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1 Abstract

Melanoma is a type of cancer that begins in the
cells controlling the pigment of the skin, and it is
often referred to as the most dangerous skin can-
cer. Diagnosing melanoma can be time-consuming,
and a recent increase in melanoma incidents indi-
cates a growing demand for a more efficient diag-
nostic process. This paper presents a pipeline for
melanoma diagnostics, leveraging two convolutional
neural networks, a diagnosis, and a prognosis model.
The diagnostic model is responsible for localizing
malignant patches across whole slide images and
delivering a patient-level diagnosis as malignant or
benign. Further, the prognosis model utilizes the
diagnostic model’s output to provide a patient-level
prognosis as good or bad. The full pipeline has an
F1 score of 0.79 when tested on data from the same
distribution as it was trained on.

2 Introduction

Melanoma cancer is the leading cause of death
from skin disease. It begins in the skin cells called
melanocytes, and around 30% starts in existing
moles. According to a recent worldwide study, the
number of newly diagnosed melanoma cases will rise
by more than 50%, up to 510,000 by 2040, while
the number of melanoma deaths will rise by almost
68%, from 57,000 in 2020 to 96,000 in 2040 [1]. In
regards to Norway, the annual cancer report shows
a 20% increase in melanoma cases from 2021 to 2022
[2]. Coupled with the increased incidence rate, the
estimated survival rate for five years following diag-
nosis varies depending on the stage of melanoma [3].
Consequently, early detection of melanoma plays a
crucial role in the prognostic outcome.

In recent years, digital pathology is becoming
mainstream, producing whole slide images (WSIs)
as digital microscopy gigapixel images of tissue slides.
The process of producing WSIs from biopsies, with
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its potential artifacts, is described in [4]. Com-
putational pathology (CPATH) is a growing field
dealing with automated solutions for visualization,
diagnostics, and prognostics from WSI using image
processing and deep learning (DL).

Melanoma detection using DL techniques has
shown promising results, which can help with early
diagnosis and treatment decisions [5—7]. DL algo-
rithms can detect potential regions with melanoma
by identifying various cellular and tissue-level fea-
tures and enhancing diagnostic accuracy [8]. Some
existing methods focus on detecting melanoma
by classifying tissue samples and moles either as
melanoma or benign nevi [5, 6, 9]. Others address
the question of prognostic prediction from the lesion-
tissue of verified melanoma cases, typically with the
lesion manually delineated [10-12]. Clinical labels
are usually patient-based, and providing manually
annotated regions for the melanoma tissue is time-
consuming. The challenge of having a complete
CPATH pipeline that can differentiate between WSIs
with benign nevi and melanoma (malignant), seg-
ment the melanoma region from a WSI, and make
prognostic predictions in the case of melanoma is
currently unexplored.

To address this challenge in this work, we are de-
veloping a pipeline by integrating two convolutional
neural networks (CNN), as illustrated in Figure 1.
By leveraging DL methodologies, the first model of
the pipeline identifies melanoma in WSIs and pro-
duces a patient-level diagnosis, whereas the second
model provides a prognosis for identified melanoma
patients. The performance of each CNN model is
evaluated individually before integrating them into
a comprehensive pipeline.

3 Data Materials

The dataset is collected at Stavanger University
Hospital (SUH), Stavanger, Norway. A Hamamatsu
Nanozoomer s60 scanner was used to scan a cohort
of Hematoxylin and Eosin (H&E) stained glass slides
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Figure 1. An overview of our proposed deep learning pipeline. Preprocessing: Background/foreground
segmentation is applied on the whole slide image (WSI) to find tissue regions. Later, morphological operations
remove small holes and separate small areas, and then patches are extracted at 10x magnification for the diagnosis

model. Diagnosis: Prediction for every patch is used to

calculate patient-level prediction as benign vs. malignant.

Prognosis: Detected lesion regions on WSIs predicted as malignant are used to evaluate prognosis at the patient

level as good or bad.

at 40x magnification, thereafter saved in NDPT for-
mat. Clinical labels give the patient diagnosis as
yé € {0,1} where 1 indicates melanoma and 0 be-
nign nevi, and ¢ is a patient (or WSI) index, and d
indicates diagnostic label. For a patient diagnosed
with melanoma, the prognostic label was established
using follow-up data by considering the occurrence
of either local or distant metastasis (bad), or the
absence of metastasis (good), within a five-year time
frame; y? € {0,1} where 1 indicates bad progno-
sis and 0 good prognosis. The dataset is divided
into annotated WSIs, D®, and not-annotated WSIs,
D"/ explained more in the following subsections.
Later, patches were extracted from the WSIs for
analysis. A breakdown of the number of patches
extracted from the different sets is shown in Tab. 2.

Table 1. The amount of patches from each subset of

Dj§ after patch extraction for the diagnostic model.

Label Dtrain Dval Dtest Total
B 42 420 | 11 660 | 7190 61 270
M 215 320 | 25169 | 37 310 | 27 799
NE 2 801 657 604 4 062
Total | 260 541 | 37 486 | 45 104 | 343 131

Table 2. The amount of patches of D after patch

extraction for the prognostic model.

Label | Total
Good | 5542
Bad 6 358
Total | 11 900




3.1 Annotated WSIs

D% is a set of 125 WSIs, 47 benign nevi, and 78 with
melanoma. The lesion, or region of interest (ROI),
in all WSI, is roughly annotated by a pathologist.
The annotated regions of the lesion have two dif-
ferent classes, corresponding to melanoma M and
benign nevi B. In addition, some areas of normal
epidermal tissue NE are annotated, but not all such
areas. Tissue outside these regions is not annotated.
Labels associated with these regions are defined as
y?i, where j is a patch index, ¢ is a patient or WSI
index. In addition, there are large tissue regions that
are not annotated in all WSI. The diagnosis model
used a sub-dataset D of 90 WSIs, where 73 of them
were used for training, 8 for validating, and 9 for
testing, with approximately 50% benign nevi and
melanoma. The prognostic model used a sub-dataset
Dy of 52 WSIs, all with melanoma, 50% with bad,
and 50% with good prognosis. Some patients were
excluded as they were present in both Dg and Dy .
A total of 9 bad prognosis and 5 with good progno-
sis. A sub dataset jjg was defined comprising all
the images from D} except for the aforementioned
excluded patients, as they were employed for the
development of the diagnostic model. There is no
overlap from training to validation or test in the
pipeline experiments we show.

3.2 Non-annotated WSIs

A dataset D™/® containing 243 WSIs from the SUH
cohort is provided with patient-level clinical labels
without any manual annotation around lesion areas.
Of all 243 WSIs, 110 of them were diagnosed with a
benign nevis, and 133 with melanoma; 10 of these
had bad prognosis (metastasis within five years).
The dataset is divided into a train/validation set of
203 WSIs and a test set of 40 WSIs. In the test set,
18 WSIs are labeled as benign and 22 as melanoma,
2 of them having a bad prognosis (metastasis within
five years).

4 Method

4.1 Preprocessing

To enable the analysis of WSIs using CNN, the
tissue regions within the WSIs were divided into
smaller patches, of size 256256 pixels at different
magnification levels (2.5x, 10x, and 40x). Let xj{*
denote patch j from WSI ¢ at magnification level
10x. The index i denotes the WSI and is sometimes
omitted. To separate the tissue from the background,
background-foreground segmentation was performed
by transforming the RGB images to the HSV color
space, and the Hue channel was thresholded within
the range of [100-180] to identify purple and pink
tones. Morphological opening and closing operations

were applied to close holes in the foreground and
remove small areas. Grid extraction was applied to
extract valid patches as described in [13].

4.2 Diagnosis

Valid patches, x}?z, from the preprocessing of WSI ¢

are fed into the diagnosis model, providing a patch-
level prediction: f9(x 10”‘) = gjfz The feature ex-
tractor of the model is based on the VGG16 [14]
architecture with pre-trained weights from ImageNet
[15]. A three-layer classifier of fully connected layers
is added. The diagnostic model is fine-tuned using
the annotated training data from DJ, as in [6]. The
models output layer consists of a softmax giving
an array v;; of three probability values for each
patch, benign nevi (B), melanoma (M), and normal
epidermal tissue (NE). The patch-level diagnosis
predictions are denoted as Q;ii, for patch j, and WSI
i. If max(vj;) > tp, Q;’lz is set to the most probable
class label (M, B, NE). Else, ¢ is set to T for tissue
(i.e., none of the other classeb). Thus, we train the
model with three labels, but we classify the patches
into four classes, 173‘11‘ € {M,B,NE,T}. The patient-
level prediction ; is determined by calculating the
ratio ¢ of number of patches predicted as malignant
(i.e. melanoma) over other patches. In this work,
two different methods are used to calculate the ratio
as shown in Eq. (1) and (2). The first ratio, ™5,
calculates the ratio between predicted malignant
and benign patches, while the second ratio, M7
calculates the ratio between malignant patches and
patches in the entire tissue mask. Let the indicator
function, I(g;;, {M,B}) = 11if §;; = M or B and 0
otherwise:

4B >, 15, M) )
Z-I(yﬂa {MB}

D o I(yﬂ,{MBNE T})

Thereafter, the ratio is compared with a threshold

t,. If ¢¥; < t, the WSI i is predicted as benign (0);

conversely, if 1; > t,. the WSI i is predicted as

melanoma (1), i.e. finding patient-level diagnosis
label §¢ as shown in Eq. (3).

d 1, (melanoma)
vi = 0, (benign)

(2)

else

(3)

Let {x;}am denote the set of patches where
I(gj}i,M) N2, i.e. when the patch is predicted as
malignant and the patient is predicted as melanoma,
defines the ROIy for further prognostic analysis.

4.3 Prognosis

The prognostic model utilizes a VGG16 backbone,
and transfer learning is used with pretrained weights.



The classifier of the VGG16 is replaced with three
fully-connected layers, the last having softmax ac-
tivation function, giving a binary output for good
or bad prognosis, trained on Dy as in [12]. The
prognosis model uses malignant patches of the pre-
dicted melanoma WSIs for further analysis, i.e. the
ROl defined by {x;}ar as described in the previous
section. However, the prognostic model operates on
a different magnification scale than the diagnostic
model. Thus, the ROI from the malignant patches
is used to extract new patches at 20x magnification
with the method of [13], requiring minimum 70%
overlap between a valid patch and the ROL.

The prognosis model provides a patch-level predic-
tion: fP(x30%) = g, for image i and patch k € ROI,
defined by {x;} ;. 94; € {0,1} where 717 indicates
bad prognosis at patch level. A threshold ¢, is used
to calculate patient-level P with ”1” indicating a
bad prognosis and ”0” indicating a good prognosis
at the WSI level, as shown in Eq. (4).and Eq. (5).
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4.4 FEvaluation Metrics

Let TP, TN, FP, and FN stand for true posi-
tive, true negative, false positive, and false nega-
tive, respectively. The accuracy is calculated by
(TP+TN)/(TP+FP+FN+TN). Recall/ sensi-
tivity is calculated using TP/(TP + FN). Precision
= TP/(TP+ DP) and specificity = TN/TN + F'P.
F1 is a weighted harmonic mean of precision and
recall.

¢i = (4)

else

()

5 Experiments and Results

Experiments are done by validating the models on
the annotated datasets D®. The pipeline is tested
by comparing prognosis prediction using annotated
melanoma ROIT as inputs with prognosis prediction
using automated ROI, i.e., outputs from the diag-
nostic model, on the exact same dataset. The perfor-
mance of both models is tested with dataset D"/%.
We employed 5-fold cross-validation for training our
models. We selected the best-performing model and
proceeded with it. The results we have shown cor-
respond to the values of the best-performing model
trained using cross-validation. By evaluating the
performance of each model separately, it is possible
to assess their individual accuracy in addition to
testing the combined pipeline.

5.1 Annotated data

The diagnostic model achieved a performance of
100% accuracy at the WSI level on the 9 WSIs in
the test set of dataset Dj.

5.1.1 Full pipeline test

The prognosis model’s validation process involves
comparing the performance of fP when running on a
dataset ﬁg with ROI inputs from the manual anno-
tations, ROI,, and with ROI from the masks gener-
ated by the predictions from the diagnosis model f¢,
ROI,. By utilizing the diagnosis model’s outputs as
inputs for the prognostic model’s evaluation, we can
effectively assess the performance and accuracy of
the prognostic model in a realistic setting. This ap-
proach allows us to better understand how the two
models work together and how well the prognostic
model performs when applied to new, unseen data.

Table 3 displays the evaluation metrics after run-
ning the prognosis on the dataset (ﬁg)

Table 3. Evaluation Metrics after running the prognosis
on dataset Dy with annotation masks and generated
masks from the diagnosis.

’ ﬁ; ‘ Sens. ‘ Spec. ‘ F1 ‘ Accuracy
ROI, | 0.941 | 0.714 | 0.821 0.816
ROI; | 1.000 | 0.571 | 0.791 0.763

The F1 score and Accuracy are slightly better
when using ROI, from manual annotations, but the
results look promising for using the automatically
found ROIy.

5.2 Non-annotated data

In this experiment, the diagnostic model’s perfor-
mance on the non-annotated dataset D%la will be
evaluated. The initial thresholds for patch-level clas-
sification (t,) and patient-level classification (¢,) are
set at 0.999 and 0.04, respectively. These thresholds
were found in the previous experiment, where the
model predicted all images correctly on D§. The
results of the experiment can be found in Table 4.

Table 4. Results from running inference with diagnosis
model on D"/ with thresholds tp, = 0.999 and ¢, = 0.04.

val

Eval. Metric | Sens. | Spec. F1 Accuracy

Score 0.977 | 0.146 | 0.728 0.601

The diagnostic model’s accuracy is measured to be
0.601, indicating that it correctly classifies only 60%
of the 243 WSIs in dataset D™/, Furthermore, the
recall value is calculated to be 0.977, indicating that
the model excels at correctly predicting almost all
melanoma cases but faces difficulties in accurately
predicting benign cases.
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masks for each WSI with the given ¢, on the left side.

Table 5. Non-annotated data, pipeline test on the diagnosis (f¢) and prognostic model (fF) on the D[/5.

n/a

For

each of the three tests, performance metrics for the diagnostic model only (D), as well as the complete pipeline

(P), are reported as D/P in the metrics.

Test | Mod tp t, 0 Spec. Sens. Fy Acc

1 [ D/P [ 09990 | 0.04 [ MB || 0.11/0.14 | 1.00/1.00 | 0.73/0.11 | 0.60/0.18
‘ 2 ‘ D/P H 0.9990 ‘ 0.04 ‘ MT H 0.39/0.07 ‘ 0.82/1.00 ‘ 0.71/0.14 ‘ 0.63/0.14 ‘
’ 3 ‘ D/P H 0.9999 ‘ 0.01 ‘ MT H 0.39/0.11 ‘ 0.86/1.00 ‘ 0.73/0.14 ‘ 0.65/0.17 ‘

The results from this evaluation demonstrate that
the diagnosis model shows some level of generalizabil-
ity for new data with the current settings. However,
it is evident that there is room for improvement to
enhance its performance further. This highlights the
need to focus on parameter tuning and optimization
for the model.

Dataset D%la is used to find optimal threshold ¢,
and t,.. Figure 2 shows predictions based on different
tp. The first column shows an example of a benign
slide that is mistaken for melanoma. There are very
few predictions of the NF class, probably because
the class is underrepresented during training. The
distinction between NE and T has no diagnostic or
prognostic relevance, but we keep it as a separate
class in case it helps separate benign from malignant
cases. In future work, we will investigate this further.

When a lesion is annotated, it is obvious to cal-
culate the ratio of MB patches within the lesion.
However, in situations where the lesion size, as well
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Figure 3. ROC plot for diagnosis model with ¢, =
0.9999 and MT,4; method on dataset D™/®.

as the tissue size, varies and is unknown, focusing
on MT appears to be a more logical approach. For
each t,, different ¢, was tested with a ROC plot to
find the optimal threshold, Figure 3 shows the MT
ROC plot for t, = 0.9999 and ¢, = 0.01 marked



as updated thresholds for the new, larger dataset.
For MB, we observed that the optimal threshold
choice yields relatively poorer performance across
all ¢, values. All in all, the increase in AUC score
suggests that MT is more effective.

5.2.1 Non-annotated data pipeline test

A final test is done using the updated thresholds
from the previous experiment, and testing the entire
pipeline on the test set from D™%. Results are
presented in Table 5. The diagnose model performs
reasonably well, with F1 scores around 0.73. The
model recall is higher than the specificity, which is
also what is desired since it is better to be sure that
malignant melanoma is discovered. The difference
between the new and old thresholds is not very large.
The prognostic model, however, has a recall of 1 in
all experiments and a bad specificity, even if the
results in Table3 are promising. Prognosis prediction
is far more difficult than diagnostic prediction in
general, and this shows us that the model has not
generalized well enough, and a larger training set
with both good and bad prognoses is needed to get
general models. In future work, we will investigate
using multiple instance learning with a larger dataset
for the prognostic part.

6 Conclusion

This paper presents a pipeline putting together
two CNN models, one for melanoma detection and
localization and one for prognosis prediction on
melanoma cases. The pipeline test demonstrates
that the prognostic model works similarly well, with
F1 scores of 0.82 and 0.79 if the input to the model
comes from manual annotation or the output of the
diagnostic model when tested on the data set from
the same distribution as used to train the models,
which is very encouraging. Further updating of the
parameters in the diagnostic model showed reason-
ably good performance for the diagnosis part on a
new data set; however, the prognostic model over-
estimates bad prognosis and should be trained on
larger data sets. Prognosis is generally harder to
predict.
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