

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LATENT PLANNING EMERGES WITH SCALE

Anonymous authors

Paper under double-blind review

ABSTRACT

LLMs can perform seemingly planning-intensive tasks, like writing coherent stories or functioning code, without explicitly verbalizing a plan; however, the extent to which they implicitly plan is unknown. In this paper, we define *latent planning* as occurring when LLMs possess internal planning representations that (1) cause the generation of a specific future token or concept, and (2) shape preceding context to license said future token or concept. We study the Qwen-3 family (0.6B-14B) on simple planning tasks, finding that latent planning ability increases with scale. Models that plan possess features that represent a planned-for word like *accountant*, and cause them to output *an* rather than *a*; moreover, even the less-successful Qwen-3 4B-8B have nascent planning mechanisms. On the more complex task of completing rhyming couplets, we find that models often identify a rhyme ahead of time, but even large models seldom plan far ahead. However, we can elicit some planning that increases with scale when steering models towards planned words in prose. In sum, we offer a framework for measuring planning and mechanistic evidence of how models’ planning abilities grow with scale.

1 INTRODUCTION

LLMs succeed at some tasks that seem to require planning—reasoning about the steps needed to achieve a goal state—with explicitly verbalizing a plan. Understanding the extent of models’ unverbalized planning is important: such *latent planning* could present AI safety risks, allowing models to engage in scheming without alerting external monitors (Balesni et al., 2024; Korbak et al., 2025). Despite this, empirical evidence regarding LLMs’ latent planning remains limited.¹ Past work on latent planning is largely observational: studies show that future tokens or text attributes can be extracted from model activations (Pal et al., 2023; Pochinkov, 2025; Dong et al., 2025). Only recently has causal evidence for planning emerged, in closed models (Lindsey et al., 2025).

We argue that claims of latent planning must be based on causal, not observational evidence, lest we apply the “planning” label too broadly. We consider an LLM to engage in latent planning only if it possesses an internal representation of the planned-for token or concept t that causes it to generate t ; we call this *forward planning*. However, this representation must also cause the model to engage in *backward planning*, reasoning back from its goal t to generate a context that accommodates it.

To understand how latent planning emerges with scale, we test 5 Qwen-3 models of increasing size on simple tasks that could involve latent planning, like completing “Someone who handles financial records is → *a/an* (*accountant*)”; we find that only models with 14B+ parameters consistently succeed. We then use feature circuits (Marks et al., 2025; Ameisen et al., 2025) to find the mechanisms that underlie models’ abilities. We find that there exist planning features that represent future outputs like *accountant* and upweight relevant outputs like “*an*” (Figure 1). Moreover, although smaller models fail, they possess planning-relevant features that promote the correct answer.

We next have models complete rhyming couplets, where Lindsey et al. observed longer-range planning in Claude Haiku. We find that models employ a circuit that tracks information related to poetry, such as when a line is about to end, or what to rhyme with; however, even large models do not engage in backward planning. We then test intermediate planning abilities by steering models towards planned words in prose, and observe forward and backward planning, increasing with scale. Our results provide the insight into how latent planning emerges at scale, showing that Qwen-3 models use various planning mechanisms that scale with model size. We also show that while both forward and

¹Explicit, verbalized planning, as in LLMs’ chains of thought, is better studied (Kambhampati et al., 2024).

Figure 1: Feature circuit for the input *Someone who studies living organisms is a biologist. Someone who handles financial records is*, explaining Qwen-3 (14B)’s output, *an*. The model first determines the word it plans to say (*accountant*), causing it to output the appropriate article, *an*. Labeled nodes are sets of active transcoder features with a similar role. Edges indicate that the source node increases the target node’s activation when active. We demonstrate the role of certain nodes by selecting one of its features and showing its top-activating inputs, and the vocabulary item that it up-/down-weights.

backward planning improve with scale, the former develops faster. We thus conduct the largest-scale feature circuit study on open models to date. We provide anonymized code in this repository.

2 WHAT IS LATENT PLANNING IN LLMs?

Planning is behavior in which one reasons about which actions must be taken (and in which order) to achieve a goal. However, most past work on latent planning in LLMs searches model internals for evidence of a goal, not goal-oriented reasoning. For example, Dong et al. (2025) prompt LLMs to write stories, and probe the LLMs’ representations of the input prompt for information about their future outputs. They equate successful probing with latent planning, but see App. G for evidence to the contrary. Pochinkov (2025) takes the residual stream of LLMs that are about to start a new paragraph, and attempts to decode the topic thereof using Patchscopes (Ghandeharioun et al., 2024); again, successful decoding is taken to entail planning. Pal et al. (2023) also decode models’ future tokens with probes and Patchscopes—though they do not call this planning. Lindsey et al. (2025) are unique in providing causal evidence: studying LLMs’ ability to complete rhyming couplets, they not only observe representations of the rhyming word that the model plans to output, but also causally intervene on them, changing the upcoming word and its preceding context that accommodates it.

We argue that, if LLM planning entails reasoning about the steps needed to output a specific future token, decoding the future token is insufficient to evidenciate planning. Consider a model that always outputs the same token, or one that outputs $0, 2, 4, 6, \dots$; in both cases, a probe could likely predict many future tokens, but neither task requires planning. More generally, the decodability of a given attribute from model representations does not entail its use in model processing: probes are known to decode unused information (Ravichander et al., 2021). Instead, if latent planning is a *mechanism* that models deploy, a definition thereof should make causally verifiable *mechanistic* claims.

Inspired by Lindsey et al., we define an LLM given a length- n input as engaging in latent planning if it possess a representation of a planned token or concept that:

Condition 1 (Forward Planning): *causes it to output the specific token or concept t at some position $n + k$, $k > 1$.* This strengthens the decodability criterion from past work: we require that some representation *causes* the LLM to produce t , not just that t be predictable from the LLM’s internals.

Condition 2 (Backward Planning): *causes it to output a context that licenses said token or concept t .* This requires that models work backwards from the goal to formulate a context that licenses it. Consider the input $s = \text{The capital of Texas} \rightarrow \text{is} \rightarrow \text{Austin}$. LLMs may have an *Austin* representation at the *Texas* position of s ; ablating it stops the model from later outputting *Austin*. However, this is only backward planning if the *Austin* representation causes the model to produce *is*. This is unlikely, given that one can predict *is* without knowing that *Austin* is the capital of *Texas*. Note that some past work focuses on representations that do *not* aid immediately next-token prediction (Wu et al., 2024).

108 3 TRANSCODERS AND TRANSCODER FEATURE CIRCUITS
109110 To identify causally relevant planning representations, we first decompose model activations into
111 sparse features using transcoders (Dunefsky et al., 2024). Then, we find the causally relevant sub-
112 graph thereof, known as a *feature circuit* (Marks et al., 2025; Ameisen et al., 2025).
113114 **Transcoders** Transcoders are auxiliary models that replace the model’s MLPs (Dunefsky et al.,
115 2024); each transcoder takes in one MLP’s inputs and predicts its outputs. Formally, a transcoder
116 takes in a given MLP’s input activations $\mathbf{h} \in \mathbb{R}^d$ and computes a sparse representation $\mathbf{z} \in \mathbb{R}^n$ as $\mathbf{z} =$
117 $f(\mathbf{W}_{enc}\mathbf{h} + \mathbf{b}_{enc})$. It then reconstructs the MLP’s output activations $\mathbf{h}' \in \mathbb{R}^d$ as $\mathbf{h}' = \mathbf{W}_{dec}\mathbf{z} +$
118 \mathbf{b}_{dec} . f is an activation function, while \mathbf{W}_{enc} , \mathbf{b}_{enc} , \mathbf{W}_{dec} , and \mathbf{b}_{dec} are learned parameters.
119120 Transcoders are useful because they are trained to compute representations \mathbf{z} that are *sparse* and
121 *monosemantic*: most dimensions (or *features*) are zero on any given input; each feature should fire
122 on only one concept. By contrast, MLPs’ hidden activations are often dense and polysemantic,
123 firing on multiple concepts (Olah et al., 2017; Elhage et al., 2022). If one wishes to determine which
124 concepts a model represents in its activations, it is thus easier to interpret transcoder features.
125126 We interpret the i^{th} feature of a given transcoder by displaying the inputs that maximize its activa-
127 tion \mathbf{z}_i . We also display the tokens whose unembedding vectors have the highest and lowest dot
128 product with the feature’s column in \mathbf{W}_{dec} ; these are the vocabulary items that it directly up- and
129 downweights. See Figure 1 for example feature visualizations, used to manually label features.
130131 We often intervene with respect to transcoder features, to verify our interpretation of a given feature.
132 For example, we might take a feature vector \mathbf{z} , set its activation to 0, and observe the change in
133 model behavior. For more background and technical details on transcoders, see Appendix A.1.
134135 **Transcoder Feature Circuits** Given a model, transcoders trained on each MLP thereof, and an
136 input, we construct a transcoder feature circuit (Ameisen et al., 2025): a weighted acyclic digraph
137 describing the causal relationships between the model’s inputs, transcoder features, and logits. Each
138 edge weight indicates the source node’s direct effect on the target, i.e. the amount by which it directly
139 increases the latter’s value. Once features are annotated, and similar features grouped together, the
140 circuit serves as a mechanistic explanation for a model’s behavior on the input, as seen in Figure 1.
141142 We compute feature circuits using Ameisen et al.’s algorithm, detailed in Appendix A.2. Unlike
143 other feature circuit techniques, it computes *exact* direct effect values—conditional on the model’s
144 attention patterns and layer normalization denominators. We thus know the precise causal relation-
145 ship between features, ignoring contributions to these quantities, which is often useful in practice.
146 We use the `circuit-tracer` library for circuit-finding and interventions (Hanna et al., 2025).
147148 The transcoder feature circuit paradigm helps ensure that any planning features found fulfill our con-
149 ditions, as features are guaranteed to be causally relevant, under the assumptions made by transcoder
150 feature circuits, and we can see what intermediate features represent.
151152 4 QWEN-3 MODELS ENGAGE IN SIMPLE PLANNING
153154 4.1 MODELS AND DATA
155156 We study planning in 5 models from the Qwen-3 family (0.6B, 1.7B, 4B, 8B, 14B; Yang et al.,
157 2025). We study models of varying size from one family to draw conclusions about how planning
158 behavior develops as models scale. Note that although these models are instruction-tuned, they
159 produce reasonable output on both instruction-formatted and language-modeling-formatted inputs,
160

Category	Example Input	Next	Planned
a / an	Someone who handles financial records is	an	accountant
is / are	There were 5 dogs but 4 left. Now there	is	1
el / la	El animal marino con ocho tentáculos es	el	pulpo

161 Table 1: Three simple planning tasks. Each task prompts the model to output a **planned** token,
162 preceded by a **next** token with two possible forms; the planned token determines the correct form.
163

162 so we use both formats. For feature circuit analyses, we use Hanna et al.’s (2025) transcoders, which
 163 cover Qwen-3 (0.6B-14B); we include Qwen-3 (32B) in our transcoder-free behavioral analyses.
 164

165 We craft three simple tasks to serve as a testbed for LLMs’ planning abilities. We choose tasks to
 166 which LLMs were likely exposed during pre-training, as model abilities are often stronger on such
 167 tasks (McCoy et al., 2024). Each task (Table 1) consists of inputs that push the model to produce a
 168 specific content word, preceded by a function word that must agree with it. For example, in the *is*
 169 /*are* task example in Table 1, the model must output 1, preceded by the correct form of *to be*. See
 170 App. B for details on the construction and composition of these datasets. We discuss *a/an* in the
 171 main text; our successful *is/are* experiments and less successful *el/la* experiments are in App. C / D.
 172 For experiments in another language, see experiments with Chinese measure words in Appendix K,
 173 while experiments on base models are in Appendix J.
 174

175 4.2 LARGER MODELS SUCCEED ON PLANNING TASKS

177 We first evaluate models’ abilities on the *a/an* task, recording their next token prediction on each
 178 input. We report per-class recall, as performance differs by class. We find (Figure 2, left) that all
 179 models have high recall (> 0.8) of *a*, which is the majority class both in our dataset and English in
 180 general. Recall of the minority class *an* is high (> 0.8) for Qwen-3 14B; small models (0.6-1.7B)
 181 always predict the majority class, and mid-sized models’ performance smoothly increases.
 182

183 Note that this is not attributable to models’ inability to determine the planned token: in Appendix E,
 184 we show that models with under 14B parameters can calculate the answer to *is/are* questions, but
 185 fail to predict the correct verb, producing outputs like *... there are 1 dog*. It thus appears that simple
 186 planning (and not just e.g. math) emerges at 4B to 8B parameters.
 187

188 4.3 MODELS POSSESS PLANNING FEATURES

189 To determine if models truly plan on these tasks, we compute each model’s feature circuit for each
 190 example in our datasets, as described in Section 3. We then visualize and qualitatively analyze a
 191 subset of the feature circuits, grouping qualitatively similar features together and labeling them.
 192

193 We find that these circuits contain features that represent the planned token. Figure 1 shows a typical
 194 example from Qwen-3 (14B): it possesses planning features (for *accountant*) that feed into features
 195 that upweight the same token. These activate features that directly upweight the correct next token
 196 (*a/an*). This suggests that models plan to output the target token, which then leads them to output the
 197 correct next token. As in Lindsey et al. (2025), the planning features (e.g., the *accounting* feature in
 198 Figure 1) appear to simply represent the planned word, and not specifically in planning contexts.
 199

200 Planning features differ slightly by task. In the *is/are* dataset, such features are more common when
 201 the answer is small (from 1 to 3). The *el/la* dataset’s features fire on the target word *in English*,
 202 despite its lack of grammatical gender, relevant to this task. Surprisingly, on *a/an* and *is/are*, even
 203 poorly-performing models have planning features, suggesting nascent latent planning mechanisms.
 204

212 Figure 2: **Left:** Qwen-3 family models’ recall of correct article on the *a/an* task. All models can
 213 recall *a*, but models ≤ 8 B have lower recall on the less-common *an*. **Right:** The mean proportion of
 214 influence flowing through planning nodes in the *a/an* dataset, by model, article, and correctness. On
 215 *an* examples where the model correctly predicts the next token, more influence tends to flow through
 the planning nodes. This effect is reversed and weaker for the majority class *a*.
 216

Figure 3: **Left:** Change in $p(\text{correct article})$ caused by zero and multiplying interventions on planning features. As expected, ablating these harms performance, while upweighting them improves it; however, both affect primarily *an* examples, the minority class. **Right:** Change in $p(\text{correct article})$ caused by direct-effect interventions. Effects are smaller, indicating that planning features act both directly (by upweighting the correct article) and indirectly (by activating e.g. *say “a/an”* features.)

4.4 PLANNING FEATURES ARE CAUSALLY RELEVANT

We now verify that these planning features truly drive the model’s prediction of the correct next token. We start by programmatically finding each example’s planning features; a feature is considered planning-relevant if it is active at the last position of the input (*is*), and it either upweights the planned word (or a prefix thereof), or contains it in 5 out of 10 of its top-activating texts. We find that this yields similar planning features to those found via manual search.

With these features, we perform two causal relevance analyses. First, we ask—how important are planning nodes according to our circuits? Each edge in the circuit reflects the direct influence of a source node on a target node, but we can also consider the total flow from a source to a target node, which might travel via multi-node paths. To quantify the importance of the planning nodes, we measure the proportion of the total flow between the circuit’s inputs and logits that is mediated by the planning features, comparing the flow in cases where the model is in/correct.

We find (Figure 2, right) that when models predict the minority class *an* correctly, more of the total influence flows through the planning nodes. This effect is reversed (and weaker) for the majority-class *a* case, despite roughly equal planning node counts across classes, suggesting that planning nodes are not generally helpful for these examples. In neither case is the proportion large, but this is unsurprising: much of the flow is likely mediated by nodes that identify the need for an article such as *a* or *an*, upweighting them both, rather than discriminating between them.

Second, we causally intervene on planning features. For each model, we a) take the examples on which it succeeds and ablate the planning features (e.g. *accountant* and *say “acc”* in Figure 1), setting them to zero, and b) take the examples on which it fails and highly upweight their planning features, setting their activations to 5× their usual activations. If these features indeed cause models to output the planned token, these interventions should harm and improve performance respectively.

We find (Figure 3, left) that features are indeed causally relevant. Feature ablation (top left) harms model performance, but only on minority-class *an* examples. Similarly, boosting planning features improves performance drastically *an* examples, with larger models seeing slightly larger improvements; however, the effects on *a* examples are almost zero. This asymmetry aligns with our prior analysis, and suggests that planning nodes are more important for minority-class examples where models must work against their priors. This intervention is effective on Qwen-3 4B and 8B, indicating that although their overall performance is worse than Qwen-3 14B, they likely rely on similar planning mechanisms, with planning features encouraging the production of *an* when necessary.

270 We also note that our feature interventions are more successful than a random baseline: while zero
 271 ablating randomly selected features active at the last position of the prompt occasionally harms
 272 performance, multiplying random features fails to boost model performance (see App. F for details).
 273

274 **Discussion** Our results suggest that Qwen-3 engages in simple backward planning; however, it
 275 is unclear if this is driven by direct-effects alone. The *accountant* feature might have a high co-
 276 sine similarity with the unembedding vector for *an*, upweighting its logit. This, combined with a
 277 mechanism that upweights both *a* and *an* in relevant contexts, would suffice to upweight the correct
 278 article, as we observe. We disprove this by performing direct-effects interventions: we upweight the
 279 planning features, but freeze the model’s other features, blocking second-order effects.

280 This intervention’s effects (Figure 3, right) are much weaker than the original interventions: zero
 281 ablations are less harmful, and multiplying interventions harm performance as often as they help.
 282 The planning features’ importance can thus not be explained by direct effects alone, suggesting
 283 that the *say “a/an”* features play an important role in mediating planning. For more evidence, see
 284 Appendix L, where we steer on the planning features, and find that while this often causes models
 285 to output the planned-for word, it seldom causes them to output *a/an*.

286 One could also hypothesize that although *say “a/an”* features are involved in *a/an* planning, the
 287 model treats noun phrases (like *an accountant*) like a single, multi-token word; no planning is in-
 288 volved. However, models also plan when outputting “*there is 1 dog left*”, where this multi-token
 289 argument is much less plausible. We thus maintain that simple planning occurs in these cases.

290 One outstanding question is the source of the gap between Qwen-3 (14B) and its weaker 4B and
 291 8B counterparts; what makes their circuits *nascent* rather than fully-developed? In Appendix M, we
 292 examine this question and find that when these mid-sized models fail on *an* examples, they have far
 293 fewer planning features active than when they succeed. By contrast, smaller models seldom have
 294 any planning features active, and Qwen-3 (14B) has many planning features active in both cases.
 295

296 5 QWEN-3 USE LITTLE PLANNING WHEN COMPLETING COUPLETS 297

298 The preceding experiments show that Qwen-3 models more successfully plan as their size increases,
 299 but leave open the question of longer-range planning mechanisms. There is precedent: Lindsey
 300 et al. (2025) find that, given the first line of a rhyming couplet, like *He saw a carrot and had to grab*
 301 *it*, Claude-3.5 Haiku produces the next line *His hunger was like a starving rabbit* using a *rabbit*
 302 feature that controls the rhyming word and generates a coherent context. Motivated by this, we
 303 study Qwen-3 models on rhyming couplets, searching for long-range planning.
 304

305 5.1 QWEN-3 MODELS OFTEN SUCCESSFULLY RHYME COUPLETS 306

307 We first test whether Qwen-3 models can complete rhyming couplets at all. To do so, we generate
 308 a dataset of 985 first lines of couplets, by prompting Qwen-3 (32B) to produce rhyming couplets
 309 on 43 topics, ranging from *coming of age* to *animals and wildlife*, and taking the first line of each.
 310 LLM generation of couplets avoids cases of couplets memorized from the training data. We then
 311 greedily sample a second line of the couplet from each model, and evaluate its rhyme with the first
 312 couplet by extracting the last word of each line, extracting their vowels and final consonants using
 313 CMUDict (Carnegie Mellon University, 2014; Bird & Loper, 2004), and verifying that they match.
 314 Our results (Figure 5, left) show that larger models rhyme with 50+% accuracy; smaller ones fail
 315 more often. Models engage in slant or assonant (vowel-only) rhyme, rhyming words like *craze* with
 316 *page*; models with 8B parameters produce a valid assonant rhyme in over 70% of cases.
 317

318 5.2 LARGER LLMs’ POETRY ABILITIES ARE SUPPORTED BY A RHYMING CIRCUIT

319 To test whether models plan when completing couplets, we again use transcoder circuits. For each
 320 model, we filter the examples from our dataset to those where the model completes the couplet’s
 321 second line with a rhyming word. We then attribute from this rhyming word’s logit, given the
 322 input leading up to the rhyming word; that is, given an input like *Fury burns where calm once*
 323 *stayed, . . . Hope flickers where the shadows laid*, we find the circuit explaining the model’s prediction
 of *laid*. We limit this to 100 examples per model. See App. H.1 for rhyming couplet data details.

324

325

326

327

328

329

330

331

332

333

334

Figure 4: A feature circuit for the couplet *Fury burns where calm once stayed, \n Hope flickers where the shadows laid*, explaining Qwen-3 (14B’s) decision to output *shadows laid, \n*. Halfway through outputting the couplet’s second line, the model’s “near end of a line of poetry” features activate. These cause it to attend back to the end of the first line, where “end of a line of poetry” features are active, and to move “rhymes with -ayed” features into the second line. These influence the model’s outputs, eventually leading to *laid*. *End of line* features then cause it to output *\n*.

We qualitatively analyze the circuits, and find that in larger models, an interpretable circuit emerges. Given the first line of the couplet, the model begins to generate the second with little planning. Near the end of the second line, the model recognizes that it is near the end of a line of rhyming poetry, activating *near end of line* features. These cause it to attend to the end of the first line, drawn by the *end of line* features active there. Rhyming features (e.g. *rhymes with “ayed”*) at the end of the first line thereby activate similar features in the second line. There, these features remain active until they eventually cause the model to output a rhyming token. Once the model completes the rhyme, it activates *end of line* features and stops generation. Figure 4 depicts this process.

We defer detailed evidence for our circuit to Appendix H.2. There, we show that *end of line* features are causally responsible for both the model’s decision to end a line of poetry, and for indicating where the model should attend to, in order to extract the rhyming features. We similarly show that the *near end of line* features cause the model to attend back to the *end of line* feature position. Here, we focus on the question: does the couplet circuit involve planning?

5.3 QWEN-3 MODELS PLAN FORWARD, BUT NOT BACKWARD, TO COMPLETE COUPLETS

If the couplet circuit involves planning, we view the rhyming features at the end of the couplet’s first line as the most likely planning features. They clearly represent the rhyme to be output, and our circuits indicate that they influence the model’s decision to output rhyming words. However, we must still test that both forward and backward planning occur when models generate rhymes.

We first define rules to automatically find rhyming features. This is challenging, as Qwen-3 models represent e.g. an *-ayed* feature via separate *-ai-* and *-d* sound features, which specify the vowel and final consonant of the rhyme. The top-activating tokens for such features tend to be subwords, and may employ multiple, potentially nonstandard spellings for a given sound; see Figure 4 for example features. As a heuristic, we identify features whose top-10 max-activating tokens are short (under 5 characters), and do not represent a single word (they activate on the same word at most 5 times). We also require that at least 7 of these 10 tokens start with the same vowel, or end with the same consonant, to ensure that the feature’s top-tokens all represent one sound. This definition captures rhyming-relevant features with relatively high precision but only moderate recall.

Next, for each couplet, we downweight the rhyme features at the end of its first line, multiplying their activations by -3. We then sample a random couplet with a distinct rhyming sound, and upweight its rhyme features, multiplying their original activations by 7; we find these steering hyperparameters via manual search. We then generate a completion to the first line of the original couplet, while steering on the end of the first line. We measure rhyming accuracy with respect to the new rhyme.

It is harder to quantify Condition 2—whether a given context licenses a specific word (or set thereof) as opposed to licensing many words. However, we can test which context (the original or steered one) best enables the model to predict the new rhyme, when the model is steered towards the new rhyme. If the new context indeed licenses the new rhyme better, the model should more accurately

Figure 5: **Left:** Qwen-3 rhyming accuracy. In the base case, models have moderate rhyming accuracy, reaching 0.6 at 14B parameters (solid blue); when we consider assonant (vowel-only) rhyme, Qwen-3 (14B) achieves 0.8 (dashed blue). When steered to predict a new rhyme, model accuracy is only moderate for perfect rhymes (solid orange), but improves with scale, and is better on assonant rhyme (dashed orange). **Right:** Model rhyming accuracy when trying to predict a token satisfying the couplet’s the steered rhyme (blue lines) or original rhyme (red lines), given the original (solid) or steered (dashed) context. The model predicts the steered-for rhyme with similar accuracy given the original or steered context. This suggests that the steered context does not better license the rhyme.

predict a rhyming word given it. To test this, we feed the model both the original and steered couplet completions, with their last word removed. We then record the model’s generation given each, when steered towards the new rhyme, and compute rhyming accuracy with respect to the new rhyme.

We find that models do engage in forward planning: Figure 5 (left) shows that steering on the rhyme features does change the model’s rhyme to the new rhyme in the case of larger models (8B-14B). Though accuracy is only moderate (40%), normal rhyming accuracy was similarly modest at 60%, and assonant rhyme accuracy is higher (up to 60%). Moreover, we observe that steering changes both the final rhyming word and the intermediate context; see Appendix H.3 for quantitative evidence.

However, Figure 5 (right) shows that the intermediate context generated under intervention does not necessarily license the new rhyme better. When we steer the model, it is equally likely to output the injected rhyme given the steered intermediate context (light blue, dashed line) as when given the original one (dark blue, solid line). Giving the model the intermediate context produced with steering, but not steering it, elicits the original rhyme with relatively high accuracy: near 60% across models (light red, dashed line). This is low compared to the accuracy given the original context (near 100%; dark red, solid line), which could suggest that the original context better licenses the original rhyme. However, the fact that we only intervened on examples where models rhymed successfully inflates this accuracy. Overall, these results suggest a lack of strong backward planning.

5.4 LARGER MODELS MAY USE LOCAL PLANNING FEATURES

Though the backward planning results are mostly negative, results for larger models (8B-14B) trend in the right direction: they more accurately predict the steered rhyme given the steered context, and less accurately predict the original rhyme; in App. H, we see that their steered generations overlap less with original generations. Moreover, manually inspecting Qwen-3 (14B) couplet-completion circuits showed that while most couplet circuits involve second-line rhyming features that up-weight rhyming words, some instead involve *say X* features that up-weight a specific upcoming word. These often coincide with rhymes that require some setup, such as a *say “night”* feature occurring before the model outputs *in the night*. These are prime candidates for *local* planning features, that plan for short phrases, but not whole lines; we thus test whether they elicit backward planning in models.

Figure 6: Adaptation metrics by model. As models grow, so does the proportion of (1) outputs containing *X* (blue), and (3) coherent and *X*-containing outputs that also adapt the context to license *X* (green). Few examples do all three.

432 We first identify potential planning features, searching our couplet circuits for *say X* features that
 433 upweight the output rhyming word, but are active prior to when *X* is output: such features might
 434 adapt the preceding context to license that word. We then steer models using these features on 100
 435 inputs from the TinyStories dataset (Eldan & Li, 2023), which we use as a source of neutral input
 436 text. For each steered output, we check if it (1) contains the steered word, (2) is coherent, and (3)
 437 adapted the context to fit the steered word. We evaluate (1) programmatically, use Claude 4 Sonnet
 438 to evaluate (2), and manually verify (2) and evaluate (3) on a subset of outputs that satisfy (1) and
 439 (2). See Appendix I for experimental details.

440 We find (Figure 6) that steering on these *say X* features often induces models to output *X* (blue
 441 bars). Moreover, for outputs that are coherent and contain *X*, models—especially larger ones—do
 442 adapt their outputs to produce whole phrases like *in the night* or *had a recurring dream* (green bars).
 443 The scaling trend likely occurs because larger models have more such local planning features in
 444 their couplet circuits. However, this phenomenon is sensitive to steering strength, and these features
 445 occur only in a small minority of couplets. We hypothesize that such features are part of an emerging
 446 planning mechanism in larger models, much as *a/an* and *is/are* planning can be seen to emerge in
 447 Qwen-3 (4B); at larger scale, models may more reliably engage in local planning. Still, more study
 448 is needed to confirm the role these features play.

449

450 6 RELATED WORK

451

(Feature) Circuits We build on prior work on circuits, which attempts to capture an (ideally minimal) set of units that are causally relevant to and explain a model’s behavior on a task (Olah et al., 2020; Elhage et al., 2021; Conmy et al., 2023). Early LLM circuits were composed of attention heads and MLPs, and explained how models performed indirect object identification and the greater-than operation (Wang et al., 2023; Hanna et al., 2023). Circuits composed of features from sparse autoencoders or transcoders have the added benefit of having interpretable nodes; however, finding them is expensive and requires auxiliary models. They have been used to explain gender bias, syntactic processing, and more (Marks et al., 2025; Hanna & Mueller, 2025; Lindsey et al., 2025).

460

461

Planning Tasks LLMs’ grammatical agreement abilities, as in our **a/an**, **is/are**, and **el/la** tasks, have been widely studied. LLMs generally excel at agreement, preferring sentences with correct agreement over incorrect ones (Warstadt et al., 2020; Chang & Bergen, 2024). Prior mechanistic work on agreement is more limited to *is/are* and the broader phenomenon of subject-verb agreement: past work has found linear subspaces, neurons, and sparse features relevant to it (Lasri et al., 2022; Finlayson et al., 2021; Brinkmann et al., 2025). Past work has studied **LLM poetry and rhyming abilities** in the context of building and evaluating poem-generating systems (Sawicki et al., 2023; Chen et al., 2024; Suvarna et al., 2024); Lindsey et al. (2025) provide the first mechanistic study.

469

470

471

Planning Mechanisms Section 2 discusses past work, but contemporaneous work also addresses planning: Nainani et al. (2025) search for code planning feature circuits in Gemma-2 (2B; Gemma Team, 2024), while Maar et al. (2025) investigate poetry abilities across models using probes.

473

474

475

7 DISCUSSION

476

477

How General Are the Discovered Planning Mechanisms? Our evidence suggests that the planning mechanisms we discover are not general in the sense that the model uses the exact same circuit for all planning tasks. Whether a given model plans on a given task is regulated by the model’s capacity, as well as the task’s complexity, along with its frequency and importance (in terms of training loss). Thus, larger models plan more, and common planning tasks are learned faster, resulting in piecemeal planning abilities, rather than a large set of abilities and a unified mechanism.

483

484

485

Successful planning circuits often follow a motif: there are planning features indicating the planned word, which then activate downstream features responsible for backward planning. However, models may learn to plan in one case (*a/an* agreement) but not others (couplets), simply because the former is more important to reducing its loss than the latter, and the model is too small to learn both.

486 **Extensions to Complex Tasks** In this paper, we study relatively simple tasks, as Qwen-3 (14B)
 487 and smaller struggle with complex planning tasks (like e.g. chain-of-thought unfaithfulness, as in
 488 Lindsey et al. (2025)); this prevents us from studying such tasks. However, as open source models
 489 become more competent, circuit-tracing should still be able to address these planning behaviors.
 490 Sometimes, as in chain-of-thought unfaithfulness examples where the model plans for a single-token
 491 answer, it may suffice to simply attribute from the given answer token, as done here.

492 In other cases, e.g. detecting a hidden goal that drives model behavior without producing one “smok-
 493 ing gun” answer token, we may want to attribute back from more general high-level model actions,
 494 such as “Why did the model produce a refusal?” or “Why did the model make a given suggestion?”.
 495 Though little past work does so, attributing from such higher-level actions is possible by attributing
 496 from arbitrary directions in activation space. In this case, one must identify a direction in activation
 497 space corresponding to such an action, and attribute from this. One could identify causally relevant
 498 directions for such actions via probing or difference-in-means approaches.

499
 500 **Cross-model Generalization** In this paper, we study only one model family, to focus the effects
 501 of scale on planning. The lack of transcoders for similarly competent models currently hinders com-
 502 parisons across model families, but we believe such cross-model comparisons would be valuable.
 503 That said, past work indicates that circuits can generalize across model family and scale: the circuits
 504 for e.g. multi-hop reasoning in Gemma-2 (2b) (Hanna et al., 2025) look similar to those in Claude
 505 (Lindsey et al., 2025), a vastly larger and more competent model.

506 We also note that our planning framework can be applied without transcoders. For example, one
 507 could train probes to extract a planned word or rhyme family and perform interventions with respect
 508 to them; see Maar et al. (2025) for work along these lines. However, this approach is less flexible,
 509 requiring new probes for each task, and losing the fine-grained insights of transcoder feature circuits.
 510 Recent work suggests that circuit-tracing may even be possible with neurons alone (Arora et al.,
 511 2025), allowing for both fine-grained insights and cross-model comparison.

514 8 CONCLUSION

515 Our experiments have shown that some Qwen-3 models engage in latent planning, possessing fea-
 516 tures that represent the planned word and causally influence both the output word and the context
 517 preceding it. Both forward and backward planning abilities improve with scale, but the former
 518 improves before the latter; even in Qwen-3 (14B), planning multiple tokens ahead is rare.

519 Why might planning only begin to emerge at scale? We hypothesize that planning, especially back-
 520 ward planning, is costly to implement: models must learn not only to plan for a specific token, but
 521 also how to plan backwards for it in a context-specific way; *a/an* planning and couplet planning have
 522 distinct mechanisms. Thus, models may learn to plan only after exhausting other, simpler ways of
 523 reducing their loss. Bachmann & Nagarajan (2024) suggest that teacher forcing in LLM pre-training
 524 may also reduce the pressure to plan: even if a model fails to backwards-plan for a crucial agreeing
 525 token like *an*, teacher forcing provides that token anyway. Models that suffer the consequences of
 526 their poor planning, such as those trained with on-policy reinforcement learning methods, may thus
 527 face more pressure to plan.

528 Whatever the reasons behind this, latent planning abilities in Qwen-3 models up to 14B parameters
 529 are still nascent. This is relevant for scheming, an AI safety risk where models work towards secret
 530 goals (Balesni et al., 2024); past work has induced scheming in models, and caught them by reading
 531 their chains of thought (Meinke et al., 2025). Models with strong latent planning abilities might thus
 532 cause concern, but we observe little complex planning in Qwen-3. What we observe instead is latent
 533 planning abilities that appear to improve with scale—and merit monitoring as models grow.

534 In this paper, we have provided a framework for doing precisely that; however, monitoring latent
 535 planning with feature circuits is still a significant technical challenge. Open-source circuits work on
 536 models above 8B parameters is still rare. Large-scale work on feature circuits is yet scarcer, due to
 537 the lack of open transcoders for large models. As mechanistic interpretability’s seeks interpret more
 538 sophisticated behaviors, its methods must scale to match the models that possess them.

540 REPRODUCIBILITY STATEMENT
541

542 We conduct our experiments with openly available models, including both LLMs and transcoders.
 543 We release the data and code used as part of this study in the following anonymized repository:
 544 <https://anonymous.4open.science/r/model-planning-anonymized-57B8/>.
 545 Our experiments can be run with as little as 40GB of GPU RAM, though they will run much faster
 546 on 80GB of memory, and quite quickly (around 1 GPU-day) on 140GB of RAM (i.e. one NVIDIA
 547 H200 GPU). Note that features, models, transcoders, and circuits are large; we recommend having
 548 3TB of disk space available.

549
550 REFERENCES
551

552 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
 553 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
 554 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
 555 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
 556 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
 557 computational graphs in language models. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.

558 Aryaman Arora, Zhengxuan Wu, Jacob Steinhardt, and Sarah Schwettmann. Language model
 559 circuits are sparse in the neuron basis. <https://translucce.org/neuron-circuits>,
 560 November 2025.

561 Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction. In Ruslan
 562 Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
 563 Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*,
 564 volume 235 of *Proceedings of Machine Learning Research*, pp. 2296–2318. PMLR, 21–27
 565 Jul 2024. URL <https://proceedings.mlr.press/v235/bachmann24a.html>.

566 Mikita Balesni, Marius Hobbahn, David Lindner, Alexander Meinke, Tomek Korbak, Joshua Cly-
 567 mer, Buck Shlegeris, Jérémie Scheurer, Charlotte Stix, Rusheb Shah, Nicholas Goldowsky-Dill,
 568 Dan Braun, Bilal Chughtai, Owain Evans, Daniel Kokotajlo, and Lucius Bushnaq. Towards
 569 evaluations-based safety cases for ai scheming, 2024. URL <https://arxiv.org/abs/2411.03336>.

570 Steven Bird and Edward Loper. NLTK: The natural language toolkit. In *Proceedings of the ACL
 571 Interactive Poster and Demonstration Sessions*, pp. 214–217, Barcelona, Spain, July 2004. Asso-
 572 ciation for Computational Linguistics. URL <https://aclanthology.org/P04-3031/>.

573 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
 574 erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
 575 Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
 576 Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
 577 Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
 578 models with dictionary learning. *Transformer Circuits Thread*, 2023. [https://transformer-
 580 circuits.pub/2023/monosemantic-features/index.html](https://transformer-

 579 circuits.pub/2023/monosemantic-features/index.html).

581 Jannik Brinkmann, Chris Wendler, Christian Bartelt, and Aaron Mueller. Large language mod-
 582 els share representations of latent grammatical concepts across typologically diverse languages.
 583 In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the
 584 Nations of the Americas Chapter of the Association for Computational Linguistics: Human Lan-
 585 guage Technologies (Volume 1: Long Papers)*, pp. 6131–6150, Albuquerque, New Mexico, April
 586 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/
 587 2025.naacl-long.312. URL <https://aclanthology.org/2025.naacl-long.312/>.

588 Carnegie Mellon University. The carnegie mellon pronouncing dictionary, 2014. URL <http://www.speech.cs.cmu.edu/cgi-bin/cmudict>. Version 0.7b.

589 Tyler A. Chang and Benjamin K. Bergen. Language model behavior: A comprehensive survey.
 590 *Computational Linguistics*, 50(1):293–350, 03 2024. ISSN 0891-2017. doi: 10.1162/coli_a_
 591 00492. URL https://doi.org/10.1162/coli_a_00492.

594 Yanran Chen, Hannes Gröner, Sina Zarrieß, and Steffen Eger. Evaluating diversity in auto-
 595 matic poetry generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 596 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 597 pp. 19671–19692, Miami, Florida, USA, November 2024. Association for Computational Lin-
 598 guistics. doi: 10.18653/v1/2024.emnlp-main.1097. URL <https://aclanthology.org/2024.emnlp-main.1097/>.

600 Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
 601 Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In
 602 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=89ia77nZ8u>.

605 Zhichen Dong, Zhanhui Zhou, Zhixuan Liu, Chao Yang, and Chaochao Lu. Emergent response
 606 planning in LLMs. In *Forty-second International Conference on Machine Learning*, 2025. URL
 607 <https://openreview.net/forum?id=Ce79P8ULPY>.

608 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM feature
 609 circuits. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 610 2024. URL <https://openreview.net/forum?id=J6zHcScAo0>.

612 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
 613 coherent english?, 2023. URL <https://arxiv.org/abs/2305.07759>.

614 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 615 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
 616 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
 617 Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
 618 Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*,
 619 2021. <https://transformer-circuits.pub/2021/framework/index.html>.

620 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 621 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
 622 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of super-
 623 position. *Transformer Circuits Thread*, 2022. URL https://transformer-circuits.pub/2022/toy_model/index.html.

626 Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
 627 Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models. In
 628 Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th An-
 629 nual Meeting of the Association for Computational Linguistics and the 11th International Joint
 630 Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 1828–1843, Online,
 631 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.144.
 632 URL <https://aclanthology.org/2021.acl-long.144/>.

633 Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL <https://arxiv.org/abs/2408.00118>.

635 Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscopes: a
 636 unifying framework for inspecting hidden representations of language models. In *Proceedings of
 637 the 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

639 Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem Zuidema. Un-
 640 der the hood: Using diagnostic classifiers to investigate and improve how language models track
 641 agreement information. In Tal Linzen, Grzegorz Chrupała, and Afra Alishahi (eds.), *Proceedings
 642 of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
 643 NLP*, pp. 240–248, Brussels, Belgium, November 2018. Association for Computational Lin-
 644 guistics. doi: 10.18653/v1/W18-5426. URL <https://aclanthology.org/W18-5426/>.

645 Michael Hanna and Aaron Mueller. Incremental sentence processing mechanisms in autoregressive
 646 transformer language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings
 647 of the 2025 Conference of the Nations of the Americas Chapter of the Association for Compu-
 tational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 3181–3203,

648 Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-
 649 8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.164. URL <https://aclanthology.org/2025.nacl-long.164/>.

650

651 Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?:
 652 Interpreting mathematical abilities in a pre-trained language model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=p4PckNQR8k>.

653

654

655 Michael Hanna, Mateusz Piotrowski, Jack Lindsey, and Emmanuel Ameisen. circuit-tracer.
 656 <https://github.com/safety-research/circuit-tracer>, 2025. The first two
 657 authors contributed equally and are listed alphabetically.

658

659 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 660 autoencoders find highly interpretable features in language models. In *The Twelfth International
 661 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.

662

663 Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
 664 Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can't plan, but can help planning
 665 in LLM-modulo frameworks. In *Forty-first International Conference on Machine Learning*, 2024.
 666 URL <https://openreview.net/forum?id=Th8JPEmH4z>.

667

668 Tomek Korbak, Mikita Balesni, Elizabeth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom, Mark
 669 Chen, Alan Cooney, Allan Dafoe, Anca Dragan, Scott Emmons, Owain Evans, David Farhi,
 670 Ryan Greenblatt, Dan Hendrycks, Marius Hobbahn, Evan Hubinger, Geoffrey Irving, Erik Jenner,
 671 Daniel Kokotajlo, Victoria Krakovna, Shane Legg, David Lindner, David Luan, Aleksander
 672 Madry, Julian Michael, Neel Nanda, Dave Orr, Jakub Pachocki, Ethan Perez, Mary Phuong, Fa-
 673 bien Roger, Joshua Saxe, Buck Shlegeris, Martín Soto, Eric Steinberger, Jasmine Wang, Wojciech
 674 Zaremba, Bowen Baker, Rohin Shah, and Vlad Mikulik. Chain of thought monitorability: A new
 675 and fragile opportunity for ai safety, 2025. URL <https://arxiv.org/abs/2507.11473>.

676

677 Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry Poibeau, and Ryan Cotterell. Probing
 678 for the usage of grammatical number. In Smaranda Muresan, Preslav Nakov, and Aline
 679 Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational
 680 Linguistics (Volume 1: Long Papers)*, pp. 8818–8831, Dublin, Ireland, May 2022. Association
 681 for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.603. URL <https://aclanthology.org/2022.acl-long.603/>.

682

683 Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
 684 Olah. Sparse crosscoders for cross-layer features and model diffing. *Transformer Circuits Thread*,
 685 October 2024. URL <https://transformer-circuits.pub/2024/crosscoders/index.html>.

686

687 Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
 688 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
 689 Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
 690 Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
 691 Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
 692 model. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

693

694 Jim Maar, Denis Paperno, Callum McDougall, and Neel Nanda. What's the plan? Metrics for
 695 implicit planning in LLMs and their application to rhyme generation. In preparation, 2025.

696

697 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 698 model representations of true/false datasets. In *First Conference on Language Modeling*, 2024.
 699 URL <https://openreview.net/forum?id=aaajyHYjjsk>.

700

701 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 702 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
 703 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=I4e82CIDxv>.

702 R. Thomas McCoy, Shunyu Yao, Dan Friedman, Mathew D. Hardy, and Thomas L. Griffiths. Em-
 703 bers of autoregression show how large language models are shaped by the problem they are trained
 704 to solve. *Proceedings of the National Academy of Sciences*, 121(41):e2322420121, 2024. doi:
 705 10.1073/pnas.2322420121. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2322420121>.

706

707 Alexander Meinke, Bronson Schoen, Jérémie Scheurer, Mikita Balesni, Rusheb Shah, and Marius
 708 Hobbhahn. Frontier models are capable of in-context scheming, 2025. URL <https://arxiv.org/abs/2412.04984>.

709

710

711 Jatin Nainani, Sankaran Vaidyanathan, Connor Watts, Andre N. Assis, and Alice Rigg. Detecting
 712 and characterizing planning in language models, 2025. URL <https://arxiv.org/abs/2508.18098>.

713

714 Neel Nanda and Joseph Bloom. Transformerlens. <https://github.com/TransformerLensOrg/TransformerLens>, 2022.

715

716

717 Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. *Distill*, 2017. doi: 10.23915/distill.00007. URL <https://distill.pub/2017/feature-visualization>.

718

719

720 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 721 Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001.
 722 <https://distill.pub/2020/circuits/zoom-in>.

723

724 Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strat-
 725 egy employed by v1? *Vision Research*, 37(23):3311–3325, 1997. ISSN 0042-6989. doi:
 726 [https://doi.org/10.1016/S0042-6989\(97\)00169-7](https://doi.org/10.1016/S0042-6989(97)00169-7). URL <https://www.sciencedirect.com/science/article/pii/S0042698997001697>.

727

728 Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens: Antici-
 729 pating subsequent tokens from a single hidden state. In Jing Jiang, David Reitter, and Shumin
 730 Deng (eds.), *Proceedings of the 27th Conference on Computational Natural Language Learn-
 731 ing (CoNLL)*, pp. 548–560, Singapore, December 2023. Association for Computational Lin-
 732 guistics. doi: 10.18653/v1/2023.conll-1.37. URL <https://aclanthology.org/2023.conll-1.37>.

733

734 Nicky Pochinkov. Parascopes: Do language models plan the upcoming paragraph?,
 735 2025. URL <https://www.lesswrong.com/posts/9NqgYesCutErskdmu/parascopes-do-language-models-plan-the-upcoming-paragraph>.

736

737

738 Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav Goldberg. Counterfactual interventions
 739 reveal the causal effect of relative clause representations on agreement prediction. In Arianna
 740 Bisazza and Omri Abend (eds.), *Proceedings of the 25th Conference on Computational Natural
 741 Language Learning*, pp. 194–209, Online, November 2021. Association for Computational Lin-
 742 guistics. doi: 10.18653/v1/2021.conll-1.15. URL <https://aclanthology.org/2021.conll-1.15>.

743

744 Abhilasha Ravichander, Yonatan Belinkov, and Eduard Hovy. Probing the probing paradigm:
 745 Does probing accuracy entail task relevance? In Paola Merlo, Jörg Tiedemann, and Reut
 746 Tsarfaty (eds.), *Proceedings of the 16th Conference of the European Chapter of the Associa-
 747 tion for Computational Linguistics: Main Volume*, pp. 3363–3377, Online, April 2021. Asso-
 748 ciation for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.295. URL <https://aclanthology.org/2021.eacl-main.295>.

749

750 Piotr Sawicki, Marek Grzes, Fabrício Góes, Dan Brown, Max Peeperkorn, and Aisha Khatun.
 751 Bits of grass: Does gpt already know how to write like whitman? In *ICCC*, pp. 317–
 752 321, 2023. URL https://computationalcreativity.net/iccc23/papers/ICCC-2023_paper_95.pdf.

753

754

755 Ashima Suvarna, Harshita Khandelwal, and Nanyun Peng. PhonologyBench: Evaluating phono-
 756 logical skills of large language models. In Sha Li, Manling Li, Michael JQ Zhang, Eunsol

756 Choi, Mor Geva, Peter Hase, and Heng Ji (eds.), *Proceedings of the 1st Workshop on Towards*
 757 *Knowledgeable Language Models (KnowLLM 2024)*, pp. 1–14, Bangkok, Thailand, August
 758 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.knowllm-1.1. URL
 759 <https://aclanthology.org/2024.knowllm-1.1/>.

760 Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
 761 Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
 762 *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=NpsVSN6o4ul>.

763 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
 764 Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. *Transactions*
 765 *of the Association for Computational Linguistics*, 8:377–392, 2020. doi: 10.1162/tacl_a_00321. URL <https://aclanthology.org/2020.tacl-1.25/>.

766 Wilson Wu, John Xavier Morris, and Lionel Levine. Do language models plan ahead for future
 767 tokens? In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=BaOAvPUyBO>.

768 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 769 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 770 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 771 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 772 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 773 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 774 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 775 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 776 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

783 A DETAILS OF TRANSCODERS AND FEATURE CIRCUITS

784 A.1 TRANSCODERS

785 In this section we provide details on transcoders in general and the specific transcoders we use.

786 **Transcoders** Past work has attempted to characterize the features encoded in model activations
 787 by examining the inputs that most strongly activate each neuron (dimension) of a given activation
 788 vector. However, interpreting neurons is difficult, as they are seldom zero and often polysemantic,
 789 firing for multiple reasons (Olah et al., 2017; Elhage et al., 2022). Sparse dictionary learning solves
 790 this problem by decomposing activations into sparse and (ideally) monosemantic feature vectors
 791 (Olshausen & Field, 1997; Bricken et al., 2023). As only a few dimensions, or *features*, of the
 792 vector are active on a given input, and each feature fires on only one concept, these are much easier
 793 to interpret.

794 Sparse dictionaries come in many forms. Sparse autoencoders (SAEs; Bricken et al., 2023; Huben
 795 et al., 2024) are the most common type, encoding and reconstructing activations from the same
 796 location. We use *per-layer* transcoders, which encode MLP inputs and reconstruct MLP outputs
 797 (Dunefsky et al., 2024); see Figure 7 for a diagram. Lindsey et al. (2024) also introduce *cross-layer*
 798 transcoders, which take in MLP inputs, and are jointly trained to predict contributions to all down-
 799 stream MLPs’ outputs. These are generally sparser (for a given level of reconstruction error) but
 800 also more computationally costly to train and more memory-intensive to deploy. Importantly, while
 801 Ameisen et al. (2025) use cross-layer transcoders for their circuit-finding, per-layer transcoders can
 802 also be used.

803 Formally, a (per-layer) transcoder takes in activations $\mathbf{h} \in \mathbb{R}^d$ from a given MLP’s inputs, computes
 804 the sparse representation $\mathbf{z} \in \mathbb{R}^n$, and reconstructs the MLP’s output activations $\tilde{\mathbf{h}}' \in \mathbb{R}^d$ as follows:

$$805 \mathbf{z} = f(\mathbf{W}_{enc}\mathbf{h} + \mathbf{b}_{enc}) \quad (1)$$

$$806 \tilde{\mathbf{h}}' = \mathbf{W}_{dec}\mathbf{z} + \mathbf{b}_{dec}, \quad (2)$$

Figure 7: A diagram of a transcoder. The transcoder takes in the dense MLP inputs, computes a sparse representation thereof, and then reconstructs the MLP’s dense outputs.

Here, f is an activation function (often ReLU, JumpReLU, or Top- k), and \mathbf{W}_{enc} , \mathbf{b}_{enc} , \mathbf{W}_{dec} , and \mathbf{b}_{dec} are learned parameters. LLM transcoders are trained to minimize both the MSE between \mathbf{h}' and $\tilde{\mathbf{h}}'$ and the norm of \mathbf{z} ². The LLM is frozen, and the transcoder trains on up to billions of tokens. The reduction in polysemy is achieved by setting the sparse representation size to be much larger than the input size. In doing so, one reduces the pressure on the model to cram many features into a small number of dimensions, as is thought to cause polysemy (Elhage et al., 2022).

We interpret the i th feature of a given transcoder by displaying the inputs that maximize its activation \mathbf{z}_i . We also display the tokens whose unembedding vectors have the highest and lowest dot product with the feature’s column in \mathbf{W}_{dec} ; these are the vocabulary items that it directly up- and downweights. See Figure 1 for example feature visualizations, used to manually label features.

We often intervene with respect to transcoder features, to verify our interpretation of a given feature. To do so, we take the original feature vector \mathbf{z} and perform desired interventions on it by e.g. zeroing out a feature’s activation, yielding \mathbf{z}' . We compute $\Delta = \mathbf{W}_{dec}(\mathbf{z}' - \mathbf{z})$, and add Δ to the output of the corresponding MLP during the model’s forward pass.

Qwen-3 Transcoders For our experiments, we use Hanna et al.’s (2025) Qwen-3 transcoders. These circuits are ReLU transcoders, all with a hidden dimension of 163840. They take in MLP inputs post-input-LayerNorm, and predict the MLP’s outputs.

A.2 TRANSCODER FEATURE CIRCUITS

Formally, feature circuits are weighted acyclic digraphs. The source nodes are input embeddings and nodes corresponding to each transcoder’s reconstruction error $\tilde{\mathbf{h}}' - \mathbf{h}'$. These flow through transcoder feature nodes, to nodes that correspond to a given vocabulary item’s logit. Each edge’s weight is the direct effect of the source node on the target, i.e. the source node’s effect on the target’s value, unmediated by other nodes.

We compute feature circuits using Ameisen et al.’s (2025) algorithm, which works as follows.

Local Replacement Model The first step of attribution is to incorporate the transcoders into the model’s computations for a given input. We thus replace the model’s MLPs with their corresponding transcoders, plus a reconstruction error term equal to the difference between the MLP’s output and the transcoder’s reconstruction. This yields a *local replacement model*, which behaves identically to the original model, but only on the given input, as reconstruction error terms are input-specific.

We next freeze the model’s attention patterns and denominators of any layer normalization terms, treating them as constant values; this entails detaching them from the graph (`.detach()` in Pytorch). See Figure 8 for a depiction of this process. We also detach the transcoder feature activations themselves, so no gradients flow through them.

²This is often done by penalizing \mathbf{z} ’s L_1 norm. However, note that some activation functions, namely Top- k and variants, inherently limit the number of active features, making this unnecessary.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 8: A 2-layer transformer LM, and its corresponding local replacement model. We replace model’s MLPs with transcoders, as well as error terms unique to the given input. The attention patterns (from the QK matrix) have been frozen, detaching them from the computation graph. Despite this, the OV-matrix of each attention block is still attached. Thus, when we refer to e.g. the direct effect of a feature of the layer-0 transcoder on a vocabulary logit, this direct effect may pass through the residual stream alone, or additionally through the OV matrix of the attention, a linear transformation. The direct effect of any given feature on any other feature (or any vocabulary logit) is thus linear. See Elhage et al. (2021) for more on QK/OV matrices and the residual stream.

Figure 9: The interface used for circuit visualization / annotation, from `circuit-tracer`.

In so detaching these components, we remove all nonlinearities from our local replacement model: both the attention softmax nonlinearity and the normalization nonlinearities are gone. The activation of any given feature is now linear in the activations of the nodes prior to it. This simplifies the process of computing the direct effect of one node on another, and means that these direct effect values are exact; however, they will not account for features’ impact on the model’s attention *patterns*.

Attribution We can thus compute the direct effects of a source node on a target node as follows. We define an input vector for the target node: if the node is a feature, this is its input vector (from \mathbf{W}_{enc}), and if the node is a logit, this is the corresponding unembedding vector, minus the mean unembedding vector. We inject this gradient at the node’s input location—either the MLP input for transcoder features, or the final residual stream for logit nodes; this injection can also be operationalized as a dot product with the residual stream, followed by a `.backward()` call. Then, for each upstream node, its direct effect is the gradient at its output location, multiplied by its output vector: the input embedding or error vector for input and error nodes respectively, or the source feature’s activation multiplied by its decoder vector, for feature nodes. With each call of `.backward()`, we find weights for all edges into the target node; repeating this for all nodes attributes the whole attribution graph.

Methods We limit attribution to the top 7500 most influential feature nodes, as remaining nodes are unlikely to be important, and attributing from many nodes leads to large graphs that fit poorly in memory. We determine which nodes are most influential by intermittently computing each node’s influence using the procedure described in Ameisen et al. (2025). For logit nodes, we choose to attribute from the minimum required to capture 0.95 of the model’s next-token probability, or the top 10 logit nodes, whichever is smaller (generally the former). Ultimately, the attribution process is quick, from seconds for Qwen-3 (0.6B) to a minute or two for Qwen-3 (14B).

For visualization purposes, it is often useful to prune graphs, removing low-influence nodes and edges. As done by Ameisen et al. (2025), we do so by computing the total influence of each node and edge in the circuit. We then set a threshold for each, and take the minimum number of top nodes / edges that sum to that influence; we choose nodes whose influence sums to 80% of the total, and edges whose influence sums to 98%. Our circuit-finding interface, provided by `circuit-tracer` (Hanna et al., 2025), is shown in Figure 9.

B SIMPLE PLANNING DATASET DETAILS

We construct three datasets for testing simple planning, the *a/an*, *is/are*, and *el/la* datasets. The *a/an* dataset consists of 108 examples of professions (86 requiring *a* and 22 requiring *an*) and descriptions thereof. These were augmented with 350 concrete nouns (267 *a* / 83 *an*) and descriptions thereof. All descriptions were generated by Claude 4 Sonnet, but filtered manually and rewritten if necessary, e.g. because they were too vague. The *is/are* dataset was generated programmatically, and consists

Figure 10: **Left:** Recall of *is* and *are* on the *is/are* dataset, by model. Models below 8B in size mostly fail to predict *is*, while larger models perform perfectly. All models can predict *are*. **Right:** The mean proportion of influence flowing through planning nodes in the *is/are* dataset, by model, verb, and correctness; recall that the only incorrect examples are small models failing to predict *is*. The most influence flows through the planning nodes in the *is* examples, where more planning nodes are present. Still, more influence flows through these nodes in correct than incorrect *is* examples.

of (positive) differences between numbers ranging from 1 and 9; the animals are sampled from a manually curated list of 10 animals. This yields 360 examples. The *el/la* dataset, much like *a/an*, consists of 411 concrete nouns (223 *el* / 188 *la*) and Spanish-language descriptions thereof. Again, all descriptions were generated by Claude 4 Sonnet, but filtered manually and rewritten if necessary.

Note that, in the case of the *a/an* dataset, one randomly-sampled in-context example from our dataset is prepended to each input to the model in order to encourage it to output *a/an*; otherwise, the model does not understand the task structure, and outputs other tokens. The full prompt is thus something like Someone who provides treatment for physical or mental conditions *is* a therapist. Someone who heals sick pets *is*. This is fed directly to the model as the user input, and the model simply completes the input (rather than generating a separate assistant response). The *el/la* dataset is formatted in the same way.

Similarly, we prepend *is/are* examples with *Repeat and finish the following sentence*; as we found that this increased performance over simply sampling next tokens without requesting the repetition. The full prompt is thus something like /no_think Repeat this sentence and complete it. At first there were 2 cats. Then, 1 went away. Now, there. The /no_think prevents models from thinking before answering. During attribution, we prefill the model’s assistant response with <think>\n\n</think>\n At first there were 2 cats. Then, 1 went away. Now, there. We then attribute back from the top logits (which are always *is* and/or *are*).

C Is-Are RESULTS

Here, we report results for experiments on the *is/are* dataset, which largely mirror those performed on the *a/an* dataset. Figure 10 (left) shows that models behave similarly on the *is/are* to the *is/are* dataset: all models do well on the majority class *are*. Models below 8B in size fail (0.6-1.7B) or perform poorly on the task when the correct answer is *is*; Qwen3-4B scores just below chance. Starting at 8B, models score perfectly on *is* as well, just as with *a/an*.

We perform circuit analysis on *is/are* dataset as well, and find similar, but not identical trends compared to the *a/an* case. Models again have features corresponding to planning features some of the time. However, *1* features (and 2 and 3 features to a lesser extent) are more common than other numbers’ features. Whether this is a real phenomenon (models have special representations for lower numbers due to their frequency) or a transcoder-driven phenomenon (higher numbers also have corresponding features, but transcoders miss these) is unclear. This may also be related to the fact that such features are more important / necessary in the minority class case (*1/is*) than in the majority class case. In the case where such features do exist, we also observe that e.g. *1* features activate features that induce the model to say *is*.

We perform the flow and intervention experiments done on the *a/an* dataset. These are complicated somewhat by the fact that there are more planning nodes in the *is* case than in any of the *are* cases,

Figure 11: **Left:** Change in $p(\text{correct verb})$ caused by zero and multiplying interventions on planning features. The former generally harm performance, while the latter improve it. Both affect only *is* examples, which have the most planning nodes, and also are the only examples models answer incorrectly. **Right:** Change in $p(\text{correct verb})$ caused by *direct* zero and multiplying interventions on planning features. As before, these are relatively ineffective, though less so than in the *a/an* case.

Figure 12: **Left:** Recall of *el* and *la* examples by Qwen-3 models. Unlike in prior examples, the majority class (*el*) is not perfectly captured by any model, though recall is generally high. Moreover, while performance on the minority class *la* improves with scale, recall is ultimately still middling. **Right:** Interventions performed with respect to *el/la* planning features fail primarily due to a lack of said planning features.

and that models do not fail on *are* cases. Still, in Figure 10 (right), we can see that in the *is* case, more influence flows through the planning nodes in correct than incorrect examples, as in the *a/an* dataset. Moreover, Figure 11 (right) shows that both zeroing and multiplicative interventions are effective *on is examples*. This is likely because these have the most planning nodes; however, it may also be related to the fact that *is* is the minority class, and “needs” these features more.

D El-La RESULTS

Here, we report results for experiments on the *is/are* dataset, which are much less successful than those performed on the *a/an* or *is/are* datasets. When we behaviorally test the models on this task, we find (Figure 12, left) that performance is worse than on the prior two tasks. The majority class *el* is not always correctly predicted, though performance stays steadily high as in other tasks. Moreover,

1080 while recall of the minority class *an* does improve with model scale, it never exceeds 0.6, unlike on
 1081 other tasks, where it reaches near 1.0.

1082 We then perform the causal interventions, using as planning nodes those that either in Spanish or in
 1083 English, as we observe that some examples have English nodes corresponding to the hypothetically
 1084 planned word. However, we find (Figure 12, right) that the interventions have little effect; this goes
 1085 for both zero and multiplying interventions.

1086 We believe that this is primarily driven by a lack of planning features active on these examples. In
 1087 general, while we can find some planning features, Qwen-3 models simply have much fewer than
 1088 they do on the *a/an* dataset, despite their formats being very similar. This may be because Qwen-
 1089 3 is not highly capable in language besides English and Chinese (which exhibits little syntactic
 1090 agreement); further studies could examine more multilingually capable models.

E MODEL PERFORMANCE ON NON-PLANNING ASPECTS OF SIMPLE PLANNING TASKS

1096 The fact that small models fail to plan on the simple *a/an* and *is/are* planning tasks may raise the
 1097 question: do small models fail because they cannot perform the tasks at all? To show this is not the
 1098 case, we generate models’ planned tokens, both given the correct next token, and the incorrect next
 1099 token. We then measure whether the output token in each case matches our expected planned token.

1100 Figure 13: **Left:** Planned word accuracy, i.e. whether the model’s predicted word matches the
 1101 intended word, when given the correct or incorrect article. Models above 4B in size are highly
 1102 accurate when given the correct article ($> 80\%$), and even smaller model achieve moderate accuracies.
 1103 Given the wrong article, accuracies are lower, but still non-zero, indicating that models may have a
 1104 strong planning goal that prevails even when the word is at odds with the article. **Right:** Planned
 1105 word accuracy given the wrong article, by correct article (*a* or *an*). Though accuracy is low, models
 1106 succeed on both *a* and *an* examples, indicating that successes are not driven by one class.

1107 Performance differs by task. On the *a/an* task (Figure 13, left), models have generally high accuracy
 1108 (> 0.6) when given the correct next token, but lower accuracy when given the incorrect one; the
 1109

1110 Figure 14: Number accuracy, i.e. whether the model’s predicted number matches the
 1111 intended number, when given the correct or incorrect verb (*is* / *are*). Notably, small models produce
 1112 the correct number regardless of whether they are given the correct or incorrect verb. In contrast,
 1113 Qwen3-14B and 32B have starkly reduced accuracy when given the wrong verb form.

Figure 15: Effects of random features interventions on the *a/an* (left) and *is/are* (right) tasks. Neither intervention has a large effect on either dataset, indicating that our interventions do not succeed by random chance.

highest scoring models in that scenario achieve an accuracy of 0.3-0.4. Baseline accuracy here is in theory near 0, as models can predict any word. This suggests that although models are not always planning for the precise word we intend (and indeed, there are cases where we find no nodes corresponding to the planned word) they often are. And in some cases, they plan so strongly for the intended word that they output it even when it conflicts with the article.

This trend is much stronger on the *is/are* task. Our results from the analogous experiment (Figure 14) show perfect accuracy for all models when the correct verb form is given. Given the incorrect article, smaller models are (near-)perfectly accurate at predicting the correct number, but larger models (Qwen3-14B and 32B) perform much worse. This provides strong evidence that small models can perform the task (and that a lack of task abilities does not underlie their poor planning performance). However, the root of the behavior of large models is less clear. They appear to be more sensitive to (subject-verb) agreement, and thus produce outputs that agree with the number of the verb; in particular, given *is* as an incorrect next token, they tend to output *1*, rather than a number that agrees with the original animal quantities. In contrast, weak models do produce outputs like *... now there are 1 dog remaining*.

F RANDOM INTERVENTIONS

In order to ensure that our have not succeeded by random chance, we perform all-effects ablations on random active features in our *a/an* and *is/are* datasets. For an example where we normally intervene on n features, we sample another n features from the pool of all active last-position features, and record the effects of the intervention. The results (Figure 15) indicate that these random interventions are ineffective: neither the zero ablations nor the multiplying interventions work.

G ANIMAL PROBING AND INTERVENTION EXPERIMENTS

As done by Dong et al. (2025), we set up probing experiments as follows. We take 1000 stories from the validation set of TinyStories, and extract the first sentence. We then feed each first sentence to the model in the following prompt: *Here's the first sentence of a story: {sentence1}. Continue this story with one sentence that introduces a new animal character.* We then generate (greedy sampling) a next sentence, and recorded the animal contained therein.

We then filter this data down to only the datapoints containing the top-4 most common animals; typically, this leaves 600 or more examples. We then split the data 60/20/20 into train, validation, and test, and collected (transformer layer output) activations from the last token of each prompt. We then train a single-layer MLP probe to predict the animal that the model would predict, from these activations. We use a hidden dimension of 64 for our MLPs, as Dong et al. report that performance plateaus at $d = 64$. We run this analysis on all Qwen3 models, as well as on Llama-3-8B-Instruct,

1188 used by Dong et al., and report results across hidden layers in. Figure 16 shows that our results on
 1189 Llama-3 (8B) are similar to the original findings, with high F1 scores (0.6-0.7) across all layers but
 1190 the first. Probing results for other models are varied; Qwen3-8B and 32B perform well (F1 near
 1191 0.6), while other models exhibit middling performance (F1 < 0.5).
 1192

1203 Figure 16: Macro F1 scores when probing models’ last-token representations for the animal that the
 1204 model will output in the following sentence, by model layer. F1 scores are high for certain models—
 1205 Llama-3 (8B) and Qwen-3 (8B/32B)—but notably lower for others.
 1206

1207 We then verify the causal relevance of the features found by these probes. If the probe has found a
 1208 causally relevant feature at the end of the prompt that determines the animal that is output, altering
 1209 that feature should alter the animal that is output. There are a variety of interventions that could be
 1210 used to verify the features found by the probe: Ravfogel et al. (2021) intervening by reflecting rep-
 1211 resentations across probe decision boundaries, while Julianelli et al. (2018) compute the gradient
 1212 of the probe’s prediction (error) with respect to the model representations, and update the repres-
 1213 entations based on this. We could also use less probe-specific interventions like difference in means
 1214 (Marks & Tegmark, 2024).

1215 We opt for a simpler intervention: we pair each prompt in our dataset with a random prompt that
 1216 led to the production of a distinct animal. We then generate a continuation to the first prompt, but
 1217 patch the last-token activations of the second prompt onto the last token of the first prompt. We do
 1218 so at all layers, effectively replacing all model activations at this position. This means that the next
 1219 generated token is guaranteed to be the next token of the second prompt; furthermore, attention back
 1220 to the patched position will receive the patched values. Since we have patched all possible layers
 1221 in which the relevant features could reside, this intervention should cause the model to produce the
 1222 animal from the second prompt, if the probed features are relevant. We perform this intervention
 1223 across the same set of models as the previous experiment, with the exception of Qwen3-32B, as it is
 1224 not supported by TransformerLens (Nanda & Bloom, 2022), the interpretability framework we use.

1235 Figure 17: Success rates of our patching intervention, where we patch one prompt (p_2)’s last token
 1236 activations onto another (p_1)’s last token during generation. We report both exact match (True if the
 1237 output animal is p_2 ’s animal) and any change (True if the output animal differs from p_1 ’s original
 1238 animal). In general, exact match is low, below 10%, while any change is higher, but under 30%.
 1239

1240 Our results (Figure 17) suggest that the features found are not highly causally relevant. In relatively
 1241 few cases (< 10% for all models) do we observe the output animal change that of the second prompt.
 1242 In fact, in the majority of cases, the output animal does not change at all. This seems to be a violation
 1243 of our Condition 1, that the found feature must have a causal impact on the model’s planned token.
 1244

1242 We note, however, that Llama-3 (8B), the only model from Dong et al. that we test, does have higher
 1243 intervention efficacy. Moreover, if there are multiple features relevant for planning the animal to be
 1244 produced, it would be necessary to find and intervene on all of these to produce a strong effect.
 1245

1246 Despite this, we find it unlikely that planning takes place in this scenario. This is because the
 1247 continuations corresponding to each animal output are generic: they do not hint to animal that will
 1248 be produced. Consider, for example, the prompt and continuation *Mia and Dad were busy polishing*
 1249 *their car... As they worked, a small, curious fox darted into the garage, tail wagging playfully.* The
 1250 left context of *fox* imposes few constraints on the animal that is to follow; many animals can be
 1251 *small and curious*. This hints that our Condition 2 may not be fulfilled here either: the model does
 1252 not actually have to plan / prepare a context that licenses the animal eventually output.
 1253
 1254

1255 H COUPLET CIRCUIT DETAILS

1259 H.1 COUPLET DATASET AND SAMPLES

1260
 1261 Our couplets dataset was created by prompting Qwen-3 (32B) with the prompt “/no_think
 1262 You are a creative poet. Produce ONLY the first line of a rhyming
 1263 couplet about the topic: '{topic}'. Return a single poetic line
 1264 and nothing else.”. We sampled 5 couplets per prompt, kept only the first line of each
 1265 couplet, and manually filtered these for well-formedness. We used the following topics: love
 1266 (romantic, familial, self-love); death and mortality; coming of age; war and conflict; nature and
 1267 the environment; home and belonging; identity and self-discovery; joy and happiness; anxiety and
 1268 fear; loneliness and alienation; nostalgia and memory; hope and despair; anger and frustration;
 1269 family bonds (siblings, parent-child); friendship; betrayal and trust; first love; marriage and
 1270 commitment; loss of loved ones; childhood memories; aging and growing older; seasons and cycles;
 1271 historical moments; the passage of time; immortality and legacy; justice and injustice; freedom and
 1272 oppression; cultural identity; social alienation; tradition vs. modernity; community and belonging;
 1273 weather and climate; animals and wildlife; urban vs. rural life; travel and journeys; food and
 1274 taste; colors, sounds, and textures; dreams and aspirations; perfection and imperfection; truth and
 1275 deception; power and powerlessness; spirituality and faith; art and creativity.

1276 We then sampled couplet completions from the Qwen-3 models using the prompt: “/no_think
 1277 Write only the next line of this rhyming couplet: {first_line}”.

1278 For convenience, we provide 5 example first lines of couplets and completions below.
 1279

1280 **First line:** Two hearts entwined where vows take root,
 1281

1282 **Qwen3-0.6B:** And where the stars are born, they sing.
 1283 **Qwen3-1.7B:** two souls forever bound in love.
 1284 **Qwen3-4B:** A love that grows beyond all doubt.
 1285 **Qwen3-8B:** A love that time cannot undo.
 1286 **Qwen3-14B:** A love that grows in tender fruit.
 1287 **Qwen3-32B:** A love that time and distance can't undo.

1288
 1289 **First line:** Whispers of dread in the quietest breath,
 1290

1291 **Qwen3-0.6B:** A shadowed path to the dark, where the night is kind.
 1292 **Qwen3-1.7B:** And shadows that dance in the darkest keep.
 1293 **Qwen3-4B:** Shadows creep where the light dare not reach.
 1294 **Qwen3-8B:** A shadowed path where no light dares tread.
 1295 **Qwen3-14B:** A shadow that creeps through the darkness of death.
Qwen3-32B: Shadows conspire as the night takes its death.

1296 **First line:** Whispers of wind through the emerald trees,
 1297
 1298 **Qwen3-0.6B:** The moonlight dances on the water’s edge.
 1299 **Qwen3-1.7B:** Soft as dreams, they drift and sigh.
 1300 **Qwen3-4B:** Singing the hush of a summer breeze.
 1301 **Qwen3-8B:** Sing a lullaby to the sleeping breeze.
 1302 **Qwen3-14B:** Softly they sing as the daylight decreases.
 1303 **Qwen3-32B:** Singing soft lullabies to the leaves.

1304

1305 **First line:** Whispers of winter kiss the thawing spring,
 1306
 1307 **Qwen3-0.6B:** The frost has passed, and the snow has gone,
 1308 **Qwen3-1.7B:** and silence bows to the bloom of the green.
 1309 **Qwen3-4B:** Blossoms rise in quiet, fragile song.
 1310 **Qwen3-8B:** Beneath the snow, the seeds begin to sing.
 1311 **Qwen3-14B:** Blossoms awaken where the frost once clung.
 1312 **Qwen3-32B:** Melting dreams in a tender, fleeting sting.

1313

1314 **First line:** A promise made in shadows, torn by dawn’s deceitful light,
 1315
 1316 **Qwen3-0.6B:** A shadowed vow, once kept, now lost,
 1317 **Qwen3-1.7B:** Yet still, the heart remains true to what it
 1318 **Qwen3-4B:** A vow now lost in the glare of day.
 1319 **Qwen3-8B:** A vow once whispered fades into the night.
 1320 **Qwen3-14B:** A heart once whole now fractured, lost in endless, silent night.
 1321 **Qwen3-32B:** A truth once held so sacred, now lies shattered in the fight.

1322

1323

1324 H.2 CIRCUIT VERIFICATION

1325 Here, we discuss the experiments performed to verify our circuit, which we claim acts via end-of-
 1326 line, near-end-of-line, and rhyming features. We test these features as follows:
 1327

1328

End-of-line (EOL) features We define EOL features as those where 7 out of the feature’s top 10
 1329 activations immediately precede a token containing a newline, e.g. “.\n”. We test that 1) activating
 1330 these features prior to the end of the second line causes models to end the line prematurely, 2)
 1331 deactivating these features after the model has completed the second line with a rhyme causes models
 1332 to continue the line, instead, and 3) deactivating these features at the end of the first line causes the
 1333 model to fail to rhyme, as EOL features regulate its attention to rhyming features.

1334

1335 For each of these experiments, we identify EOL features on each example as those that are active
 1336 on the last word of the couplet’s first line. We perform each experiment only on those couplets for
 1337 which we have performed attribution. For experiment 1), we provide the model with the couplet’s
 1338 first line and the first 2 tokens of the second. We set the EOL features to 5 times their original values
 1339 at the final position of this input, and any generated positions. We then allow the model to generate,
 1340 using greedy sampling. We record the length of generation (in tokens) before the model outputs a
 1341 newline, and compare it to the length of the original line.

1342

1343 For experiment 2), we provide the model with each entire, completed couplet (stripping any punctuation
 1344 at the end), and set all EOL features to -5 times their original values. We do this at the final
 1345 position of this input, and any generated positions. We use the model to generate, using greedy
 1346 sampling, and record the length of the model’ new generation, compared to that of the original.

1347

1348 For experiment 3), we provide the model with the first line of each couplet, and let it generate the
 1349 next couplet (with greedy sampling), while setting all EOL features to -5 times their original values
 1350 at the end of the first line. We then record rhyming accuracy.

Figure 18A shows the results of experiments 1) and 2). Upweighting EOL features indeed causes
 1351 models to end the second line early, resulting in a large negative difference in line length. In contrast,

Figure 18: **A:** Effects of intervening on end-of-line (EOL) features. Upweighting them in the second line causes the line to end early, while downweighting them causes it to continue for longer than normal. **B:** Effect of upweighting near-end of line (NEOL) features in the second line. Upweighting these causes the model to emit a rhyme over 2 words earlier than normal. **C:** Effects of downweighting EOL features at the end of the first line, downweighting NEOL features in the second line, or ablating rhyming-relevant attention heads' patterns. The first two interventions drastically decrease the model's propensity to produce a rhyme, indicating that they help enable rhyming. The last is less effective, but still reduces accuracy far below the original, 100% accuracy. **D:** Rhyming accuracy when ablating original rhyming features, and upweighting those from another rhyme group. Larger models switch to the new rhyme group with 40% accuracy—lower than their original rhyming accuracy, but still relatively high.

1404 downweighting said features prevents models from ever finishing a line, resulting in very long lines,
 1405 relative to the original. Figure 18C shows the results of experiment 3). The rhyming accuracy for
 1406 larger models (larger than 0.6B) is low, below 0.2; this is despite the fact that we perform the inter-
 1407 vention on examples for which we have computed circuits, which are examples on which models
 1408 succeed. This means that downweighting EOL features at the end of the first line seriously hindered
 1409 performance. Moreover, qualitative inspection of the model’s outputs showed no harm to the overall
 1410 fluency of the completions, suggesting that this was not due to general harm to the model’s abilities.
 1411 This suggests that the EOL features do play an important role in regulating rhyming abilities, likely
 1412 through the keys of attention heads, which tell them where to attend to.

1413
 1414 **Near-end-of-line (NEOL) features** We define NEOL features as those where 7 out of the feature’s
 1415 top 10 activations occur 2-4 tokens before a token containing a newline, e.g. “.\n”. We test that 1)
 1416 activating these features at the beginning of the line causes models emit a rhyme early, and that 2)
 1417 deactivating them stops models from rhyming.

1418 For each of these experiments, we identify NEOL features on each example as those that are active
 1419 on the second to last word of the couplet’s second line, i.e. on the token before the rhyming word.
 1420 We perform each experiment only on those couplets for which we have performed attribution. For
 1421 experiment 1), we provide the model with the couplet’s first line and the first 3 tokens of the second.
 1422 We set the NEOL features to 5 times their original values at the final position of this input, and any
 1423 generated positions. We then allow the model to generate, using greedy sampling. We record the
 1424 length of generation (in tokens) before the model outputs a rhyming word, and compare it to the
 1425 length of the original line.

1426 For experiment 2), we provide the model with each couplet’s first line, and set all NEOL features to
 1427 -5 times their original values. We do this at the final position of this input, and any future positions.
 1428 We sample a second line from the model using greedy sampling, and record rhyming accuracy.

1429 Figure 18B shows the results of experiment 1). Upweighting NEOL features causes models to
 1430 rhyme early - over 2 tokens early, for models above 0.6B. This suggests that the NEOL feature is
 1431 causally responsible for models’ output of a rhyming token. We note that this intervention qualita-
 1432 tively frequently caused models to rhyme not just early, but also rhyme often: models sometimes
 1433 output multiple rhyming words (e.g. *Beneath the gray lay stray*), as if the need to rhyme (like the
 1434 upweighting of the NEOL feature) was ongoing.

1435 Figure 18C shows the results of experiment 2). The rhyming accuracy for larger models (larger
 1436 than 0.6B) is low, below 0.2, just like when we downweighted EOL; indeed. Once more, this is
 1437 despite the fact that we perform the intervention on examples for which we have created circuits,
 1438 which are examples on which models succeed. Downweighting NEOL features in the second line
 1439 thus seriously harmed performance. Similar to before, qualitative inspection of the model’s outputs
 1440 showed no harm to the overall fluency of the completions. Since these features act at the position
 1441 where rhyming occurs, we hypothesize that they affect the queries of attention heads that would
 1442 otherwise bring features over rhyming information, allowing models to then predict a rhyming word.

1443 We thus also test this attention head theory. We record each model’s attention during a normal
 1444 forward pass, and when the NEOL features are strongly (-6x) downweighted. We then find the top-5
 1445 heads whose attention back to the end of the first line is reduced most by this ablation, averaged
 1446 across couplets. We hypothesize that these heads play a causal role in rhyming abilities. Thus, we
 1447 perform couplet generation as in the prior experiment, but transfer all of these 5 heads’ attention back
 1448 to the end of the first line, to the BOS token; we observe that this is what happens upon ablation,
 1449 and such tokens are generally considered to be attention sinks. We then record rhyming accuracy.

1450 Figure 18C shows the results of this experiment as well. This ablation is less effective than directly
 1451 intervening on NEOL features directly; rhyming accuracies are 20-30% higher, though far below
 1452 the 100% accuracy models achieved on the sentences for which we computed circuits. It is also
 1453 significantly more targeted: we only alter 2 attention probabilities in 5 heads, rather than targeting
 1454 many features.

1455
 1456 **Rhyming features** As discussed in the main text, we find rhyming features using a heuristic. We
 1457 look for features that activate on short tokens (all top-activating tokens are <5 characters) that are
 1458 distinct (no more than 5 occurrences of the same token), and where 7 of the 10 top activating features

Figure 19: Length of the shared prefix between the original generation, generations with temperature 1.0, and steered generations, both greedily sampled and with temperature 1.0. Error bars show SE.

either start with the same vowel, or end with the same consonant. Manual inspection suggested that this yields relatively high-precision but only moderate-recall recovery of these features.

We test that these features control the output rhyme, by deactivating each example’s original rhyming features at the end of the first line of the couplet, and upweighting the rhyming features of an example with a different rhyme. The resulting line should rhyme with the new example, not the original.

As in the main text, our results (Figure 18D) suggest that these features are indeed responsible for choosing the rhyme. Although accuracy is lower than on the original rhymes, it is moderate, and near that of the models overall on rhyming couplets.

H.3 INTERVENING ON RHYMING FEATURES CHANGES INTERMEDIATE TOKENS

We can test whether the intermediate context generated by the model changes at all upon rhyming feature intervention. To do this, we take the original generation of the model on a couplet, and its generation when its rhyming tokens are steered as in Section 5.3. We then record the length (in tokens) of the longest prefix shared between the original and steered generation. As baselines, we also compute the overlap between the original, greedy generation, and generations (both steered and unsteered) that we sample with temperature 1.0. If the rhyming features are genuinely causing the model to plan for future tokens, we should expect them to cause the model’s intermediate tokens to change, more than temperature-based sampling would.

Our results (Figure 19) indicate that steering affects the intermediate context between the first line and the rhyming token output. For smaller models (0.6B and 1.7B), this intervention do no more than simple sampling does. But for larger models (8B and 14B), the effect of this intervention upon generations exceeds that of normal sampling—even when combining the intervention with greedy decoding. Thus, the intervention alters both the intermediate and final tokens that models output.

I POTENTIAL LOCAL PLANNING FEATURES

To find local planning features in couplet circuits, we search for features in our circuit that upweight the rhyming word that is eventually output, or have one of their top-10 activations on that word. We search at the position before that word is output; that is, we look for *say X* features that are causally relevant even before the model outputs *X*. For a circuit in which this could be occurring, see Figure 20.

For each model, and each of its top-10 words by number of *say X* features, we steer on those *say X* features, setting their activations to 3, 5, or 7 times their original values. We do so on 5-15 token fragments of sentences from the TinyStories dataset (Eldan & Li, 2023)—a neutral context where models are not likely strongly planning. We then record whether each model eventually output *X*, and qualitatively inspect the outputs.

Figure 20: A feature circuit for a couplet ending in *in the night*. Unlike prior circuits, this circuit involves a specific *night* feature that drives the production of the phrase *in the night*.

Qualitatively, we observe that steering can lead to the sorts of sensible generations we observed in the poetry setting. Steering on the *say “night”* feature leads to generations such as *One day, a girl named Mia went for a walk. She saw a cat and started to follow it* to turn into *One day, a girl named Mia went for a walk. She saw a cat in the night*; notably, *in the* appears to specifically license *night*. Similarly, steering on the *say “dream”* feature often leads to outputs like *recurring dream* or *American dream*, i.e., contexts that are specific to *dream*.

However, this is not always the case. Steering too hard can cause the model to output the target word even in infelicitous contexts, or to only output the word; some *say X* features seldom produce the target word when steering. How can we measure whether the steering not only (1) produced the word *X*, but also (2) maintained a coherent sentence (up to the point where the word *X* was output) and (3) truly adapted the context to license *X*? We can measure (1) programmatically, but (2) and (3) are harder. For coherence, we query Claude Sonnet 4.1 about the coherence of each steered generation (Listing 1); to verify that Claude is a good judge of coherence we annotate 100 examples for coherence, and find high agreement (80%, where most disagreements come from Claude missing incoherence).

To estimate models’ abilities at (3), we filter examples to include only those where (1) and (2) are fulfilled; we also filter out any examples where the original and steered generation are identical up until the word *X* is output, as adaptation has surely not occurred in such cases. Then, we estimate how many of these examples fulfill (3) by manually annotating 100 examples per model for whether they contain context adaptation that could indicate planning. For example, we look for phrases like *her own* when steered towards *own*, or *had a recurring dream* when steered towards *dream*, when the original generation did not contain similar phrases. We also mark as incorrect examples that are ungrammatical / incoherent, but were missed by Claude in the first round of filtering, as a model that is successfully adapting its context for a planned token should not produce such outputs. We then plot these metrics.

Our results (Figure 21) indicate that larger models are more successful at steering towards *X* and more likely to adapt their context to match *X*, though they are no more coherent than smaller models. However, few examples actually fulfill all of these conditions: even in Qwen-3 (14B), only 10% of examples do so. So, while we believe that these features may be part of a generalized phenomenon whereby models plan for words by boosting *n*-grams that end in those words, our uncertainty is rather high. Our current hypotheses still rely on qualitative evidence, and more study is needed to understand the precise mechanisms by which these features work, and more consistently elicit and measure planning behavior from them.

Listing 1: Claude 4.1 Sonnet Prompt. Note that we only employ the coherence judgments, as the contains-word criterion can be checked programmatically, and we found Claude’s adapts-context responses unreliable.

```

1559     """I need you to analyze a text generation where a model was steered
1560     to include a specific word.
1561
1562     <input_prompt>
1563     {input_text}
1564
1565

```

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

Figure 21: Steering metrics by model size, averaged across steering strength. Overall, as model size increases, the ability to elicit *say X* by steering increases. The model’s tendency to adapt their context also appears to increase with size. Coherence is mixed, and appears unrelated to model size. Ultimately, few examples fulfill all three conditions—10% in the best case.

1583

```

1584 </input_prompt>
1585
1586 <baseline_generation>
1587 {baseline_generation}
1588 </baseline_generation>
1589
1590 <steered_generation>
1591 {generation}
1592 </steered_generation>
1593
1594 <steered_word>
1595 {steered_word}
1596 </steered_word>
1597
1598 Please analyze this generation and answer the following questions:
1599
1600 1. **Contains steered word**: Does the steered generation contain the
1601 exact word "{steered_word}"? (Look for exact match, case-
1602 insensitive)
1603
1604 2. **Coherence**: Is the steered generation coherent up to the target
1605 word. Is it natural, or does it show signs of breakdown such as:
1606 - Excessive repetition of words or phrases
1607 - Unnatural/nonsensical sentences
1608 - Abrupt topic changes that don't make sense
1609 - Grammatical breakdown
1610 - IMPORTANT: Focus on coherence up to the point where the steered
1611 word appears (or would appear). Ignore any incoherence that
1612 happens after the steered word.
1613
1614 3. **Context adaptation**: Compare the steered generation to the
1615 baseline generation, starting from the input_prompt. Did the model
1616 modify the words immediately preceding where the steered word
1617 appears (or would appear) compared to the baseline? Look for
1618 changes like:
1619 - Adding/changing articles ("a", "the", "an")
- Adding/changing prepositions ("in", "on", "at", "with")
- Changing verb forms or tenses
- Adding adjectives or modifiers
- Any other modifications that help the steered word fit better
1620
1621 IMPORTANT: For context adaptation, you must compare the steered
1622 generation against the baseline to see if modifications were made
1623 specifically to accommodate the steered word. Count the number of
1624

```

```

1620     words that were added or changed immediately before where the
1621     steered word appears (or would appear).
1622
1623     When counting adaptation words:
1624     - Count new articles, adjectives, adverbs, or prepositions added
1625         before the steered word
1626     - Count changed words that help the steered word fit better
1627     - Do NOT count the steered word itself
1628     - Focus on the immediate context (usually 1-3 words before the steered
1629         word)
1630     - If the steered word was not present, there is no adaptation
1631
1632     Example 1:
1633     input_text: "Once upon a time, there was a"
1634     baseline: "Once upon a time, there was a young girl named Lily who
1635         lived in a small village"
1636     steered_word: "day"
1637     steered_generation: "Once upon a time, there was a day when all the
1638         day of day day day"
1639     contains steered word: yes
1640     coherence: yes (the generation is coherent up to "day")
1641     contain adaptation: no (day is inserted instead of young)
1642
1643     Example 2:
1644     input_text: "Once upon a time, there was a little boy named"
1645     baseline: "Once upon a time, there was a little boy named Timmy who
1646         loved to play with numbers. One"
1647     steered_word: "dream"
1648     steered_generation: ""Once upon a time, there was a little boy named D
1649         . He had a recurring dream that he had""
1650     contains steered word: yes
1651     coherence: yes (the generation is coherent up to "day")
1652     contain adaptation: yes (sets up dream with "he had a recurring")
1653
1654     Please provide your analysis in this exact format:
1655
1656     <analysis>
1657     <coherence_explanation>Brief explanation of any coherence issues found
1658         </coherence_explanation>
1659     <adaptation_explanation>Brief explanation of any context adaptations
1660         made compared to the baseline</adaptation_explanation>
1661     <contains_word>yes/no</contains_word>
1662     <is_coherent>yes/no</is_coherent>
1663     <adapted_context>yes/no</adapted_context>
1664     <adaptation_word_count>number (0 if no adaptation, otherwise count of
1665         adapted words)</adaptation_word_count>
1666     </analysis>"""

```

J COMPARISON OF INSTRUCTION-TUNED AND BASE QWEN-3 MODELS ON *A-An* AND *Is-Are* TASKS

Throughout this paper, we have analyzed the behavior of instruction-tuned Qwen-3 models. However, it is unclear how the performance and mechanisms of said instruction-tuned models differs from that of base models. We investigate this by running the Qwen-3 Base models, from 0.6B to 14B, on the *a/an* and *is/are*. For the latter task, we reformulate the base model's input to exclude the instructions present in the original task (*Repeat this sentence and complete it.*), though we find this to have little effect on the results.

Our results indicate that the base models outperform the instruction-tuned models on the *a/an* task slightly (Figure 22, left): recall of the majority-article *a* is similar between the two, while the base models have consistently higher recall of *an* at 1.7B parameters and above. By contrast, on the

1674 *is/are* task (Figure 22, right), the instruct models significantly outperform the base models: while
 1675 both achieve high recall on *are*, only the instruct models eventually achieve high recall on *is*. This is
 1676 despite the fact that base models, too, are numerate enough to complete the task: even when given
 1677 the wrong verb, they output the correct number, much as the instruct models did.

1678 These results indicate that neither model variant—base or instruction-tuned—strictly outperforms
 1679 the other. Rather, differences seem driven more by the data distribution: the *a/an* task is more akin
 1680 to pre-training data, while the *is/are* task involves math, a focus of instruction-tuning.
 1681

1682 K PLANNING FOR MEASURE WORDS IN CHINESE

1685 The most successful examples of backward planning are English agreement tasks, which raises the
 1686 question: can models perform backward planning in other languages or contexts? The relative weak
 1687 performance of Qwen-3 (14B) and smaller models makes adding complex tasks challenging, but we
 1688 can test agreement abilities in Chinese, in which Qwen models perform well.

1689 We focus on the phenomenon of measure-word agreement in Chinese. Chinese uses measure words,
 1690 which function analogously to e.g. the word *loaf*(*of bread*) in English: rather than saying *one bread*,
 1691 one says *one loaf of bread*. Similarly, in Chinese, *one person* becomes 一个人 (one [person-unit]
 1692 person), while *three pigs* becomes 三头猪 (three [livestock-unit] pigs). Notably, different nouns
 1693 require different measure words, but the measure word precedes the noun, much like *a/an*.

1694 We can thus ask: given a context that indicates that a given noun will appear, do models engage in
 1695 forward planning for that noun? And do they also engage in backward planning to determine which
 1696 counter word should be used? Owing to our own limited knowledge of Chinese, we construct a
 1697 smaller set of 10 examples, which elicit distinct measure words:

1. 他看见四位骑士骑着四...匹马。: He saw four knights upon 4... [measure-word] horses.
2. 这套公寓有三...间卧室。: The apartment had 3... [measure-word] bedrooms.
3. 他看见四位农夫赶着四...头牛。 He saw four farmers with four... [measure-word] cows.
4. 他看见四位调酒师端着四...杯鸡尾。: He saw four bartenders carrying four... [measure-word] cocktails.
5. 她听到笼子里传来歌声。进去一看, 里面是一...只鸟。: She heard singing from in the cage. Inside she saw a... [measure-word] bird.
6. 剧团刚刚表演完一...出话剧。: The theater troupe had performed a... [measure-word] play.
7. 大森林里长着1000...棵树。: In the large forest, there grew 1000... [measure-word] trees.
8. 池塘里游着四...条鱼。: In the pond, there swam four... [measure-word] fish.
9. 这位艺术家创作了十二...幅画。: The artist created twelve... [measure-word] paintings.
10. 夜空中, 他们看到了1000...颗星星。: In the night sky, they saw 1000... [measure-word] stars.

1726 Figure 22: Performance of base (dashed line) and instruction-tuned (solid line) models on the a/an
 1727 (left) and is/are (right) tasks.

Figure 23: The effectiveness of replacement interventions, measured by the percent of cases where the intervention induced to model to output the expected the measure word. **Left:** the expected measure word is considered to be the measure word that the model output on the target example. **Right:** the expected measure word is considered to be the ground truth measure word from the list above—even if the model failed to output it originally. Models’ accuracies with respect to the original ground truth are shown in green.

We select these examples because preliminary testing indicated that at least larger models produce the expected counter words when given them; they do not all have a correct answer per se. Thus, unlike in the *a/an* and *is/are* cases, we cannot treat these as a behavioral evaluation of backward planning ability. However, we can still analyze models’ circuits.

Thus, we compute attribution graphs for these examples, attributing back from the predicted (measure) word. As in the *a/an* example, we find features that correspond to our intended word. For example, planning features that fire on and upweight *bird* activate on example 5, while *painting* features activate on example 9. However, analogues to *say a/an* features are often absent from these circuits: while “say [any measure word]” features are common, “say [specific measure word]” features are not. That is, while there are “say head [of cattle]” features that correspond to the livestock measure word 头, not all measure words have these. How do these features contribute to model outputs?

We test this by running interventions, as in the couplets section of the main text. Specifically, we run the model on a given *target* example, but downweight its planning features, while upweighting features from another *source* example; we run these replacements for all source \times target combinations. We aim to change the model’s output measure word to the measure word of the target example. In addition to performing unconstrained interventions, we also perform direct-effects interventions. These test for the presence of “say [specific measure word]” features that might be hidden in transcoder errors: if direct-effect interventions fail, while full-effects experiments succeed, we know that intervening features exist in downstream MLPs, even if the transcoders miss them.

Our results indicate that this intervention is relatively successful. Figure 23 (left) shows the proportion of examples in which performing the intervention successfully changed the word into the expected measure word, i.e. the word that the model originally output on the target example. Performance generally increases with scale, increasing from 20% match with the expected measure word to 52.2%. By contrast, direct-effects interventions produce effects around half the size. When we use the ground-truth measure word as our expected measure word (Figure 23, right), smaller models perform worse, direct effects interventions grow less effective and the scaling trend becomes more obvious.

We conclude that the planning nodes do also control the measure word and noun output. However, we note that the direct-effects interventions have moderate effects, varying by measure word. We hypothesize that this is because some Chinese measure words have semantics that closely align with their corresponding noun; for such examples, the planning features, along with “say [any measure word]” features suffices to upweight the measure word.

Figure 24: Results of steering on planning features from the *a/an* task. For each model, we plot the proportion of examples where the model produces the planned word (blue) and the proportion where the model produces *a* or *an*, followed by the planned word. Models often produce the planned word when steered, but less often produce the article in front of it.

Figure 25: Planning feature counts on *an* examples, by model and correctness. The smallest models have few planning features overall, while the largest has relatively many in both the correct and incorrect cases. In the 4B and 8B parameter models (with nascent circuits), there is a large gap between the number of planning features active in correct and incorrect cases..

L STEERING ON A-An PLANNING FEATURES

In this section, we provide additional evidence that planning features, such as those in the *a/an* experiments, do not directly cause the upweighting of said indefinite articles. To do so, we take the same approach in Section 5.4 to identify planning features to steer on. We then use them to steer models on the TinyStories dataset. We then check for the presence of the planned word, and for the presence of *a/an* before it. Our results (Figure 24) indicate that while steering is effective at eliciting the desired word, this does not entail producing *a/an*.

M WHAT ARE NASCENT CIRCUITS?

We find that Qwen-3 4B and 8B have nascent circuits for *a/an* and *is/are*, leading them to achieve middling recall of the minority classes of those tasks. But what does it mean for circuits to be nascent, or not fully formed? There are a few points of potential breakage in the circuit:

- **Planning Features** The models could lack planning features, or fail to activate them sufficiently.
- **Downstream Connections** The models could lack connections from planning features to downstream features upweighting *a/an* or *is/are*

We investigate the first hypothesis in the *a/an* task, by counting the number of planning features active on *an* examples, distinguishing cases where model outputs were correct and incorrect. Plotting these (Figure 25) shows markedly different behaviors across model scale. The 0.6B and 1.7B parameter models have very few active planning features overall. The 4B and 8B parameter models have many active planning features in the correct case, but notably fewer in the incorrect case.

1836 Finally, Qwen-3 (14B) has many planning features active in both cases, though slightly fewer are
1837 active in incorrect cases.

1838 This suggests that the failure of these nascent circuits is due at least in part to the models' failure to
1839 adequately activate planning features.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889