
Online Planning for Stochastic Collaborative Privacy Preserving Planning

Anonymous submission

Abstract
Collaborative multi-agent privacy preserving planning
(CPPP) models problems where agents must work together
to achieve joint goals, while keeping some information
private. Recently, CPPP was extended to the stochastic case,
where actions may fail, producing different effects than
intended. Stochastic CPPP (SCPPP) problems can be solved
using offline algorithms, such as RTDP. However, in many
cases, we are not interested in computing a complete policy
offline, and prefer to use an online approach, where one
decides online on the next action only, without exploring
the complete state space. This can allow us to scale to
much larger problems. In this paper we thus explore online
approaches for SCPPP. We suggest using a variant of the
well known FF-Replan approach, adapted to CPPP, and a
plan repair approach, where we try to locally return to the
plan if an undesirable effect has occurred. We provide an
empirical evaluation, comparing our approaches to an offline
solver, showing that we can scale to much larger problems,
and analyzing the strengths and weaknesses of our methods.

Introduction
In many real world applications several autonomous agents
need to collaborate to achieve collective goals. In some
cases, these agents are constrained to keep certain infor-
mation private, not disclosing it to the other agents they
collaborate with. Collaborative Privacy-Preserving Plan-
ning (CPPP) models such multi-agent planning tasks, where
agents need to collaborate without revealing private infor-
mation (Brafman and Domshlak 2008). Each agent has pri-
vate facts and actions that cannot be shared with the other
agents. CPPP has important motivating examples, such as
planning for organizations that outsource some tasks.

While classical CPPP considers deterministic domains,
there are many real world scenarios that are naturally
stochastic. That is, when an action is executed, different ef-
fects may occur, and one can define a distribution over the
possible effects of the action. For example, a robotic arm that
organizes objects in a specific structure may wrongly drop
the object it is holding, may accidentally hit other objects
and move them to other locations, and may successfully put
the object in its designed location. One can often know in ad-
vance the probability of each of these outcomes. Stochastic
Collaborative Privacy-Preserving Planning (SCPPP) mod-
els CPPP problems where actions may have different effects

with varying probabilities (Hefner, Shani, and Stern 2022).
Stochastic planning domains can be modeled using Markov
Decision Processes (MDPs) (Kolobov 2012), and SCPPP is
also designed as an MDP.

Hefner, Shani, and Stern (2022) show that SCPPP prob-
lems can be solved using MDP based algorithms, such as
RTDP. RTDP is a popular approach for solving a goal-based
MDP that operates by iteratively executing trajectories in the
state space (Barto, Bradtke, and Singh 1995). Hefner, Shani,
and Stern (2022) adopt RTDP algorithm for solving SCPPP
problems, suggesting two variations: DRTDP and PS-RTDP,
varying in the messages sent between agents.

RTDP is an offline approach, where a policy, a mapping
from state to actions, is computed before the agent begins to
act. During acting, however, in many cases the agent will
only visit a relatively small number of states in each ex-
ecution. In these cases, when the number of executions is
low, computing a policy for many states that will not be
visited can be wasteful. Online approaches, on the other
hand, do not compute a policy before starting to act. Instead,
while acting, online approaches make local decisions at each
state that is visited (Hansen and Zilberstein 2001). These ap-
proaches require little time before beginning to act, but may
require significant computations before each action is taken.

In this paper we propose an online planning approach for
SCPPP. The agents make a decision about the next action to
execute, using a heuristic method (Pearl 1984). We suggest
3 different heuristic strategies for deciding on the next ac-
tion. First, we suggest computing a privacy preserving cost-
to-go estimation (Štolba and Komenda 2014), extended to
the non-deterministic case. Then, we follow the well-known
FF-Replan approach (Yoon, Fern, and Givan 2007), where a
classical plan is computed to decide on the next action. We
compute a plan using a classical CPPP approach (Nissim and
Brafman 2014). That plan is followed until an unexpected
action outcome occurs, at which point we replan. Finally, we
suggest a plan repair approach, augmenting our FF-Replan
method. When an unexpected outcome occurs, instead of re-
planning for all agents, the agent that experienced the unex-
pected outcome attempts to replan locally to return to the
existing joint plan. Only if the agent fails, then a complete
replan is launched.

We provide a wide set of experiments over benchmarks
based on the CODMAP competition (Štolba, Komenda, and



Kovacs 2015). We construct stochastic problems with richer
stochastic effects. We first shows that the offline RTDP ap-
proach only solves very small problems while we scale to
many orders of magnitude larger instances. We then com-
pare our online methods, both in terms of policy quality,
as well as in terms of the required time for each decision.
We show that the cost-to-go heuristic is often much faster to
compute, but sometimes makes low quality decisions. In do-
mains where actions can fail in several ways, our plan repair
method can decide faster on the next action.

Background
A multi-agent problem (Brafman and Domshlak 2013) is a
tuple ⟨P, {Ai}ki=1, I, G⟩ where: k is the number of agents,
P is a finite set of facts, Ai is the set of actions agent i can
perform, I is the start state, and G is the goal condition.

Each action a = ⟨pre(a), eff (a)⟩ is defined by its pre-
conditions (pre(a)), and effects (eff (a)). Preconditions and
effects are conjunctions of facts, or fact negations. A state
is a truth assignment over P , typically modeled by the set
of facts that hold in s. G is a conjunction of facts. a(s)
denotes the result of applying action a to state s. A plan
π = (a1, . . . , ak) is a solution to a planning task iff G ⊆
ak(. . . (a1(I) . . .).

Collaborative privacy-preserving planning is a multi-
agent problem where for each agent i there is a disjoint
subset of facts and a disjoint subset of actions that are
private, known only to agent i, denoted privatei(P ) and
privatei(Ai), respectively. public(P ) is the subset of public
facts in P that are known to all agents. publici(Ai) is a set of
public actions of agent i. As opposed to private actions, the
execution of a public action is observed by all agents, and
the public effects that it generates. Some preconditions and
effects of a public action may be private, and the action ob-
tained by removing these private elements is called its public
projection, and it is known to all agents. Goals can be public
or private to an agent. The problem is collaborative, that is,
all agents work together towards achieving both the public
and the private components in G.

An agent is aware only of its local view of the problem,
that is, its private actions and facts, its public actions, the
public facts, and the public projection of the actions of all
other agents. For public actions of other agents, the local
view contains only the public preconditions and effects. Dur-
ing execution, we assume that all agents observe the execu-
tion of a public action, and the changes in the public facts.

MAFS is a distributed algorithm which computes a com-
plete plan using collaborative forward search (Nissim and
Brafman 2014). Each agent maintains an open list of states,
and in every iteration each agent chooses a state in the open
list to expand, generating all its children and adding them to
the open list (avoiding duplicates). Whenever an agent i ex-
pands a state that was generated by applying a public action,
it also broadcasts this state to all other agents. An agent j
that receives a state adds it to his open list.

To preserve privacy, the private part of a state is obfus-
cated, e.g., by replacing the private facts with some index,
such that only the broadcasting agent knows how to map this
index to the corresponding private facts. Also, to avoid some

privacy leakage, one can send new indexes for an already
sent state (Brafman 2015). Once the goal is reached, the
agent achieving the goal informs all others, and the search
process stops.

Stochastic CPPP is an extension of CPPP to stochastic do-
mains, modeled as an MDP, with each agent viewing only a
part of the complete MDP (Hefner, Shani, and Stern 2022).
More formally, a Stochastic Privacy Preserving Planning
problem (SCPPP) is a tuple ⟨P, {Ai}ki=1, {tri}ki=1, I, G,C⟩
where P , k, I , and G are as above. Ai is the set of stochas-
tic actions for agent i. {tri}ki=1 is a transition function for
agent i specifying its probability of moving between states
by performing actions. C is a cost function.

As in a CPPP problem, privatei(P ) and privatei(Ai) de-
note private facts and actions of agent i. public(P ) is the
set of public facts in P , and publici(Ai) is the set of pub-
lic actions of agent i. As in an MDP, actions have stochastic
effects, i.e. eff (a) = {⟨ϕi, pi⟩} where pi is the probability
that effect ϕi would occur and

∑
i pi = 1 and C assigns a

cost for executing an action at a state. In this paper, we only
allow non-negative costs. Agent i knows only the transition
function for actions in Ai.

While in classical CPPP problems a solution is a sequence
of public and private actions, in a SCPPP problem the so-
lution is a policy, determining for each state which agent
should execute an action and which action must be executed.
However, each agent only sees the public part of the state,
and its own private state. To preserve privacy, many algo-
rithms model the global state by a tuple ⟨spub, s̃1, ..., s̃k⟩,
where spub the set of public facts that hold, and for each
agent i, s̃i is an index that i maps internally to si, the set of
private facts of i that hold. Using this representation we can
maintain a two-level policy. At the higher level we maintain
a mapping from ⟨spub, s̃1, ..., s̃k⟩ to agents, denoting which
agent should act in the current global state. Then, each agent
maintains a local private policy specifying which action to
execute at the current global state. After the action is exe-
cuted, the agent i that executed the action sends a new global
state, with revised spub and a new s̃i.

In this paper, we focus on policies that do not allow par-
allel execution. We leave extensions that allow for parallel
executions where more than one agent executes an action at
each step to future research.

In offline planning, the agent computes a solution, i.e., a
policy, before starting to act. Then, during policy execution,
the agent only queries the policy on which action to execute
next. Offline planning algorithms must first compute a policy
for every state that might be visited during the policy execu-
tion. These algorithms require a significant computational
effort before acting, but little effort during policy execution.

Real-Time Dynamic Programming (RTDP) is such an
offline MDP algorithm (Barto, Bradtke, and Singh 1995;
Bonet and Geffner 2003) which operates by running sim-
ulated trajectories in state space. A trajectory begins at the
initial state and is advanced until a goal is reached. To ad-
vance a trajectory, a heuristically best action is selected and
a Bellman update is performed. After the update, a new state
s′ is selected from the tr(s, a, ·) distribution and the trajec-
tory is advanced to s′. RTDP is anytime, and can be stopped



before the value function converges, and often obtain a good
policy. DRTDP is a direct adaptation of RTDP to SCPPP.

Public Synchronization RTDP (PS-RTDP), the approximate
version of DRTDP, relies on the intuition that agents need to
collaborate mostly after performing public actions, as op-
posed to private actions which do not directly affect other
agents. As in MAFS, following a private action of agent i, the
next action should also be of agent i. Hence, in PS-RTDP, an
agent chosen to execute the next action continues to execute
additional actions until it executes a public action. Then, the
agents select the best agent to advance the trajectory and
progresses it farther.

Online planning algorithms, on the other hand, avoid
computing a complete policy before acting. Instead, online
algorithms perform planning before deciding on the next
action to execute. These algorithms hence trade the costly
complete policy computation prior to acting, with local com-
putations prior to every action execution.

Typically, offline algorithms that consider the entire pol-
icy can make optimal decisions, while online planning al-
gorithms that must make only rapid local computations, of-
ten do not guarantee optimality. In some cases, there is a
tradeoff between the amount of time spent deciding on the
next action, and the optimality of the decision (Kocsis and
Szepesvári 2006). On the other hand, online algorithms that
can consider only states that were visited during a particular
execution, can scale to much larger problems.

A well known online method for single agent MDP is the
FF-REPLAN algorithm (Yoon, Fern, and Givan 2007). FF-
REPLAN creates a deterministic variation of the problem and
produces a plan for that problem by using a deterministic
planner (Hoffmann and Nebel 2001). Then, the agent acts
according to the produced plan until it either reaches the
goal, or an unexpected state, due to a stochastic effect. When
reaching an unexpected state, it re-plans by solving a new
determinization of the problem where the unexpected state
is the initial state. Our methods are built on an adaptation of
FF-Replan to a privacy preserving multi agent scenario.

Related Work
Several online approaches for MDPs where suggested in the
past. Hansen and Zilberstein (2001) suggest the LAO∗ al-
gorithm, that uses local heuristic search online to decide on
the next action. In their experiments they use a cost-to-go
heuristic estimation. RTDP can also be used as an online
algorithm, running a number of trajectories before every ac-
tion decision. The UCT algorithm (Kocsis and Szepesvári
2006) is a model free approach, that explores a partial for-
ward plan tree, using forward simulations to produce heuris-
tic estimates at the leaves of the tree. UCT variants were
shown to be successful in probabilistic planning problems
(Keller and Eyerich 2012). Online versions of RTDP and
UCT were shown to have very similar performance in MDPs
(Kolobov, Weld et al. 2012). Algorithms based on Monte-
Carlo tree search were also suggested for online planning in
MDP (Feldman and Domshlak 2014), also in the multi-agent
case without privacy concerns (Choudhury et al. 2022).
Adapting MCTS, UCT, and online RTDP to SCPPP is in-
teresting to explore.

There are two main approaches for solving privacy pre-
serving planning problems. The first approach computes a
public plan first, containing only public actions. Then, each
agent attempts to extend its part in the public plan using
private actions. If an agent fails, a new public plan must
be computed. For example, the GPPP algorithm (Maliah,
Shani, and Stern 2018a) computes a rich public projection of
the problem, and computes the public plan in a central man-
ner over this projection. In the second approach all agents
plan jointly, informing other agents when they achieve some
public state. The most popular representative of this ap-
proach is the MAFS algorithm (Nissim and Brafman 2014),
which motivated the PS-RTDP algorithm (Hefner, Shani, and
Stern 2022) for solving stochastic CPPP problems.

We can incorporate methods based on public plans to
SCPPP as well, creating a public policy first, and then local
private policies for each agent. Offline-online hybrid, where
a public policy is constructed offline, but agents make online
choices on their private actions, may be useful.

Many heuristics developed originally for classical plan-
ning were adapted to CPPP (Štolba and Komenda 2014;
Stolba, Fiser, and Komenda 2015, 2016; Stolba and
Komenda 2017; Stolba et al. 2019; Maliah, Shani, and Stern
2014, 2017, 2018b). It is interesting to investigate the use
of these heuristics for the stochastic case. Most heuristics
would require some adaptation to handle stochastic effects
in an informed manner.

As many other CPPP algorithms, we publish heuristic es-
timates, which may affect privacy. The CPPP community has
yet to establish a formal model for privacy which both out-
lines what must be kept hidden, and allows for efficient com-
putations (Tozicka, Stolba, and Komenda 2017; Stolba, Ur-
banovská, and Komenda 2022). There is also work in the
planning community on learning action models from observ-
ing policy executions (Yang, Wu, and Jiang 2007; Zhuo et al.
2010; Juba and Stern 2022). An investigation of these issues
is important, but outside the scope of this paper.

Heuristic Online SCPPP
We now introduce our online algorithm for solving SCPPP
problems. At each step, the algorithm chooses which agent
should act. Then the agent decides which action to exe-
cute. These decisions are based on a heuristic estimate that
the agents compute jointly, in a privacy preserving manner.
When we discuss heuristics, we sometimes mean a heuristic
function, which assigns a value for a state or action, often the
cost-to-go until reaching the goals. In other cases, however,
we consider heuristic in a broader sense, as a rapid method
for making a decision, that is not guaranteed to be correct or
optimal (Pearl 1984; Romanycia and Pelletier 1985).

Before executing an action, the algorithm requires two
steps. First, the agents must decide on the next agent to act,
based on the particular heuristic method. Then, the agent
whose action is preferred, takes the lead. That agent executes
its seemingly best action, sends the new state to all agents,
and then the process is repeated. The execution is terminated
when all agents agree that the goal has been reached.

We suggest three different heuristics for choosing actions.



First, we use a simple classical heuristic, hff . Second, we
follow FF-REPLAN, solving a determinized CPPP version of
the SCPPP problem, and follow its solution until an unex-
pected state has been reached. Finally, we suggest a plan-
repair approach, where when an agent that executed an ac-
tion reaches an unexpected state, only that agent replans lo-
cally to achieve its next public action.

To support privacy preserving, we use a message pass-
ing mechanism similar to that in PS-RTDP (Hefner, Shani,
and Stern 2022) where each message contains a public state,
indexes of private states and information about heuristic es-
timations for computing heuristics collaboratively.

Online Algorithm
Algorithm 1 describes our online SCPPP algorithm. Each
agent continuously executes it until all agents report reach-
ing the goal (line 2). Once agent i achieves its goal it notifies
all other agents (line 4).

In the main loop, each agent processes its received mes-
sages (line 5). A message m is a tuple ⟨s, t, i⟩ where s is a
state, t is the message type and i is the sending agent. There
are two types of messages: goal and trajectory messages.
Goal message indicates that agent i has achieved its private
goal, and all public goals are satisfied. The receiving agents
record this information (line 11).

Trajectory messages inform that agent j executed an ac-
tion and observed a new state s. That agent sends a new ob-
fuscated identifier for its new private state, and all agents
update their current state (line 13). Following the action, the
agents must again choose which agent should act next. This
decision is specific to the heuristic approaches that we sug-
gest, and is hence left unspecified in Algorithm 1.

After processing its received messages, the chosen agent
executes its seemingly best action a∗, observes the new pri-
vate state sic

′, and sends a trajectory message to inform other
agents (lines 16-18).

Heuristics
We use a heuristic method to choose the best agent and ac-
tion to perform at given state s. We now review 3 differ-
ent methods. First, we use a heuristic value estimation based
on the well known hff (Hoffmann and Nebel 2001). We
then implement an FF-REPLAN approach, where the agents
employ a privacy preserving classical planning algorithm to
create a plan for a determinization of the domain. Finally,
we augment this approach with plan repair, in cases where
an unexpected state was reached.

Multi-Agent Heuristic Cost-To-Go Estimate Our first
approach computes an heuristic estimate of the cost-to-go,
using a heuristic method developed for classical CPPP plan-
ning (Štolba and Komenda 2014). Many such heuristics
were investigated for CPPP, but in this paper, we use a dis-
tributed computation of hff , which we explain below.

The hff heuristic constructs a delete relaxation state
space by iteratively applying all possible actions at by all
agents. The state is constructed in a distributed manner,
where the public part of the state is shared, and each agent
maintains its private part of the state separately. In our

Algorithm 1: Online-SCPPP for agent i
1 online-planner(i)
2 while ∃j : j did not report goal do
3 if sic is goal state for i then
4 broadcast ⟨sic, goal, i⟩
5 process-messages()
6 if chosen = i then
7 advance-trajectory()
8 process-messages()
9 foreach Message m = ⟨s, t, j⟩ do

10 if m.t is goal message then
11 Record that j reports goal
12 if m.t = trajectory then
13 sic ← m.s
14 chosen← agents choose the next agent

to act
15 advance-trajectory()
16 a← best-action(sic)
17 Execute a, observe new state sic

′

18 send ⟨sic
′
, trajectory, i⟩

stochastic case, if an action has several possible effects, all
possible effects are added to the next level. This process is
continued until no new effects can be obtained. As opposed
to the regular hff , in stochastic environment a fact p can be
achieved multiple times in different layers of the constructed
graph and it is not guaranteed that the cost of achieving p in
the earlier layers will be better than the later. After the fact
graph was developed, the agents jointly compute a plan in
this relaxed space, and the cost of the relaxed plan is the
heuristic estimate.

In our case, we must decide on an agent to act. Hence,
each agent simulates the execution all its applicable actions.
Then, from each resulting state, we run an hff computa-
tion. That is, the agents run jointly numerous hff compu-
tations, and then we chose the action that provided the best
heuristic cost-to-go. In particular, for this heuristic method,
agents publish their best heuristic cost-to-go estimates, and
the agent with the best estimate is chosen to act. That agent
chooses the action that produced the best heuristic estimate.

Deterministic Replanning Our second approach does not
rely on a heuristic cost-to-go estimation. Instead, we di-
rectly compute the next action to execute, following the FF-
REPLAN approach for single agent MDP. This is done by cre-
ating a deterministic version of the multi-agent CPPP prob-
lem, where the most probable effect is the only possible ef-
fect. This relies on the underlying assumption that applies
in many planning domains, that successful execution of an
action is more likely than failure. If this assumption does
not hold, one may use a different determinization, where the
planner can choose which of the possible effects occur at
every action execution.

The determinized problem is created in a distributed man-
ner, where every agent determinizes its own actions, and
publishes the public view of its determinized public actions.



Cost Total time (sec)
Domain Offline Online Offline Online

DRTDP RTDP-CTG RTDP-DP CTG DR DPR DRTDP RTDP-CTG RTDP-DP CTG DR DPR

CBLE-1 4.01 4.48 4.06 3.4 4.2 3.4 0.04 0.03 2.14 0.07 2.53 1.93
CBLE-2 28.98 6.62 6.53 6.2 6.8 5.6 37.84 0.55 50.15 0.09 4.58 5.75
CBLE-3 - 8.96 - 13 10 10 - 68.51 - 1.45 5.77 9.08
CBLE-4 - - - 14.8 12.8 13.6 - - - 9.91 7.91 10.62

DLE-2 7.3 - 7.22 2.2 6.8 6.8 3.06 - 7.36 0.06 2.54 2.57
DLE-3 - - - 28 20.8 21.6 - - - 0.56 4.91 6.85
LG-7 26.96 26.85 26.93 26.75 27.15 28.4 183.73 40.6 181.84 0.18 3.03 3

LG-19 21.68 21.66 21.66 31.8 23.95 23.3 166.22 12.54 162.84 0.41 2.66 2.84

Table 1: Comparing cost (number of actions) and runtime (execution time in seconds) for both offline and online algorithms.
Best algorithm results are in bold.

Creating the deterministic domain description can be done
once, and then in each replanning episode we only need to
set the current start state. Then, we can run any off-the-shelf
CPPP solver to obtain a plan. This plan is created in a dis-
tributed manner, where each agent maintains its own portion
of the plan. The agent that is the first to act becomes the
chosen agent.

Computing a deterministic plan is a costly operation, and
we prefer to use the plan as long as it is applicable. That
is, we execute the plan until an unexpected stochastic ef-
fect occurs, which typically amounts to an action failure. To
identify such failures, we modify the CPPP planner such that
the agents maintain, in addition to the plan, the sequence of
states that should occur along the plan. Then, we can check
following an action execution if the resulting state is the
same as the expected state. If the state is as expected, we
continue to use the current deterministic plan. If it is not,
then we replan from the current state.

Plan Repair Finally, we suggest a method that allows us
to avoid complete replanning, attempting to return to the
already computed deterministic plan. To achieve that, we
leverage the structure of an CPPP plan. Such plans are built
by a sequence of public actions, sometimes called the plan
schema. The public schema is interleaved with private agent
actions, that achieve the preconditions of the public actions,
or private goals.

If a plan that was computed over the determinized CPPP
problem fails, instead of replanning, the chosen agent that
experiences the failure first attempts to return to the plan.
The agent does so by replanning independently on a single-
agent determinization of its own actions only, with the goal
to achieve the preconditions of its next public action.

This approach allows us to avoid the costly joint planning
episode, requiring only a single agent to replan, typically
for a much shorter horizon. If the agent manages to identify
such a plan, it continues to execute this repaired plan until
the public action, and then returns to the original plan. If not,
then a joint effort to create a new plan is launched.

Empirical Evaluation
We now provide an empirical evaluation of our methods on
domains adapted from the CPPP literature. The implementa-
tion is in C#. Experiments were run on a Windows machine

with an i7-8550U CPU and 8GB of RAM.

Domains
The domains were taken from the 2015 CODMAP competi-
tion (Štolba, Komenda, and Kovacs 2015)1 adding stochas-
tic effects with varying probabilities. We now provide a brief
description of each domain.

Blocks (BL): Blocks world problems where blocks must
be moved from an original configuration to some goal con-
figuration. Each agent controls an arm that can move a block.
We added the following stochastic effects to this domain:
Picking up a block succeeds with probability 0.8, otherwise
the block remains where it was. Putting down a block on the
table always (probability 1.0) succeeds. Stacking a block on
another block succeeds with probability 0.8. Otherwise the
block falls on the table. Unstacking a block from other block
succeeds with probability 0.9. Otherwise nothing changes.

Colored-Blocks (CBL): Hefner, Shani, and Stern (2022)
created a new version of the blocks domain where the blocks
are colored and each agent can move only specific block
colors. In addition, holding a block is a private information
known only to the agent who holds it. This domain enables
the agents to pick up a stack of two blocks and put it down
on the table or on another block. Most actions have iden-
tical probabilities to the BL instances. Picking up a stack
of two blocks succeeds with probability 0.7. With probabil-
ity 0.2 the stack falls and the blocks fall on the table. With
probability 0.1 the action fails and the stack remains where
it was. Putting down a stack of two blocks on the table -
with probability 0.7 succeeds, with probability 0.3 fails and
both block are on the table. Stacking a stack of two blocks
on another block succeeds with probability 0.6. With prob-
ability 0.4 the action fails and both blocks fall on the table.
Unstacking succeeds with probability 0.6. With probability
0.4 the action fails and all blocks fall on the table.

Colored-Blocks Extended (CBLE): A new version of
the colored-blocks domain with additional side effects. In
this domain, when an agent picks up, puts down, or stacks
a block from another block, the other block can fall on the
table too, accidentally. The actions have identical probabil-
ities to the CBL instances. If an action fails and a block or
stack fall on the table, the other blocks also fall on the table.

1http://agents.fel.cvut.cz/codmap/



Depot (DT): In the depot domain agents are trucks and
distributors. Distributors have hoists capable of lifting and
loading or unloading crates onto or off trucks. Trucks move
crates between locations. We add the following stochastic
effects: Lifting or loading a crates succeeds with probabil-
ity 0.8. Otherwise the crates remains where it was. Driving
between locations succeeds with probability 0.8 succeeds.
Otherwise the truck remains where it was.

Driverlog (DL): In the driverlog domain there are drivers
who can walk between trucks, and drive trucks between lo-
cations via paths. There are different paths used for walking
or driving. Drivers can board or disembark from a truck and
the trucks can be loaded or unloaded with packages. The
goal is to bring packages and trucks to target locations. For
each action in the domain we had set probability 0.8 for suc-
cess. If an action failes the state does not change.

Driverlog Extended (DLE): A new version of the driver-
log domain with additional side effects. For load and unload
actions, the action succeeds with probability 0.7. With prob-
ability 0.2 the action fails, and the driver disembarks from
the truck. Otherwise, the state does not change.

Elevators (EL): The elevators domain describes eleva-
tors moving between building floors. There are passengers
located in initial floors and the goal is to move passengers to
target floors. Each action in the domain succeeds with prob-
ability 0.8 and otherwise the state does not change.

Elevators Extended (ELE): This version of elevators
was designed to challenge replanning approaches. Here, ele-
vators may malfunction, requiring repair, which may require
several actions to succeed. Fast elevators have a higher prob-
ability of a malfunction.

Logistics (LG): In this domain there are airplanes and
trucks which can move packages between airports and cities,
respectively. Each action in the domain succeeds with prob-
ability 0.8 and otherwise the state does not change.

Rovers (RV): In this domain there are rovers that can
move between locations. Each rover has a subset of the fol-
lowing abilities: sampling soil, sampling rock, or taking im-
ages in several modes. Soil or Rock samples can be found in
various locations and image objectives can be visible from
various locations as well. The goal is for the rovers to com-
municate sampled/image data to landers which have to be
visible from the location of data communication. Each ac-
tion in the domain succeeds with probability 0.8 and other-
wise the state does not change.

Rovers Extended (RVE): This version of rovers was de-
signed to challenge determinization approaches. Here, dif-
ferent rovers have different probabilities for success on a
task. Thus, it is beneficial to assign tasks given these proba-
bilities. Task failures are identified only after the rover trans-
mits the results, requiring traveling back to the task location.

Zenotravel (ZT): In this domain there are passengers
which can be embark or disembark from aircrafts. The air-
craft can fly between locations at alternative velocities. For
each action in the domain we set a probability of 0.8 for suc-
cess and 0.2 for failure where the state does not change.

Domain # Solved instances
Name # instances DP DPR CTG

Simple domains
BL 20 14 14 12
DT 25 14 14 9
DL 20 14 14 15
EL 20 16 17 14
LG 31 31 31 28
RV 12 11 11 10
ZT 10 10 10 10

Complex domains
CBL 5 5 5 5

CBLE 5 4 4 5
DLE 20 14 14 14
ELE 20 16 14 12
RVE 19 19 19 2

Table 2: Coverage: amount of instances for each domain and
how many were solved by each method.

Procedure
We compare our 3 approaches for Online-SCPPP (Sec-
tion 18): selecting actions following a cost-to-go heuristic
estimate (denoted CTG below), the deterministic replanning
approach (denoted DR) and the deterministic plan repair
(denoted DPR). In addition, we compare our methods to the
offline RTDP based approaches (Hefner, Shani, and Stern
2022). We reimplemented the PS-RTDP method of (Hefner,
Shani, and Stern 2022) (denoted DRTDP), and also 2 vari-
ations in the heuristic used for forward search in RTDP, us-
ing the same heuristics used in the online solver (denoted
DRTDP-CTG, and DRTDP-DP).

For online algorithms, we terminate once the goal was
reached, or after 15 minutes. For offline algorithms, we run
RTDP until the policy converges within ϵ = 0.7, or 30 min-
utes have passed (excluding policy evaluation time). We then
estimate the average accumulated cost over 50 policy execu-
tions. During planning, policy evaluation is performed every
10 trajectories. The cycle-detection sensitivity of the mes-
sage passing mechanism was identical for all the problems
we ran and was set to 4 cycles.

Results
Table 1 compares offline and online results for two, rel-
atively difficult benchmarks, colored blocks world (CBL),
and Driverlog with driver exit effects (DLE). We compare
costs, using unit cost, and wall clock runtime. For offline al-
gorithms we compute the runtime until convergence, and for
online approaches, we compute the average trajectory run-
time. Clearly, this is not a fair comparison, because offline
policy evaluation is done once, and policy execution has al-
most no cost. Still, this allows us to estimate scaling up.

As we can see, offline planners scale poorly, as their run-
time grows exponentially even for very small problems. As
we show later, the online algorithms scale to much larger
problem sizes. For policy quality, we can see that the on-
line algorithms produce comparable costs in some cases. In
CBL-3, on the other hand, the offline approach produced



Domain Avg cost Avg decision time (sec)
#Agents #Objects DP DPR CTG DP DPR CTG

BL-1 4 9 29.7 ± 3.24 31.1 ± 4.85 1590.45 ± 584.93 0.25 ± 0.1 0.13 ± 0.04 0.05 ± 0.01
BL-8 4 12 37.35 ± 3.9 38.15 ± 5.58 - 0.3 ± 0.12 0.14 ± 0.03 -
BL-9 4 12 35.3 ± 3.94 34.25 ± 3.43 1471.85 ± 1080.23 0.34 ± 0.11 0.14 ± 0.04 0.15 ± 0.05

BL-10 4 14 38 ± 5.02 37.05 ± 4.55 - 0.35 ± 0.13 0.18 ± 0.04 -
DT-1 3 5 11.5 ± 1.24 11.75 ± 1.04 13.6 ± 2.03 0.12 ± 0.02 0.12 ± 0.02 0 ± 0
DT-6 5 4 11.25 ± 1.7 11.35 ± 1.35 11.45 ± 1.36 0.13 ± 0.03 0.12 ± 0.03 0.02 ± 0
DT-8 5 11 42.05 ± 2.82 44.3 ± 2.57 1163.25 ± 696.74 0.1 ± 0.01 0.09 ± 0 0.01 ± 0.01
DT-9 8 18 29.1 ± 1.61 29.1 ± 2 40.65 ± 7.88 0.15 ± 0.02 0.15 ± 0.01 0.31 ± 0.04
DL-1 2 4 7.65 ± 1.06 7.85 ± 1.11 2.35 ± 0.57 0.25 ± 0.04 0.25 ± 0.05 0.02 ± 0.01
DL-6 3 8 10.35 ± 1.68 10.1 ± 1.41 8.1 ± 2.12 0.26 ± 0.04 0.26 ± 0.04 0.07 ± 0.01
DL-9 2 9 27.5 ± 2.54 28.05 ± 1.94 31.6 ± 7.3 0.09 ± 0.01 0.08 ± 0.01 0.09 ± 0.01
DL-13 2 9 41.45 ± 2.91 43.45 ± 3.29 96.6 ± 58.24 0.11 ± 0.01 0.1 ± 0.01 0.61 ± 0.11
DL-14 3 9 49.6 ± 3.5 48.9 ± 3.51 120.85 ± 124.86 0.08 ± 0.01 0.08 ± 0.01 0.61 ± 0.14
EL-1 4 4 25.65 ± 2.78 25.95 ± 2.85 27.55 ± 8.73 0.14 ± 0.02 0.13 ± 0.02 0.23 ± 0.03
EL-6 4 9 69.05 ± 4.9 68.3 ± 4.21 312.25 ± 316.83 0.06 ± 0.01 0.06 ± 0 0.34 ± 0.07
EL-9 4 12 73.25 ± 4.21 73.5 ± 4.33 83.95 ± 36.08 0.07 ± 0 0.07 ± 0 0.93 ± 0.15

EL-13 4 12 106.15 ± 4.49 108.05 ± 4.42 100.6 ± 32.52 0.1 ± 0.01 0.1 ± 0.01 3.39 ± 0.52
EL-14 4 14 178 ± 5.34 177.5 ± 5.85 - 0.09 ± 0.01 0.09 ± 0 -
LG-1 3 1 12.8 ± 1.29 13.05 ± 1.56 11.7 ± 1.19 0.15 ± 0.02 0.15 ± 0.02 0 ± 0
LG-10 4 3 23.55 ± 1.86 23.65 ± 1.35 17.3 ± 1.19 0.1 ± 0.01 0.1 ± 0.01 0.01 ± 0
LG-20 5 12 70.6 ± 3.25 69.4 ± 3.58 135.8 ± 55.39 0.05 ± 0 0.05 ± 0 0.12 ± 0.02
LG-27 7 15 129.75 ± 4.36 130.1 ± 3.88 189.2 ± 38.77 0.05 ± 0 0.05 ± 0 0.48 ± 0.05
LG-28 7 15 116.5 ± 6.64 114.45 ± 4.95 110.5 ± 26.38 0.04 ± 0 0.05 ± 0 0.61 ± 0.09
RV-1 2 3 18.1 ± 1.97 18.4 ± 1.88 7.25 ± 1.34 0.12 ± 0.03 0.2 ± 0.18 0.01 ± 0
RV-2 4 6 31.4 ± 2.94 31.15 ± 2.69 179.4 ± 145.05 0.11 ± 0.06 0.19 ± 0.12 0.11 ± 0.06
RV-3 4 11 54.85 ± 3.66 55.25 ± 3.63 47.4 ± 15.01 0.08 ± 0.04 0.1 ± 0.05 0.36 ± 0.1
RV-4 4 10 82.25 ± 4 85.3 ± 5.12 - 0.04 ± 0.02 0.05 ± 0.03 -
RV-5 4 11 69.9 ± 4.09 68.8 ± 2.23 615.85 ± 461.9 0.06 ± 0.02 0.06 ± 0.03 0.1 ± 0.05
ZT-1 2 4 8.95 ± 1.5 9.75 ± 1.97 6.6 ± 1.16 0.22 ± 0.03 0.21 ± 0.04 0.08 ± 0.01
ZT-3 2 4 22 ± 2.14 22.85 ± 2.08 9.95 ± 1.5 0.1 ± 0.02 0.09 ± 0.01 0.12 ± 0.05
ZT-9 3 8 42.15 ± 2.82 41.65 ± 2.85 26.35 ± 5.35 0.07 ± 0.01 0.08 ± 0.01 1.22 ± 0.2
ZT-10 3 10 63.6 ± 3.4 63.05 ± 3.63 74.35 ± 54.15 0.06 ± 0.01 0.05 ± 0 0.8 ± 0.24

Table 3: Simple domains: cost and decision time, reporting means and standard error. Best costs are bolded.

substantially better policies. This is expected, as online ap-
proaches typically do not have optimality guarantees.

From the offline approaches, the hFF heuristic produced
the best results, both in runtime and in policy quality. In the
larger domains, the offline approaches did not manage to run
a sufficient number of RTDP trajectories in the given 30 min-
utes, and the resulting policy was of very poor quality.

We now move to analyzing our online methods. Table 2
summarizes the number of instances that we created for each
problem (based on the CODMAP problem instances), and
how many were solved by each method. For each method
and problem we run 20 trials, and report averages over these
trials. If at least one of the trials did not reach the goal within
the 15 minutes timeout, then we say that the method did not
manage to solve the problem. In 5 domains DP and DPR
managed to solve larger instances than CTG. Many domains
leave much room for improvement in future research.

Tables 3 and 4 show a few examples from each do-
main (due to the lack of space), comparing the online ap-
proaches in terms of average cost and average time for
each action decision in seconds. The domains are based on
the CODMAP benchmarks (Štolba, Komenda, and Kovacs

2015), with stochastic effects, as specified above. In most
domains, we manage to solve many problems, but in some,
only a handful of problems are solved.

The CTG heuristic provides the worst results in most
problems, except for Logistics (LG) and ZenoTravel (ZT).
In the domains where it fails, while it provides very rapid
decisions compared to the other methods, it often makes bad
action choices, leading to very long execution sequences in
many problems. The variations in performance are also very
large for the CTG method, where in some cases the method
results in very long trajectories. CTG succeeds in LG and
ZT, because in these domains the relaxed plan that it com-
putes does not contain conflicting actions. Hence, in these
domains the relaxed plan is directly applicable in the orig-
inal problem. In domains where it succeeds, CTG requires
more time than DP and DPR, due to the large branching fac-
tor, forcing us to compute the heuristic for many states.

The DP method, which replans every time an unexpected
result has was observed, and the DPR method, which uses
local single agent replanning, produce very similar plan
quality. In many domains, the repair time is considerably
lower than the complete replanning time. This is most pro-



Domain Avg cost Avg decision time (sec)
#Agents #Objects DP DPR CTG DP DPR CTG

CBL-1 2 2 4.45 ± 0.74 4.85 ± 1.35 4.45 ± 0.67 0.46 ± 0.09 0.42 ± 0.1 0.01 ± 0.02
CBL-3 3 4 10.75 ± 3.11 9.8 ± 1.75 13.55 ± 9.81 0.25 ± 0.11 0.2 ± 0.07 0.01 ± 0
CBL-4 2 5 11.75 ± 2.12 14.3 ± 3.24 22.3 ± 27.03 0.19 ± 0.1 0.19 ± 0.06 0.01 ± 0
CBL-5 2 6 18.5 ± 5.12 32.25 ± 8.38 120.05 ± 95.05 0.23 ± 0.08 0.17 ± 0.05 0.02 ± 0.01

CBLE-1 2 2 4.45 ± 1.2 3.75 ± 0.77 3.95 ± 0.97 0.47 ± 0.12 0.5 ± 0.1 0.01 ± 0.02
CBLE-2 3 3 7 ± 1.97 6.95 ± 2.36 7.65 ± 2.15 0.58 ± 0.18 0.76 ± 0.35 0.01 ± 0
CBLE-3 3 4 9.7 ± 1.98 9.75 ± 1.79 18.85 ± 10.48 0.41 ± 0.16 0.51 ± 0.23 0.02 ± 0.01
CBLE-4 2 5 12.75 ± 2.19 12.8 ± 2.42 62.15 ± 63.42 0.53 ± 0.16 0.58 ± 0.24 0.11 ± 0.06
CBLE-5 2 5 15.3 ± 2.7 15.65 ± 3.38 112.1 ± 64.46 0.43 ± 0.13 0.57 ± 0.16 0.07 ± 0.03
DLE-1 2 4 7.55 ± 1.4 7.3 ± 1.14 2.4 ± 0.66 0.26 ± 0.04 0.27 ± 0.05 0.02 ± 0.01
DLE-6 3 8 12.05 ± 3.32 10.4 ± 2.13 10.7 ± 3.49 0.28 ± 0.08 0.3 ± 0.08 0.08 ± 0.01

DLE-10 2 9 22.9 ± 2.91 23.8 ± 5.39 40.85 ± 8.19 0.3 ± 0.09 0.25 ± 0.05 0.19 ± 0.02
DLE-13 2 9 38.75 ± 6.46 44.15 ± 3.66 275.3 ± 94.91 0.27 ± 0.1 0.18 ± 0.03 0.53 ± 0.11
DLE-14 3 9 54.95 ± 6.23 53.2 ± 4.25 341.3 ± 260.99 0.25 ± 0.13 0.14 ± 0.04 0.59 ± 0.12
ELE-3 4 6 47.1 ± 10.42 49.35 ± 11.11 49.55 ± 12.73 0.25 ± 0.05 0.49 ± 0.3 0.27 ± 0.02
ELE-4 4 7 70.05 ± 11.94 71 ± 10.32 226.85 ± 162.9 0.27 ± 0.04 0.4 ± 0.1 0.26 ± 0.05
ELE-5 4 8 78.75 ± 13.06 82.95 ± 11.36 79 ± 51.45 0.31 ± 0.07 0.57 ± 0.26 0.44 ± 0.07
ELE-6 4 9 93.8 ± 13.13 104.2 ± 14.97 91.55 ± 21.63 0.31 ± 0.08 0.39 ± 0.1 0.49 ± 0.06
ELE-8 4 11 86.6 ± 11.28 96.65 ± 13.67 75.75 ± 34.2 0.31 ± 0.04 0.51 ± 0.17 0.84 ± 0.14
ELE-9 4 12 111.75 ± 13.97 110.15 ± 11.46 102.25 ± 29.52 0.34 ± 0.08 0.56 ± 0.23 0.79 ± 0.12
ELE-10 4 13 135.9 ± 16.89 138.75 ± 14.13 162.65 ± 51.05 0.35 ± 0.04 0.58 ± 0.1 1.04 ± 0.16
ELE-11 4 8 96.3 ± 7.33 96.3 ± 11.89 81.65 ± 40.12 0.41 ± 0.06 1.1 ± 0.96 1.17 ± 0.19
ELE-13 4 12 159.4 ± 17.18 155.75 ± 22.23 109.7 ± 24.97 0.69 ± 0.08 2.21 ± 0.96 2.29 ± 0.18
RVE-2 4 9 59.15 ± 9.59 67.75 ± 13.86 - 0.37 ± 0.13 0.27 ± 0.06 -
RVE-3 4 6 39.75 ± 12.72 37.4 ± 10.47 120.7 ± 23.94 0.06 ± 0.02 0.05 ± 0.01 0.29 ± 0.19
RVE-4 4 12 79.55 ± 9.51 79.95 ± 10.46 579 ± 84.6 0.05 ± 0.02 0.05 ± 0.08 0.32 ± 0.01
RVE-5 4 8 68.1 ± 17.11 59.3 ± 12.61 - 0.17 ± 0.04 0.12 ± 0.02 -
RVE-9 6 11 68.2 ± 7.05 70.8 ± 9.73 - 0.2 ± 0.19 0.08 ± 0.01 -
RVE-11 8 20 218.25 ± 19.31 215.15 ± 22.58 - 0.26 ± 0.09 0.1 ± 0.01 -

Table 4: Complex domains: cost and decision time, reporting means and standard error. Best costs are bolded.

nounced in the larger instances of the blocks domain (BL),
and the larger instances of the driverlog problem (DLE). In
CBLE, where different agents move different blocks, and
one agent can knock down blocks of other agents, plan repair
often fails, resulting in longer decision time, as a complete
replan is needed after the local replan fails.

In the extended elevator domain (ELE), the determiniza-
tion ignores malfunctions, and assumes that repairs always
succeed, thus insisting on using the faster (malfunctioning)
elevators. Both DP and DPR provide worse plans that CFG,
which takes success probabilities into consideration. On the
other hand, CTG is slower, and hence, does not scale as well.

In extended rovers problems, where one should assign
tasks to rovers that are most likely to succeed, the DP and
DPR methods manage to solve the problems rapidly, but do
not assign tasks optimally, as the determinization ignores the
probabilities. This is not reflected in the CTG method, be-
cause the particular heuristic that we constructed, although
taking probabilities into account, fails to provide good esti-
mates, and thus, does not provide good solutions, and fails
utterly in larger problems.

The results above show that simple heuristics, based on
an estimation of the cost-to-go are less effective for online
SCPPP, while replanning approaches work well. Local plan
repairs can be effective, reducing the average decision time

considerably in some cases.

Conclusion
In this paper we suggested an online planning approach
for stochastic multi agent planning problems under privacy
constraints. We suggest heuristics for deciding online on
the next action to execute. We show that replanning-based
heuristics are much more effective than a cost-to-go esti-
mate, and that local plan repairs can be used to reduce the
decision time in some cases. We show that, while compro-
mising on optimality guarantees, our online approach scale
to much larger problems than offline approaches, vastly ex-
tending the range of problems that can be approached.

There are many future directions for online methods for
stochastic CPPP. First, it is important to construct additional
benchmarks that present interesting stochastic properties.
One can draw inspiration from problems suggest for single
agent stochastic planning competitions in the past, as op-
posed to the CODMAP benchmarks that we build upon. It
is also interesting to explore additional online algorithms,
most importantly, UCT-based approaches. It is also interest-
ing to explore additional heuristics that were constructed for
CPPP problems, such as the dependency projection (Maliah,
Shani, and Stern 2016).



References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
intelligence, 72(1-2): 81–138.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In
ICAPS, volume 3, 12–21.
Brafman, R. 2015. A privacy preserving algorithm for multi-
agent planning and search. In IJCAI.
Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
ICAPS, volume 8, 28–35.
Brafman, R. I.; and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198: 52–71.
Choudhury, S.; Gupta, J. K.; Morales, P.; and Kochender-
fer, M. J. 2022. Scalable Online Planning for Multi-Agent
MDPs. JAIR, 73: 821–846.
Feldman, Z.; and Domshlak, C. 2014. Simple regret opti-
mization in online planning for Markov decision processes.
Journal of Artificial Intelligence Research, 51: 165–205.
Hansen, E. A.; and Zilberstein, S. 2001. LAO∗: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1-2): 35–62.
Hefner, T.; Shani, G.; and Stern, R. 2022. Privacy preserv-
ing planning in multi-agent stochastic environments. Au-
tonomous Agents and Multi-Agent Systems, 36(1): 1–27.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253–302.
Juba, B.; and Stern, R. 2022. Learning Probably Approx-
imately Complete and Safe Action Models for Stochastic
Worlds. In IAAI, 9795–9804. AAAI Press.
Keller, T.; and Eyerich, P. 2012. PROST: Probabilistic plan-
ning based on UCT. In Twenty-Second International Con-
ference on Automated Planning and Scheduling.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Kolobov, A. 2012. Planning with Markov decision pro-
cesses: An AI perspective. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 6(1): 1–210.
Kolobov, A.; Weld, D. S.; et al. 2012. LRTDP versus UCT
for online probabilistic planning. In AAAI.
Maliah, S.; Shani, G.; and Stern, R. 2014. Privacy Preserving
Landmark Detection. In ECAI, 597–602.
Maliah, S.; Shani, G.; and Stern, R. 2016. Stronger privacy
preserving projections for multi-agent planning. In ICAPS.
Maliah, S.; Shani, G.; and Stern, R. 2017. Collaborative pri-
vacy preserving multi-agent planning - Planners and heuris-
tics. Auton. Agents Multi Agent Syst., 31(3): 493–530.
Maliah, S.; Shani, G.; and Stern, R. 2018a. Action de-
pendencies in privacy-preserving multi-agent planning. Au-
tonomous Agents and Multi-Agent Systems, 32(6): 779–821.

Maliah, S.; Shani, G.; and Stern, R. 2018b. Action depen-
dencies in privacy-preserving multi-agent planning. Auton.
Agents Multi Agent Syst., 32(6): 779–821.
Nissim, R.; and Brafman, R. I. 2014. Distributed Heuristic
Forward Search for Multi-agent Planning. JAIR, 51: 293–
332.
Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving. Addison-Wesley Longman Pub-
lishing Co., Inc.
Romanycia, M. H.; and Pelletier, F. J. 1985. What is a
heuristic? Computational intelligence, 1(1): 47–58.
Stolba, M.; Fiser, D.; and Komenda, A. 2015. Admissible
Landmark Heuristic for Multi-Agent Planning. In Brafman,
R. I.; Domshlak, C.; Haslum, P.; and Zilberstein, S., eds.,
ICAPS, 211–219. AAAI Press.
Stolba, M.; Fiser, D.; and Komenda, A. 2016. Potential
Heuristics for Multi-Agent Planning. In Coles, A. J.; Coles,
A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S., eds.,
ICAPS, 308–316. AAAI Press.
Štolba, M.; and Komenda, A. 2014. Relaxation heuristics for
multiagent planning. In Twenty-Fourth International Con-
ference on Automated Planning and Scheduling.
Stolba, M.; and Komenda, A. 2017. The MADLA planner:
Multi-agent planning by combination of distributed and lo-
cal heuristic search. Artif. Intell., 252: 175–210.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Com-
petition of Distributed and Multiagent Planners (CoDMAP).
The International Planning Competition (WIPC-15), 24.
Stolba, M.; Urbanovská, M.; Fiser, D.; and Komenda, A.
2019. Cost Partitioning for Multi-agent Planning. In Rocha,
A. P.; Steels, L.; and van den Herik, H. J., eds., ICAART,
40–49. SciTePress.
Stolba, M.; Urbanovská, M.; and Komenda, A. 2022. Pri-
vacy leakage of search-based multi-agent planning algo-
rithms. Auton. Agents Multi Agent Syst., 36(2): 40.
Tozicka, J.; Stolba, M.; and Komenda, A. 2017. The Lim-
its of Strong Privacy Preserving Multi-Agent Planning. In
Barbulescu, L.; Frank, J.; Mausam; and Smith, S. F., eds.,
ICAPS, 297–305. AAAI Press.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In ICAPS, volume 7,
352–359.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540–1569.


