iref ∈ I , we generate a
set of M semantic representations as z′m ∼ LLM(·|Pnl,Snlv,T , C, Iref ). Each z′m is then transformed
into executable code, yielding a population P ′. The M solutions from P ∪ P ′ with lowest scores are
selected to form the next population, and this optimization process repeats for K iterations. Finally,
we select the feature achieving the minimum score in the final population as the splitting feature for
the current node v.

We summarize the different steps for feature generation in Algorithm 1. This routine is performed
at every leaf node of the partially constructed tree, until a stopping criterion is met (e.g. maximum
depth reached). We also provide more details on the prompts in Appendix B.2.

4 RELATED WORKS

We summarize strands of research related to our work, with more details given in Appendix A.

Machine learning for DNA sequence analysis. Machine learning methods have become essential
tools for analyzing DNA sequences, with approaches ranging from classical models to deep neural
networks. Traditional methods like position weight matrices and k-mer-based models (Stormo, 2000)
provide interpretable results but often lack expressivity. More recently, deep learning architectures,
particularly convolutional and transformer networks, have demonstrated superior predictive perfor-
mance across various genomic tasks such as transcription factor binding prediction (Alipanahi et al.,
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2015; Zeng et al., 2016; Avsec et al., 2021b) and splice site prediction (Scalzitti et al., 2021; Albaradei
et al., 2020; Wang et al., 2019). However, these powerful models typically operate as black boxes,
making it difficult to interpret their predictions.

Decision trees. Decision trees are typically constructed greedily, finding at each node an optimal
feature-threshold pair for splitting (Breiman et al., 1984; Quinlan, 1986; 1993). These conventional
methods are restricted to splits based on raw features, providing axis-aligned trees with limited expres-
sivity. While oblique decision trees (Murthy et al., 1994) enhance expressivity by considering linear
combinations of features at each node, they still explore a restricted feature space, are challenging to
optimize especially in high-dimensional settings and assume continuous features.

Applications of LLMs. Recent works have leveraged LLMs for diverse tasks, including code
evolution (Lehman et al., 2023; Brownlee et al., 2023), optimization (Yang et al., 2024; Liu et al.,
2024), and feature engineering (Han et al.; Hollmann et al., 2024; Nam et al., 2024). However, (Han
et al.; Hollmann et al., 2024; Nam et al., 2024) have primarily focused on tabular datasets, while
our work addresses DNA sequence analysis. Moreover, they do not account for the characteristics
of the downstream model, whereas our approach integrates feature generation directly into the tree
induction process, making it adaptive to the local characteristics of nodes.

5 A CASE STUDY ON RNA POLYMERASE II PAUSING

We put DEFT in action with a case study on the classification of RNA polymerase II pausing using
DNA sequences. The rest of this section is structured as follows. In Section 5.1, we analyze the
features discovered by DEFT, revealing its ability to capture biologically meaningful concepts related
to Pol II. In Section 5.2, we demonstrate that these features accurately discriminate pausing sites
from non-pausing sites. In Section 5.3, we perform ablation studies that provide insight into the key
mechanisms contributing to DEFT performance. We provide additional results in Appendix C.

RNA polymerase II pausing. We base our case study on the task of predicting RNA polymerase
II pausing (Mayer et al., 2017). RNA polymerase II (Pol II) is the essential nuclear enzyme that
catalyzes the transcription of protein-coding genes into messenger RNA in eukaryotic cells. During
transcription elongation, Pol II temporarily interrupts its forward movement along the DNA template
at specific positions, slowing down the rate of RNA synthesis. This mechanism is related to critical
regulatory processes including co-transcriptional splicing (De La Mata et al., 2003), nascent RNA
folding (Hein et al., 2014), transcription termination (Gromak et al., 2006), and recruitment of
regulatory factors (Core & Adelman, 2019). Some approaches have revealed sequence motifs
associated with pausing (Mayer et al., 2017; Fong et al., 2022), but the complete ”grammar” of pause
is not fully characterized. This makes Pol II pausing an ideal case study for DEFT, as it represents a
complex problem where interpretable machine learning could provide new biological insights.

Dataset. We analyze enhanced Native Elongating Transcript sequencing (eNET-seq) data from
HCT116 human cells, which maps Pol II transcription at single-base resolution. Transcriptional
pause sites are identified where the signal exceeds 3 standard deviations above the local mean and
contains at least 5 reads. From the genome-wide data, we construct a balanced dataset of 6,000 DNA
sequences, randomly splitting them into a training set of 4,000 sequences and a held-out test set of
2,000 sequences. For each DNA sequence, we define a binary label based on the presence of a pause
site at the center position of the sequence (position 50). We provide detailed information about data
processing and characteristics in Appendix B.1.

Experimental details. In what follows, we use gpt-4o version 1001 as the underlying LLM. We
use a population size M = 10 and perform K = 20 reflection steps per node. The Gini index serves
as the splitting criterion at each node and we set a minimum number of samples per leaf equal to
1% of the size of the training set to prevent overfitting. Appendix B.2 provides more details on the
hyperparameters and experimental setting.

5.1 DEFT DISCOVERS BIOLOGICALLY MEANINGFUL FEATURES

We begin the case study by analysing the features discovered by DEFT during tree induction.
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Figure 3: Decision tree constructed by DEFT. DEFT discovers high-level sequence features. We
also report the leaves’ predictions.

Analysis. Figure 3 shows a tree of depth 3 constructed by DEFT. Each node displays a feature name,
which is part of the semantic representations, with corresponding threshold values labeled at the edges.
We first observe that DEFT discovers high-level features based on the DNA sequences which integrate
information across multiple nucleotide positions simultaneously, going beyond single-nucleotide
information. For example, the feature at the root node computes the G content on a specific window
of the sequences. Its semantic representation is the following:

Feature name: upstream G content 20-49

Feature description: ”Calculate the proportion of guanine (G) nucleotides in the upstream
region from positions 20 to 49. Count the number of G nucleotides in this region and divide by
30 to get the proportion.”

Rationale: ”Based on the top-performing features, it is evident that GC content, particularly
the presence of guanine (G) nucleotides in specific regions, plays a significant role in RNA poly-
merase pausing. Notably, the features upstream G content, upstream G content
30-49, and G count upstream 10bp focus on G content in the upstream region and
have shown high relevance. Given this, I propose a feature that captures the proportion of
guanine nucleotides in a slightly broader and different upstream window (positions 20 to 49).”

The biological significance of this feature in the upstream region likely relates to guanine’s chemical
properties and its potential to form alternative DNA structures like G-quadruplexes (Lipps & Rhodes,
2009) when present in high density. The specific positioning of this window (1-31 bases upstream of
potential pause sites) suggests that G-rich sequences in this region may influence Pol II dynamics,
possibly through local structural changes in the DNA template or by creating binding sites for
regulatory factors that affect pausing. This is in agreement with (Turowski et al., 2020) that found
that high GC content in the transcription bubble correlates with slow Pol II elongation.

Furthermore, a key advantage of the decision tree structure in DEFT is its ability to progressively
refine sequence classification as we go deeper into the tree. For instance, while upstream G content
serves as a discriminative feature for the entire dataset, DEFT reveals a distinct subset of sequences
with high upstream G-content, characterized by a purine at position 51 (1 base pair downstream of
the site), and which consists almost exclusively of non-pause sites.

Take-away 1. DEFT discovers biologically meaningful features which can capture patterns
across multiple positions.

5.2 DEFT FINDS TREES WHICH FAITHFULLY CHARACTERIZE POL II PAUSING

Methodology. Having demonstrated DEFT’s ability to discover biologically meaningful
DNA sequence features during tree induction, we now verify if they faithfully character-
ize Pol II pauses. To do so, we evaluate the predictive performance of trees found by
DEFT, comparing it against trees which use the raw sequence positions as features (CART).
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Figure 4: Performance
comparison. Training and
test accuracies across varying
depths for DEFT and CART.
DEFT achieves superior
predictive performance by
generating highly discrimina-
tive features. We report the
mean and confidence intervals
at the 95% level for 5 seeds.

For this baseline, we use one-hot encoded nucleotides at each po-
sition as features. While nucleotides could alternatively be treated
as ordinal variables, this approach empirically led to inferior results
compared to one-hot encoding. We assess both DEFT and CART
across varying tree depths d ≤ 10, with CART also using a minimum
number of samples per leaf equal to 1% of the size of the training
set to mitigate overfitting (results without this regularization can be
found in Appendix C.2).

Results. We compare in Figure 4 the training and test accuracies
of DEFT and CART across varying tree depths for 5 different seeds.
DEFT consistently achieves superior performance on both training
and test sets for the different tree depths. The predictive power of
DEFT demonstrates that its ability to discover high-level sequence
features leads to more effective discrimination between pause and
non-pause sites than position-specific nucleotide splits alone. We
report additional performance metrics (F1 score, precision, and
recall) in Appendix C.3, which further support these findings.

Take-away 2. DEFT’s ability to discover and leverage high-level DNA sequence features leads
to more accurate Pol II pause site prediction compared to traditional approaches restricted to
single-nucleotide splits.

5.3 ABLATIONS
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Figure 5: Ablation study.
We report the training accura-
cies for the different ablations
across varying tree depths. We
report the mean and confi-
dence intervals at the 95%
level for 5 seeds.

Methodology. We conduct ablation experiments by removing the
following key components: ▶ Prior knowledge: DEFTno prior

removes the semantic information from the prompts for both popula-
tion initialization and the reflection mechanism. This includes replac-
ing the description of the task with generic information. ▶ Adaptiv-
ity: DEFTno adapt fits a CART model on a feature set consisting of
the raw features and the features generated for the root node (which
corresponds to the whole dataset). This contrasts DEFT which
dynamically generates features at each node during tree induction
and hence considers the local data characteristics. ▶ Reflection.
DEFTno ref removes the reflection mechanism, relying solely on
the LLM for population initialization.

Results. We report the training accuracy for each of these ablations
in Figure 5, observing that these three components are necessary to
achieve optimal search efficiency. Notably, the reflection mechanism
(which leverages the LLM’s in-context learning capabilities) plays
a crucial role in navigating the complex search space of possible
feature maps, also explaining the competitive performance of DEFTno prior. We provide detailed
analysis of the reflection mechanism’s performance improvements in Appendix C.4.

6 DISCUSSION

In this work, we introduced DEFT , an interpretable tree-based model for DNA sequence analysis. In
contrast to traditional decision trees which operate on raw features, DEFT automatically discovers
high-level sequence features during tree induction. It leverages LLMs to navigate the search space of
possible feature maps, exploiting both their prior knowledge and in-context learning abilities. Through
a comprehensive case study on Pol II pausing classification, we demonstrate that DEFT discovers
biologically meaningful features that accurately characterize the pauses. Future work may investigate
the performance of DEFT on datasets with higher dimensionality or other domains with structured
modalities (e.g. amino acids). Finally, DEFT could be extended to a human-in-the-loop setting,
where the discovery of features by LLMs would be guided by domain experts.
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MEANINGFULNESS STATEMENT

A meaningful representation of life should capture both the information content of biological systems
(like DNA sequences) and how this information creates functional behaviors. DEFT contributes to
this by revealing how DNA sequences can encode dynamic regulatory processes through discoverable
and interpretable patterns, showing how genetic information connects to biological function.
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A EXTENDED RELATED WORKS

Our work intersects with several research areas in machine learning and computational biology, which
we detail below.

Machine learning for DNA sequence analysis. The analysis of DNA sequences using machine
learning has seen significant advances in recent years. Traditional approaches rely on position weight
matrices and k-mer based models (Stormo, 2000), which provide interpretable results but often lack
the expressivity to capture complex sequence patterns. More recently, deep learning architectures
have demonstrated superior predictive performance across various genomic tasks. Convolutional
neural networks have proven particularly effective for DNA sequence analysis, with (Alipanahi et al.,
2015) showing their ability to learn regulatory motifs and predict transcription factor binding sites.
This line of work has been extended through architectures like DeepSEA (Zhou & Troyanskaya,
2015), which can identify sequence patterns at multiple spatial scales. Transformer-based models
have further advanced the field, with works like Enformer (Avsec et al., 2021a) demonstrating
the ability to capture long-range dependencies in genomic sequences. While these deep learning
approaches achieve remarkable performance, their black-box nature makes their predictions non
transparent. DEFT addresses this limitation by providing an interpretable framework that maintains
high predictive power.

Interpreting black boxes in DNA sequence analysis. The need for interpretability in genomic
applications has led to various approaches to explain machine learning models. Attribution methods
like integrated gradients (Sundararajan et al., 2017) and DeepLIFT (Shrikumar et al., 2017) have
been widely used to identify important nucleotides in deep learning predictions. However, these
post-hoc interpretation methods have several limitations. They explain individual predictions rather
than providing global model understanding, and the extracted patterns may not faithfully represent
the model’s predictions (Rudin, 2019). In contrast, our approach builds interpretability directly into
the model, using a tree structure with human-understandable features.

Decision trees. Decision trees are valued for their interpretability and ability to capture nonlinear
patterns. Greedy algorithms sequentially grow trees with a top-down approach. Popular methods in
this class of algorithms are CART (Breiman et al., 1984), ID3 (Quinlan, 1986) and C4.5 (Quinlan,
1993). Another branch of methods use combinatorial optimization techniques to search for sparse,
optimal trees, e.g. branch and bound (Lin et al., 2020) and dynamic programming (Aglin et al., 2020).
Notable works include BinOCT (Verwer & Zhang, 2019), DL85 (Aglin et al., 2020), OSDT (Hu
et al., 2019), and GOSDT (Lin et al., 2020). A common limitation of these methods is their reliance on
single-feature splits. Hence some works have explored ways to enhance tree expressivity, for example
through oblique splits (Murthy et al., 1994). However, these methods explore a restricted search space
(e.g. linear combinations of features), and are difficult to optimize given the non-differentiability of
the objective function, which is exacerbated by the high dimensionality of genomic datasets.

LLMs in scientific applications. Recent work has demonstrated the potential of large language
models (LLMs) in scientific applications beyond natural language processing. LLMs have shown
strong capabilities in tasks like mathematical reasoning (Lewkowycz et al., 2022), code generation
(Chen et al., 2021). Particularly relevant to our work are approaches using LLMs for hypothesis
generation in scientific discovery (Wang et al., 2023) and genetic algorithms (Liu et al., 2024).
The use of LLMs for feature engineering is an emerging area, with recent works exploring their
potential for tabular data (Han et al.; Hollmann et al., 2024). However, these approaches typically
treat feature generation as a standalone preprocessing step, while DEFT integrates feature discovery
in the tree induction process, allowing for adaptivity based on local data characteristics. Furthermore,
while (Han et al.; Hollmann et al., 2024) mostly construct features based on compositions of simple
arithmetic operations (e.g. +, −, ×) applied to continuous features, DEFT can discover high-level
features which take into account the sequential nature of the data.

B EXPERIMENTAL DETAILS

Code release. Code wil be released upon acceptance.

Compute resources. All the experiments were conducted on a machine equipped with a 18-Core
Intel Core i9-10980XE CPU, and a NVIDIA GeForce RTX 3080.
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B.1 DETAILS ON THE DATASET.

We base the case study conducted in Section 5 on a dataset (Fong et al., 2022) publicly available on
the GEO platform (GEO), with accession number GSE202749.

Description. Following the description of (Fong et al., 2022), this dataset was collected using an
enhanced version of NET-seq (eNET-seq), which maps RNA Polymerase II pausing at single-base res-
olution in human HCT116 cells. The standard NET-seq protocol was modified with optimized MNase
digestion, decapping enzymes, and unique molecular identifiers (UMIs) for accurate quantification.
The resulting data captures the precise positions of paused RNA Polymerase II complexes across
the genome by sequencing the 3′ ends of nascent RNA transcripts that are protected from MNase
digestion by the polymerase. Pause sites in the dataset are defined using three specific quantitative
criteria: each pause site must have an eNET-seq signal that exceeds the mean signal of its surrounding
200 bp window by more than 3 standard deviations, contain at least 5 reads at the precise pause
position, and have a minimum of 5 additional reads within the surrounding window.

Dataset statistics. We extract a subset of the original dataset, randomly sampling 6000 samples from
the control group (corresponding to the condition +Spt5). The DNA sequences have length 101, and
the labels are defined with respect to the central position in each sequence (indexed as position 50).
We summarize the statistics of the dataset in Table 1.

Table 1: Pol II pausing dataset characteristics

Characteristic Value
Total number of samples 6000
Training set size 4000
Test set size 2000
Dimensionality of the sequences 101
Label distribution Pausing: 51%, Non-pausing: 49%

Data processing. DEFT can operate on the original raw features without any preprocessing, since it
generates code representations that can take as input dataframes. However, CART can only process
continuous or ordinal features. Therefore, we one-hot encode each position in the sequences, yielding
a total of 404 = 4× 101 features. This approach outperformed the alternative of treating nucleotides
as ordinal variables (computing the ordering based on the label proportions (Hastie et al., 2009)),
which is why we adopt it in Section 5.

B.2 DETAILS ON THE METHOD.

B.2.1 ALGORITHM

We provide the algorithm for feature generation at a node v in Algorithm 1.

B.2.2 LLM HYPERPARAMETERS

We detail in Table 2 the hyperparameters of the LLM used throughout our experiments.

Table 2: LLM parameters

Parameter Value
Model name gpt-4o
Version 1001
Temperature 1
Top p 0.95

DEFT uses a rejection mechanism where invalid features (e.g. which cannot be automatically parsed)
are discarded.
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Algorithm 1 Feature generation at node v

Require: Node v, tree T , subset D, task context C, population size M , number of iterations K
1: Snlv,T ← serialized sequence of splitting conditions from root to v

2: P ← ∅ {Initial population}
3: for j = 1 to M do
4: zj ∼ LLM(·|Snlv,T , C, Isem) {Semantic rep.}
5: fj ∼ LLM(·|zj , Icode) {Executable code}
6: P ← P ∪ {(fj , zj)}
7: end for
8: P ← P ∪ {(ϕi, z̄i)}di=1 {Add raw features}
9: Compute scores η = minτ∈R s(f, τ,D) for all f in P

10: for k = 1 to K do
11: Create few-shot prompt Pnl from P and scores
12: for Iref ∈ I do
13: for m = 1 to M do
14: z′m ∼ LLM(·|Pnl,Snlv,T , C, Iref )
15: f ′

m ∼ LLM(·|z′m, Icode)
16: end for
17: P ′ ← P ′ ∪ {(f ′

m, z′m)}Mm=1
18: Compute scores for all features in P ′

19: end for
20: P ← Top-M(P ∪ P ′) {Selection on scores}
21: end for
22: return (f∗, z∗, τ∗) = argmin(f,z)∈P,τ s(f, τ,D)

While our implementation and experiments utilize GPT-4o (version 1001) as the underlying LLM,
we note that DEFT is model-agnostic and can be readily adapted to work with any LLM that
demonstrates capabilities in natural language understanding and code generation.

B.2.3 OTHER DETAILS

In our experimental section, DEFT uses a population size M = 10, and a number of reflections
K = 20. Furthermore, DEFT uses the Gini index as the splitting criterion, defined as:

Q(D) = 1−

(∑
(x,y)∈D 1(y = 0)

|D|

)2

−

(∑
(x,y)∈D 1(y = 1)

|D|

)2

(3)

B.2.4 PROMPTS

Prompt structure. Each prompt for feature generation contains:

1. the task context C: describes the input space, the label, the characteristics of the dataset, and
the tree induction task

2. the node context Snlv,T : lists the sequence of splitting conditions from the root node to the
current node v

3. interpretability instructions: prevents composite features combining multiple mechanisms

4. task-specific instructions: for example, instructions for exploration and exploitation in
reflection

In addition to that, the reflection prompts contain in-context features along with their scores.

Examples of prompts. In what follows, we provide examples of prompts for population initialization
in Listing 1, reflection (exploration in Listing 2, exploitation in Listing 3) and code generation in
Listing 4.
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Your goal is to help with the task of growing a decision tree to
predict RNA polymerase pausing. This is a dataset about RNA
polymerase pausing. Given a current node that we want to split in
the tree, you will construct a new feature based on the original
DNA sequence, such that this new feature is discriminative for the
prediction task of classifying RNA polymerase pausing. The raw
feature is the DNA sequence of length 101 centered on the pause
site. Positions from 0 to 49 included correspond to the upstream
region. Position 50 corresponds to the site. Positions from 51 to
100 included are in the downstream region. The possible nucleotide
values are A, C, G, T.

The features are:
raw_sequence: text (average length: 101.0 characters)

The dataset has 1644 samples.

<Beginning Splitting conditions from root to current node>
upstream_G_content_20_49 smaller than 0.250 (Calculate the proportion

of guanine (G) nucleotides in the upstream region from positions 20
to 49. Count the number of G nucleotides in this region and divide
by 30 to get the proportion.)

<End of Splitting conditions from root to current node>

Leverage your biology expertise and your creativity to generate a good
feature (name, description, justification). This feature can be
simple. Importantly, take into account the contextual history
given above , which defines the sequence of splitting conditions
from the root node up to the current node. Another important
point: The feature should be interpretable. The feature should
capture a single, clear biological mechanism. Use only basic
sequence properties that a biologist could understand and find
intuitive. Avoid combining multiple biological mechanisms into one
feature, which would introduce complexity. Be very explicit in
your description on how you compute the feature. Return the
feature in the following JSON format:

{"rationale": "rationale", "description": "your_feature_description",
"name": "your_feature_name"}

Only return the JSON object, with no additional text.

Listing 1: Example prompt for population initialization
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Your goal is to help with the task of growing a decision tree to
predict RNA polymerase pausing. This is a dataset about RNA
polymerase pausing. Given a current node that we want to split in
the tree, you will construct a new feature based on the original
DNA sequence, such that this new feature is discriminative for the
prediction task of classifying RNA polymerase pausing. The raw
feature is the DNA sequence of length 101 centered on the pause
site. Positions from 0 to 49 included correspond to the upstream
region. Position 50 corresponds to the site. Positions from 51 to
100 included are in the downstream region. The possible nucleotide
values are A, C, G, T.

The features are:
raw_sequence: text (average length: 101.0 characters)

The dataset has 1644 samples.

Given a current node that we want to split in the tree, you will
construct a new feature based on the original DNA sequence, such
that this new feature is discriminative for the prediction task of
classifying RNA polymerase pausing. The feature should be: 1.
Biologically interpretable - based on possible mechanisms of
transcription and intuitive for biologists 2. Computationally
clear - specify exact positions and calculation methods, 3.
Complementary to previous splitting conditions from the root to
current node. I am going to give you an initial population of
features with their respective scores (lower is better). The
feature you generate should be as different as possible from the
initial population in order to explore new ideas.

Another important point: The feature should be interpretable. To assess
interpretability, please consider the following aspects: 1)
Simplicity: the should be simple and easy to understand. An
interpretable feature should not be overly complex (and not involve
multiple complex phenomena). Hence features which incorporate too
many multiple distinct components are not simple and should not be
generated. 2) Intuitiveness: The feature should be intuitive and
easy to explain to a biologist 3) Relevance: the feature should be
relevant to the biological prediction task.

Return three things: 1. Rationale: describe step by step how you came
up with this feature, taking into account both the splitting
conditions and the population of candidate features. If you
feature involves a physical or biological mechanism, say why it is
relevant. 2. Description: precise calculation method 3. Name:
clear and descriptive. Return in the following JSON format:

{"rationale": "your_rationale", "description":
"your_feature_description", "name": "your_feature_name"}

Only return the JSON object, with no additional text. Do not include
"json" in front of it

<Beginning of the population of features>
Here is the list of features along with their score:
Feature 1
Score: 0.2667
Feature name: upstream_GC_content_10_29
Feature description: Calculate the proportion of guanine (G) and

cytosine (C) nucleotides in the upstream region from positions 10
to 29. Count the number of G and C nucleotides in this region and
divide by 20 to get the proportion.

Feature code: def add_upstream_GC_content_10_29(X):
def calculate_gc_content(seq):

upstream_region = seq[10:30]
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gc_count = upstream_region.count(’G’) +
upstream_region.count(’C’)

return gc_count / 20

return X[’raw_sequence’].apply(calculate_gc_content)
...
Feature 10
Score: 0.195
Feature name: pos_50_is_G_and_pos_51_is_T
Feature description: Check if position 50 in the raw sequence is G and

position 51 is T. Return 1 if both conditions are true, otherwise
0.

Feature code: def construct_feature(X):
return X[’raw_sequence’].apply(lambda seq: 1 if len(seq) > 51 and

seq[50] == ’G’ and seq[51] == ’T’ else 0)
<End of the population of features>

<Beginning Splitting conditions from root to current node>
upstream_G_content_20_49 smaller than 0.250 (Calculate the proportion

of guanine (G) nucleotides in the upstream region from positions 20
to 49. Count the number of G nucleotides in this region and divide
by 30 to get the proportion.)

<End of Splitting conditions from root to current node>

Listing 2: Example prompt for reflection (exploration)

Your goal is to help with the task of growing a decision tree to
predict RNA polymerase pausing. This is a dataset about RNA
polymerase pausing. Given a current node that we want to split in
the tree, you will construct a new feature based on the original
DNA sequence, such that this new feature is discriminative for the
prediction task of classifying RNA polymerase pausing. The raw
feature is the DNA sequence of length 101 centered on the pause
site. Positions from 0 to 49 included correspond to the upstream
region. Position 50 corresponds to the site. Positions from 51 to
100 included are in the downstream region. The possible nucleotide
values are A, C, G, T.

The features are:
raw_sequence: text (average length: 101.0 characters)

The dataset has 1644 samples.

Given a current node that we want to split in the tree, you will
construct a new feature based on the original DNA sequence, such
that this new feature is discriminative for the prediction task of
classifying RNA polymerase pausing. The feature should be: 1.
Biologically interpretable - based on possible mechanisms of
transcription and intuitive for biologists 2. Computationally
clear - specify exact positions and calculation methods, 3.
Complementary to previous splitting conditions from the root to
current node. I am going to give you an initial population of
features with their respective scores (lower is better). Very
important: First identify common ideas of the top performing
solutions in the population. Then base your feature on these common
ideas and simplify them to get one good feature, but do not simply
combine these common ideas (do not just add them for example, that
would create too much complexity).

Another important point: The feature should be interpretable. To assess
interpretability, please consider the following aspects: 1)
Simplicity: the should be simple and easy to understand. An
interpretable feature should not be overly complex (and not involve
multiple complex phenomena). Hence features which incorporate too
many multiple distinct components are not simple and should not be
generated. 2) Intuitiveness: The feature should be intuitive and
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easy to explain to a biologist 3) Relevance: the feature should be
relevant to the biological prediction task.

Return three things: 1. Rationale: describe step by step how you came
up with this feature, taking into account both the splitting
conditions and the population of candidate features. If you
feature involves a physical or biological mechanism, say why it is
relevant. 2. Description: precise calculation method 3. Name:
clear and descriptive. Return in the following JSON format:

{"rationale": "your_rationale", "description":
"your_feature_description", "name": "your_feature_name"}

Only return the JSON object, with no additional text. Do not include
"json" in front of it

<Beginning of the population of features>
Here is the list of features along with their score:
Feature 1
Score: 0.2667
Feature name: upstream_GC_content_10_29
Feature description: Calculate the proportion of guanine (G) and

cytosine (C) nucleotides in the upstream region from positions 10
to 29. Count the number of G and C nucleotides in this region and
divide by 20 to get the proportion.

Feature code: def add_upstream_GC_content_10_29(X):
def calculate_gc_content(seq):

upstream_region = seq[10:30]
gc_count = upstream_region.count(’G’) +

upstream_region.count(’C’)
return gc_count / 20

return X[’raw_sequence’].apply(calculate_gc_content)
...
Feature 10
Score: 0.195
Feature name: pos_50_is_G_and_pos_51_is_T
Feature description: Check if position 50 in the raw sequence is G and

position 51 is T. Return 1 if both conditions are true, otherwise
0.

Feature code: def construct_feature(X):
return X[’raw_sequence’].apply(lambda seq: 1 if len(seq) > 51 and

seq[50] == ’G’ and seq[51] == ’T’ else 0)
<End of the population of features>

<Beginning Splitting conditions from root to current node>
upstream_G_content_20_49 smaller than 0.250 (Calculate the proportion

of guanine (G) nucleotides in the upstream region from positions 20
to 49. Count the number of G nucleotides in this region and divide
by 30 to get the proportion.)

<End of Splitting conditions from root to current node>

Listing 3: Example prompt for reflection (exploitation)

Your goal is to generate a python code to construct a feature, based on
a dataframe.

You should build this feature using the following original features:
raw_sequence: text (average length: 101.0 characters)

The feature you should generate has the following characteristics:
Feature name: pos_50_is_G_and_pos_51_is_T
Feature description: Check if position 50 in the raw sequence is G and

position 51 is T. Return 1 if both conditions are true, otherwise
0.
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The raw feature is the DNA sequence of length 101 centered on the pause
site. Positions from 0 to 49 included correspond to the upstream
region. Position 50 corresponds to the site. Positions from 51 to
100 included are in the downstream region. The possible nucleotide
values are A, C, G, T. Give instantly executable code without
example usage. Only return the Python function, with no additional
text. The name of the argument should be ’X’. Only output one
function, this is very important. The function should only return
the new feature column. Start your output with the string ’def
{Function Name}(X):’ do not include ’python’ in front of it

Listing 4: Example prompt for code generation

B.2.5 COMPUTATIONAL OVERHEAD

Compared to conventional decision trees, DEFT incurs an additional computational overhead which
comes from the LLM inference time at each node during tree construction, both for generating
the initial population of candidate features and during the reflection mechanism. However, this
allows DEFT to discover novel features which are highly discriminative, hence requiring fewer splits
to achieve comparable performance to conventional trees. This is evidenced by DEFT’s superior
accuracy (as shown in Figure 4), where it achieves better performance than CART given the same
depth. Hence, the LLM-guided feature discovery effectively trades increased per-node computation
for a more focused exploration of the feature space. Finally, it is important to note that DEFT provides
valuable insights for the practitioner by automatically discovering human-interpretable features that
can capture high level sequence patterns, going beyond single-position splits.

C ADDITIONAL RESULTS

C.1 DEFT ALLOWS TO CONTROL THE BALANCE BETWEEN INTERPRETABILITY AND
PERFORMANCE

The results in Section 5 demonstrate that DEFT discovers biologically meaningful features that
are discriminative for Pol II pausing, hence achieving both interpretability and predictive accuracy.
We now illustrate how our framework enables practitioners to control the balance between these
objectives according to their requirements. Specifically, we show that DEFT can find composite
features that yield trees with enhanced predictive performance at small tree depths.

Methodology. To explore this, we remove the interpretability constraints from the reflection prompts
in I . This modification allows DEFT to focus solely on generating features that maximize predictive
performance, regardless of complexity. We denote this configuration as DEFTperf.

Results. We report the training and test accuracies for small tree depths in Table 3. While the gap
between DEFTperf and DEFT reduces as d increases, we can see a strong performance difference at
depth 1. To provide intuition for this observation, we show an example of a feature discovered by
DEFTperf at the root node of the tree.

Feature name: upstream and segmented downstream GCT density

Feature description: ”Calculate the density of G nucleotides in six upstream segments
(positions 25-28, 29-33, 34-38, 39-43, 44-47, and 48-49) by dividing the count of G nucleotides
by 4, 5, 5, 5, 4, and 2 respectively. At the pause site (position 50), consider the presence of
a G nucleotide as 1. Additionally, calculate the density of G, C, and T nucleotides in three
downstream segments (positions 51-63, 64-75, and 76-100) by dividing the combined count
of G, C, and T nucleotides by 13, 12, and 25 respectively. Combine these densities to get a
comprehensive measure.”

This feature illustrates how relaxing interpretability constraints leads to the discovery of composite
sequence patterns: it combines position-specific G densities upstream with broader GCT content
downstream, achieving higher discriminative power through a more sophisticated feature compared to
the one shown in Section 5.1. While the feature is more complex, it is worth noting that the semantic
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Table 3: Performance comparison at different maximum tree depths, showing training and test
accuracies for both methods.

Train Test

d DEFT DEFTperf DEFT DEFTperf

1 0.769(0.003) 0.820(0.011) 0.762(0.003) 0.810(0.011)

2 0.836(0.015) 0.866(0.025) 0.823(0.021) 0.849(0.022)

3 0.872(0.008) 0.886(0.015) 0.856(0.013) 0.862(0.014)

and code representations obtained with DEFT still provide transparency into the feature computation,
facilitating both analysis and potential simplification by domain experts.

C.2 CART WITHOUT COMPLEXITY PENALTY

Methodology. In contrast to Section 5.2, where we set the minimum number of samples to 1%
of the training set size for CART to prevent overfitting, we now evaluate an unregularized baseline
CARTno reg with zero minimum samples per leaf.

Results. As shown in Figure 6, while CARTno reg achieves increasingly higher training accuracy at
greater tree depths, this comes at the cost of deteriorating test accuracy, an indication of overfitting.
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Figure 6: CART trees can overfit. Deep trees constructed with CART overfit the training set when
there is no explicit regularization mechanism. We report the mean and confidence intervals at the
95% level for 5 seeds.

C.3 OTHER CLASSIFICATION METRICS

We report in Figure 7 the F1 score, precision and recall for both DEFT and CART. The results
corroborate our findings from Section 5.2, demonstrating that DEFT identifies sequence features that
are more predictive of pausing behavior both in and out of sample, thus describing Pol II pausing
more faithfully.
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Figure 7: Performance comparison. We report F1 score, precision and recall. We report the mean
and confidence intervals at the 95% level for 5 seeds.
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C.4 ANALYSIS OF THE REFLECTION MECHANISM

Methodology. We examine the reflection mechanism’s effectiveness in exploring the complex search
space of potential feature maps. For each node, we compute the mean of the scores of the features
generated at each reflection iteration. We then normalize these scores across nodes to compute an
averaged normalized score for each reflection iteration.

Results. Figure 8 presents the normalized scores across reflection iterations, demonstrating that the
reflection mechanism is essential for refining the initial candidate population. This aligns with our
findings from Section 5.3, where DEFTno ref exhibits lower performance compared to DEFT. This
analysis also confirms that DEFT does not rely on LLM memorization to achieve good performance.
Indeed, if this was the case, DEFT would be able to achieve optimal performance without the
reflection mechanism, which is invalidated by Section 5.3.
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Figure 8: The reflection mechanism effectively refines the features.
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