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ABSTRACT

LLMs can perform seemingly planning-intensive tasks, like writing coherent sto-
ries or functioning code, without explicitly verbalizing a plan; however, the extent
to which they implicitly plan is unknown. In this paper, we define latent plan-
ning as occurring when LLMs possess internal planning representations that (1)
cause the generation of a specific future token or concept, and (2) shape preced-
ing context to license said future token or concept. We study the Qwen-3 family
(0.6B-14B) on simple planning tasks, finding that latent planning ability increases
with scale. Models that plan possess features that represent a planned-for word
like accountant, and cause them to output an rather than a; moreover, even the
less-successful Qwen-3 4B-8B have nascent planning mechanisms. On the more
complex task of completing rhyming couplets, we find that models often identify
arhyme ahead of time, but even large models seldom plan far ahead. However, we
can elicit some planning that increases with scale when steering models towards
planned words in prose. In sum, we offer a framework for measuring planning
and mechanistic evidence of how models’ planning abilities grow with scale.

1 INTRODUCTION

LLMs succeed at some tasks that seem to require planning—reasoning about the steps needed to
achieve a goal state—without explicitly verbalizing a plan. Understanding the extent of models’
unverbalized planning is important: such latent planning could present Al safety risks, allowing
models to engage in scheming without alerting external monitors (Balesni et al., 2024} Korbak et al.,
2025). Despite this, empirical evidence regarding LLMs’ latent planning remains limitedeast work
on latent planning is largely observational: studies show that future tokens or text attributes can
be extracted from model activations (Pal et al., 2023} [Pochinkovl 2025} [Dong et al.l [2025). Only
recently has causal evidence for planning emerged, in closed models (Lindsey et al., 2025).

We argue that claims of latent planning must be based on causal, not observational evidence, lest we
apply the “planning” label too broadly. We consider an LLM to engage in latent planning only if it
possesses an internal representation of the planned-for token or concept ¢ that causes it to generate
t; we call this forward planning. However, this representation must also cause the model to engage
in backward planning, reasoning back from its goal ¢ to generate a context that accommodates it.

To understand how latent planning emerges with scale, we test S Qwen-3 models of increasing size
on simple tasks that could involve latent planning, like completing “Someone who handles financial
records is — a/an (accountant)”’; we find that only models with 14B+ parameters consistently suc-
ceed. We then use feature circuits (Marks et al.,|2025; |Ameisen et al., 2025) to find the mechanisms
that underlie models’ abilities. We find that there exist planning features that represent future out-
puts like accountant and upweight relevant outputs like “an” (Figure[I)). Moreover, although smaller
models fail, they possess planning-relevant features that promote the correct answer.

We next have models complete rhyming couplets, where |[Lindsey et al.| observed longer-range plan-
ning in Claude Haiku. We find that models employ a circuit that tracks information related to poetry,
such as when a line is about to end, or what to rhyme with; however, even large models do not en-
gage in backward planning. We then test intermediate planning abilities by steering models towards
planned words in prose, and observe forward and backward planning, increasing with scale. Our re-
sults provide the insight into how latent planning emerges at scale, showing that Qwen-3 models use
various planning mechanisms that scale with model size. We also show that while both forward and

'"Explicit, verbalized planning, as in LLMs’ chains of thought, is better studied (Kambhampati et al., [2024).
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Figure 1: Feature circuit for the input Someone who studies living organisms is a biologist. Someone
who handles financial records is, explaining Qwen-3 (14B)’s output, an. The model first determines
the word it plans to say (accountant), causing it to output the appropriate article, an. Labeled nodes
are sets of active transcoder features with a similar role. Edges indicate that the source node increases
the target node’s activation when active. We demonstrate the role of certain nodes by selecting one of
its features and showing its top-activating inputs, and the vocabulary item that it up-/down-weights.

backward planning improve with scale, the former develops faster. We thus conduct the largest-scale
feature circuit study on open models to date. We provide anonymized code in this repository.

2  WHAT IS LATENT PLANNING IN LLMS?

Planning is behavior in which one reasons about which actions must be taken (and in which order)
to achieve a goal. However, most past work on latent planning in LLMs searches model internals for
evidence of a goal, not goal-oriented reasoning. For example, Dong et al.[(2025) prompt LLMs to
write stories, and probe the LLMs’ representations of the input prompt for information about their
future outputs. They equate successful probing with latent planning, but see App. |G| for evidence
to the contrary. |[Pochinkov| (2025) takes the residual stream of LLMs that are about to start a new
paragraph, and attempts to decode the topic thereof using Patchscopes (Ghandeharioun et al.,|2024));
again, successful decoding is taken to entail planning. Pal et al.|(2023)) also decode models’ future
tokens with probes and Patchscopes—though they do not call this planning. |Lindsey et al.|(2025)) are
unique in providing causal evidence: studying LLMs’ ability to complete thyming couplets, they not
only observe representations of the rhyming word that the model plans to output, but also causally
intervene on them, changing the upcoming word and its preceding context that accommodates it.

We argue that, if LLM planning entails reasoning about the steps needed to output a specific future
token, decoding the future token is insufficient to evidentiate planning. Consider a model that always
outputs the same token, or one that outputs 0, 2, 4, 6,...; in both cases, a probe could likely predict
many future tokens, but neither task requires planning. More generally, the decodability of a given
attribute from model representations does not entail its use in model processing: probes are known
to decode unused information (Ravichander et al.,[2021). Instead, if latent planning is a mechanism
that models deploy, a definition thereof should make causally verifiable mechanistic claims.

Inspired by |Lindsey et al., we define an LLM given a length-n input as engaging in latent planning
if it possess a representation of a planned token or concept that:

Condition 1 (Forward Planning): causes it to output the specific token or concept t at some posi-
tion n + k, k > 1. This strengthens the decodability criterion from past work: we require that some
representation causes the LLM to produce ¢, not just that ¢ be predictable from the LLM’s internals.

Condition 2 (Backward Planning): causes it to output a context that licenses said token or concept
t. This requires that models work backwards from the goal to formulate a context that licenses it.
Consider the input s = The capital of Texas — is — Austin. LLMs may have an Austin representation
at the Texas position of s; ablating it stops the model from later outputting Austin. However, this is
only backward planning if the Austin representation causes the model to produce is. This is unlikely,
given that one can predict is without knowing that Austin is the capital of Texas. Note that some past
work focuses on representations that do not aid immediately next-token prediction (Wu et al.,[2024)).


https://anonymous.4open.science/r/model-planning-anonymized-57B8/
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3 TRANSCODERS AND TRANSCODER FEATURE CIRCUITS

To identify causally relevant planning representations, we first decompose model activations into
sparse features using transcoders (Dunefsky et al.,|2024). Then, we find the causally relevant sub-
graph thereof, known as a feature circuit (Marks et al., [2025; |Ameisen et al.| [2025)).

Transcoders Transcoders are auxiliary models that replace the model’s MLPs (Dunefsky et al.,
2024); each transcoder takes in one MLP’s inputs and predicts its outputs. Formally, a transcoder
takes in a given MLP’s input activations h € R? and computes a sparse representation z € R" as z =
f (Wepeh + bg,,.). It then reconstructs the MLP’s output activations h’ € R? as h’/ = W,z +
bgcc. f is an activation function, while W, bepc, W gee, and by, are learned parameters.

Transcoders are useful because they are trained to compute representations z that are sparse and
monosemantic: most dimensions (or features) are zero on any given input; each feature should fire
on only one concept. By contrast, MLPs’ hidden activations are often dense and polysemantic,
firing on multiple concepts (Olah et al.,|2017; |[Elhage et al., 2022)). If one wishes to determine which
concepts a model represents in its activations, it is thus easier to interpret transcoder features.

We interpret the i" feature of a given transcoder by displaying the inputs that maximize its activa-
tion z;. We also display the tokens whose unembedding vectors have the highest and lowest dot
product with the feature’s column in W 4..; these are the vocabulary items that it directly up- and
downweights. See Figure[I]for example feature visualizations, used to manually label features.

We often intervene with respect to transcoder features, to verify our interpretation of a given feature.
For example, we might take a feature vector z, set its activation to 0, and observe the change in
model behavior. For more background and technical details on transcoders, see Appendix [A.T]

Transcoder Feature Circuits Given a model, transcoders trained on each MLP thereof, and an
input, we construct a transcoder feature circuit (Ameisen et al., 2025): a weighted acyclic digraph
describing the causal relationships between the model’s inputs, transcoder features, and logits. Each
edge weight indicates the source node’s direct effect on the target, i.e. the amount by which it directly
increases the latter’s value. Once features are annotated, and similar features grouped together, the
circuit serves as a mechanistic explanation for a model’s behavior on the input, as seen in Figure

We compute feature circuits using [Ameisen et al.[s algorithm, detailed in Appendix [A.2] Unlike
other feature circuit techniques, it computes exact direct effect values—conditional on the model’s
attention patterns and layer normalization denominators. We thus know the precise causal relation-
ship between features, ignoring contributions to these quantities, which is often useful in practice.
We use the circuit—tracer library for circuit-finding and interventions (Hanna et al., 2025).

The transcoder feature circuit paradigm helps ensure that any planning features found fulfill our con-
ditions, as features are guaranteed to be causally relevant, under the assumptions made by transcoder
feature circuits, and we can see what intermediate features represent.

4 QWEN-3 MODELS ENGAGE IN SIMPLE PLANNING

4.1 MODELS AND DATA

We study planning in 5 models from the Qwen-3 family (0.6B, 1.7B, 4B, 8B, 14B; |Yang et al.|
2025)). We study models of varying size from one family to draw conclusions about how planning
behavior develops as models scale. Note that although these models are instruction-tuned, they
produce reasonable output on both instruction-formatted and language-modeling-formatted inputs,

Category | Example Input | Next | Planned
a/an Someone who handles financial records is an | accountant
is / are There were 5 dogs but 4 left. Now there is 1
el/la El animal marino con ocho tenticulos es el pulpo

Table 1: Three simple planning tasks. Each task prompts the model to output a planned token,
preceded by a next token with two possible forms; the planned token determines the correct form.
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so we use both formats. For feature circuit analyses, we use(Hanna et al.['s (2025)) transcoders, which
cover Qwen-3 (0.6B-14B); we include Qwen-3 (32B) in our transcoder-free behavioral analyses.

We craft three simple tasks to serve as a testbed for LLMs’ planning abilities. We choose tasks to
which LLMs were likely exposed during pre-training, as model abilities are often stronger on such
tasks (McCoy et al} 2024). Each task (Table[I) consists of inputs that push the model to produce a
specific content word, preceded by a function word that must agree with it. For example, in the is
/ are task example in Table|l] the model must output 1, preceded by the correct form of 7o be. See
App. [Bffor details on the construction and composition of these datasets. We discuss a/an in the
main text; our successful is/are experiments and less successful el/la experiments are in App. [C]/

4.2 LARGER MODELS SUCCEED ON PLANNING TASKS

We first evaluate models’ abilities on the a/an task, recording their next token prediction on each
input. We report per-class recall, as performance differs by class. We find (Figure [2] left) that all
models have high recall (> 0.8) of a, which is the majority class both in our dataset and English in
general. Recall of the minority class an is high (> 0.8) for Qwen-3 14B; small models (0.6-1.7B)
always predict the majority class, and mid-sized models’ performance smoothly increases.

Note that this is not attributable to models’ inability to determine the planned token: in Appendix [E]
we show that models with under 14B parameters can calculate the answer to is/are questions, but
fail to predict the correct verb, producing outputs like . .. there are 1 dog. It thus appears that simple
planning (and not just e.g. math) emerges at 4B to 8B parameters.

4.3 MODELS POSSESS PLANNING FEATURES

To determine if models truly plan on these tasks, we compute each model’s feature circuit for each
example in our datasets, as described in Section 3] We then visualize and qualitatively analyze a
subset of the feature circuits, grouping qualitatively similar features together and labeling them.

We find that these circuits contain features that represent the planned token. Figure[I|shows a typical
example from Qwen-3 (14B): it possesses planning features (for accountant) that feed into features
that upweight the same token. These activate features that directly upweight the correct next token
(a/an). This suggests that models plan to output the target token, which then leads them to output the
correct next token. As in|Lindsey et al.|(2025), the planning features (e.g., the accounting feature in
Figure[T)) appear to simply represent the planned word, and not specifically in planning contexts.

Planning features differ slightly by task. In the is/are dataset, such features are more common when
the answer is small (from 1 to 3). The el/la dataset’s features fire on the target word in English,
despite its lack of grammatical gender, relevant to this task. Surprisingly, on a/an and is/are, even
poorly-performing models have planning features, suggesting nascent latent planning mechanisms.

4.4 PLANNING FEATURES ARE CAUSALLY RELEVANT

We now verify that these planning features truly drive the model’s prediction of the correct next to-
ken. We start by programmatically finding each example’s planning features; a feature is considered
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Figure 2: Left: Qwen-3 family models’ recall of correct article on the a/an task. All models can
recall a, but models < 8B have lower recall on the less-common an. Right: The mean proportion of
influence flowing through planning nodes in the a/an dataset, by model, article, and correctness. On
an examples where the model correctly predicts the next token, more influence tends to flow through
the planning nodes. This effect is reversed and weaker for the majority class a.
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Figure 3: Left: Change in p(correct article) caused by zero and multiplying interventions on plan-
ning features. As expected, ablating these harms performance, while upweighting them improves it;
however, both affect primarily an examples, the minority class. Right: Change in p(correct article)
caused by direct-effect interventions. Effects are smaller, indicating that planning features act both
directly (by upweighting the correct article) and indirectly (by activating e.g say “a/an” features.)

planning-relevant if is active at the last position of the input (is), and it either upweights the planned
word (or a prefix thereof), or contains it in 5 out of 10 of its top-activating texts. We find that this
yields similar planning features to those found via manual search.

With these features, we perform two causal relevance analyses. First, we ask—how important are
planning nodes according to our circuits? Each edge in the circuit reflects the direct influence of
a source node on a target node, but we can also consider the total flow from a source to a target
node, which might travel via multi-node paths. To quantify the importance of the planning nodes,
we measure the proportion of the total flow between the circuit’s inputs and logits that is mediated
by the planning features, comparing the flow in cases where the model is in/correct.

We find (Figure 2] right) that when models predict the minority class an correctly, more of the total
influence flows through the planning nodes. This effect is reversed (and weaker) for the majority-
class a case, despite roughly equal planning node counts across classes, suggesting that planning
nodes are not generally helpful for these examples. In neither case is the proportion large, but this is
unsurprising: much of the flow is likely mediated by nodes that identify the need for an article such
as a or an, upweighting them both, rather than discriminating between them.

Second, we causally intervene on planning features. For each model, we a) take the examples on
which it succeeds and ablate the planning features (e.g. accountant and say “acc™ in Figure [I)),
setting them to zero, and b) take the examples on which it fails and highly upweight their planning
features, setting their activations to 5x their usual activations. If these features indeed cause models
to output the planned token, these interventions should harm and improve performance respectively.

We find (Figure[3] left) that features are indeed causally relevant. Feature ablation (top left) harms
model performance, but only on minority-class an examples. Similarly, boosting planning features
improves performance drastically an examples, with larger models seeing slightly larger improve-
ments; however, the effects on @ examples are almost zero. This asymmetry aligns with our prior
analysis, and suggests that planning nodes are more important for minority-class examples where
models must work against their priors. This intervention is effective on Qwen-3 4B and 8B, indicat-
ing that although their overall performance is worse than Qwen-3 14B, they likely rely on similar
planning mechanisms, with planning features encouraging the production of an when necessary.

We also note that our feature interventions are more successful than a random baseline: while zero
ablating randomly selected features active at the last position of the prompt occasionally harms
performance, multiplying random features fails to boost model performance (see App. [Ffor details).
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Discussion Our results suggest that Qwen-3 engages in simple backward planning; however, it
is unclear if this is driven by direct-effects alone. The accountant feature might have a high co-
sine similarity with the unembedding vector for an, upweighting its logit. This, combined with a
mechanism that upweights both a and an in relevant contexts, would suffice to upweight the correct
article, as we observe. We disprove this by performing direct-effects interventions: we upweight the
planning features, but freeze the model’s other features, blocking second-order effects.

This intervention’s effects (Figure [3] right) are much weaker than the original interventions: zero
ablations are less harmful, and multiplying interventions harm performance as often as they help.
The planning features’ importance can thus not be explained by direct effects alone, suggesting that
the say “a/an” features play an important role in mediating planning.

One could also hypothesize that although say “a/an” features are involved in a/an planning, the
model treats noun phrases (like an accountant) like a single, multi-token word; no planning is in-
volved. However, models also plan when outputting “there is I dog left”, where this multi-token
argument is much less plausible. We thus maintain that simple planning occurs in these cases.

5 QWEN-3 USE LITTLE PLANNING WHEN COMPLETING COUPLETS

The preceding experiments show that Qwen-3 models more successfully plan as their size increases,
but leave open the question of longer-range planning mechanisms. There is precedent: |Lindsey
et al.|(2025) find that, given the first line of a thyming couplet, like He saw a carrot and had to grab
it, Claude-3.5 Haiku produces the next line His hunger was like a starving rabbit using a rabbit
feature that controls the rthyming word and generates a coherent context. Motivated by this, we
study Qwen-3 models on rhyming couplets, searching for long-range planning.

5.1 QWEN-3 MODELS OFTEN SUCCESSFULLY RHYME COUPLETS

We first test whether Qwen-3 models can complete thyming couplets at all. To do so, we generate
a dataset of 985 first lines of couplets, by prompting Qwen-3 (32B) to produce rthyming couplets
on 43 topics, ranging from coming of age to animals and wildlife, and taking the first line of each.
LLM generation of couplets avoids cases of couplets memorized from the training data. We then
greedily sample a second line of the couplet from each model, and evaluate its thyme with the first
couplet by extracting the last word of each line, extracting their vowels and final consonants using
CMUDict (Carnegie Mellon University, 2014} Bird & Loper, 2004), and verifying that they match.
Our results (Figure [5] left) show that larger models rhyme with 50+% accuracy; smaller ones fail
more often. Models engage in slant or assonant (vowel-only) rhyme, rhyming words like craze with
page; models with 8B parameters produce a valid assonant rhyme in over 70% of cases.

5.2 LARGER LLMS’ POETRY ABILITIES ARE SUPPORTED BY A RHYMING CIRCUIT

To test whether models plan when completing couplets, we again use transcoder circuits. For each
model, we filter the examples from our dataset to those where the model completes the couplet’s
second line with a rhyming word. We then attribute from this thyming word’s logit, given the
input leading up to the rhyming word; that is, given an input like Fury burns where calm once
stayed,. .. Hope flickers where the shadows laid, we find the circuit explaining the model’s prediction
of laid. We limit this to 100 examples per model. See App. for rhyming couplet data details.

We qualitatively analyze the circuits, and find that in larger models, an interpretable circuit emerges.
Given the first line of the couplet, the model begins to generate the second with little planning. Near
the end of the second line, the model recognizes that it is near the end of a line of rhyming poetry,
activating near end of line features. These cause it to attend to the end of the first line, drawn by
the end of line features active there. Rhyming features (e.g. rhymes with “-ayed”) at the end of the
first line thereby activate similar features in the second line. There, these features remain active until
they eventually cause the model to output a rhyming token. Once the model completes the rhyme, it
activates end of line features and stops generation. Figure ] depicts this process.

We defer detailed evidence for our circuit to Appendix[H.2] There, we show that end of line features
are causally responsible for both the model’s decision to end a line of poetry, and for indicating
where the model should attend to, in order to extract the rhyming features. We similarly show that
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Figure 4: A feature circuit for the couplet Fury burns where calm once stayed,\n Hope flickers where
the shadows laid, explaining Qwen-3 (14B)’s decision to output shadows laid,\n. Halfway through
outputting the couplet’s second line, the model’s “near end of a line of poetry” features activate.
These cause it to attend back to the end of the first line, where “end of a line of poetry” features are
active, and to move “rhymes with -ayed” features into the second line. These influence the model’s
outputs, eventually leading to laid. End of line features then cause it to output .\n.

the near end of line features cause the model to attend back to the end of line feature position. Here,
we focus on the question: does the couplet circuit involve planning?

5.3 QWEN-3 MODELS PLAN FORWARD, BUT NOT BACKWARD, TO COMPLETE COUPLETS

If the couplet circuit involves planning, we view the rhyming features at the end of the couplet’s
first line as the most likely planning features. They clearly represent the rhyme to be output, and
our circuits indicate that they influence the model’s decision to output rhyming words. However, we
must still test that both forward and backward planning occur when models generate rhymes.

We first define rules to automatically find rhyming features. This is challenging, as Qwen-3 models
represent e.g. an -ayed feature via separate -ai- and -d sound features, which specify the vowel and
final consonant of the rhyme. The top-activating tokens for such features tend to be subwords, and
may employ multiple, potentially nonstandard spellings for a given sound; see Figure[dfor example
features. As a heuristic, we identify features whose top-10 max-activating tokens are short (under
5 characters), and do not represent a single word (they activate on the same word at most 5 times).
We also require that at least 7 of these 10 tokens start with the same vowel, or end with the same
consonant, to ensure that the feature’s top-tokens all represent one sound. This definition captures
rhyming-relevant features with relatively high precision but only moderate recall.

Next, for each couplet, we downweight the rhyme features at the end of its first line, multiplying their
activations by -3. We then sample a random couplet with a distinct rhyming sound, and upweight its
rhyme features, multiplying their original activations by 7; we find these steering hyperparameters
via manual search. We then generate a completion to the first line of the original couplet, while
steering on the end of the first line. We measure rthyming accuracy with respect to the new rhyme.

It is harder to quantify Condition 2—whether a given context licenses a specific word (or set thereof)
as opposed to licensing many words. However, we can test which context (the original or steered
one) best enables the model to predict the new rhyme, when the model is steered towards the new
rhyme. If the new context indeed licenses the new rhyme better, the model should more accurately
predict a thyming word given it. To test this, we feed the model both the original and steered couplet
completions, with their last word removed. We then record the model’s generation given each, when
steered towards the new rhyme, and compute rhyming accuracy with respect to the new rhyme.

We find that models do engage in forward planning: Figure[5(left) shows that steering on the rhyme
features does change the model’s thyme to the new rhyme in the case of larger models (8B-14B).
Though accuracy is only moderate (40%), normal rhyming accuracy was similarly modest at 60%,
and assonant rhyme accuracy is higher (up to 60%). Moreover, we observe that steering changes both
the final rhyming word and the intermediate context; see Appendix [H.3|for quantitative evidence.

However, Figure 3] (right) shows that the intermediate context generated under intervention does not
necessarily license the new rhyme better. When we steer the model, it is equally likely to output
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Figure 5: Left: Qwen-3 rhyming accuracy. In the base case, models have moderate rhyming accu-
racy, reaching 0.6 at 14B parameters (solid blue); when we consider assonant (vowel-only) rhyme,
Qwen-3 (14B) achieves 0.8 (dashed blue). When steered to predict a new rhyme, model accuracy is
only moderate for perfect thymes (solid orange), but improves with scale, and is better on assonant
rhyme (dashed orange). Right: Model rhyming accuracy when trying to predict a token satisfying
the couplet’s the steered rhyme (blue lines) or original rhyme (red lines), given the original (solid) or
steered (dashed) context. The model predicts the steered-for rhyme with similar accuracy given the
original or steered context. This suggests that the steered context does not better license the rhyme.

the injected rhyme given the steered intermediate context (light blue, dashed line) as when given
the original one (dark blue, solid line). Giving the model the intermediate context produced with
steering, but not steering it, elicits the original rhyme with relatively high accuracy: near 60% across
models (light red, dashed line). This is low compared to the accuracy given the original context (near
100%; dark red, solid line), which could suggest that the original context better licenses the original
rhyme. However, the fact that we only intervened on examples where models rhymed successfully
inflates this accuracy. Overall, these results suggest a lack of strong backward planning.

5.4 LARGER MODELS MAY USE LOCAL PLANNING FEATURES

Though the backward planning results are mostly negative, results for larger models (§B-14B) trend
in the right direction: they more accurately predict the steered rhyme given the steered context, and
less accurately predict the original rhyme; in App. [H] we see that their steered generations overlap
less with original generations. Moreover, manually inspecting Qwen-3 (14B) couplet-completion
circuits showed that while most couplet circuits involve second-line rhyming features that upweight
rhyming words, some instead involve say X features that upweight a specific upcoming word. These
often coincide with rhymes that require some setup, such as a say “night” feature occurring before
the model outputs in the night. These are prime candidates for local planning features, that plan for
short phrases, but not whole lines; we thus test whether they elicit backward planning in models.

We first identify potential planning features,

searching our couplet circuits for say X fea- Model Steering Metrics by Size

tures that upweight the output rhyming word, o T
but are active prior to when X is output: such 07
features might adapt the preceding context to os
license that word. We then steer models using
these features on 100 inputs from the TinyS-
tories dataset (Eldan & Li, 2023)), which we 02 i
use as a source of neutral input text. For each o2
steered output, we check if it (1) contains the o
steered word, (2) is coherent, and (3) adapted o0
the context to fit the steered word. We evaluate
(1) programmatically, use Claude 4 Sonnet to
evaluate (2), and manually verify (2) and evalu-
ate (3) on a subset of outputs that satisfy (1) and
(2). See Appendix [I| for experimental details.

Frequency

Qwen3-0.6B Qwen3-1.7B

Qwen3-4B
Model Size

Qwen3-8B Qwen3-14B

Figure 6: Adaptation metrics by model. As
models grow, so does the proportion of (1) out-
puts containing X (blue), and (3) coherent and X-
containing outputs that also adapt the context to

We find (Figure[6) that steering on these say X jicense X (green). Few examples do all three.

features often induces models to output X (blue
bars). Moreover, for outputs that are coherent
and contain X, models—especially larger ones—do adapt their outputs to produce whole phrases like
in the night or had a recurring dream (green bars). The scaling trend likely occurs because larger
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models have more such local planning features in their couplet circuits. However, this phenomenon
is sensitive to steering strength, and these features occur only in a small minority of couplets. We
hypothesize that such features are part of an emerging planning mechanism in larger models, much
as a/an and is/are planning can be seen to emerge in Qwen-3 (4B); at larger scale, models may more
reliably engage in local planning. Still, more study is needed to confirm the role these features play.

6 RELATED WORK

(Feature) Circuits We build on prior work on circuits, which attempts to capture an (ideally min-
imal) set of units that are causally relevant to and explain a model’s behavior on a task (Olah et al.,
2020; Elhage et al.,|2021;|Conmy et al.,2023)). Early LLM circuits were composed of attention heads
and MLPs, and explained how models performed indirect object identification and the greater-than
operation (Wang et al., 2023 |Hanna et al.|[2023). Circuits composed of features from sparse autoen-
coders or transcoders have the added benefit of having interpretable nodes; however, finding them
is expensive and requires auxiliary models. They have been used to explain gender bias, syntactic
processing, and more (Marks et al., [2025; [Hanna & Mueller, 2025; Lindsey et al., [2025)).

Planning Tasks LLMs’ grammatical agreement abilities, as in our a/an, is/are, and el/la tasks,
have been widely studied. LLMs generally excel at agreement, preferring sentences with correct
agreement over incorrect ones (Warstadt et al.l 2020; (Chang & Bergen, 2024). Prior mechanistic
work on agreement is more limited to is/are and the broader phenomenon of subject-verb agreement:
past work has found linear subspaces, neurons, and sparse features relevant to it (Lasri et al.| [2022;
Finlayson et al., [2021; Brinkmann et al., [2025). Past work has studied LLM poetry and rhyming
abilities in the context of building and evaluating poem-generating systems (Sawicki et al., 2023
Chen et al.,|2024; |Suvarna et al., [2024); Lindsey et al.|(2025)) provide the first mechanistic study.

Planning Mechanisms Section [2] discusses past work, but contemporaneous work also addresses
planning: Nainani et al.|(2025) search for code planning feature circuits in Gemma-2 (2B;|Gemma
Team), |2024)), while Maar et al.| (2025) investigate poetry abilities across models using probes.

7 CONCLUSION

Our experiments have shown that some Qwen-3 models engage in latent planning, possessing fea-
tures that represent the planned word and causally influence both the output word and the context
preceding it. Both forward and backward planning abilities improve with scale, but the former
improves before the latter; even in Qwen-3 (14B), planning multiple tokens ahead is rare.

Why might planning only begin to emerge at scale? We hypothesize that planning, especially back-
ward planning, is costly to implement: models must learn not only to plan for a specific token, but
also how to plan backwards for it in a context-specific way; a/an planning and couplet planning have
distinct mechanisms. Thus, models may learn to plan only after exhausting other, simpler ways of
reducing their loss. [Bachmann & Nagarajan|(2024) suggest that teacher forcing in LLM pre-training
may also reduce the pressure to plan: even if a model fails to backwards-plan for a crucial agreeing
token like an, teacher forcing provides that token anyway. Models that suffer the consequences of
their poor planning, such as those trained with on-policy reinforcement learning methods, may thus
face more pressure to plan.

Whatever the reasons behind this, latent planning abilities in Qwen-3 models up to 14B parameters
are still nascent. This is relevant for scheming, an Al safety risk where models work towards secret
goals (Balesni et al.| [2024); past work has induced scheming in models, and caught them by reading
their chains of thought (Meinke et al.| [ 2025)). Models with strong latent planning abilities might thus
cause concern, but we observe little complex planning in Qwen-3. What we observe instead is latent
planning abilities that appear to improve with scale—and merit monitoring as models grow.

In this paper, we have provided a framework for doing precisely that; however, monitoring latent
planning with feature circuits is still a significant technical challenge. Open-source circuits work on
models above 8B parameters is still rare. Large-scale work on feature circuits is yet scarcer, due to
the lack of open transcoders for large models. As mechanistic interpretability’s seeks interpret more
sophisticated behaviors, its methods must scale to match the models that possess them.
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REPRODUCIBILITY STATEMENT

We conduct our experiments with openly available models, including both LLMs and transcoders.
We release the data and code used as part of this study in the following anonymized repository:
https://anonymous.4open.science/r/model-planning—anonymized—57B8/.

Our experiments can be run with as little as 40GB of GPU RAM, though they will run much faster
on 80GB of memory, and quite quickly (around 1 GPU-day) on 140GB of RAM (i.e. one NVIDIA
H200 GPU). Note that features, models, transcoders, and circuits are large; we recommend having
3TB of disk space available.
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A  DETAILS OF TRANSCODERS AND FEATURE CIRCUITS

A.1 TRANSCODERS

In this section we provide details on transcoders in general and the specific transcoders we use.

Transcoders Past work has attempted to characterize the features encoded in model activations
by examining the inputs that most strongly activate each neuron (dimension) of a given activation
vector. However, interpreting neurons is difficult, as they are seldom zero and often polysemantic,
firing for multiple reasons (Olah et al.|[2017; [Elhage et al.,[2022)). Sparse dictionary learning solves
this problem by decomposing activations into sparse and (ideally) monosemantic feature vectors
(Olshausen & Field, [1997; |Bricken et al.l |2023). As only a few dimensions, or features, of the
vector are active on a given input, and each feature fires on only one concept, these are much easier
to interpret.

Sparse dictionaries come in many forms. Sparse autoencoders (SAEs; |Bricken et al.| 2023} |Huben
et al) [2024) are the most common type, encoding and reconstructing activations from the same
location. We use per-layer transcoders, which encode MLP inputs and reconstruct MLP outputs
(Dunefsky et al., 2024); see Figure[7]for a diagram. [Lindsey et al|(2024) also introduce cross-layer
transcoders, which take in MLP inputs, and are jointly trained to predict contributions to all down-
stream MLPs’ outputs. These are generally sparser (for a given level of reconstruction error) but
also more computationally costly to train and more memory-intensive to deploy. Importantly, while
Ameisen et al.| (2025)) use cross-layer transcoders for their circuit-finding, per-layer transcoders can
also be used.

Formally, a (per-layer) transcoder takes in activations h € R? from a given MLP’s inputs, computes
the sparse representation z € R™, and reconstructs the MLP’s output activations h’ € R as follows:

- f (We'rwh + benc) (1)
H/ = Wdecz + bdeca (2)

Here, f is an activation function (often ReLU, JumpReLU, or Top k), and W, bene, Wgee, and
bge. are learned parameters. LLM transcoders are trained to minimize both the MSE between h’

and h’ and the norm of ‘ The LLM is frozen, and the transcoder trains on up to billions of tokens.

2This is often done by penalizing z’s L1 norm. However, note that some activation functions, namely Top-k
and variants, inherently limit the number of active features, making this unnecessary.

14


https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://aclanthology.org/2020.tacl-1.25/
https://openreview.net/forum?id=BaOAvPUyBO
https://openreview.net/forum?id=BaOAvPUyBO
https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Dense MLP Outputs

Transcoder Decoder

*
o |DDDD¢DDDD|

Transcoder Encoder

Inputs Dense MLP Inputs

Figure 7: A diagram of a transcoder. The transcoder takes in the dense MLP inputs, computes a
sparse representation thereof, and then reconstructs the MLP’s dense outputs.

The reduction in polysemanticity is achieved by setting the sparse representation size to be much
larger than the input size. In doing so, one reduces the pressure on the model to cram many features
into a small number of dimensions, as is thought to cause polysemanticity (Elhage et al., [2022)).

We interpret the ith feature of a given transcoder by displaying the inputs that maximize its acti-
vation z;. We also display the tokens whose unembedding vectors have the highest and lowest dot
product with the feature’s column in W g,.; these are the vocabulary items that it directly up- and
downweights. See Figure[I]for example feature visualizations, used to manually label features.

We often intervene with respect to transcoder features, to verify our interpretation of a given feature.
To do so, we take the original feature vector z and perform desired interventions on it by e.g. zeroing
out a feature’s activation, yielding z’. We compute A = W, (z' — z), and add A to the output of
the corresponding MLP during the model’s forward pass.

Qwen-3 Transcoders For our experiments, we use [Hanna et al.Js (2025) Qwen-3 transcoders.
These circuits are ReLLU transcoders, all with a hidden dimension of 163840. They take in MLP
inputs post-input-LayerNorm, and predict the MLP’s outputs.

A.2 TRANSCODER FEATURE CIRCUITS

Formally, feature circuits are weighted acyclic digraphs. The source nodes are input embeddings
and nodes corresponding to each transcoder’s reconstruction error h’ — h’. These flow through
transcoder feature nodes, to nodes that correspond to a given vocabulary item’s logit. Each edge’s
weight is the direct effect of the source node on the target, i.e. the source node’s effect on the target’s
value, unmediated by other nodes.

We compute feature circuits using /Ameisen et al.’s (2025) algorithm, which works as follows.

Local Replacement Model The first step of attribution is to incorporate the transcoders into the
model’s computations for a given input. We thus replace the model’s MLPs with their corresponding
transcoders, plus a reconstruction error term equal to the difference between the MLP’s output and
the transcoder’s reconstruction. This yields a local replacement model, which behaves identically to
the original model, but only on the given input, as reconstruction error terms are input-specific.

We next freeze the model’s attention patterns and denominators of any layer normalization terms,
treating them as constant values; this entails detaching them from the graph (.detach () in Py-
torch). See Figure[§]for a depiction of this process. We also detach the transcoder feature activations
themselves, so no gradients flow through them.

In so detaching these components, we remove all nonlinearities from our local replacement model:
both the attention softmax nonlinearity and the normalization nonlinearities are gone. The activation
of any given feature is now linear in the activations of the nodes prior to it. This simplifies the process
of computing the direct effect of one node on another, and means that these direct effect values are
exact; however, they will not account for features’ impact on the model’s attention patterns.
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Figure 8: A 2-layer transformer LM, and its corresponding local replacement model. We replace
model’s MLPs with transcoders, as well as error terms unique to the given input. The attention pat-
terns (from the QK matrix) have been frozen, detaching them from the computation graph. Despite
this, the OV-matrix of each attention block is still attached. Thus, when we refer to e.g. the direct
effect of a feature of the layer-0 transcoder on a vocabulary logit, this direct effect may pass through
the residual stream alone, or additionally through the OV matrix of the attention, a linear transfor-
mation. The direct effect of any given feature on any other feature (or any vocabulary logit) is thus
linear. See|Elhage et al.| (2021]) for more on QK/OV matrices and the residual stream.
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Figure 9: The interface used for circuit visualization / annotation, from circuit-tracer.

Attribution We can thus compute the direct effects of a source node on a target node as follows.
We define an input vector for the target node: if the node is a feature, this is its input vector (from
W..c), and if the node is a logit, this is the corresponding unembedding vector, minus the mean
unembedding vector. We inject this gradient at the node’s input location—either the MLP input for
transcoder features, or the final residual stream for logit nodes; this injection can also be operational-
ized as a dot product with the residual stream, followed by a .backward () call. Then, for each
upstream node, its direct effect is the gradient at its output location, multiplied by its output vector:
the input embedding or error vector for input and error nodes respectively, or the source feature’s
activation multiplied by its decoder vector, for feature nodes. With each call of .backward (),
we find weights for all edges into the target node; repeating this for all nodes attributes the whole
attribution graph.

Methods We limit attribution to the top 7500 most influential feature nodes, as remaining nodes
are unlikely to be important, and attributing from many nodes leads to large graphs that fit poorly in
memory. We determine which nodes are most influential by intermittently computing each node’s
influence using the procedure described in |Ameisen et al.| (2025). For logit nodes, we choose to
attribute from the minimum required to capture 0.95 of the model’s next-token probability, or the
top 10 logit nodes, whichever is smaller (generally the former). Ultimately, the attribution process
is quick, from seconds for Qwen-3 (0.6B) to a minute or two for Qwen-3 (14B).

For visualization purposes, it is often useful to prune graphs, removing low-influence nodes and
edges. As done by |Ameisen et al.| (2025), we do so by computing the total influence of each node
and edge in the circuit. We then set a threshold for each, and take the minimum number of top nodes
/ edges that sum to that influence; we choose nodes whose influence sums to 80% of the total, and
edges whose influence sums to 98%. Our circuit-finding interface, provided by circuit-tracer
(Hanna et al.| [2025), is shown in Figure[9]

B SIMPLE PLANNING DATASET DETAILS

We construct two datasets for testing simple planning, the a/an and is/are datasets. The a/an dataset
consists of 108 examples of professions (86 requiring a and 22 requiring an) and descriptions
thereof. These were augmented with 350 concrete nouns (267 a / 83 an) and descriptions thereof.
All descriptions were generated by Claude 4 Sonnet, but filtered manually and rewritten if necessary,
e.g. because they were too vague. The is/are dataset was generated programmatically, and consists
of (positive) differences between numbers ranging from 1 and 9; the animals are sampled from a
manually curated list of 10 animals. This yields 360 examples. The el/la dataset, much like a/an,
consists of 411 concrete nouns (223 el / 188 la) and Spanish-language descriptions thereof. Again,
all descriptions were generated by Claude 4 Sonnet, but filtered manually and rewritten if necessary.

Note that, in the case of the a/an dataset, one randomly-sampled in-context example from our
dataset is prepended to each input to the model in order to encourage it to output a/an; other-
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Figure 10: Left: Recall of is and are on the is/are dataset, by model. Models below 8B in size
mostly fail to predict is, while larger models perform perfectly. All models can predict are. Right:
The mean proportion of influence flowing through planning nodes in the is/are dataset, by model,
verb, and correctness; recall that the only incorrect examples are small models failing to predict is.
The most influence flows through the planning nodes in the is examples, where more planning nodes
are present. Still, more influence flows through these nodes in correct than incorrect is examples.

wise, the model does not understand the task structure, and outputs other tokens. The full prompt is
thus something like Someone who provides treatment for physical or mental
conditions is a therapist. Someone who heals sick pets is. Thisis fed
directly to the model as the user input, and the model simply completes the input (rather than gener-
ating a separate assistant response). The el/la dataset is formatted in the same way.

Similarly, we prepend is/are examples with Repeat and finish the following sentence:, as we
found that this increased performance over simply sampling next tokens without requesting the
repetition. The full prompt is thus something like /no_think Repeat this sentence
and complete it. At first there were 2 cats. Then, 1 went away.
Now, there. The /no_-think prevents models from thinking before answering. During attri-
bution, we prefill the model’s assistant response with <think>\n\n</think>\n At first
there were 2 cats. Then, 1 went away. Now, there. We then attribute back
from the top logits (which are always is and/or are).

C Is-Are RESULTS

Here, we report results for experiments on the is/are dataset, which largely mirror those performed
on the a/an dataset. Figure [T0] (left) shows that models behave similarly on the is/are to the is/are
dataset: all models do well on the majority class are. Models below 8B in size fail (0.6-1.7B) or
perform poorly on the task when the correct answer is is; Qwen3-4B scores just below chance.
Starting at 8B, models score perfectly on is as well, just as with a/an.

We perform circuit analysis on is/are dataset as well, and find similar, but not identical trends com-
pared to the a/an case. Models again have features corresponding to planning features some of the
time. However, I features (and 2 and 3 features to a lesser extent) are more common than other num-
bers’ features. Whether this is a real phenomenon (models have special representations for lower
numbers due to their frequency) or a transcoder-driven phenomenon (higher numbers also have cor-
responding features, but transcoders miss these) is unclear. This may also be related to the fact that
such features are more important / necessary in the minority class case (I/is) than in the majority
class case. In the case where such features do exist, we also observe that e.g. [ features activate
features that induce the model to say is.

We perform the flow and intervention experiments done on the a/an dataset. These are complicated
somewhat by the fact that there are more planning nodes in the is case than in any of the are cases,
and that models do not fail on are cases. Still, in Figure ﬂlfl (right), we can see that in the is case,
more influence flows through the planning nodes in correct than incorrect examples, as in the a/an
dataset. Moreover, Figure [TT] (right) shows that both zeroing and multiplicative interventions are
effective on is examples. This is likely because these have the most planning nodes; however, it may
also be related to the fact that is is the minority class, and “needs” these features more.
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Figure 11: Left: Change in p(correct verb) caused by zero and multiplying interventions on plan-
ning features. The former generally harm performance, while the latter improve it. Both affect only
is examples, which have the most planning nodes, and also are the only examples models answer
incorrectly. Right: Change in p(correct verb) caused by direct zero and multiplying interventions
on planning features. As before, these are relatively ineffective, though less so than in the a/an case.
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Figure 12: Left: Recall of e/ and la examples by Qwen-3 models. Unlike in prior examples, the
majority class (e/) is not perfectly captured by any model, though recall is generally high. Moreover,
while performance on the minority class la improves with scale, recall is ultimately still middling.
Right: Interventions performed with respect to el/la planning features fail primarily due to a lack of
said planning features.

D El-La RESULTS

Here, we report results for experiments on the is/are dataset, which are much less successful than
those performed on the a/an or is/are datasets. When we behaviorally test the models on this task, we
find (Figure [I2] left) that performance is worse than on the prior two tasks. The majority class el is
not always correctly predicted, though performance stays steadily high as in other tasks. Moreover,
while recall of the minority class an does improve with model scale, it never exceeds 0.6, unlike on
other tasks, where it reaches near 1.0.

We then perform the causal interventions, using as planning nodes those that either in Spanish or in
English, as we observe that some examples have English nodes corresponding to the hypothetically
planned word. However, we find (Figure[T2] right) that the interventions have little effect; this goes
for both zero and multiplying interventions.
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We believe that this is primarily driven by a lack of planning features active on these examples. In
general, while we can find some planning features, Qwen-3 models simply have much fewer than
they do on the a/an dataset, despite their formats being very similar. This may be because Qwen-
3 is not highly capable in language besides English and Chinese (which exhibits little syntactic
agreement); further studies could examine more multilingually capable models.

E MODEL PERFORMANCE ON NON-PLANNING ASPECTS OF SIMPLE
PLANNING TASKS

The fact that small models fail to plan on the simple a/an and is/are planning tasks may raise the
question: do small models fail because they cannot perform the tasks at all? To show this is not the
case, we generate models’ planned tokens, both given the correct next token, and the incorrect next
token. We then measure whether the output token in each case matches our expected planned token.

Planned Word Accuracy by Model and Article Correctness Mean Profession Accuracy by Correct Article
Given Incorrect Article
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Figure 13: Left: Planned word accuracy, i.e. whether the model’s predicted word matches the
intended word, when given the correct or incorrect article. Models above 4B in size are highly accu-
rate when given the correct article (> 80%), and even smaller model achieve moderate accuracies.
Given the wrong article, accuracies are lower, but still non-zero, indicating that models may have a
strong planning goal that prevails even when the word is at odds with the article. Right: Planned
word accuracy given the wrong article, by correct article (a or an). Though accuracy is low, models
succeed on both a and an examples, indicating that successes are not driven by one class.

Performance differs by task. On the a/an task (Figure[I3] left), models have generally high accuracy
(> 0.6) when given the correct next token, but lower accuracy when given the incorrect one; the
highest scoring models in that scenario achieve an accuracy of 0.3-0.4. Baseline accuracy here
is in theory near 0, as models can predict any word. This suggests that although models are not
always planning for the precise word we intend (and indeed, there are cases where we find no nodes
corresponding to the planned word) they often are. And in some cases, they plan so strongly for the
intended word that they output it even when it conflicts with the article.

This trend is much stronger on the is/are task. Our results from the analogous experiment (Figure|[14)
show perfect accuracy for all models when the correct verb form is given. Given the incorrect article,

Number Prediction Accuracy: Correct vs Wrong Verb Usage
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Figure 14: Number accuracy, i.e. whether the model’s predicted number of animals matches the
intended number, when given the correct or incorrect verb (is / are). Notably, small models produce
the correct number regardless of whether they are given the correct or incorrect verb. In contrast,
Qwen3-14B and 32B have starkly reduced accuracy when given the wrong verb form.
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Figure 15: Effects of random features interventions on the a/an (left) and is/are (right) tasks. Nei-
ther intervention has a large effect on either dataset, indicating that our interventions do not succeed
by random chance.

smaller models are (near-)perfectly accurate at predicting the correct number, but larger models
(Qwen3-14B and 32B) perform much worse. This provides strong evidence that small models can
perform the task (and that a lack of task abilities does not underlie their poor planning performance).
However, the root of the behavior of large models is less clear. They appear to be more sensitive
to (subject-verb) agreement, and thus produce outputs that agree with the number of the verb; in
particular, given is as an incorrect next token, they tend to output /, rather than a number that agrees
with the original animal quantities. In contrast, weak models do produce outputs like ... now there
are I dog remaining.

F RANDOM INTERVENTIONS

In order to ensure that our have not succeeded by random chance, we perform all-effects ablations on
random active features in our a/an and is/are datasets. For an example where we normally intervene
on n features, we sample another n features from the pool of all active last-position features, and
record the effects of the intervention. The results (Figure[I3) indicate that these random interventions
are ineffective: neither the zero ablations nor the multiplying interventions work.

G ANIMAL PROBING AND INTERVENTION EXPERIMENTS

As done by |Dong et al.| (2025)), we set up probing experiments as follows. We take 1000 stories
from the validation set of Tinystories, and extract the first sentence. We then feed each first
sentence to the model in the following prompt: Here’s the first sentence of a
story: {sentencel}. Continue this story with one sentence that
introduces a new animal character. We then generate (greedy sampling) a next
sentence, and recorded the animal contained therein.

We then filter this data down to only the datapoints containing the top-4 most common animals;
typically, this leaves 600 or more examples. We then split the data 60/20/20 into train, validation,
and test, and collected (transformer layer output) activations from the last token of each prompt. We
then train a single-layer MLP probe to predict the animal that the model would predict, from these
activations. We use a hidden dimension of 64 for our MLPs, as|Dong et al.| report that performance
plateaus at d = 64. We run this analysis on all Qwen3 models, as well as on Llama-3-8B-Instruct,
used by [Dong et al., and report results across hidden layers in. Figure [16{shows that our results on
Llama-3 (8B) are similar to the original findings, with high F1 scores (0.6-0.7) across all layers but
the first. Probing results for other models are varied; Qwen3-8B and 32B perform well (F1 near
0.6), while other models exhibit middling performance (F1 < 0.5).

We then verify the causal relevance of the features found by these probes. If the probe has found a
causally relevant feature at the end of the prompt that determines the animal that is output, altering
that feature should alter the animal that is output. There are a variety of interventions that could be
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Figure 16: Macro F1 scores when probing models’ last-token representations for the animal that the
model will output in the following sentence, by model layer. F1 scores are high for certain models—
Llama-3 (8B) and Qwen-3 (8B/32B)—but notably lower for others.

used to verify the features found by the probe: Ravfogel et al.| (2021) intervening by reflecting rep-
resentations across probe decision boundaries, while (Giulianelli et al.| (2018) compute the gradient
of the probe’s prediction (error) with respect to the model representations, and update the represen-
tations based on this. We could also use less probe-specific interventions like difference in means
(Marks & Tegmark||[2024).

We opt for a simpler intervention: we pair each prompt in our dataset with a random prompt that
led to the production of a distinct animal. We then generate a continuation to the first prompt, but
patch the last-token activations of the second prompt onto the last token of the first prompt. We do
so at all layers, effectively replacing all model activations at this position. This means that the next
generated token is guaranteed to be the next token of the second prompt; furthermore, attention back
to the patched position will receive the patched values. Since we have patched all possible layers
in which the relevant features could reside, this intervention should cause the model to produce the
animal from the second prompt, if the probed features are relevant. We perform this intervention
across the same set of models as the previous experiment, with the exception of Qwen3-32B, as it is
not supported by TransformerLens (Nanda & Bloom, 2022), the interpretability framework we use.

Intervention Success Rates by Model
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Figure 17: Success rates of our patching intervention, where we patch one prompt (p2)’s last token
activations onto another (p;)’s last token during generation. We report both exact match (True if the
output animal is py’s animal) and any change (True if the output animal differs from p;’s original
animal). In general, exact match is low, below 10%, while any change is higher, but under 30%.

Our results (Figure[I7) suggest that the features found are not highly causally relevant. In relatively
few cases (< 10% for all models) do we observe the output animal change that of the second prompt.
In fact, in the majority of cases, the output animal does not change at all. This seems to be a violation
of our Condition 1, that the found feature must have a causal impact on the model’s planned token.
We note, however, that Llama-3 (8B), the only model from|Dong et al.| that we test, does have higher
intervention efficacy. Moreover, if there are multiple features relevant for planning the animal to be
produced, it would be necessary to find and intervene on all of these to produce a strong effect.

Despite this, we find it unlikely that planning takes place in this scenario. This is because the
continuations corresponding to each animal output are generic: they do not hint to animal that will
be produced. Consider, for example, the prompt and continuation Mia and Dad were busy polishing
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their car. .. As they worked, a small, curious fox darted into the garage, tail wagging playfully. The
left context of fox imposes few constraints on the animal that is to follow; many animals can be
small and curious. This hints that our Condition 2 may not be fulfilled here either: the model does
not actually have to plan / prepare a context that licenses the animal eventually output.

H COUPLET CIRCUIT DETAILS

H.1 COUPLET DATASET AND SAMPLES

Our couplets dataset was created by prompting Qwen-3 (32B) with the prompt “/no_think
You are a creative poet. Produce ONLY the first line of a rhyming
couplet about the topic: 7 {topic}’ . Return a single poetic line
and nothing else.”. We sampled 5 couplets per prompt, kept only the first line of each
couplet, and manually filtered these for well-formedness. We used the following topics: love
(romantic, familial, self-love); death and mortality; coming of age; war and conflict; nature and
the environment; home and belonging; identity and self-discovery; joy and happiness; anxiety and
fear; loneliness and alienation; nostalgia and memory; hope and despair; anger and frustration;
family bonds (siblings, parent-child); friendship; betrayal and trust; first love; marriage and
commitment; loss of loved ones; childhood memories; aging and growing older; seasons and cycles;
historical moments; the passage of time; immortality and legacy; justice and injustice; freedom and
oppression; cultural identity; social alienation; tradition vs. modernity; community and belonging;
weather and climate; animals and wildlife; urban vs. rural life; travel and journeys; food and
taste; colors, sounds, and textures; dreams and aspirations; perfection and imperfection; truth and
deception; power and powerlessness; spirituality and faith; art and creativity.

We then sampled couplet completions from the Qwen-3 models using the prompt: “/no_think
Write only the next line of this rhyming couplet: {first,line}”.

For convenience, we provide 5 example first lines of couplets and completions below.

First line: Two hearts entwined where vows take root,

Qwen3-0.6B: And where the stars are born, they sing.
Qwen3-1.7B: two souls forever bound in love.
Qwen3-4B: A love that grows beyond all doubt.
Qwen3-8B: A love that time cannot undo.
Qwen3-14B: A love that grows in tender fruit.
Qwen3-32B: A love that time and distance can’t undo.

First line: Whispers of dread in the quietest breath,

Qwen3-0.6B: A shadowed path to the dark, where the night is kind.
Qwen3-1.7B: And shadows that dance in the darkest keep.
Qwen3-4B: Shadows creep where the light dare not reach.
Qwen3-8B: A shadowed path where no light dares tread.
Qwen3-14B: A shadow that creeps through the darkness of death.
Qwen3-32B: Shadows conspire as the night takes its death.

First line: Whispers of wind through the emerald trees,

Qwen3-0.6B: The moonlight dances on the water’s edge.
Qwen3-1.7B: Soft as dreams, they drift and sigh.
Qwen3-4B: Singing the hush of a summer breeze.
Qwen3-8B: Sing a lullaby to the sleeping breeze.
Qwen3-14B: Softly they sing as the daylight decreases.
Qwen3-32B: Singing soft lullabies to the leaves.
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Figure 18: A: Effects of intervening on end-of-line (EOL) features. Upweighting them in the sec-
ond line causes the line to end early, while downweighting them causes it to continue for longer than
normal. B: Effect of upweighting near-end of line (NEOL) features in the second line. Upweighting
these causes the model to emit a rhyme over 2 words earlier than normal. C: Effects of downweight-
ing EOL features at the end of the first line, downweighting NEOL features in the second line, or
ablating rhyming-relevant attention heads’ patterns. The first two interventions drastically decrease
the model’s propensity to produce a rhyme, indicating that they help enable rhyming. The last is less
effective, but still reduces accuracy far below the original, 100% accuracy. D: Rhyming accuracy
when ablating original rhyming features, and upweighting those from another rhyme group. Larger
models switch to the new rhyme group with 40% accuracy—lower than their original thyming ac-
curacy, but still relatively high.

First line: Whispers of winter kiss the thawing spring,

Qwen3-0.6B: The frost has passed, and the snow has gone,
Qwen3-1.7B: and silence bows to the bloom of the green.
Qwen3-4B: Blossoms rise in quiet, fragile song.
Qwen3-8B: Beneath the snow, the seeds begin to sing.
Qwen3-14B: Blossoms awaken where the frost once clung.
Qwen3-32B: Melting dreams in a tender, fleeting sting.

First line: A promise made in shadows, torn by dawn’s deceitful light,

Qwen3-0.6B: A shadowed vow, once kept, now lost,

Qwen3-1.7B: Yet still, the heart remains true to what it

Qwen3-4B: A vow now lost in the glare of day.

Qwen3-8B: A vow once whispered fades into the night.

Qwen3-14B: A heart once whole now fractured, lost in endless, silent night.
Qwen3-32B: A truth once held so sacred, now lies shattered in the fight.

H.2 CIRCUIT VERIFICATION

Here, we discuss the experiments performed to verify our circuit, which we claim acts via end-of-
line, near-end-of-line, and rhyming features. We test these features as follows:

End-of-line (EOL) features We define EOL features as those where 7 out of the feature’s top 10

activations immediately precede a token containing a newline, e.g. “.\n”. We test that 1) activating
these features prior to the end of the second line causes models to end the line prematurely, 2)
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deactivating these features after the model has completed the second line with a rhyme causes models
to continue the line, instead, and 3) deactivating these features at the end of the first line causes the
model to fail to rhyme, as EOL features regulate its attention to rhyming features.

For each of these experiments, we identify EOL features on each example as those that are active
on the last word of the couplet’s first line. We perform each experiment only on those couplets for
which we have performed attribution. For experiment 1), we provide the model with the couplet’s
first line and the first 2 tokens of the second. We set the EOL features to 5 times their original values
at the final position of this input, and any generated positions. We then allow the model to generate,
using greedy sampling. We record the length of generation (in tokens) before the model outputs a
newline, and compare it to the length of the original line.

For experiment 2), we provide the model with each entire, completed couplet (stripping any punc-
tuation at the end), and set all EOL features to -5 times their original values. We do this at the final
position of this input, and any generated positions. We use the model to generate, using greedy
sampling, and record the length of the model’ new generation, compared to that of the original.

For experiment 3), we provide the model with the first line of each couplet, and let it generate the
next couplet (with greedy sampling), while setting all EOL features to -5 times their original values
at the end of the first line. We then record rthyming accuracy.

Figure [T8A shows the results of experiments 1) and 2). Upweighting EOL features indeed causes
models to end the second line early, resulting in a large negative difference in line length. In contrast,
downweighting said features prevents models from ever finishing a line, resulting in very long lines,
relative to the original. Figure [T§C shows the results of experiment 3). The rhyming accuracy for
larger models (larger than 0.6B) is low, below 0.2; this is despite the fact that we perform the inter-
vention on examples for which we have computed circuits, which are examples on which models
succeed. This means that downweighting EOL features at the end of the first line seriously hindered
performance. Moreover, qualitative inspection of the model’s outputs showed no harm to the overall
fluency of the completions, suggesting that this was not due to general harm to the model’s abilities.
This suggests that the EOL features do play an important role in regulating rhyming abilities, likely
through the keys of attention heads, which tell them where to attend to.

Near-end-of-line (NEOL) features We define NEOL features as those where 7 out of the feature’s
top 10 activations occur 2-4 tokens before a token containing a newline, e.g. “.\n”. We test that 1)
activating these features at the beginning of the line causes models emit a rhyme early, and that 2)
deactivating them stops models from rhyming.

For each of these experiments, we identify NEOL features on each example as those that are active
on the second to last word of the couplet’s second line, i.e. on the token before the rhyming word.
We perform each experiment only on those couplets for which we have performed attribution. For
experiment 1), we provide the model with the couplet’s first line and the first 3 tokens of the second.
We set the NEOL features to 5 times their original values at the final position of this input, and any
generated positions. We then allow the model to generate, using greedy sampling. We record the
length of generation (in tokens) before the model outputs a rhyming word, and compare it to the
length of the original line.

For experiment 2), we provide the model with each couplet’s first line, and set all NEOL features to
-5 times their original values. We do this at the final position of this input, and any future positions.
We sample a second line from the model using greedy sampling, and record rhyming accuracy.

Figure [I8B shows the results of experiment 1). Upweighting NEOL features causes models to
rhyme early - over 2 tokens early, for models above 0.6B. This suggests that the NEOL feature is
causally responsible for models’ output of a rhyming token. We note that this intervention qualita-
tively frequently caused models to thyme not just early, but also rhyme often: models sometimes
output multiple thyming words (e.g. Beneath the gray lay stray), as if the need to rthyme (like the
upweighting of the NEOL feature) was ongoing.

Figure shows the results of experiment 2). The rhyming accuracy for larger models (larger
than 0.6B) is low, below 0.2, just like when we downweighted EOL; indeed. Once more, this is
despite the fact that we perform the intervention on examples for which we have created circuits,
which are examples on which models succeed. Downweighting NEOL features in the second line
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Figure 19: Length of the shared prefix between the original generation, generations with temperature
1.0, and steered generations, both greedily sampled and with temperature 1.0. Error bars show SE.

thus seriously harmed performance. Similar to before, qualitative inspection of the model’s outputs
showed no harm to the overall fluency of the completions. Since these features act at the position
where rhyming occurs, we hypothesize that they affect the queries of attention heads that would
otherwise bring features over rhyming information, allowing models to then predict a rhyming word.

We thus also test this attention head theory. We record each model’s attention during a normal
forward pass, and when the NEOL features are strongly (-6x) downweighted. We then find the top-5
heads whose attention back to the end of the first line is reduced most by this ablation, averaged
across couplets. We hypothesize that these heads play a causal role in thyming abilities. Thus, we
perform couplet generation as in the prior experiment, but transfer all of these 5 heads’ attention back
to the end of the first line, to the BOS token; we observe that this is what happens upon ablation,
and such tokens are generally considered to be attention sinks. We then record rhyming accuracy.

Figure [T§[C shows the results of this experiment as well. This ablation is less effective than directly
intervening on NEOL features directly; rthyming accuracies are 20-30% higher, though far below
the 100% accuracy models achieved on the sentences for which we computed circuits. It is also
significantly more targeted: we only alter 2 attention probabilities in 5 heads, rather than targeting
many features.

Rhyming features As discussed in the main text, we find rhyming features using a heuristic. We
look for features that activate on short tokens (all top-activating tokens are <5 characters) that are
distinct (no more than 5 occurrences of the same token), and where 7 of the 10 top activating features
either start with the same vowel, or end with the same consonant. Manual inspection suggested that
this yields relatively high-precision but only moderate-recall recovery of these features.

We test that these features control the output rhyme, by deactivating each example’s original rhyming
features at the end of the first line of the couplet, and upweighting the rhyming features of an example
with a different rhyme. The resulting line should rhyme with the new example, not the original.

As in the main text, our results (Figure [I8]D) suggest that these features are indeed responsible for
choosing the rthyme. Although accuracy is lower than on the original rhymes, it is moderate, and
near that of the models overall on rhyming couplets.

H.3 INTERVENING ON RHYMING FEATURES CHANGES INTERMEDIATE TOKENS

We can test whether the intermediate context generated by the model changes at all upon rhyming
feature intervention. To do this, we take the original generation of the model on a couplet, and its
generation when its rhyming tokens are steered as in Section [5.3] We then record the length (in
tokens) of the longest prefix shared between the original and steered generation. As baselines, we
also compute the overlap between the original, greedy generation, and generations (both steered and
unsteered) that we sample with temperature 1.0. If the rhyming features are genuinely causing the
model to plan for future tokens, we should expect them to cause the model’s intermediate tokens to
change, more than temperature-based sampling would.
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Figure 20: A feature circuit for a couplet ending in in the night. Unlike prior circuits, this circuit
involves a specific night feature that drives the production of the phrase in the night.

Our results (Figure [I9) indicate that steering affects the intermediate context between the first line
and the rhyming token output. For smaller models (0.6B and 1.7B), this intervention do no more
than simple sampling does. But for larger models (8B and 14B), the effect of this intervention upon
generations exceeds that of normal sampling—even when combining the intervention with greedy
decoding. Thus, the intervention alters both the intermediate and final tokens that models output.

I POTENTIAL LOCAL PLANNING FEATURES

To find local planning features in couplet circuits, we search for features in our circuit that upweight
the rhyming word that is eventually output, or have one of their top-10 activations on that word.
We search at the position before that word is output; that is, we look for say X features that are
causally relevant even before the model outputs X. For a circuit in which this could be occurring, see
Figure[20]

For each model, and each of its top-10 words by number of say X features, we steer on those say X
features, setting their activations to 3, 5, or 7 times their original values. We do so on 5-15 token
fragments of sentences from the TinyStories dataset (Eldan & Lil [2023)—a neutral context where
models are not likely strongly planning. We then record whether each model eventually output X,
and qualitatively inspect the outputs.

Qualitatively, we observe that steering can lead to the sorts of sensible generations we observed in
the poetry setting. Steering on the say “night” feature leads to generations such as One day, a girl
named Mia went for a walk. She saw a cat and started to follow it to turn into One day, a girl
named Mia went for a walk. She saw a cat in the night; notably, in the appears to specifically
license night. Similarly, steering on the say “dream” feature often leads to outputs like recurring
dream or American dream, i.e., contexts that are specific to dream.

However, this is not always the case. Steering too hard can cause the model to output the target
word even in infelicitous contexts, or to only output the word; some say X features seldom produce
the target word when steering. How can we measure whether the steering not only (1) produced the
word X, but also (2) maintained a coherent sentence (up to the point where the word X was output)
and (3) truly adapted the context to license X? We can measure (1) programmatically, but (2) and
(3) are harder. For coherence, we query Claude Sonnet 4.1 about the coherence of each steered
generation (Listing[I)); to verify that Claude is a good judge of coherence we annotate 100 examples
for coherence, and find high agreement (80%, where most disagreements come from Claude missing
incoherence).

To estimate models’ abilities at (3), we filter examples to include only those where (1) and (2) are
fulfilled; we also filter out any examples where the original and steered generation are identical up
until the word X is output, as adaptation has surely not occurred in such cases. Then, we estimate
how many of these examples fulfill (3) by manually annotating 100 examples per model for whether
they contain context adaptation that could indicate planning. For example, we look for phrases like
her own when steered towards own, or had a recurring dream when steered towards dream, when
the original generation did not contain similar phrases. We also mark as incorrect examples that are
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Figure 21: Steering metrics by model size, averaged across steering strength. Overall, as model
size increases, the ability to elicit say X by steering increases. The model’s tendency to adapt their
context also appears to increase with size. Coherence is mixed, and appears unrelated to model size.
Ultimately, few examples fulfill all three conditions—10% in the best case.

ungrammatical / incoherent, but were missed by Claude in the first round of filtering, as a model that
is successfully adapting its context for a planned token should not produce such outputs. We then
plot these metrics.

Our results (Figure 2T)) indicate that larger models are more successful at steering towards X and
more likely to adapt their context to match X, though they are no more coherent than smaller models.
However, few examples actually fulfill all of these conditions: even in Qwen-3 (14B), only 10% of
examples do so. So, while we believe that these features may be part of a generalized phenomenon
whereby models plan for words by boosting n-grams that end in those words, our uncertainty is
rather high. Our current hypotheses still rely on qualitative evidence, and more study is needed to
understand the precise mechanisms by which these features work, and more consistently elicit and
measure planning behavior from them.

Listing 1: Claude 4.1 Sonnet Prompt. Note that we only employ the coherence judgments, as the
contains-word criterion can be checked programmatically, and we found Claude’s adapts-context
responses unreliable.

f"""T need you to analyze a text generation where a model was steered
to include a specific word.

<input_prompt>
{input_text}
</input_prompt>

<baseline_generation>
{baseline_generation}
</baseline_generation>

<steered_generation>
{generation}
</steered_generation>

<steered_word>

{steered_word}

</steered_word>

Please analyze this generation and answer the following questions:

1. x»xContains steered word*+*: Does the steered generation contain the
exact word "{steered_word}"? (Look for exact match, case-
insensitive)

2. **Coherencexx: Is the steered generation coherent up to the target

word. Is it natural, or does it show signs of breakdown such as:
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- Excessive repetition of words or phrases

— Unnatural/nonsensical sentences

— Abrupt topic changes that don’t make sense

— Grammatical breakdown

— IMPORTANT: Focus on coherence up to the point where the steered
word appears (or would appear). Ignore any incoherence that
happens after the steered word.

3. xxContext adaptationxx: Compare the steered generation to the

baseline generation, starting from the input_prompt. Did the model
modify the words immediately preceding where the steered word
appears (or would appear) compared to the baseline? Look for
changes like:

- Adding/changing articles ("a", "the", "an")

- Adding/changing prepositions ("in", "on", "at", "with")

— Changing verb forms or tenses

— Adding adjectives or modifiers

— Any other modifications that help the steered word fit better

IMPORTANT: For context adaptation, you must compare the steered
generation against the baseline to see if modifications were made
specifically to accommodate the steered word. Count the number of
words that were added or changed immediately before where the
steered word appears (or would appear).

When counting adaptation words:

— Count new articles, adjectives, adverbs, or prepositions added
before the steered word

— Count changed words that help the steered word fit better

— Do NOT count the steered word itself

— Focus on the immediate context (usually 1-3 words before the steered

word)
— If the steered word was not present, there is no adaptation

Example 1:

input_text: "Once upon a time, there was a"

baseline: "Once upon a time, there was a young girl named Lily who
lived in a small village"

steered_word: "day"

steered_generation: "Once upon a time, there was a day when all the
day of day day day day"

contains steered word: yes

coherence: yes (the generation is coherent up to "day")

contain adaptation: no (day is inserted instead of young)

Example 2:

input_text: "Once upon a time, there was a little boy named"

baseline: "Once upon a time, there was a little boy named Timmy who
loved to play with numbers. One"

steered_word: "dream"

steered_generation: ""Once upon a time, there was a little boy named D

He had a recurring dream that he had""

contains steered word: yes

coherence: yes (the generation is coherent up to "day")

contain adaptation: yes (sets up dream with "he had a recurring")

Please provide your analysis in this exact format:

<analysis>

<coherence_explanation>Brief explanation of any coherence issues found
</coherence_explanation>

<adaptation_explanation>Brief explanation of any context adaptations
made compared to the baseline</adaptation_explanation>

<contains_word>yes/no</contains_word>
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<is_coherent>yes/no</is_coherent>

<adapted_context>yes/no</adapted_context>

<adaptation_word_count>number (0 if no adaptation, otherwise count of
adapted words) </adaptation_word_count>

</analysis>"""
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