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Abstract
Accurate estimation of dataset complexity is cru-
cial for evaluating and comparing link-prediction
models for knowledge graphs (KGs). The
Cumulative Spectral Gradient (CSG) metric
(Branchaud-Charron et al., 2019) —derived from
probabilistic divergence between classes within
a spectral clustering framework— was proposed
as a dataset complexity measure that (1) natu-
rally scales with the number of classes and (2)
correlates strongly with downstream classifica-
tion performance. In this work, we rigorously
assess CSG’s behavior on standard knowledge-
graph link-prediction benchmarks—a multi-class
tail-prediction task— using two key parameters
governing its computation: M , the number of
Monte Carlo–sampled points per class, and K,
the number of nearest neighbors in the embed-
ding space. Contrary to the original claims, we
find that (1) CSG is highly sensitive to the choice
of K, thereby does not inherently scale with
the number of target classes, and (2) CSG val-
ues exhibit weak or no correlation with estab-
lished performance metrics such as mean recipro-
cal rank (MRR). Through experiments on FB15k-
237, WN18RR, and other standard datasets, we
demonstrate that CSG’s purported stability and
generalization-predictive power break down in
link-prediction settings. Our results highlight the
need for more robust, classifier-agnostic complex-
ity measures in KG link-prediction evaluation.

1. Introduction
Knowledge graphs (KGs) underlie many high-impact ap-
plications—ranging from recommendation systems (Spillo
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et al., 2024) and question answering (Zeng et al., 2025)
to drug discovery (Zhang et al., 2025; Gul et al., 2025a).
By encoding relational knowledge as triples (h, r, t), link
prediction (h, ?, t) and entity prediction (h, r, ?) tasks on
KGs enable models to infer missing relations or tail enti-
ties (Gul et al., 2024; 2025b). These benchmarks however,
remain challenging due to imbalanced class distributions
and overlapping feature patterns across relations and enti-
ties (Bourli & Pitoura, 2020). While metrics like MRR
and Hits@k evaluate how accurately models retrieve correct
links, these do not provide us a direct measure of the intrin-
sic complexity of KG datasets under various link prediction
scenarios. A robust class-separability measure would (a)
quantify dataset complexity across different link-prediction
formulations—revealing, for example, whether predicting
rare drug-target pairs is inherently harder than predicting
common entity relations— (b) anticipate generalization per-
formance—setting realistic expectations for new methods
before expensive downstream evaluation, and (c) facilitate a
unified estimate of model performance across datasets.

CSG is a recently proposed spectral metric—derived
from the eigenvalues of the normalized graph Lapla-
cian—designed to quantify dataset complexity by measur-
ing class separability. In image classification benchmarks,
higher CSG values correlate strongly with lower test ac-
curacy (Branchaud-Charron et al., 2019). However, KG
link-prediction classification is a large-scale, multi-class
task with thousands of candidate tails (every graph entity).
In this regime, two core claims of CSG merit re-evaluation:

• CSG’s reliance on the nearest-neighbor parameter K
may prevent it from naturally scaling when the number
of target classes grows to typical KG sizes.

• Although CSG correlates with accuracy in image tasks,
it is unknown whether CSG scores—computed over
embeddings from KG models (e.g., BERT-based or
translational)—correlate with standard KG metrics like
Mean Reciprocal Rank (MRR).

No prior work has systematically evaluated CSG on canoni-
cal KG benchmarks (e.g., FB15k-237, WN18RR) or exam-
ined its sensitivity to the Monte Carlo sample size M and
neighbor count K. Empirical scrutiny is therefore required
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to assess CSG’s stability and predictive power in large-scale
link-prediction settings.

To this end, we conduct the first systematic evaluation
of CSG in multi-class tail-prediction tasks across multi-
ple standard KG datasets (e.g., FB15k-237, WN18RR).
Specifically for each head–relation pair, we treat every can-
didate tail entity as a separate class. We vary the Monte
Carlo sample size M and the nearest-neighbor count K to
compute and relate CSG values over embeddings. Further
on, we compare CSG values against actual link-prediction
performance (MRR) to quantify how well CSG predicts
generalization. We list below key findings of our work:

1. Sensitivity to K: CSG values change dramatically as
K varies, showing that any perceived “scalability” with
the number of classes is an artifact of specific dataset
choices rather than an inherent property of CSG.

2. Weak Performance Correlation: Across all datasets
and KG models, CSG scores exhibit near-zero Pearson
correlation with MRR, contradicting the claim that
CSG reliably predicts downstream accuracy.

These results question CSG’s utility as a model-agnostic sep-
arability metric for large-scale classification and highlight
the need for more robust measures in KG evaluation.

2. Methodology
In our approach for CSG computation, we transform KG
triplets into multi-class representations, use BERT embed-
dings for semantic richness, and apply spectral analysis to
derive the CSG values; see Figure 1 for more clarification.
The following subsections detail each step of this process.

Grouping by Tail Entities: Knowledge graphs, such as
FB15k-237 and WN18RR, consist of a set of triplets:

T = {(hi, ri, ti) | hi ∈ E, ri ∈ R, ti ∈ E}, (1)

where hi is the head entity, ri is the relation, and ti is the tail
entity, with E being the set of all entities and R the set of
all relations. The next step organizes this data by grouping
triplets according to their tail entities class C (each unique
ti → denotes a unique class Ci) using a mapping function:

G(Ci) = {(h, r) | (h, r, Ci) ∈ T}, ∀Ci ∈ E, (2)

resulting in a mapping:

Ci 7→ G(Ci), (3)

which aggregates all (h, r) pairs pointing to the same tail Ci.
Each unique tail entity is treated as a distinct class, forming
a set:

Ci = {C1, C2, . . . , CK}, (4)

K is the total count of unique tails, generating K classes
based on tail entities for further examination.

Generating Embeddings: To transform textual head enti-
ties and relations into numerical form, a pre-trained BERT
model generates dense vector embeddings. For each head
entity h and relation r, embeddings are:

eh = BERT(h) ∈ Rd, er = BERT(r) ∈ Rd, (5)

d the embedding dimension is. BERT-Base (Hugging Face
Transformers) was used to generate 768-dimensional em-
beddings, preprocessing head entities and relations as single
tokens. For every triplet (h, r, Ci) ∈ T , a composite vector
is formed:

ϕ(h, r) = eh ⊕ er ∈ R2d, (6)

where ⊕ denotes concatenation. These composite vectors
are then grouped according to their corresponding tail enti-
ties:

Φ(Ci) = {ϕ(h, r) | (h, r, Ci) ∈ T}, (7)

each tail Ci is associated with a set of (h, r) vectors. This
step provides a meaningful representation of the triplet data,
organized by tail classes, preparing the data for complexity
analysis.

Figure 1. Left box showing triplets where the heads are (h1, h2, . . . , hk) green,

relations (r1, r2, . . . , rk), tails (t1, t2, t3) are in blue, yellow and purple. The

next box denotes the grouping of their tail entities into classes: c1 for t1, with

(h1, r1, t1) and, (h2, r2, t1) belonging to the same class, for example. BERT

is used to embed head-relation pairs, producing 768-dimensional vectors, and then

concatenates them, such as h1 ⊕ r1 and h2 ⊕ r2, for class ci. Next, a sampled K

search is performed to compute distances and a similarity matrix S ∈ RK×K . The

Laplacian matrix L is obtained, and S the spectral complexity of the KG is quantified

using the CSG calculated from its eigenvalues.

Similarity Computation and Matrix Construction: A
similarity matrix S ∈ RK×K is constructed, where K is the
number of classes. Let Φ(Ci) denote the set of vectors for
class Ci. Each vector:

ϕm = eh ⊕ er ∈ R2d. (8)

A subset is sampled:

M = min(N, |Φ(Ci)|),
Φ(Ci)sample = {ϕ1, ϕ2, . . . , ϕM} ⊂ Φ(Ci)

(9)
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where N is the number of vector samples per class. To
manage computational complexity for large KGs, we sample
M = 120 vectors per class. For each ϕm ∈ Φ(Ci)sample,
compute its k = 50-nearest neighbors via L2 distance:

∥ϕm − ϕn∥22 =

2d∑
l=1

(ϕm,l − ϕn,l)
2. (10)

it computes the Euclidean distance between two concate-
nated BERT embeddings, ϕm and ϕn, where ϕm,ϕn ∈
R2d represent the combined head-relation embeddings of
triplets, respectively. while ϕm,l and ϕn,l denote the l-th
components of the respective vectors. This distance metric
is used during k values neighbor (k-NN) search to measure
nearest neighbor triplets grouped by tail entities, enabling
the construction of the class similarity matrix S, which can
be defined as in Equation 11. The distance computation
directly impacts the spectral analysis by indicating how
tightly or loosely classes overlap, thereby influencing the
Cumulative Spectral Gradient (CSG), a measure of dataset
complexity derived from the eigenvalue gaps in the graph
Laplacian.

Sij =
1

Mk

∑
ϕm∈Φ(Ci)sample

∑
ϕn∈K(ϕm)

I[ϕn ∈ Φ(Cj)], (11)

where the indicator function is:

I[ϕn ∈ Φ(Cj)] =

{
1, if ϕn ∈ Φ(Cj),

0, otherwise.
(12)

ϕn is an embedding vector, Φ(Cj) denotes the set of embed-
dings for class Cj , and I is an indicator function returning 1
if ϕn belongs to Cj . It is employed in the formation of the
similarity matrix S to enumerate the K-nearest neighbors
of the class Ci that belong to Cj , quantifying inter-class
overlap for complexity analysis.

Graph Laplacian and Spectral Analysis: Graph Laplacian
captures the connectivity and clustering tendencies of the
classes, rooted in graph theory and spectral analysis. The
normalized Laplacian provides a standardized measure of
how classes are interconnected, accounting for variations in
their degrees of connection. The graph Laplacian captures
class connectivity and clustering tendencies. The diagonal
degree matrix D ∈ RK×K can be defined as Equation 13,
while the normalized Laplacian as Equation 14.

Dii =

K∑
j=1

Sij , Dij = 0 for i ̸= j. (13)

L = I −D−1/2SD−1/2, (14)

where I is the K ×K identity matrix, and:

D
−1/2
ii =

1√
Dii

, for Dii > 0. (15)

Dii =
∑K

j=1 Sij representing the total similarity of a class

Ci to all other classes, where D
−1/2
ii = 1√

Dii
, ensures

eigenvalues. Compute eigenvalues λ0, λ1, . . . , λK−1 and
eigenvectors u1, u2, . . . , uK from:

Lui = λiui, ui ∈ RK , ∥ui∥ = 1, 0 ≤ λi ≤ 2.
(16)

yields eigenvalues λi and orthonormal eigenvectors ui,
which encode structural properties.

Cumulative Spectral Gradient (CSG) Computation: De-
fines a complexity measure based on the differences between
consecutive eigenvalues of the Laplacian, summing them
cumulatively to assess how the graph’s structure evolves
across its spectrum. Theoretically, the CSG quantifies the
cumulative effect of spectral gaps, reflecting the progres-
sive separation of classes and providing a nuanced view of
complexity that ties directly to the graph’s global properties.
This is particularly relevant for tail prediction, as it indi-
cates the degree of variation in prediction difficulty across
the dataset. The CSG measures complexity via eigenvalue
differences. Order the eigenvalues:

0 = λ0 ≤ λ1 ≤ . . . ≤ λK−1, (17)

Define gaps, δi = λi+1 −λi, i = 0, 1, . . . ,K − 2, (18)

Then, CSGkc
=

kc−1∑
i=0

δi = λkc
− λ0, (19)

and, CSGK−1 = λK−1 − λ0. (20)

Branchaud-Charron et al. (2019) claim that higher CSG val-
ues indicate higher complexity (more class overlap); lower
CSG values indicate better separation and easier tail predic-
tion.

2.1. Experiments

Datasets: The following datasets are used: FB15k-237
(Bollacker et al., 2008) consists of 14,541 entities, 237 re-
lations, and a total of 310,116 triplets. WN18RR (Miller,
1995) includes 40,943 entities, 11 relations, and a total of
92,583 triplets. CoDEx-S (Safavi & Koutra, 2020) features
2,034 entities, 42 relations, and a total of 40,198 triplets.
CoDEx-M (Safavi & Koutra, 2020) has 17,050 entities, 51
relations, and a total of 185,584 triplets. CoDEx-L (Safavi
& Koutra, 2020) includes 77,951 entities, 69 relations, and
a total of 673,872 triplets. Countries (Liang et al., 2024)
dataset contains 271 entities, 2 relations, and 1159 triplets.
Toy (Liang et al., 2024) includes 278 entities, 112 relations,
and 4826 triplets. UML (Bodenreider, 2004) contains 135
entities, 46 relations, and 6529 triplets. Nations (Liang
et al., 2024) has 14 entities, 55 relations, and 1992 triplets.
All the datasets are publicly available online 1.

1https://tinyurl.com/mr8ckwmb
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2.2. Results

Figure 2 illustrates the Cumulative Spectral Gradient (CSG)
of Codex-S dataset in the tail-prediction task setting, repre-
sented as a surface function of parameters K and M . Both
parameters influence the CSG values, the impact of K on
CSG however is quite significant. This observation coun-
ters the previously held belief, as discussed in (Branchaud-
Charron et al., 2019), where it was argued that these parame-
ters had minimal influence. In contrast, our findings provide
compelling evidence that both K and M play a critical role
in shaping the spectral complexity assessment. Specifically,
increasing K leads to higher CSG values (in general), re-
flecting an increased perception of dataset complexity. It
is likely that, smaller K values tend to ignore large scale
structural features (like connectivity patterns) within the
data, thereby missing to capture fine-grained variations that
capture complex interactions and class overlap. This results
in a lower perceived complexity. The interaction between K
and M also reveals key insights about their joint influence
on complexity estimation. Specifically, for smaller K val-
ues, M plays a critical stabilizing role, as low K is highly
sensitive to sampling effects.
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Figure 2. CSG as a function of M and K values.

Additionally, Figure 3 illustrates how the CSG is strongly
influenced by the parameter K, with CSG values increas-
ing consistently as K increases across all datasets. This
trend reveals that larger K-values capture broader struc-
tural patterns, leading to higher perceived complexity, while
smaller K-values emphasize local structure and result in
lower CSG. Furthermore, the variation in CSG across differ-
ent datasets highlights the importance of tailoring K to the
specific structural and semantic characteristics of each KG.

Finally, Figure 4 plots CSG values for five standard
KG benchmarks against the corresponding MRR values
achieved by a suite of tail-prediction models. Contrary to
Branchaud-Charron et al. (2019), we observe no meaningful
correlation (mean Pearson coefficient R = −0.644) be-
tween CSG and model performance across all datasets and
methods. In summary, contrary to the assertion that CSG
can consistently forecast downstream performance, these
findings cast doubt on its value as a model-independent
separability measure for large-scale classification tasks spe-
cially in KG domain and underscore the necessity for more
reliable metrics in KG evaluation.
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Figure 3. A plot of CSG as a function of K values at M = 100.
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Figure 4. Relationship Between MRR from different tail-prediction models on five

standard KG datasets and the corresponding CSG values.

3. Conclusion
CSG is significantly influenced by parameters, K and M ,
challenging prior assumptions of their minimal impact on
complexity assessments as well as the application of CSG as
a reliable complexity metric for large multi-class datasets.
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