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Abstract

Illegal, unreported, and unregulated (IUU) fishing poses a global threat to ocean
habitats. Publicly available satellite data offered by NASA and the European
Space Agency (ESA) provide an opportunity to actively monitor this activity.
Effectively leveraging satellite data for maritime conservation requires highly re-
liable machine learning models operating globally with minimal latency. This
paper introduces three specialized computer vision models designed for synthetic
aperture radar (Sentinel-1), optical imagery (Sentinel-2), and nighttime lights
(Suomi-NPP/NOAA-20). It also presents best practices for developing and deliver-
ing real-time computer vision services for conservation. These models have been
deployed in Skylight, a real time maritime monitoring platform, which is provided
at no cost to users worldwide.

1 Introduction

Unprecedented environmental catastrophes compounded by ruthlessly efficient fishing are pushing
our oceans to the brink. Entire species have gone missing seemingly overnight. Last year, 10 billion
snow crabs vanished from the Bering Sea prompting the fishery to close for the first time in its history
[1]. Worldwide, it is estimated that 34% of fisheries are unsustainably harvested [2], a concerning
trend that continues to escalate.

Remote satellite data coupled with artificial intelligence provide a means to monitor and deter
unregulated and illegal fishing, one of the biggest threats to marine ecosystems. Although no single
satellite can provide adequate coverage of the entire planet, employing many satellites with a variety
of passive and active sensors enhances the likelihood of identifying destructive behavior as it occurs.
Large, publicly available image data from a diverse constellation of satellites enables real time
monitoring of the entirety of the world’s oceans.

This paper provides an overview of three novel computer vision models designed for near real time
vessel detection. Each of these models has been deployed in Skylight [3], a maritime intelligence
platform, supporting international conservation efforts through real-time monitoring. Skylight is
provided for free to users worldwide, spanning 308 organizations and over 60 countries.
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Figure 1: Data-flow depiction of a real-time streaming computer vision service for vessel detection in
satellite imagery. An orbiting satellite images a vessel. The image is downlinked to a ground station.
That data is copied to Skylight owned servers and processed by a computer vision model [4]. The
resulting vessel detection is reported to our users through a GUI and available via an API.

Table 1: Overview of each satellite detection service

Provider PX (m) Signal Revisit rate Latency Vessel Count (10/2023)

VIIRS NASA 750 watts 2x/night 2.5 hrs 145,063
Sentinel-1 ESA 10 radar 14 days 5 hrs 182,234
Sentinel-2 ESA 10 optical 5 days 5 hrs 430,467

2 Building computer vision models for maritime intelligence

Achieving high performance is critical for our users, who cannot afford to expend limited resources,
such as fuel, on pursuing non-existent vessels.. However, while performance is paramount, there
are other important considerations that anchor research and development, including minimizing
latency and ensuring adequate interpretability. It is essential to report a vessel’s presence as quickly
as possible. Although the overall latency–from the vessel to the satellite, then to the model, API,
and finally the user–is dominated by the downlink latency (see table 1 "Latency"), computational
efficiency is important. This efficiency facilitates high throughput iteration and regular upgrading.
In addition, the model outputs should be interpretable. If the model commits egregious errors or its
reasoning is opaque, our users cannot (and should not) trust its outputs. For this reason, the platform
outputs a simple crop centered on each vessel detection (Fig. 2.2 D-F) to allow users to visually
inspect every detection. We aim for transparency and share documentation about the model creation
and ML strategy to help establish confidence in the machine intelligence.

In the following sections we provide a brief description of the unique characteristics and modeling
strategy for each satellite. Table 1 provides a high level overview of each vessel detection service.
The code and model architectures alongside complete processing pipelines and additional details
have been open sourced on GitHub [5, 6].

2.1 Vessel detection in VIIRS imagery

The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on board the Suomi-NPP and NOAA-
20 satellites collect visible and infrared images during both the day and night [7]. While not originally
intended as a real time vessel monitoring data source, the low latency (∼ 2 hrs), global coverage,
satellite redundancy, and unique signal characteristics make the VIIRS sensor a useful tool in the
fight against illegal fishing. However, the low spatial resolution (750m) precludes distinguishing
vessels from non vessels prima facie (see example detection in Fig. 2.2D). Therefore, care must be
taken to achieve high precision.

The modeling strategy adopted a three stage approach. The first stage consisted of a classical computer
vision model, trained without supervision, to extract all possible sources of light. This was achieved
with a simple 2D kernel. In the second stage, all known non-vessel light sources (lightning, gas
flares, moonlit clouds, the northern and southern lights, and ionospheric particles from within the
South Atlantic Anomaly) are removed through a series of postprocessing steps [8]. These non-vessel
light sources often exhibit stereotyped distributional patterns (unlike vessels) that is amenable to
rules based logic. Additionally, we implemented statistical tests to identify unusually geographically
distributed vessels coincident with scan lines and suppressed false positives at the frame’s extremeties
due to the “noise smile" [9] to control the false positive rate. The final stage involved filtering all
positive detections through a regularly updated 2d CNN. This CNN was trained on human annotated
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Figure 2: Example satellite imagery (top row) and sample detections (bottom row) from a VIIRS
image (A, D) near the Ecuadorian coast, an S1 image (B, E) from the North Sea and an S2 image (C,
F) from the Maldives. Scale bars are approximate. Confidence scores ≥ 0.95.

image labels (correct/not) with four channels (nanowatts, land water masks [10], moonlight, and
clouds [11, 12]). This model was specifically designed to run in resource constrained environments,
requiring only modest hardware (4 GB RAM, no GPU).

End-to-end deep learning based approaches were also evaluated. However, given the simplicity and
limited spatial extent of the objects (1-2 pixels, as shown in 2.2D), and their sparse distribution,
end-to-end deep learning based models required significantly more computational power to achieve
performance comparable to our hybrid design. Our hybrid approach is designed to be highly efficient,
which allows for regular and economical retraining using new labeled data. Such efficiency is
particularly beneficial for machine learning-specific continuous integration and continuous delivery
(CI/CD) pipelines including extensive model-specific integration testing. Thorough testing (especially
within the CICD framework) is beneficial for preventing regressions during phases of fast-paced
development, and is typically prohibitively expensive with conventional large-scale DNNs.

2.2 Vessel detection in S1 imagery

Sentinel-1 (S1) is a satellite constellation from the ESA providing 10 m/pixel synthetic aperture radar
(SAR) imagery, which measures properties of energy reflections from the planet surface [13, 14].
It captures Earth’s land surface and coastal waters roughly every two weeks. The visual features
are more complex than VIIRS, requiring detailed visual discrimination to distinguish vessels from
islands and fixed marine infrastructure, and we found that deep learning methods were required. We
created a dataset of 55,499 vessels (point labels) annotated by maritime experts.

We developed a detection model consisting of a standard Faster-RCNN [15] head, with a customized
backbone. The backbone consists of a small 13-layer fully-convolutional encoder, which outputs
feature maps at four resolutions that are processed through a feature pyramid network (FPN) [16].
We adapt the backbone to input not only the current target S1 image (with two bands, VV and VH
polarizations) in which vessels should be detected, but also one or more aligned historical images
of the same region at different times. These historical images enable the model to learn that marine
objects consistently in the same location, such as fixed platforms and islands, are unlikely to represent
transient objects like vessels. We process the images independently through the backbone, and at each
resolution we concatenate the features of the target image with the pooled features of the historical
images and pass the result to the FPN. Note that an early version of this model architecture scored
fourth place in the xView3 competition [17]. The training data used here does not overlap with the
xView3 data, and in contrast to xView3, is 100% human annotated (rather than by machine).

2.3 Vessel detection in S2 imagery

Sentinel-2 (S2) is another ESA satellite constellation, providing optical imagery with four bands at 10
m/pixel, six bands at 20 m/pixel, and three bands at 60 m/pixel [18]. It captures Earth’s land surface
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and coastal waters roughly every 5 days. The same maritime experts annotated 43,102 vessels (point
labels) in S2 imagery.

The various S2 bands provide rich information about the physical objects present in a scene. For
example, RGB bands already enable distinguishing most vessels from other marine objects, but
additional bands can be leveraged to further improve accuracy due to the different reflectance
signatures of vessels and other objects. Thus, we developed a detection model that, like our S1 model,
uses a Faster-RCNN detection head, but we couple it with a much larger Swin Transformer [19]
backbone that has sufficient parameters to perform complex analysis of the S2 bands. We found
that pre-training the backbone on SatlasPretrain [20], a large-scale remote sensing dataset, further
improved performance. Unlike with S1, we did not observe a performance increase from inputting
historical images. We speculate that this is because the visual signatures of vessels in S2 optical
images are sufficiently distinct from stationary objects (e.g., platforms or wind turbines), so historical
images are not needed.

2.4 Model evaluation, validation, and deployment

While there is no single metric that we use to determine when a model is ready to be released to our
users, each model is continuously evaluated against a variety of criteria as it passes from research,
to staging, to deployment. During the research phase, the primary method of evaluation consists
of offline F1 scores against large and randomly held out validation datasets (where possible). For
S1, we also compared the model against a previous version that had been submitted to the xView3
competition (the new model improved from 70.1% to 82.7% F1). The S2 model was not part of an
external competition, but exhibited a similar F1 score of 0.81. There was no large annotated dataset
for the VIIRS model, however, we did compare its performance against the industry standard model
on previously human validated frames [9]. Due to the fact that offline performance of VIIRS was
limited, we supplemented this evaluation with extensive unit and integration tests (CI/CD), covering
a variety of known failure modes (aurora, moonlit clouds, imaging artifacts, etc).

Once all failure modes have been addressed, we transition models into an online staging environment
that replicates production dataflows (i.e. streaming and real-time inference). Importantly, all of the
inferenced data in the staging environment is new (out-of-sample) data. Models are evaluated in this
staging environment for extended periods (months) by subject matter experts versed in maritime
intelligence and regularly updated in response to that feedback.

Once confident that a new model is performant, we deploy models from staging into the production
environment. In production, the primary method of evaluation consists of user feedback (internal and
external) which gives us prompt notice of performance degradation or model drift.

After deployment, models are regularly upgraded (monthly release cadence) in response to feedback
and/or new information sources. It is worth noting that while the data sources are (largely) stable,
ocean activity is highly dynamic. For example, marine infrastructure (wind turbines, oil platforms, etc)
are constantly evolving. These dynamics must be tracked and addressed through regular maintenance
to maintain high performance. For example, to improve precision of each of the above models, we
recently added an additional postprocessing step that geofences false positive detections coincident
with recently detected [21] marine infrastructure produced by Bastani et al. [20].

2.5 Satellite and GPS correlations

Every vessel detection is augmented by the addition of GPS information, when available, provided
by the Automatic Identification System (AIS). Most vessels broadcast their locations, but some do
not. Notably it is possible to obfuscate one’s position by suppressing AIS but quite challenging to
evade detection from a satellite. Vessels that neglect to broadcast their locations, but are still visible
under radar or satellite imagery are especially relevant to analysts. In a typical satellite image, there
are many detected vessels, and many possible candidate matches from AIS signals in the vicinity.
Therefore, it is necessary to correlate the signals from these two information sources. Fig. 3 shows
a depiction of the correlation process. Matching geolocations from an image and as determined by
GPS can be formulated as a simple minimum weight matching problem in bipartite graphs. We apply
a Jonker-Volgenant algorithm [22] as implemented by Pedregosa et al. [23] to assign matches.
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Figure 3: A. Depiction of the correlation process. We compute the haversine distance between vessels
in imagery and as located by AIS, then minimize the distance over the pairs. B. Panel from the
Skylight UI showing radar detections. Correlated = black, uncorrelated = red.

3 Best practices for shipping computer vision for maritime intelligence

Deploying computer vision models into a real time streaming context has offered many valuable
lessons, particularly around closing the gap between offline batch and online streaming performance.

• Near real-time satellite data may exhibit unique features or artifacts that will be missed if
training on historical imagery. If streaming inference is the goal, ensure that the model is
trained against the same data that will ultimately be inferenced in production.

• The performance of static models, i.e. those with frozen weights, is at risk of regression due
to model or data drift. Ensure that model iteration is as simple and as automated as possible
in order to facilitate seamless retraining from feedback.

• Allow ample time to empirically assess the model performance in real world conditions and
at appropriate temporal and spatial scales to identify and correct problems as they occur. For
example, VIIRS is highly sensitive to the lunar cycle.

• Users cannot rely on machine intelligence unless it is consistently available and reliable.
Expect to dedicate significant engineering resources beyond ML to ensure that the model is
always online and maintained.

• Employ the best practices from software engineering during research and development. In
particular, continuous integration and continuous deployment, unit and integration tests,
code quality enforcement, and documentation are all essential.

• Satellite imagery exhibits massive variation at global scale and therefore it can be challenging
to anticipate how performance will degrade on out-of-sample data. For example, after
deployment we discovered hitherto unknown sources of false positives due to the Aurora
Borealis/Australis for VIIRS, newly constructed wind turbines in the North Sea for the S1
model, and sargassum patches [24] in the Caribbean for the S2 model.

4 Equity considerations

Real time vessel detections from each these models are provided through Skylight, a free maritime
intelligence platform. The purposes of these models specifically, and Skylight more broadly, is to help
nations protect their marine resources and promote ocean health for future generations. While we
believe that the benefits of this technology (both within our platform and as open source repositories)
outweigh potential risks, there is a possibility these models could be used for ignoble ends. We do not
have a straightforward response that obviates these concerns and we do not take the decision to open
source this technology lightly. We chose to open source these models because we believe that both the
machine learning research community and the conservation community using the vessel detections
should have complete transparency and full access into the underlying model architectures and logic
(both for inference and training). In addition, these models are made possible by the existing open
geospatial community, especially NASA and the ESA which provides both historical data used for
training and near real time data for inference and monitoring.
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lowing products are used. For SuomiNPP, VNP02DNB_NRT (light), VNP03DNB_NRT (supporting data),
VNP02MOD_NRT (gas flares). For NOAA20, VJ102DNB_NRT (light), VJ103DNB_NRT (supporting
data), VJ102MOD_NRT (gas flares). In addition, we use the cloud masks created by the University of
Wisconsin SSEC (https://www.earthdata.nasa.gov/learn/find-data/near-real-time/
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repository [5].

The ESA (European Space Agency) and the Copernicus Data Space Ecosystem (S1 and S2)

Data for the S1 and S2 constellations are available at https://dataspace.copernicus.eu/. Additional
details of the specific products used for each satellite model are provided below.

• S1: Level-1 GRD (Ground Range Detected) data were used. Models were trained with both
VV and VH polarization modes.

• S2: Level-1C data (orthorectified top-of-atmosphere reflectance, with sub-pixel multispectral
registration). In addition to the L1C data, we also apply cloud detection to suppress false
positives due to clouds. To do so we use the s2 cloud detector (s2cloudless) available from
PyPI [25]. More details on this algorithm are available in [26].

Note that we previously used Copernicus Open Access Hub which is deprecated as of October 2023,
and replaced by the Copernicus Data Space Ecosystem.
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