
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL BAYESIAN FILTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Neural Bayesian Filtering (NBF), an algorithm for maintaining distri-
butions over hidden states, called beliefs, in partially observable systems. NBF
is trained to find a good latent representation of the beliefs induced by a task. It
maps beliefs to fixed-length embedding vectors, which condition generative mod-
els for sampling. During filtering, particle-style updates compute posteriors in this
embedding space using incoming observations and the environment’s dynamics.
NBF combines the computational efficiency of classical filters with the expres-
siveness of deep generative models—tracking rapidly shifting, multimodal beliefs
while mitigating the risk of particle impoverishment. We validate NBF in state
estimation tasks in three partially observable environments.

1 INTRODUCTION

Belief state modeling, or computing posterior distributions over hidden states in partially observ-
able systems, has numerous applications in sequential estimation and decision-making problems,
including tracking autonomous robots and learning to play card games (Haug, 2012; Sokota et al.,
2022; Barfoot, 2024). As an example, consider the problem of tracking an autonomous robot with
an unknown starting position in a d × d grid (Figure 1). Suppose the agent’s policy is known, and
an observer sees that the agent moved a step without colliding into a wall. This information indi-
cates how the observer should update their beliefs about the agent’s position. Tracking these belief
states can be challenging when they are either continuous or too large to enumerate (Solinas et al.,
2023)—even when the agent’s policy and the environment dynamics are known.

A common approach frames belief state modeling as a Bayesian filtering problem in which a pos-
terior is maintained and updated with each new observation. Classical Bayesian filters, such as the
Kalman Filter (Kalman, 1960) and its nonlinear variants (e.g., Extended and Unscented Kalman
Filters (Sorenson, 1985; Julier & Uhlmann, 2004)), assume that the underlying distributions are uni-
modal and approximately Gaussian. While computationally efficient, this limits their applicability in
settings that do not satisfy these assumptions. Particle filters alternatively approximate arbitrary tar-
get distributions through sets of weighted particles. However, in high-dimensional state spaces, they
can require maintaining exponentially large sets of particles or risking particle impoverishment—a
phenomenon where the set contains very few particles with significant weight (Doucet et al., 2009).

Advances in generative modeling have provided new methods for filtering in problems with com-
plex, multimodal belief states. However, they approximate the full system dynamics (including
agent policies) and update an internal representation of the beliefs with each observation. This is a
significant limitation in applications where the policy or environment is known but changes, which
happens naturally in some learning algorithms (Moravčı́k et al., 2017; Schmid et al., 2023).

In this paper, we propose Neural Bayesian Filtering (NBF), which models complex, multimodal
belief states and updates posteriors efficiently for input policies and environments. Central to our
approach is the idea that belief states in a given task form a parameterized set. Much like how
mean and variance parameterize the family of Gaussians, a learned embedding vector specifies a
particular belief state instance. This embedding can be computed exclusively using samples from
the target belief state—making it specific to a given policy, environment, and observation sequence.
Given a new observation, NBF updates the embedding to approximate the new posterior by generat-
ing, simulating, and then re-embedding particles. Effectively combining particle filtering and deep
generative modeling, the algorithm maintains expressive approximations of complex, multimodal
belief states. We validate NBF empirically in variants of Gridworld, the card game Goofspiel, and a
continuous localization environment called Triangulation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) 8x8 grid with ini-
tial beliefs.

(b) Beliefs after
moving right.

(c) After more steps.

Figure 1: Tracking an agent with an unknown starting position from observations about which
direction the agent moved (with some probability of error) and whether or not it hit a wall. Colored
cells indicate probabilities of possible agent positions.

1.1 MAIN CONTRIBUTIONS

Belief State Embeddings We propose learning an embedding network that compresses sample
sets from belief states into a set-invariant vector. Conditioning a generative model on this vector
allows for efficient sampling and density estimation on a family of complex posterior distributions.

A Flexible Parametric Framework For Filtering We introduce Neural Bayesian Filtering
(NBF), a novel parametric filtering framework that combines classical filtering, embeddings, and
deep generative modeling. NBF can approximate multimodal, non-Gaussian, and discrete state dis-
tributions without prohibitively large particle sets or fixed parametric assumptions.

2 BACKGROUND

Belief state modeling has been studied in numerous contexts, including Hidden Markov Models
(HMMs) (Rabiner, 1989), Partially Observable Markov Decision Processes (POMDPs) (Kaelbling
et al., 1998), and Factored Observation Stochastic Games (FOSGs) (Kovařı́k et al., 2022), and is
critical to many decision-time search algorithms. Sokota et al. (2022) provide a unified notation for
belief state modeling. This work extends their formulation to sets of environments and explicitly
models non-stationarity in the environment and control. These non-stationarities arise naturally
when the agent learns or the environment changes (e.g. different obstacles in the grid in Figure 1).

2.1 NOTATION

Let x ∈ X be a Markov state and π ∈ Π be an external control variable (such as a policy
in a POMDP or a joint policy in an FOSG). Let T : X × Π → ∆X be the transition func-
tion that determines the underlying dynamics. Emission function H : X × X → ∆Y outputs
a probability distribution over the the observations (emissions) y ∈ Y upon transition from x

to x′. An environment G def
= (X,Y, T,H, p0) contains state and observation spaces, a tran-

sition function, an observation function, and an initial state distribution p0. In this paper, we
extend this formulation to include a set of state spaces X , transition functions T , and observa-
tion spaces Y to model the scenario where an environment instance is known but non-stationary.
G def

= {(X,Y, T,H, p0) : X ∈ X , Y ∈ Y, T ∈ T , H ∈ H, p0 ∈ ∆X} is the set of environments.

Given an instance (G, π), belief state modeling is expressed as modeling the distribution over
the Markov states at a particular time t, conditional on the control and emission variables:
p(x|π, y(1), . . . , y(t)). In discrete Markov systems with small state spaces, belief states can be com-
puted analytically using posterior updates for each observation in the sequence.

In this work, we consider the problem where both G and π are known by the agent or external
observer and computationally efficient to evaluate. Together, G and Π parameterize a set of belief
states PΠ

G
def
= {p(x|π, y(1), . . . , y(t)) : π ∈ Π, G ∈ G, y(i) ∈ Y, t ∈ N}. For brevity, we will drop

the conditional and refer to a member of this set as p(x). Unlike much of the prior work in neural
belief state modeling, our approach models this set directly by conditioning on specific G and π.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 CLASSICAL FILTERING ALGORITHMS

Bayesian filtering (Särkkä & Svensson, 2023) has been studied extensively as a method for belief
state modeling. Environments with linear Gaussian dynamics are the simplest case. In these set-
tings, Kalman filters (Kalman, 1960) provide efficient closed-form solutions for the posterior mean
and covariance. However, many real-world applications involve nonlinear, non-Gaussian processes.
Improvements such as Extended (Sorenson, 1985), Unscented (Julier & Uhlmann, 2004), and Cu-
bature (Arasaratnam & Haykin, 2009) Kalman filters are suitable for non-linear systems but still
propagate unimodal beliefs.

Particle filters (Doucet et al., 2009) maintain a representative set of weighted samples for the belief
state. This set gets updated according to the environment dynamics upon each new observation.
Particle filters can, in principle, approximate a wide range of distributions, but they come with
other challenges. Particle impoverishment happens when many particles in the set have little or no
weight given the observation sequence and can be catastrophic because replacement particles can
only be sampled by duplicating others in the set (Sokota et al., 2022). Computational efficiency
can also become a concern in high-dimensional state spaces because accurate filtering generally
requires maintaining an exponential number of particles (Thrun, 2002). Specialized approaches for
mitigating impoverishment (Murphy & Russell, 2001; Orguner & Gustafsson, 2008; Park et al.,
2009) often lack generality, relying on exploiting problem-specific structure, domain knowledge, or
hand-tuned heuristics, and possess the same challenges with resampling.

In the next two sections, we describe NBF: a novel approach that models the set of belief states
parameterized by Π and G as a latent space of belief state embeddings. These embeddings condition
a generative model for sampling and density estimation. Approximate posteriors are updated by
sampling particles from the embedding, simulating these particles using the inputG ∈ G and π ∈ Π,
and then computing a weighted embedding with the result. Learned neural embeddings and fast
posterior computation in the embedding space let NBF combine the computational efficiency of
parametric approaches like Kalman filters with the flexibility of particle or model-free methods.

3 EMBEDDING BELIEF STATES

In this section, we formalize our approach to modeling complex, multimodal belief states using
learned neural embeddings. Our goal is to represent and efficiently sample from a given belief state
induced by known but potentially changing control variables and environment dynamics.

Given a known control variable π ∈ Π and environment G ∈ G, the induced belief state after
t observations is the posterior distribution p(x). One challenge is efficiently modeling the set of
these posterior distributions, which may be diverse as π or G vary. We propose embedding these
distributions from sets of ground truth samples of example belief states. Our approach aims to
construct an embedding vector θ ∈ Rm that uniquely represents the posterior distribution defined
by y(1:t), π, and G, and conditions a model for sampling and density estimation.

3.1 MODEL DEFINITION

We model the target set of belief states using an embedding function and a Normalizing Flow (Pa-
pamakarios et al., 2021) conditioned on its output.

Embedding Function. Let x1:n
def
= (x1, x2, . . . , xn) denote i.i.d. samples from belief state

p(x). We define a permutation and cardinality invariant function Eϕ : Xn × Rn → Rm that
maps (weighted) samples x1:n to an m-dimensional embedding vector. A belief embedding
θ

def
= Eϕ(x1:n, w1:n) approximates the salient features (e.g. shape, location, spread) of a target

distribution p(x) as a vector in latent space. Together with the flow described next, it defines the
distribution pθ(x).

Permutation and cardinality invariance ensures that neither n nor sample order affects θ. In this
paper, we take the (weighted) mean over individual sample embeddings. If ϕ is expressive enough,
the mean-pooled embedding θ serves as a sufficient moment-based approximation of p(x), but other
higher-order architectures such as DeepSets (Zaheer et al., 2017) may also be viable.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

−5 −4 −3 −2 −1 0 1 2

x1

−2

−1

0

1

2

3

x
2

(a) Sample donut distributions. Each
distribution has three parameters: mean,
radius, and width.

−5 −4 −3 −2 −1 0 1 2

x1

−2

−1

0

1

2

3

x
2

(b) Learned densities after conditioning
the model on 128 samples from the tar-
get distribution.

Figure 2: Embedding the set of donut distributions in R2

Conditional Normalizing Flow. Normalizing flows are a class of generative models that trans-
form a simple base distribution (e.g., Gaussian) into a complex target distribution through a series
of invertible and differentiable mappings. They allow for exact likelihood computation via change-
of-variables. Flows can also be constructed in continuous time by defining an ordinary differential
equation that describes the dynamics of the transformation over time (Lipman et al., 2022).

Given an embedding θ, we can define tractable sampling and density estimation operations on pθ(x)
by conditioning a normalizing flow on θ. Let fψ(·; θ) : Rd → Rd be an invertible, differentiable
transformation conditioned on θ and parameterized by ψ. Given a simple base distribution p(z) (e.g.
standard normal), the following two-step sampling procedure:

z ∼ p(z); x = fψ(z; θ),

gives the desired density pθ(x) (by change-of-variables) (Papamakarios et al., 2021):

pθ(x)
def
= p

(
f−1
ψ (x; θ)

) ∣∣∣∣∣det ∂f
−1
ψ (x; θ)

∂x

∣∣∣∣∣ .
If fψ(z; θ) has a tractable inverse, then evaluating this density is also tractable. ψ and ϕ can be opti-
mized jointly by maximizing the log-likelihood over all samples 1, . . . , N and distributions 1, . . . ,K
in the training set:

L(ϕ, ψ) def
=

K∑
k=1

N∑
i=1

log p
(k)
θ (xi)

Discrete Belief States and Variational Dequantization. Normalizing flows are defined for con-
tinuous inputs, but belief states in many relevant domains are discrete. Variational Dequantization
(Ho et al., 2019) is an approach for applying flows to discrete data. Each discrete sample is perturbed
by learned noise, resulting in a continuous space. The noise distribution is trained jointly with the
flow by maximizing a variational lower bound on the true discrete log-likelihood—preserving exact
likelihood evaluation and stabilizing training for discrete belief states.

3.2 ILLUSTRATIVE EXAMPLE: DONUTS

Consider a domain, which we call donuts, consisting of a simple set of continuous distributions
in R2. Donuts (Figure 2(a)) are parameterized by a mean, a radius, and a width. Setting these
parameters specifies a particular donut D, and they are sufficient for closed-form sampling from D.
Suppose these parameters are not known, and instead Eϕ receives a set of sample points x1:n

iid∼ D
and outputs θ as a parameterization of D. θ conditions the generative model fψ(z; θ), providing an
approximation of D and enabling i.i.d sampling from it.

We train our model on randomly generated example donuts using n = 128 samples per donut—with
n/2 used for generating the embedding and the rest used for minimizing the negative log-likelihood

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

objective. At test time, we create embeddings using 64 samples from unseen target donuts. Fig-
ure 2(b) shows 3 randomly selected test donuts. Points are samples from the target distribution
used to generate θ, while the contours are generated by evaluating the log densities of grid points
according to f−1

ψ (x; θ). Hyperparameters and other training details can be found in the appendix.

4 FILTERING WITH EMBEDDINGS

If p(x) is a posterior induced by a sequence of observations, obtaining the samples needed to com-
pute θ may carry significant computational overhead. More general-purpose belief state approxima-
tion using our model requires tracking the belief state over the observation sequence. In this section,
we describe an algorithm that tracks belief states in the embedding space.

Upon receiving an observation, classical parametric methods, such as variants of Kalman filters,
compute the posterior in closed form. If θ represents the parameters for a given belief state, such
methods define an update function g : Rm × Y → Rm such that θ′ = g(θ, y). The modeling
assumptions that enable closed-form updates are often violated, which motivates approximate meth-
ods. Approximating g for a fixed G and π is a viable choice, but often lacks efficient methods for
parameterizing g with G and π in settings where they are variable inputs.

Particle filters are non-parametric: they represent arbitrary target distributions as sets of weighted
sampled points called particles. Posterior updates to these empirical distributions are performed
by simulating transitions using G and π for each particle and updating weights according to the
induced transition probabilities. Below we provide a typical posterior update for a particle filter
given observation y, π ∈ Π, and G ∈ G:

For each particle xi and particle weight wi, i ∈ 1, . . . , n:

1. Simulate transition x′i ∼ TG(xi, π)
2. Update weight w′

i ← wi ·HG(xi, x
′
i)[y]

New weights are typically used to resample particles by duplicating particles that are more likely
to match the updated observation sequence and discarding others. Impoverishment occurs when all
particle weights become small and new particles cannot be resampled from outside x1:n.

Neural Bayesian Filtering approximates belief states by performing a similar update in the embed-
ding space of a pre-trained belief embedding model. It incorporates π ∈ Π and G ∈ G into the
posterior update like a particle filter, but avoids impoverishment by resampling from the model at
every step. Given an embedding, NBF generates particles according to pθ(x), simulates them for-
ward while computing their weights exactly like a particle filter, and then computes a new weighted
embedding from the result. Figure 3 shows an overview of NBF’s posterior update. Full details,
including pseudocode, are shown in the appendix.

4.1 CONVERGENCE OF NBF WITH A PERFECT MODEL

NBF is consistent and converges at the standard Monte-Carlo rate for finite X and Y under the
following assumptions: (i) the embedding model is expressive enough to represent every belief state
exactly, and (ii) there exists some global ϵ ∈ (0, 1] such that given an observation y, the probability
of transitioning from any state x to one of its successors x′ and observing y is at least ϵ. We call (ii)
ϵ-global observation positivity of (G, π).
Theorem 4.1 (NBF Consistency). Assume ϵ-global observation positivity of (G, π) and a finite X
and Y . For any finite horizon tmax, belief state pt(x), t ≤ tmax, and any bounded function φ : X →
R, let

µ̂
(n)
t (φ) =

∑n
i=1 wiφ(xi)∑n

i=1 wi

be the estimate of Ept [φ] computed by NBF with a perfect embedding model and n particles. Then,

sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]|

a.s.−→ 0

as n→∞.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Belief Embedding θ

Normalizing Flow
fψ

Embedding Network
ℰϕ

wi ∝ Pr(y |xi, x′￼i, G, π)

t + 1

t

Figure 3: Neural Bayesian Filtering generates particles from a belief embedding, simulates them in
the environment, and embeds them with a weight proportional to the probability of y.

Theorem 4.1 states that for any bounded function f on the state space and belief state p(x), NBF’s
estimate of Ep[φ] almost surely converges to the true value as its number of particles approaches∞.
The following Corollary states its convergence rate under the same conditions.

Corollary 4.2 (NBF Convergence Rate). Under the same conditions as Theorem 4.1, as n→∞,

sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]| = Op(n

−1/2)

Further details, including proofs, are included in the Appendix.

5 EXPERIMENTS

We validated Neural Bayesian Filtering in partially observable variants of Gridworld, the card game
Goofspiel, and the localization environment Triangulation. Belief states in the first two environ-
ments are discrete, so we used variational dequantization as described in Section 3. Additional ex-
periments and further details, including hyperparameter settings, are available in the supplementary
material. Source code will be made available upon publication.

We compared a total of four approaches:

• Approx Beliefs: The embedding model described in Section 3 with access to p(x) to gen-
erate samples for an embedding size of 32. Each training instance consists of 64 samples
from some p(x) ∈ PΠ

G . Model hyperparameters were not tuned extensively.

• PF (n): A Sequential Importance Resampling Particle Filter with n weighted particles
representing the belief state. An effective sample size less than n/2 triggers a systematic
resample (Doucet et al., 2009) of the particles.

• NBF (n): A Neural Bayesian Filter with the same belief embedding model as “Approx
Beliefs” and n particles for posterior computation.

• Recurrent: A two-layer LSTM trained to predict p(x) ∈ PΠ
G from observations.

Performance was measured in terms of Jensen-Shannon (JS) divergence between the model’s pre-
dicted belief state and the ground-truth posterior, with lower values indicating better performance.

5.1 PARTIALLY-OBSERVABLE GRIDWORLD

We conducted experiments on a partially observable variant of Gridworld with grids of size 5 and
8, and dimensionality 2 and 3. Each grid contains a fixed number of square (or cube) obstacles,
and every agent step results in an observation indicating whether the agent hit a wall. For each
dimensionality and size, we evaluated performance in two conditions: a fixed grid and policy and
a randomized grid and policy, yielding eight total experimental configurations (5-2D-fixed, 5-2D-
random, 8-2D-fixed, 8-2D-random, 5-3D-fixed, 5-3D-random, 8-3D-fixed, 8-3D-random).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Approx Beliefs Recurrent PF (32) PF (64) PF (128) NBF (16) NBF (32)

0 2 4 6 8 10

Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J
S

D
iv

er
ge

n
ce

|X| = 25 states

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

0.4

|X| = 64 states

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

0.4

0.5

|X| = 125 states

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

|X| = 512 states

Figure 4: Jensen-Shannon divergence on fixed grids and policies (left to right: 5-2D, 8-2D, 5-3D,
8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500 episodes.
Shaded areas indicate ± 1 standard error on the average model performance.

Approx Beliefs Recurrent PF (32) PF (64) PF (128) NBF (16) NBF (32)

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

J
S

D
iv

er
ge

n
ce

|X| = 25 states

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

0.4

|X| = 64 states

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

0.4
|X| = 125 states

0 2 4 6 8 10

Steps

0.0

0.1

0.2

0.3

0.4

0.5

|X| = 512 states

Figure 5: Jensen-Shannon divergence on randomized grids and policies (left to right: 5-2D, 8-
2D, 5-3D, 8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500
episodes. Shaded areas indicates ± 1 standard error on the average model performance.

Fixed Grids and Policies. Figure 4 summarizes results for fixed grids and policies. The belief
model computes its embedding using samples from the target distribution, so it provides an expected
performance ceiling for NBF. This shows that the embedding is expressive enough to model the set
of belief distributions in this partially observable fixed grid. The recurrent approach is capable of
modeling posterior updates on a fixed grid, and further tuning could potentially allow it to perform
better than the belief model in the fixed setting. NBF maintains a low JS divergence, comparable to
the belief model over many steps, while using a relatively low number of particles. This suggests
that NBF’s update is effective for approximating the posterior computation in the embedding space.
Even with orders of magnitude more particles than NBF, the PFs struggle to achieve comparable
performance and demonstrate scalability issues with grid size and dimensionality.

Randomized Grids and Policies. Performance in randomized grids and policies is summarized
in Figure 5. Belief embeddings effectively model this much larger set of belief distributions (given
that the policy and obstacle placement are now randomized and changing at every episode). With no
ability to incorporate policy and grid information into the model, the performance of the Recurrent
filter degrades significantly compared to the fixed grid setting. This highlights its limited adapt-
ability to non-stationary environments, regardless of its capacity to express complex belief states in
fixed settings. Particle-based methods are more robust to dynamic grids and policies, with NBF per-
forming the best overall despite using relatively few particles. NBF’s performance gain over particle
filtering likely arises because the belief-embedding model captures relevant information about PΠ

G .

5.2 PARTIALLY-OBSERVABLE GOOFSPIEL

Our second set of experiments uses a modified version of the card game Goofspiel (Lanctot et al.,
2013) with k ∈ {4, 5, 6, 7} cards. This domain is a standard benchmark in imperfect information
games, and provides a concrete example of when an acting agent must consider the opponent policy
for belief computation. k-card Goofspiel performance is summarized in Figure 6. Modeling late-
game belief states in Goofspiel seems more challenging than in Gridworld. We see this in the
growing error of the “Approx Beliefs” filter as the size of the game increases. This may be due to
strong constraints on legal states (e.g. hand sizes when t cards have been played). Unsurprisingly,
significant inaccuracies in the embedding model appear to have negative downstream effects on
NBF’s performance. On the other hand, the particle filter’s performance improves at later timesteps

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Approx Beliefs Recurrent PF (128) PF (256) PF (512) NBF (64) NBF (128)

1 2 3

Number of Played Cards

0.00

0.05

0.10

0.15

0.20

0.25
J
S

D
iv

er
ge

n
ce

4 Cards

1 2 3 4

Number of Played Cards

0.00

0.05

0.10

0.15

0.20

0.25

5 Cards

1 2 3 4 5

Number of Played Cards

0.00

0.05

0.10

0.15

0.20

0.25

6 Cards

1 2 3 4 5 6

Number of Played Cards

0.00

0.05

0.10

0.15

0.20

0.25

7 Cards

Figure 6: Jensen-Shannon divergence on partially-observable Goofspiel with four, five, six, and
seven cards. Training is repeated for 5 random seeds, with each model evaluated over 500 episodes
for 10 random seeds. Shaded areas indicate ± 1 standard error on the average model performance.

as belief state entropy drops. Despite these difficulties, NBF still outperforms the particle filters with
an order of magnitude fewer particles (64 vs. 512) in all four sizes.

5.3 TRIANGULATION

Finally, we evaluate NBF in a domain with a continuous state space we call Triangulation, where
the agent must localize itself in R2 by moving and scanning fixed beacons before stopping as close
as possible to the origin. Full details are available in the supplementary material.

Exact posterior computation is not feasible in this domain, so we use a large particle filter (1024
particles) as the ground truth for both training the belief model and computing the JS divergence
for evaluation. JS divergence is computed by discretizing the state space into a grid and calculating
the probability of each cell according to the filters. Performance in Triangulation is summarized in
Table 1. We observe that NBF with only 16 particles performs substantially better than the particle
filter baselines.

Table 1: Jensen-Shannon Divergence on Triangulation. Training is repeated for 20 random seeds,
with each model evaluated over 100 episodes.

PF (32) PF (64) PF (128) PF (256) NBF (16) NBF (32)

0.638± 0.001 0.607± 0.001 0.565± 0.001 0.513± 0.001 0.459± 0.002 0.459± 0.002

6 DISCUSSION

Though our empirical evaluation focuses on three relatively simple domains, it still highlights NBF’s
versatility and potential effectiveness in more complex tasks. For deep recurrent approaches to mod-
eling g(θ, y), scalability and model expressiveness are insignificant when they cannot incorporate
critical environment information (G, π). Constraining the particle budget to grow sub-linearly with
|X| immediately exposes the scaling pathology of classical particle filters, even in our smallest
testbeds. NBF achieves good performance with orders-of-magnitude fewer particles, whereas PFs
remain inaccurate despite far larger particle sets. In such cases, the additional cost of embedding
and generating a much smaller set of particles with our model is insignificant compared to parti-
cle simulation costs. Confirming this in larger domains for downstream tasks such as learning and
sequential decision-making is a promising avenue for future work.

In light of our promising results, NBF has limitations related to its belief embedding model and
particle-based updates. For instance, experiments on Goofspiel highlighted the importance of an
accurate belief embedding model. In some cases, filtering performance could be highly dependent
on choosing appropriate task-specific architectures and training methods.

Training data for the domains tested in this work is both easy to generate and reflective of the set
of belief states encountered during filtering. Learning an embedding model from the data encoun-
tered while filtering would make NBF applicable to settings where representative training data is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

difficult or impossible to obtain before filtering. That said, many state-of-the-art online search al-
gorithms (Silver et al., 2017; Moravčı́k et al., 2017; Schrittwieser et al., 2020; Schmid et al., 2023)
require significant computation for offline training but keep online search at decision-time less com-
putationally intensive. These settings suit NBF perfectly and match the experiments conducted in
this paper. While NBF’s posterior updates reduce the chance of particle impoverishment, they do
not eliminate it, especially under extreme conditions where impoverishment can occur in a single
step. Such updates can also potentially incur computational overhead during inference compared
to pure model-based approaches or the analytical updates of some classical filtering methods. In
this sense, NBF trades inference speed for increased representational capacity and adaptability to
environmental and control dynamics.

6.1 RELATED WORK

There is a notable connection between variational hidden states in deep recurrent models and belief
state modeling (Chung et al., 2015). Recurrent neural filtering algorithms (Krishnan et al., 2015;
Karl et al., 2016; Lim et al., 2020; Revach et al., 2022) can incorporate external observations and
learn the overall transition dynamics defined with a fixed π and G. However, this implies that,
regardless of their expressivity, these models are fixed at test time and cannot easily be adapted to
new transition dynamics. Alternative methods (Fickinger et al., 2021; Sokota et al., 2022) fine-tune
a large pre-trained deep generative model via gradient updates at decision time to adapt to changes
in the environment dynamics. The model is initially trained on a large sample set aggregated from
many belief states and then refined to fit a test-time belief state. Like NBF, such methods can
resample from the full support of the distribution, which mitigates impoverishment risks. However,
this comes at a cost as fine-tuning may require many costly gradient updates for each target belief
state. This makes it less suitable as a component of fast online search algorithms.

Alternative approaches for embedding beliefs map distributions into an RKHS via kernel mean
and conditional mean embeddings (Song et al., 2009). This yields unique representations under
characteristic kernels. However, tying representation quality to a fixed kernel risks mismatch with
the posterior family encountered at test time, and unlike NBF, these embeddings are not naturally
generative.

Belief state modeling has often been implicitly studied in downstream tasks such as search and learn-
ing in partially observable environments. The aforementioned fine-tuning approaches (Fickinger
et al., 2021; Sokota et al., 2022) have been applied to search and learning in Hanabi. POMCP
(Silver & Veness, 2010) performs Monte Carlo Tree Search from particle-based approximations of
belief states. Neural Filtering and Belief Embedding can potentially act as a drop-in replacement
for particle filtering and offer richer belief state approximations for search. Likewise, Šustr et al.
(2021) uses particle-based approximations of value functions for depth-limited search. Approximat-
ing value functions in the embedding space is also a promising avenue for future work.

7 CONCLUSION

We introduced Neural Bayesian Filtering, a method for modeling belief states in partially observable
Markov systems. It models the set of distributions induced by a Markov system as a latent space and
performs particle-based posterior updates in this latent space upon new observations. Its underlying
models for embedding beliefs are trained strictly from sample sets of example belief states, and
its posterior update directly integrates non-stationary dynamics and control variables. We show
empirically in three partially observable domains that it retains the robustness of traditional particle
filtering while approximating rich, multimodal belief states with far fewer particles. Neural Bayesian
Filtering has potential applicability well beyond the tasks demonstrated in this paper, extending
naturally to various domains involving sequential decision-making, planning, and estimation under
uncertainty.

REFERENCES

Ienkaran Arasaratnam and Simon Haykin. Cubature kalman filters. IEEE Transactions on automatic
control, 54(6):1254–1269, 2009.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Timothy D Barfoot. State Estimation for Robotics. Cambridge University Press, 2024.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Ben-
gio. A recurrent latent variable model for sequential data. Advances in neural information pro-
cessing systems, 28, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Arnaud Doucet, Adam M Johansen, et al. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

Arnaud Fickinger, Hengyuan Hu, Brandon Amos, Stuart Russell, and Noam Brown. Scalable online
planning via reinforcement learning fine-tuning. Advances in Neural Information Processing
Systems, 34:16951–16963, 2021.

Anton J Haug. Bayesian Estimation and Tracking: A Practical Guide. John Wiley & Sons, 2012.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pp. 2722–2730. PMLR, 2019.

Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlinear estimation. Proceedings
of the IEEE, 92(3):401–422, 2004.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82(1):35–45, 1960.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van der Smagt. Deep varia-
tional Bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

Vojtěch Kovařı́k, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisý. Rethinking formal
models of partially observable multiagent decision making. Artificial Intelligence, 303:103645,
2022.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep Kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Marc Lanctot, Viliam Lisỳ, and Mark HM Winands. Monte carlo tree search in simultaneous move
games with applications to goofspiel. In Workshop on Computer Games, pp. 28–43. Springer,
2013.

Bryan Lim, Stefan Zohren, and Stephen Roberts. Recurrent neural filters: Learning independent
Bayesian filtering steps for time series prediction. In 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Henry B Mann and Abraham Wald. On stochastic limit and order relationships. The Annals of
Mathematical Statistics, 14(3):217–226, 1943.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Kevin Murphy and Stuart Russell. Rao-blackwellised particle filtering for dynamic bayesian net-
works. In Sequential Monte Carlo methods in practice, pp. 499–515. Springer, 2001.

Umut Orguner and Fredrik Gustafsson. Risk-sensitive particle filters for mitigating sample impov-
erishment. IEEE Transactions on signal processing, 56(10):5001–5012, 2008.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Art B Owen. Monte Carlo theory, methods and examples, 2013.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021.

Seongkeun Park, Jae Pil Hwang, Euntai Kim, and Hyung-Jin Kang. A new evolutionary particle filter
for the prevention of sample impoverishment. IEEE Transactions on Evolutionary Computation,
13(4):801–809, 2009.

Lawrence R Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG Van Sloun, and Yonina C
Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. IEEE
Transactions on Signal Processing, 70:1532–1547, 2022.

Simo Särkkä and Lennart Svensson. Bayesian filtering and smoothing, volume 17. Cambridge
university press, 2023.

Martin Schmid, Matej Moravčı́k, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan
Bard, Finbarr Timbers, Marc Lanctot, G Zacharias Holland, et al. Student of games: A unified
learning algorithm for both perfect and imperfect information games. Science Advances, 9(46):
eadg3256, 2023.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. Advances in neural infor-
mation processing systems, 23, 2010.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Samuel Sokota, Hengyuan Hu, David J Wu, J Zico Kolter, Jakob Nicolaus Foerster, and Noam
Brown. A fine-tuning approach to belief state modeling. In International Conference on Learning
Representations, 2022.

Christopher Solinas, Doug Rebstock, Nathan Sturtevant, and Michael Buro. History filtering in
imperfect information games: algorithms and complexity. Advances in Neural Information Pro-
cessing Systems, 36:43634–43645, 2023.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of condi-
tional distributions with applications to dynamical systems. In Proceedings of the 26th annual
international conference on machine learning, pp. 961–968, 2009.

Harold Wayne Sorenson. Kalman filtering: theory and application. (No Title), 1985.

Michal Šustr, Vojtech Kovarı́k, and Viliam Lisy. Particle value functions in imperfect information
games. In AAMAS Adaptive and Learning Agents Workshop, volume 133, pp. 138, 2021.

Sebastian Thrun. Particle filters in robotics. In UAI, volume 2, pp. 511–518. Citeseer, 2002.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic
optimal transport. arXiv preprint arXiv:2302.00482, 2(3), 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

A NBF PSEUDOCODE

We present the full pseudocode for Neural Bayesian Filtering. The algorithm updates the input
belief embedding by generating and then simulating n particles for a single step. These particles are
weighed according to the probability of input observation y given the environment dynamics G and
control variable π.

Algorithm 1: Neural Bayesian Filtering
input : θ — Belief Embedding, y — Observation, G — Environment, π — Control,

(ψ, ϕ) — Model Parameters, n — Number of Particles, φ — function to estimate Ep[φ]
output: θ′ — Updated Belief Embedding

1 z1:n
iid∼ N (0d, Id) // n samples of d-dimensional Gaussian noise

2 x1:n ← fψ(z1:n; θ) // Generate particles from belief embedding
3 for i← 1 . . . n do
4 x′i ∼ TG(xi, π)
5 wi ← HG(xi, x

′
i)[y]

6 end
7 µ̂(n)(φ)←

∑n
i=1 wiφ(xi)∑n

i=1 wi
// Estimate target expectation

8 return Eϕ(x′1:n,normalize(w1:n)), µ̂
(n)(φ) // Output embedding and

estimate Ep[φ]

The algorithm can optionally estimate the expectation (Line 7) of a target function φ over the belief
state. Next, we show theoretical results about the convergence of the estimate when NBF has access
to a perfect belief embedding model.

B PROOF OF THEOREM 4.1

The theorem requires two main assumptions: a perfect belief embedding model and ϵ-global obser-
vation positivity. A perfect embedding model has of two properties. First, for every p(x) ∈ PΠ

G ,
there exists a θ∗p ∈ Rm such that pθ∗p (x) = p(x). Second, for any finite collection of samples
x1:n ∈ Xn and weights w1:n ∈ Rn,

∑n
i=1 wi = 1, if the weighted empirical distribution induced

by (x1:n, w1:n), p̂(x) is equal to p(x), then Eϕ(x1:n, w1:n) = θ∗p .

Define the successor pairs of state space X given (G, π) as succG,π(X)
def
= {(x, x′) : x, x′ ∈

X,TG(x, π)[x
′] > 0}. ϵ-global observation positivity of (G, π) states that there exists an ϵ ∈ (0, 1]

such that for all y ∈ Y and (x, x′) ∈ succG,π(X):

T (x, π)[x′] ·HG(x, x
′)[y] ≥ ϵ

This means that for G and π, every transition has some probability of generating any observation
y. In practice, a small ϵ is sufficient to guarantee NBF’s consistency. Without this simplifying
assumption, there can be a non-zero (but vanishing) chance that the sample weights in the estimator
µ̂(n)(φ) are all equal to zero. In a practical setting where this happens, one could repeat lines 2-6
of Algorithm 1 until some wi > 0. With finite state and observation spaces and these assumptions,
we can prove the almost-sure convergence of NBF to the target posterior. First, we provide a lemma
for the strong law of large numbers for self-normalizing importance samplers. The proof is an
adaptation of the one found in Owen (2013).
Lemma B.1 (Strong Law for Self-Normalized Importance Sampling Estimators). Given a finite
sample space X , let p(x) be a target distribution and q(x) be a proposal distribution such that

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

q(x) > 0 whenever p(x) > 0. Let W : X → (0, 1] be a weight function such that p(x) =
c ·W (x)q(x) for normalization constant c. Finally, let φ : X → R be any bounded function.

Draw samples x1, . . . , xn
iid∼ q. Let wi =W (xi) and

µ̂(n)(φ) =

∑n
i=1 wiφ(xi)∑n

i=1 wi

be the self-normalized importance sampling estimate of Ep[φ]. Then,

µ̂(n)(φ)
a.s.−→ Ep[φ]

as n→∞.

Proof. Since the pairs (wi, xi) are i.i.d., the numerator Sn
def
=

∑n
i=1 wiφ(xi) and denominator

Bn
def
=

∑n
i=1 wi of the estimate are i.i.d sums. With bounded φ andW , we can apply Kolmogorov’s

Strong Law of Large Numbers to Sn and Bn, which gives

Sn
n

a.s.−→ Eq[φW],
Bn
n

a.s.−→ Eq[W]

as n→∞.

By the definition of q and W , 1 =
∑
x p(x) =

∑
x cW (x)q(x) = cEq[W]. Thus, Eq[W] = c−1.

Since Eq[φW] = c−1Eq[φWc] = c−1Ep[φ].

Thus, by the Continuous Mapping Theorem (Mann & Wald, 1943), we have

µ̂(n)(φ) =
Sn/n

Bn/n

a.s.−→ c−1Ep[φ]
c−1

= Ep[φ]

as n→∞.

Applying this Lemma to the one-step particle update of NBF lets us show that if the current estimate
θ is consistent, then θ is also consistent in the limit.

Theorem B.2 (NBF Consistency). Assume ϵ-global observation positivity of (G, π) and a finite X
and Y . For any finite horizon tmax, belief state pt(x), t ≤ tmax, and any bounded function φ : X →
R, let

µ̂
(n)
t (φ) =

∑n
i=1 wiφ(xi)∑n

i=1 wi

be the estimate of Ept [φ] computed by NBF with a perfect embedding model and n particles. Then,

sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]|

a.s.−→ 0

as n→∞.

Proof. According to Algorithm 1, the weight for transitioning from xi to x′i is wi = TG(xi, π)[x
′
i] ·

HG(xi, x
′
i)[y]. We start by proving almost sure convergence for any fixed t ≤ tmax : t, tmax ∈ N by

induction.

Base case. t = 0 Here p(x) = p0, so a perfect embedding model implies we can compute θ∗p by

embedding samples from p0 and then generate x1:n
iid∼ p(x). φ is bounded, so we can apply the

Strong Law of Large Numbers to get the result.

Inductive step. Assume for some t < tmax, generated particles x1:n are i.i.d. according to pt(x).

After the loop in Algorithm 1, we have x′1:n distributed according to the proposal q(x) =∑
x′ pt(x

′)TG(x
′, π)[x] with weight function W = HG(x

′, x)[y]. Note that the exact posterior
at time t+ 1 can be written as

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

pt+1(x) =

∑
x′ pt(x

′)TG(x
′, π)[x] ·HG(x

′, x)[y]

c
= q(x)W (x)/c (1)

for some normalization constant c.

ϵ-global observation positivity implies that for all x ∈ X both pt+1(x) > 0 =⇒ q(x) > 0 and
W (x) > 0 (see Algorithm 1, Line 5). Since TG andHG output probability mass functions, W (x) ≤
1 for all x ∈ X . As a result, we can apply Lemma B.1 and get that µ̂(n)

t+1(φ)
a.s.−→ Ept+1

[f] as n→∞.

This implies that embedding θ∗pt+1
= Eϕ(x′1:n, w1:n) and regenerating x′′1:n

iid∼ pθ∗t+1
(x) = pt+1(x)

using a perfect model gives the desired result.

Almost sure convergence of the sequence. Now that we have shown almost sure convergence
for any t ≤ tmax, we can complete the proof of the theorem. For any δ > 0, there exists a random
integer Nt = min{n : ∀m ≥ n, |µ̂(n)

t (φ) − Ept [φ]| ≤ δ}. Let N = sup0≤t≤tmax
{Nt : t ≤ tmax},

then for all n ≥ N we have |µ̂(n)
t (φ)− Ept [φ]| ≤ δ for every t ≤ tmax.

Corollary B.3. Under the same conditions as Theorem 4.1, as n→∞,

sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]| = Op(n

−1/2)

Proof. From Equation 1, let p̃t(x)
def
= cpt(x) = W (x)q(x) and denote wi

def
= W (xi) =

p̃t(xi)
q(xi)

for

1 ≤ i ≤ n. Let Zi
def
= wi(φ(x)− Ep[φ]). Then,

Eq[Zi] =
∑
x

q(x)wi(φ(x)− Ep[φ])

=
∑
x

p̃t(φ(x)− Ep[φ])

= cEp[φ]− cEp[φ] = 0

So Zi have mean zero and are independent.

Now take the denominator of the estimate Bn =
∑n
i=1 wi. By ϵ-global observation positivity,

wi ≥ ϵ, so Bn ≥ nϵ =⇒ B−2
n ≤ (ϵ2n2)−1.

Since,

µ̂
(n)
t (φ)− Ept [φ] =

∑n
i=1 Zi
Bn

,

it follows that, by independence and zero mean of Zi,

E[(µ̂(n)
t (φ)− Ept [φ])2] = E[B−2

n (

n∑
i=1

Zi)
2] ≤ 1

ϵ2n2

n∑
i=1

Var[Zi].

φ is bounded, so Var[Zi] ≤ Varpt [φ] ≤ ||φ||2∞ < ∞. Define σ2
t

def
= Varpt [φ], so

∑n
i=1 Var[Zi] ≤

nσ2. Plugging this into the previous bound and taking the supremum over t gives

sup
0≤t≤tmax

E[(µ̂(n)
t (φ)− Ept [φ])2] ≤ sup

0≤t≤tmax

σ2
t

ϵ2n
=

σ2

ϵ2n

for σ2 def
= sup0≤t≤tmax

σ2
t .

Applying Chebyshev’s inequality gives, for any δ > 0

Pr[|µ̂(n)
t (φ)− Ept [φ]| ≥ δ] ≤

σ2
t

ϵ2nδ2

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Therefore,

Pr[sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]| ≥ δ] ≤

(tmax + 1)σ2

ϵ2nδ2

Setting δ =M/
√
n for M > 0 gives:

Pr[
√
n sup

0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]| ≥M] ≤ (tmax + 1)σ2

ϵ2M2

which lets us apply the definition of stochastic boundedness (Van der Vaart, 2000) to finish the
proof.

C WALL-CLOCK TIME EXPERIMENTS

We conducted experiments comparing the time required to perform update steps in the filtering
algorithms from Section 5. The experiments were restricted to fixed two- and three-dimensional
grids of sizes 5 and 8. Since differences in other environments arise only from the transition func-
tions, which are identical across all filters, we did not include them. We benchmarked the runtime
of a single update step using time.perf counter() on a 2024 MacBook Pro with a 12-core
M4 Pro processor. The final results, reported in milliseconds, are presented in Table 2. We report
the mean and standard deviation computed from 10,000 update-step measurements. To mitigate
the influence of outliers, we applied IQR filtering, removing any measurements outside the range
[Q1− 1.5× IQR, ;Q3 + 1.5× IQR], where the interquartile range is defined as IQR = Q3−Q1.

The results in Table 2 show that the cost of inference in NBF can be comparable to a particle
filter with more particles. This depends on model size, number of particles, and the complexity of
simulating the environment one step. Complex environments may require more expressive, slower
models, but on the other hand, computation time may also be dominated by particle simulation.

Table 2: Time (in milliseconds) needed to perform one update step during filtering.
5-2D 5-3D 8-2D 8-3D

Recurrent 0.1714± 0.0042 0.1731± 0.0043 0.1718± 0.0044 0.1737± 0.0047
PF (32) 0.2931± 0.0074 0.3094± 0.0068 0.2961± 0.0068 0.3243± 0.0109
PF (64) 0.4074± 0.0134 0.4325± 0.0129 0.4223± 0.0126 0.4436± 0.0148
PF (128) 0.7191± 0.0246 0.7588± 0.0238 0.7464± 0.0259 0.7736± 0.0279
NBF (16) 0.5939± 0.0129 0.6273± 0.0078 0.6053± 0.0078 0.6295± 0.0075
NBF (32) 0.8243± 0.0184 0.7952± 0.0080 0.8350± 0.0143 0.7955± 0.0079

To compare with methods that rely on gradient fine-tuning, we also measured the wall-clock time
of gradient updates for the recurrent model used in the Gridworld experiments in Section 5. The
reported results (Table 3) show the average time needed for one update step, using a precomputed
batch of data of size 32. Batch computation is excluded from the timing, and the average is computed
over 10 000 gradient update steps.

The results in Table 3 show that even a single gradient update on a relatively small recurrent network
takes significantly more time than an update step in either of the two filters. Though the increased
cost of a single update step may seem acceptable given the favorable time needed to perform one
filtering update step (one forward pass), test-time gradient fine-tuning may require hundreds or thou-
sands of gradient updates (Sokota et al., 2022).

Table 3: Time (in milliseconds) needed to perform one gradient update of a Recurrent filter.
5-2D 5-3D 8-2D 8-3D

Recurrent 2.3056± 0.0230 2.9947± 0.0445 2.6437± 0.0518 5.1424± 0.1303

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

θ

Normalizing Flow
fψ(⋅ ; θ)

Embedding Network
ℰϕ

n/2 n/2

 Samples from n p(x)
Samples from pθ(x)

∇ℒ(ϕ, ψ)

Figure 7: Training belief embedding models. Colored arrows show the flow of training sample
points from the target distribution.

D ADDITIONAL EXPERIMENTAL DETAILS

Figure D outlines the training process for the belief models used to embed distributions in all of
our experiments. Belief embedding models are trained by generating n samples from a belief state
instance p(x) from the set of target distributions PΠ

G . Half of the samples are used to compute the
embedding θ that conditions the generative model fψ(z; θ). The rest of the samples are used to
approximate the gradient of L(ϕ, ψ).
All experiments were implemented in Jax using standard libraries from the Jax ecosystem. We
used custom implementations for Normalizing Flows and all three environments. All source code is
available as part of the supplementary material. Next, we provide domain-specific details about the
models used in our experiments.

D.1 GRIDWORLD

In our Gridworld experiments, the observer has access to the agent’s policy and a simulator for the
grid. Policies are generated by biasing the agent’s movement toward a randomly selected goal—
softmax temperature controls policy entropy to create noise in the agent’s path. In each configura-
tion, the number and size of obstacles are constant, but their location is either fixed or randomized.
Each experiment was repeated for 500 episodes to compute a model’s average JS divergence at a
given step, and model training was repeated for 100 random seeds. Parameters for the set of grids
used for training and evaluation are shown in Table 5.

Belief Embedding Model. The embedding function Eϕ consisted of a standard MLP with 3 layers
of 128 units each and ReLU activations. The generative model fψ(z; θ) used a uniform prior and 5
coupling layers (Dinh et al., 2016) with masked inputs. Variational dequantization (Ho et al., 2019)
was performed to smooth discrete grid locations. More hyperparameters are shown in Table 4.

Recurrent Model. The recurrent baseline learns a mapping from a sequence of observations about
movement in the grid to an approximation of p(x). These observations are the same as those used
to define the posteriors in the filtering tasks. Since belief states in Gridworlds of these sizes are
small, the model outputs a softmax distribution over potential grid locations. JS divergence between
model output and belief state instances was minimized directly. More hyperparameters are shown
in Table 4.

Computational Resources. For each random seed, model training required roughly 2 CPU-hours
on commodity consumer hardware. Each evaluation (consisting of 500 episodes) took at most 3

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

CPU-hours. Since every experiment was repeated for 100 seeds, the end-to-end compute require-
ments were roughly 500 CPU-hours for each of the 8 grid configurations. We used cluster resources
provided by a source that will be revealed upon publication.

Table 4: Gridworld model and training hyperparameters.

Belief Embedding Model Recurrent Baseline

Embedding size 32 –
Embedding network hidden units 128 –
Embedding network hidden layers 3 –
Dequantization hidden units 32 –
Dequantization hidden layers 2 –
Normalizing Flow / RNN hidden units 32 32
Normalizing Flow / RNN hidden layers 5 2
Normalizing Flow coupling layers 5 –

Batch size 32 32
Training steps 100 000 100 000
Training samples (per p(x)) 64 –
Optimizer AdaGrad AdaGrad
Learning rate 0.10 0.10

Table 5: GridWorld environment parameters.

Parameter 5 × 5 8 × 8

Obstacle cubes 1 2
Cube width 2 3
Softmax temp. (for random policies) 1× 10−5 1× 10−5

D.2 GOOFSPIEL

In k-card Goofspiel, both players and the prize deck start with the same set of cards, labeled 0
through k − 1. A round starts when a prize card is revealed, indicating the value of winning the
round. Players act by simultaneously bidding a card and then observe only the outcome of who
played the highest card (win, draw, or loss). In our variant, the card symmetry is broken: each player
and the prize deck receives a random subset of size k − 1, while all other rules remain unchanged.
Small k means exact posterior computation is tractable, enabling efficient training and evaluation of
our models and baselines.

During training, samples are obtained by following policies of both players to a randomly selected
depth and sampling opponent action histories from the true posterior given the generated observa-
tions. The policies are sampled randomly from a pool generated by independent self-play using
PPO (Schulman et al., 2017). These policies were randomly split into a training and test set used
only for evaluation. We trained each model on five different random seeds and each filter’s reported
performance is averaged over 10 different runs, each consisting of 500 episodes.

Goofspiel Policy Generation. We generated a sequence of policies by independent self-play using
PPO to simulate the effect of changing policies during learning, as in classical self-play settings. We
used the Jax version of StableBaselines 3 (SBX) (Raffin et al., 2021)—modified to support action
masking. In self-play, we trained a policy against its previous checkpoint for 524 288 timesteps and
saved a checkpoint every 4096 timesteps. We repeated this self-play loop four times, producing a
sequence of 512 policies in total.

Belief Embedding Model. The belief embedding model for Goofspiel uses a Standard Normal
prior, and consists of a variational dequantization layer parameterized by a single coupling layer,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

followed by a series of coupling layers. The dequantization coupling layer uses an affine transfor-
mation, and each of the following layers use one-dimensional non-linear squared (NLSq) transfor-
mations. All coupling layers transform masked inputs. After dequantization, each coupling layer is
further parameterized by θ. Concrete hyperparameters used in our experiments are listed in Table 6.

Recurrent Model. Observations in Goofspiel consist of features such as the player’s hand, the
prize deck, the current one-hot encoded prize card, and the winnings. The recurrent baseline learns
a mapping from a sequence of these observations to an embedding. This embedding conditions a
Normalizing Flow with the same architecture as described above. The key difference is that the
recurrent model maps the observation sequence to an embedding directly, whereas the belief em-
bedding model embeds sample sets from p(x).

Computational Resources. Goofspiel experiments were run on computing resources provided by
a source that will be revealed upon publication. For each game size and each random seed, belief
model training required approximately 12 hours and recurrent model training approximately 3 hours
on 32 CPU cores. Afterwards, each model was evaluated for 500 episodes, which took between
several minutes and three hours on 12 CPU cores, depending on the size of the game. The evaluation
was repeated 10 times.

Table 6: Goofspiel model and training hyperparameters.

Belief Embedding Model Recurrent Baseline

Embedding size 48 48
Embedding network LSTM hidden units – 64
Embedding network LSTM hidden layers – 2
Embedding network MLP hidden units 128 64
Embedding network MLP hidden layers 3 2
Dequantization hidden units 48 48
Dequantization hidden layers 2 2
Normalizing Flow MLP hidden units 128 64
Normalizing Flow MLP hidden layers 4 4
Normalizing Flow coupling layers 8 8

Batch size 64 64
Training steps 150 000 16 000
Training samples (per p(x)) 64 32
Optimizer Nadam Nadam
Learning rate 0.001 0.001

D.3 TRIANGULATION

Triangulation is a noisy localization task on a bounded grid. At the start of each episode, the agent
is placed uniformly at random in [−5; 5]2. Every timestep, it can move 0.5 units in any of the four
cardinal directions, issue a stop action to end the episode, or scan to query a range sensor. The
objective is to navigate as close as possible to the origin and then stop. Performance is evalu-
ated by measuring the Euclidean distance to the origin at termination. Both motion execution and
range measurements are corrupted by Gaussian noise. Beacons are fixed and located at (−2,−2),
(0,
√
8), and (2,−2). Only one beacon is “active” at any time step, and the active identity rotates

deterministically each step in a fixed cyclic order. A scan action returns a noisy scalar equal to
the distance from the agent’s current (noisy) position to the currently active beacon. This induces
partial observability even with frequent scans: the agent must reason jointly about its position and
the active-beacon phase while trading off movement toward the origin with information-gathering
scans, under both transition and measurement noise.

The set of policies used to control agents in our experiments consists of mixtures between single
cardinal actions and scan. The policy for each episode is chosen at random and is available to the
filters at evaluation time.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Belief Embedding Model. The belief embedding model for Triangulation uses a Standard Normal
prior and consists of a series of coupling layers that use parameterized affine transformations and
transform masked inputs. No dequantization is necessary because the domain is continuous, and
each coupling layer is further parameterized by θ. Hyperparameters were not tuned extensively, and
are listed in Table 7.

Computational Resources. Triangulation experiments were run on computing resources provided
by a source that will be revealed upon publication. A model for this environment can be trained in a
few minutes on a single GPU.

Table 7: Triangulation model and training hyperparameters.

Belief Embedding Model

Embedding size 32
Embedding network MLP hidden units 128
Embedding network MLP hidden layers 3
Normalizing Flow MLP hidden units 64
Normalizing Flow MLP hidden layers 2
Normalizing Flow coupling layers 6
Batch size 32
Training steps 30 000
Optimizer Adam
Learning rate 0.001

D.4 DONUTS

For our illustrative example from Section 3, we used a scaled-down version of the belief embedding
model used in the main experiments. Model and training hyperparameters are shown in Table 8.
Donuts models train in several minutes on a laptop.

Table 8: Donuts model and training hyperparameters.

Normalizing Flow Model Cond. FM Model

Embedding size 8 8
Embedding network hidden units 64 64
Embedding network hidden layers 3 3
Dequantization hidden units – –
Dequantization hidden layers – –
Normalizing Flow MLP hidden units 32 64
Normalizing Flow MLP hidden layers 3 4
Normalizing Flow coupling layers 8 –

Batch size 32 32
Training steps 30 000 30 000
Training samples (per p(x)) 128 128
Optimizer Adam Adam
Learning rate 0.001 0.001

E ILLUSTRATIVE EXAMPLE USING CONDITIONAL FLOW MATCHING

To highlight the versatility of our proposed approach, we applied a Conditional Flow Matching
(CFM) model (Lipman et al., 2022; Tong et al., 2023) to the donut-shaped distributions introduced
as a toy domain described in Section 3. We experimented with both independent coupling and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

optimal transport (OT) coupling (Lipman et al., 2022) to define the target vector fields that generate
the conditional probability paths in our flow matching models. An example of a CFM model trained
with optimal transport coupling predicting the density for a randomly sampled set of donuts is shown
in Figure 8(b). The model was conditioned using 256 samples sampled from the true distribution and
asked to predict the density of each point in a 512× 512 grid. Model and training hyperparameters
are shown in Table 8.

−2 −1 0 1 2

x1

−3

−2

−1

0

1

2

3

x
2

(a) Sample donut distributions. Each distribu-
tion has three parameters: mean, radius, and
width.

−2 −1 0 1 2

x1

−3

−2

−1

0

1

2

3

x
2

(b) Learned densities after conditioning the
model on 256 samples from the target distri-
bution.

Figure 8: Embedding the set of donut distributions in R2 using Conditional Flow Matching

F CODE

We will release all of our training and evaluation code on GitHub upon publication.

20

	Introduction
	Main Contributions

	Background
	Notation
	Classical Filtering Algorithms

	Embedding Belief States
	Model Definition
	Illustrative Example: Donuts

	Filtering with Embeddings
	Convergence of NBF with a Perfect Model

	Experiments
	Partially-Observable Gridworld
	Partially-Observable Goofspiel
	Triangulation

	Discussion
	Related Work

	Conclusion
	NBF Pseudocode
	Proof of Theorem 4.1
	Wall-Clock Time Experiments
	Additional Experimental Details
	Gridworld
	Goofspiel
	Triangulation
	Donuts

	Illustrative Example using Conditional Flow Matching
	Code

