Under review as a conference paper at ICLR 2026

NEURAL BAYESIAN FILTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Neural Bayesian Filtering (NBF), an algorithm for maintaining distri-
butions over hidden states, called beliefs, in partially observable systems. NBF
is trained to find a good latent representation of the beliefs induced by a task. It
maps beliefs to fixed-length embedding vectors, which condition generative mod-
els for sampling. During filtering, particle-style updates compute posteriors in this
embedding space using incoming observations and the environment’s dynamics.
NBF combines the computational efficiency of classical filters with the expres-
siveness of deep generative models—tracking rapidly shifting, multimodal beliefs
while mitigating the risk of particle impoverishment. We validate NBF in state
estimation tasks in three partially observable environments.

1 INTRODUCTION

Belief state modeling, or computing posterior distributions over hidden states in partially observ-
able systems, has numerous applications in sequential estimation and decision-making problems,
including tracking autonomous robots and learning to play card games (Haug, [2012; [Sokota et al.,
2022; Barfoot, 2024). As an example, consider the problem of tracking an autonomous robot with
an unknown starting position in a d x d grid (Figure[I). Suppose the agent’s policy is known, and
an observer sees that the agent moved a step without colliding into a wall. This information indi-
cates how the observer should update their beliefs about the agent’s position. Tracking these belief
states can be challenging when they are either continuous or too large to enumerate (Solinas et al.,
2023)—even when the agent’s policy and the environment dynamics are known.

A common approach frames belief state modeling as a Bayesian filtering problem in which a pos-
terior is maintained and updated with each new observation. Classical Bayesian filters, such as the
Kalman Filter (Kalman, [1960) and its nonlinear variants (e.g., Extended and Unscented Kalman
Filters (Sorenson, [1985; Julier & Uhlmann, [2004))), assume that the underlying distributions are uni-
modal and approximately Gaussian. While computationally efficient, this limits their applicability in
settings that do not satisfy these assumptions. Particle filters alternatively approximate arbitrary tar-
get distributions through sets of weighted particles. However, in high-dimensional state spaces, they
can require maintaining exponentially large sets of particles or risking particle impoverishment—a
phenomenon where the set contains very few particles with significant weight (Doucet et al., 2009).

Advances in generative modeling have provided new methods for filtering in problems with com-
plex, multimodal belief states. However, they approximate the full system dynamics (including
agent policies) and update an internal representation of the beliefs with each observation. This is a
significant limitation in applications where the policy or environment is known but changes, which
happens naturally in some learning algorithms (Moravcik et al., 2017, |Schmud et al.l 2023).

In this paper, we propose Neural Bayesian Filtering (NBF), which models complex, multimodal
belief states and updates posteriors efficiently for input policies and environments. Central to our
approach is the idea that belief states in a given task form a parameterized set. Much like how
mean and variance parameterize the family of Gaussians, a learned embedding vector specifies a
particular belief state instance. This embedding can be computed exclusively using samples from
the target belief state—making it specific to a given policy, environment, and observation sequence.
Given a new observation, NBF updates the embedding to approximate the new posterior by generat-
ing, simulating, and then re-embedding particles. Effectively combining particle filtering and deep
generative modeling, the algorithm maintains expressive approximations of complex, multimodal
belief states. We validate NBF empirically in variants of Gridworld, the card game Goofspiel, and a
continuous localization environment called Triangulation.
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Figure 1: Tracking an agent with an unknown starting position from observations about which
direction the agent moved (with some probability of error) and whether or not it hit a wall. Colored
cells indicate probabilities of possible agent positions.

1.1 MAIN CONTRIBUTIONS

Belief State Embeddings We propose learning an embedding network that compresses sample
sets from belief states into a set-invariant vector. Conditioning a generative model on this vector
allows for efficient sampling and density estimation on a family of complex posterior distributions.

A Flexible Parametric Framework For Filtering We introduce Neural Bayesian Filtering
(NBF), a novel parametric filtering framework that combines classical filtering, embeddings, and
deep generative modeling. NBF can approximate multimodal, non-Gaussian, and discrete state dis-
tributions without prohibitively large particle sets or fixed parametric assumptions.

2 BACKGROUND

Belief state modeling has been studied in numerous contexts, including Hidden Markov Models

(HMMs) [1989), Partially Observable Markov Decision Processes (POMDPs)
[1998), and Factored Observation Stochastic Games (FOSGs) (Kovarik et all [2022), and is
critical to many decision-time search algorithms. [Sokota et al.[(2022) provide a unified notation for
belief state modeling. This work extends their formulation to sets of environments and explicitly
models non-stationarity in the environment and control. These non-stationarities arise naturally
when the agent learns or the environment changes (e.g. different obstacles in the grid in Figure[T).

2.1 NOTATION

Let z € X be a Markov state and m € II be an external control variable (such as a policy
in a POMDP or a joint policy in an FOSG). Let 7' : X x II — AX be the transition func-
tion that determines the underlying dynamics. Emission function H : X x X — AY outputs

a probability distribution over the the observations (emissions) ¥ € Y upon transition from z
. def . .
to 2. An environment G = (X,Y,T,H,pp) contains state and observation spaces, a tran-

sition function, an observation function, and an initial state distribution py. In this paper, we
extend this formulation to include a set of state spaces X, transition functions 7, and observa-

tion spaces ) to model the scenario where an environment instance is known but non-stationary.
def

G={X,Y,T,H,py): X e X, Y e Y, T €T,H € H,py € AX} is the set of environments.
Given an instance (G, ), belief state modeling is expressed as modeling the distribution over
the Markov states at a particular time ¢, conditional on the control and emission variables:
p(x|m, gy y(t)). In discrete Markov systems with small state spaces, belief states can be com-
puted analytically using posterior updates for each observation in the sequence.

In this work, we consider the problem where both G and 7 are known by the agent or external
observer and computationally efficient to evaluate. Together, G and II parameterize a set of belief
states Po def {p(z|m,yD,...,y) : 7 € II,G € G,y € Y,t € N}. For brevity, we will drop
the conditional and refer to a member of this set as p(x). Unlike much of the prior work in neural
belief state modeling, our approach models this set directly by conditioning on specific G and 7.



Under review as a conference paper at ICLR 2026

2.2 CLASSICAL FILTERING ALGORITHMS

Bayesian filtering (Sarkkd & Svensson, 2023) has been studied extensively as a method for belief
state modeling. Environments with linear Gaussian dynamics are the simplest case. In these set-
tings, Kalman filters (Kalman| |1960) provide efficient closed-form solutions for the posterior mean
and covariance. However, many real-world applications involve nonlinear, non-Gaussian processes.
Improvements such as Extended (Sorenson) |1985)), Unscented (Julier & Uhlmann, [2004)), and Cu-
bature (Arasaratnam & Haykin, 2009) Kalman filters are suitable for non-linear systems but still
propagate unimodal beliefs.

Particle filters (Doucet et al., |2009)) maintain a representative set of weighted samples for the belief
state. This set gets updated according to the environment dynamics upon each new observation.
Particle filters can, in principle, approximate a wide range of distributions, but they come with
other challenges. Particle impoverishment happens when many particles in the set have little or no
weight given the observation sequence and can be catastrophic because replacement particles can
only be sampled by duplicating others in the set (Sokota et al.l 2022). Computational efficiency
can also become a concern in high-dimensional state spaces because accurate filtering generally
requires maintaining an exponential number of particles (Thrunl 2002)). Specialized approaches for
mitigating impoverishment (Murphy & Russell, 2001; |Orguner & Gustafsson, 2008} [Park et al.,
2009) often lack generality, relying on exploiting problem-specific structure, domain knowledge, or
hand-tuned heuristics, and possess the same challenges with resampling.

In the next two sections, we describe NBF: a novel approach that models the set of belief states
parameterized by IT and G as a latent space of belief state embeddings. These embeddings condition
a generative model for sampling and density estimation. Approximate posteriors are updated by
sampling particles from the embedding, simulating these particles using the input G € G and 7 € II,
and then computing a weighted embedding with the result. Learned neural embeddings and fast
posterior computation in the embedding space let NBF combine the computational efficiency of
parametric approaches like Kalman filters with the flexibility of particle or model-free methods.

3 EMBEDDING BELIEF STATES

In this section, we formalize our approach to modeling complex, multimodal belief states using
learned neural embeddings. Our goal is to represent and efficiently sample from a given belief state
induced by known but potentially changing control variables and environment dynamics.

Given a known control variable # € II and environment G € G, the induced belief state after
t observations is the posterior distribution p(x). One challenge is efficiently modeling the set of
these posterior distributions, which may be diverse as 7 or G vary. We propose embedding these
distributions from sets of ground truth samples of example belief states. Our approach aims to
construct an embedding vector § € R™ that uniquely represents the posterior distribution defined
by y(3*¥), 7, and G, and conditions a model for sampling and density estimation.

3.1 MODEL DEFINITION

We model the target set of belief states using an embedding function and a Normalizing Flow (Pa-
pamakarios et al., [2021)) conditioned on its output.

Embedding Function. Let z1., def (z1,22,...,2,) denote ii.d. samples from belief state
p(z). We define a permutation and cardinality invariant function £ : X™ x R™ — R™ that

maps (weighted) samples x1., to an m-dimensional embedding vector. A belief embedding

def . . .
6 = E4(x1:m, w1.n) approximates the salient features (e.g. shape, location, spread) of a target

distribution p(x) as a vector in latent space. Together with the flow described next, it defines the
distribution py(z).

Permutation and cardinality invariance ensures that neither n nor sample order affects #. In this
paper, we take the (weighted) mean over individual sample embeddings. If ¢ is expressive enough,
the mean-pooled embedding 6 serves as a sufficient moment-based approximation of p(z), but other
higher-order architectures such as DeepSets (Zaheer et al.,[2017) may also be viable.
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Figure 2: Embedding the set of donut distributions in R?

Conditional Normalizing Flow. Normalizing flows are a class of generative models that trans-
form a simple base distribution (e.g., Gaussian) into a complex target distribution through a series
of invertible and differentiable mappings. They allow for exact likelihood computation via change-
of-variables. Flows can also be constructed in continuous time by defining an ordinary differential
equation that describes the dynamics of the transformation over time (Lipman et al., 2022).

Given an embedding 6, we can define tractable sampling and density estimation operations on pg(x)
by conditioning a normalizing flow on 0. Let fy(+;6) : R? — R? be an invertible, differentiable
transformation conditioned on 6 and parameterized by . Given a simple base distribution p(z) (e.g.
standard normal), the following two-step sampling procedure:

2~ p(2); = fu(z0),
gives the desired density pg(x) (by change-of-variables) (Papamakarios et al.,[2021):

af, " (x:0)

det o

polz) = p (f;l(r; 9))

If f4(z;0) has a tractable inverse, then evaluating this density is also tractable. 1) and ¢ can be opti-
mized jointly by maximizing the log-likelihood over all samples 1, ..., N and distributions 1, ..., K
in the training set:

Q.

K
L6 0) E D> logpy? (2:)

k=11=1

Discrete Belief States and Variational Dequantization. Normalizing flows are defined for con-
tinuous inputs, but belief states in many relevant domains are discrete. Variational Dequantization
(Ho et al.;,[2019) is an approach for applying flows to discrete data. Each discrete sample is perturbed
by learned noise, resulting in a continuous space. The noise distribution is trained jointly with the
flow by maximizing a variational lower bound on the true discrete log-likelihood—preserving exact
likelihood evaluation and stabilizing training for discrete belief states.

3.2 ILLUSTRATIVE EXAMPLE: DONUTS

Consider a domain, which we call donuts, consisting of a simple set of continuous distributions
in R?. Donuts (Figure [2(a)) are parameterized by a mean, a radius, and a width. Setting these
parameters specifies a particular donut D, and they are sufficient for closed-form sampling from D.

. . . iid
Suppose these parameters are not known, and instead &£, receives a set of sample points xi., ~ D
and outputs 6 as a parameterization of D. 6 conditions the generative model fy;,(z; 6), providing an
approximation of D and enabling i.i.d sampling from it.

We train our model on randomly generated example donuts using n = 128 samples per donut—with
n/2 used for generating the embedding and the rest used for minimizing the negative log-likelihood
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objective. At test time, we create embeddings using 64 samples from unseen target donuts. Fig-
ure [2(b)| shows 3 randomly selected test donuts. Points are samples from the target distribution
used to generate ¢, while the contours are generated by evaluating the log densities of grid points
according to fJ !(x; ). Hyperparameters and other training details can be found in the appendix.

4  FILTERING WITH EMBEDDINGS

If p(x) is a posterior induced by a sequence of observations, obtaining the samples needed to com-
pute 6 may carry significant computational overhead. More general-purpose belief state approxima-
tion using our model requires tracking the belief state over the observation sequence. In this section,
we describe an algorithm that tracks belief states in the embedding space.

Upon receiving an observation, classical parametric methods, such as variants of Kalman filters,
compute the posterior in closed form. If # represents the parameters for a given belief state, such
methods define an update function g : R™ x Y — R™ such that 8’ = ¢(6,y). The modeling
assumptions that enable closed-form updates are often violated, which motivates approximate meth-
ods. Approximating g for a fixed G and 7 is a viable choice, but often lacks efficient methods for
parameterizing g with G and 7 in settings where they are variable inputs.

Particle filters are non-parametric: they represent arbitrary target distributions as sets of weighted
sampled points called particles. Posterior updates to these empirical distributions are performed
by simulating transitions using G and 7 for each particle and updating weights according to the
induced transition probabilities. Below we provide a typical posterior update for a particle filter
given observation y, 7 € I, and G € G:

For each particle x; and particle weight w;, 7 € 1,... n:

1. Simulate transition z} ~ Tg(z;, )
2. Update weight w} « w; - Hg (x4, 25)[y]

New weights are typically used to resample particles by duplicating particles that are more likely
to match the updated observation sequence and discarding others. Impoverishment occurs when all
particle weights become small and new particles cannot be resampled from outside x 1., .

Neural Bayesian Filtering approximates belief states by performing a similar update in the embed-
ding space of a pre-trained belief embedding model. It incorporates 7 € Il and G € G into the
posterior update like a particle filter, but avoids impoverishment by resampling from the model at
every step. Given an embedding, NBF generates particles according to pg(x), simulates them for-
ward while computing their weights exactly like a particle filter, and then computes a new weighted
embedding from the result. Figure [3] shows an overview of NBF’s posterior update. Full details,
including pseudocode, are shown in the appendix.

4.1 CONVERGENCE OF NBF WITH A PERFECT MODEL

NBF is consistent and converges at the standard Monte-Carlo rate for finite X and Y under the
following assumptions: (i) the embedding model is expressive enough to represent every belief state
exactly, and (ii) there exists some global € € (0, 1] such that given an observation y, the probability
of transitioning from any state x to one of its successors x’ and observing y is at least e. We call (ii)
e-global observation positivity of (G, 7).

Theorem 4.1 (NBF Consistency). Assume e-global observation positivity of (G, ) and a finite X
and Y . For any finite horizon ty,,, belief state py(x),t < tyq., and any bounded function ¢ : X —
R, let

be the estimate of E,, [p] computed by NBF with a perfect embedding model and n particles. Then,

sup |l () — By, [¢]] 25 0
0<t<tmax

asn — oQ.
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Figure 3: Neural Bayesian Filtering generates particles from a belief embedding, simulates them in
the environment, and embeds them with a weight proportional to the probability of y.

Theorem states that for any bounded function f on the state space and belief state p(x), NBF’s
estimate of E,, [] almost surely converges to the true value as its number of particles approaches cc.
The following Corollary states its convergence rate under the same conditions.

Corollary 4.2 (NBF Convergence Rate). Under the same conditions as Theorem asmn — oo,

sup | (9) — Ep,[¢]] = Op(n~1/?)

0<t<tmar

Further details, including proofs, are included in the Appendix.

5 EXPERIMENTS

We validated Neural Bayesian Filtering in partially observable variants of Gridworld, the card game
Goofspiel, and the localization environment Triangulation. Belief states in the first two environ-
ments are discrete, so we used variational dequantization as described in Section [3] Additional ex-
periments and further details, including hyperparameter settings, are available in the supplementary
material. Source code will be made available upon publication.

We compared a total of four approaches:

* Approx Beliefs: The embedding model described in Sectionwith access to p(x) to gen-
erate samples for an embedding size of 32. Each training instance consists of 64 samples
from some p(z) € PZ. Model hyperparameters were not tuned extensively.

* PF (n): A Sequential Importance Resampling Particle Filter with n weighted particles
representing the belief state. An effective sample size less than n /2 triggers a systematic
resample (Doucet et al.,|2009) of the particles.

* NBF (n): A Neural Bayesian Filter with the same belief embedding model as “Approx
Beliefs” and n particles for posterior computation.

* Recurrent: A two-layer LSTM trained to predict p(x) € PY from observations.

Performance was measured in terms of Jensen-Shannon (JS) divergence between the model’s pre-
dicted belief state and the ground-truth posterior, with lower values indicating better performance.

5.1 PARTIALLY-OBSERVABLE GRIDWORLD

We conducted experiments on a partially observable variant of Gridworld with grids of size 5 and
8, and dimensionality 2 and 3. Each grid contains a fixed number of square (or cube) obstacles,
and every agent step results in an observation indicating whether the agent hit a wall. For each
dimensionality and size, we evaluated performance in two conditions: a fixed grid and policy and
a randomized grid and policy, yielding eight total experimental configurations (5-2D-fixed, 5-2D-
random, 8-2D-fixed, 8-2D-random, 5-3D-fixed, 5-3D-random, 8-3D-fixed, 8-3D-random).
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Figure 4: Jensen-Shannon divergence on fixed grids and policies (left to right: 5-2D, 8-2D, 5-3D,
8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500 episodes.
Shaded areas indicate £ 1 standard error on the average model performance.
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Figure 5: Jensen-Shannon divergence on randomized grids and policies (left to right: 5-2D, 8-
2D, 5-3D, 8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500
episodes. Shaded areas indicates + 1 standard error on the average model performance.

Fixed Grids and Policies. Figure 4 summarizes results for fixed grids and policies. The belief
model computes its embedding using samples from the target distribution, so it provides an expected
performance ceiling for NBF. This shows that the embedding is expressive enough to model the set
of belief distributions in this partially observable fixed grid. The recurrent approach is capable of
modeling posterior updates on a fixed grid, and further tuning could potentially allow it to perform
better than the belief model in the fixed setting. NBF maintains a low JS divergence, comparable to
the belief model over many steps, while using a relatively low number of particles. This suggests
that NBF’s update is effective for approximating the posterior computation in the embedding space.
Even with orders of magnitude more particles than NBF, the PFs struggle to achieve comparable
performance and demonstrate scalability issues with grid size and dimensionality.

Randomized Grids and Policies. Performance in randomized grids and policies is summarized
in Figure 5] Belief embeddings effectively model this much larger set of belief distributions (given
that the policy and obstacle placement are now randomized and changing at every episode). With no
ability to incorporate policy and grid information into the model, the performance of the Recurrent
filter degrades significantly compared to the fixed grid setting. This highlights its limited adapt-
ability to non-stationary environments, regardless of its capacity to express complex belief states in
fixed settings. Particle-based methods are more robust to dynamic grids and policies, with NBF per-
forming the best overall despite using relatively few particles. NBF’s performance gain over particle
filtering likely arises because the belief-embedding model captures relevant information about Pg.

5.2 PARTIALLY-OBSERVABLE GOOFSPIEL

Our second set of experiments uses a modified version of the card game Goofspiel (Lanctot et al.,
2013) with k& € {4,5,6,7} cards. This domain is a standard benchmark in imperfect information
games, and provides a concrete example of when an acting agent must consider the opponent policy
for belief computation. k-card Goofspiel performance is summarized in Figure [f] Modeling late-
game belief states in Goofspiel seems more challenging than in Gridworld. We see this in the
growing error of the “Approx Beliefs” filter as the size of the game increases. This may be due to
strong constraints on legal states (e.g. hand sizes when ¢ cards have been played). Unsurprisingly,
significant inaccuracies in the embedding model appear to have negative downstream effects on
NBF’s performance. On the other hand, the particle filter’s performance improves at later timesteps
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Figure 6: Jensen-Shannon divergence on partially-observable Goofspiel with four, five, six, and
seven cards. Training is repeated for 5 random seeds, with each model evaluated over 500 episodes
for 10 random seeds. Shaded areas indicate &+ 1 standard error on the average model performance.

as belief state entropy drops. Despite these difficulties, NBF still outperforms the particle filters with
an order of magnitude fewer particles (64 vs. 512) in all four sizes.

5.3 TRIANGULATION

Finally, we evaluate NBF in a domain with a continuous state space we call Triangulation, where
the agent must localize itself in R? by moving and scanning fixed beacons before stopping as close
as possible to the origin. Full details are available in the supplementary material.

Exact posterior computation is not feasible in this domain, so we use a large particle filter (1024
particles) as the ground truth for both training the belief model and computing the JS divergence
for evaluation. JS divergence is computed by discretizing the state space into a grid and calculating
the probability of each cell according to the filters. Performance in Triangulation is summarized in
Table [T} We observe that NBF with only 16 particles performs substantially better than the particle
filter baselines.

Table 1: Jensen-Shannon Divergence on Triangulation. Training is repeated for 20 random seeds,
with each model evaluated over 100 episodes.

PF (32) PF (64) PF (128) PF (256) NBF (16) NBF (32)
0.638 £0.001 0.607£0.001 0.565+0.001 0.513+0.001 0.459 £0.002 0.459 £ 0.002

6 DISCUSSION

Though our empirical evaluation focuses on three relatively simple domains, it still highlights NBF’s
versatility and potential effectiveness in more complex tasks. For deep recurrent approaches to mod-
eling g(6,y), scalability and model expressiveness are insignificant when they cannot incorporate
critical environment information (G, 7). Constraining the particle budget to grow sub-linearly with
| X| immediately exposes the scaling pathology of classical particle filters, even in our smallest
testbeds. NBF achieves good performance with orders-of-magnitude fewer particles, whereas PFs
remain inaccurate despite far larger particle sets. In such cases, the additional cost of embedding
and generating a much smaller set of particles with our model is insignificant compared to parti-
cle simulation costs. Confirming this in larger domains for downstream tasks such as learning and
sequential decision-making is a promising avenue for future work.

In light of our promising results, NBF has limitations related to its belief embedding model and
particle-based updates. For instance, experiments on Goofspiel highlighted the importance of an
accurate belief embedding model. In some cases, filtering performance could be highly dependent
on choosing appropriate task-specific architectures and training methods.

Training data for the domains tested in this work is both easy to generate and reflective of the set
of belief states encountered during filtering. Learning an embedding model from the data encoun-
tered while filtering would make NBF applicable to settings where representative training data is
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difficult or impossible to obtain before filtering. That said, many state-of-the-art online search al-
gorithms (Silver et al.| 2017; [Moravcik et al., |2017; Schrittwieser et al., [2020; |Schmid et al., [2023))
require significant computation for offline training but keep online search at decision-time less com-
putationally intensive. These settings suit NBF perfectly and match the experiments conducted in
this paper. While NBF’s posterior updates reduce the chance of particle impoverishment, they do
not eliminate it, especially under extreme conditions where impoverishment can occur in a single
step. Such updates can also potentially incur computational overhead during inference compared
to pure model-based approaches or the analytical updates of some classical filtering methods. In
this sense, NBF trades inference speed for increased representational capacity and adaptability to
environmental and control dynamics.

6.1 RELATED WORK

There is a notable connection between variational hidden states in deep recurrent models and belief
state modeling (Chung et al., 2015). Recurrent neural filtering algorithms (Krishnan et al.l 2015}
Karl et al.l [2016; Lim et al.l [2020; Revach et al., 2022) can incorporate external observations and
learn the overall transition dynamics defined with a fixed 7 and G. However, this implies that,
regardless of their expressivity, these models are fixed at test time and cannot easily be adapted to
new transition dynamics. Alternative methods (Fickinger et al., 2021; Sokota et al.| 2022) fine-tune
a large pre-trained deep generative model via gradient updates at decision time to adapt to changes
in the environment dynamics. The model is initially trained on a large sample set aggregated from
many belief states and then refined to fit a test-time belief state. Like NBF, such methods can
resample from the full support of the distribution, which mitigates impoverishment risks. However,
this comes at a cost as fine-tuning may require many costly gradient updates for each target belief
state. This makes it less suitable as a component of fast online search algorithms.

Alternative approaches for embedding beliefs map distributions into an RKHS via kernel mean
and conditional mean embeddings (Song et al., |2009). This yields unique representations under
characteristic kernels. However, tying representation quality to a fixed kernel risks mismatch with
the posterior family encountered at test time, and unlike NBF, these embeddings are not naturally
generative.

Belief state modeling has often been implicitly studied in downstream tasks such as search and learn-
ing in partially observable environments. The aforementioned fine-tuning approaches (Fickinger
et al.l |2021; |Sokota et al., [2022) have been applied to search and learning in Hanabi. POMCP
(Silver & Veness, [2010) performs Monte Carlo Tree Search from particle-based approximations of
belief states. Neural Filtering and Belief Embedding can potentially act as a drop-in replacement
for particle filtering and offer richer belief state approximations for search. Likewise, Sustr et al.
(2021) uses particle-based approximations of value functions for depth-limited search. Approximat-
ing value functions in the embedding space is also a promising avenue for future work.

7 CONCLUSION

We introduced Neural Bayesian Filtering, a method for modeling belief states in partially observable
Markov systems. It models the set of distributions induced by a Markov system as a latent space and
performs particle-based posterior updates in this latent space upon new observations. Its underlying
models for embedding beliefs are trained strictly from sample sets of example belief states, and
its posterior update directly integrates non-stationary dynamics and control variables. We show
empirically in three partially observable domains that it retains the robustness of traditional particle
filtering while approximating rich, multimodal belief states with far fewer particles. Neural Bayesian
Filtering has potential applicability well beyond the tasks demonstrated in this paper, extending
naturally to various domains involving sequential decision-making, planning, and estimation under
uncertainty.
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A NBF PSEUDOCODE

We present the full pseudocode for Neural Bayesian Filtering. The algorithm updates the input
belief embedding by generating and then simulating n particles for a single step. These particles are
weighed according to the probability of input observation y given the environment dynamics G' and
control variable 7.

Algorithm 1: Neural Bayesian Filtering

input : § — Belief Embedding, y — Observation, G — Environment, 7 — Control,
(1, ¢) — Model Parameters, n — Number of Particles, ¢ — function to estimate E,[¢]

output: ' — Updated Belief Embedding
iid

21 ~ N(0g, I4) // n samples of d-dimensional Gaussian noise
ZTim — fy(21m;0) // Generate particles from belief embedding
fori < 1...ndo

xi ~ To(z;,m)

w; < He (2, 27)[y]
end
ﬂ(n)(@) — 7Ziilnf”iﬁ(_fi) // Estimate target expectation

=1 z

return (2}, normalize(ws.,)), 1™ () // Output embedding and

estimate E,[yp]

The algorithm can optionally estimate the expectation (Line 7) of a target function ¢ over the belief
state. Next, we show theoretical results about the convergence of the estimate when NBF has access
to a perfect belief embedding model.

B PROOF OF THEOREM [4_1]

The theorem requires two main assumptions: a perfect belief embedding model and e-global obser-
vation positivity. A perfect embedding model has of two properties. First, for every p(z) € P,

there exists a 07 € R™ such that py- (x) = p(z). Second, for any finite collection of samples

1., € X" and weights wy., € R?, Z?Il w,; = 1, if the weighted empirical distribution induced

by (@1:n, W1n), P(x) is equal to p(x), then Ey(x1.0, W1ipn) = 0.

Define the successor pairs of state space X given (G, ) as succg, - (X) Lef {(z,2') : z,2' €
X, Tg(z,m)[x'] > 0}. e-global observation positivity of (G, ) states that there exists an € € (0, 1]
such that for all y € Y and (x, 2') € succg,-(X):

T(xvﬂ—)[x/] . HG($7x/)[y] > €

This means that for G and , every transition has some probability of generating any observation
y. In practice, a small € is sufficient to guarantee NBF’s consistency. Without this simplifying
assumption, there can be a non-zero (but vanishing) chance that the sample weights in the estimator
[ () are all equal to zero. In a practical setting where this happens, one could repeat lines 2-6
of Algorithm ] until some w; > 0. With finite state and observation spaces and these assumptions,
we can prove the almost-sure convergence of NBF to the target posterior. First, we provide a lemma
for the strong law of large numbers for self-normalizing importance samplers. The proof is an
adaptation of the one found in|Owen|(2013)).

Lemma B.1 (Strong Law for Self-Normalized Importance Sampling Estimators). Given a finite
sample space X, let p(x) be a target distribution and q(x) be a proposal distribution such that
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q(x) > 0 whenever p(x) > 0. Let W : X — (0,1] be a weight function such that p(x) =
¢ - W(x)q(x) for normalization constant c. Finally, let ¢ : X — R be any bounded function.

Draw samples x1,...,T, i q. Let w; = W (x;) and

be the self-normalized importance sampling estimate of E,[]. Then,

A (g) £ Eyly]

as n — oQ.

. . . def —n .
Proof. Since the pairs (w;, ;) are i.i.d., the numerator S,, = Y7  w;p(z;) and denominator

B, def >, w; of the estimate are i.i.d sums. With bounded ¢ and W, we can apply Kolmogorov’s
Strong Law of Large Numbers to .S,, and B,,, which gives

Sn as. Bn as.
— —E — = E
n Q[¢W]v n q[W}

as n — oo.

By the definition of g and W, 1 = > _p(z) = >, W (z)q(z) = cE4[W]. Thus, E,[W] = ¢ L.
Since E,[pW] = ¢ Ey[eWe] = ¢ 1E,[¢].

Thus, by the Continuous Mapping Theorem (Mann & Wald, 1943)), we have

- Sn/n a.s. CilEp[SO]

;) —
2 (QO) B, /n - c—1

= Ep[‘ﬂ]
asn — oo. ]

Applying this Lemma to the one-step particle update of NBF lets us show that if the current estimate
0 is consistent, then 0 is also consistent in the limit.

Theorem B.2 (NBF Consistency). Assume e-global observation positivity of (G, ) and a finite X
andY . For any finite horizon ty,,, belief state p;(x),t < ty.y, and any bounded function ¢ : X —
R, let

i (p) = ==
be the estimate of E,, [p] computed by NBF with a perfect embedding model and n particles. Then,

sup |t () — Ep, []] 25 0

0<t<tmax

as n — oQ.

Proof. According to Algorithm[I] the weight for transitioning from x; to @, is w; = T (;, 7)[}] -
He(x;, 25)[y]. We start by proving almost sure convergence for any fixed ¢ < tpay : ¢, tmax € N by
induction.

Base case. t = 0 Here p(x) = pg, so a perfect embedding model implies we can compute ¢, by
embedding samples from py and then generate 7., ~ p(z). ¢ is bounded, so we can apply the
Strong Law of Large Numbers to get the result.

Inductive step. Assume for some ¢ < ty., generated particles x1.,, are i.i.d. according to p;(x).

After the loop in Algorithm [1} we have x}.,, distributed according to the proposal q(z) =
oo (@) T (2!, m)[x] with weight function W = Hg(a',x)[y]. Note that the exact posterior
at time ¢ 4 1 can be written as
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_ 2w P (@) Te(@!, m)[z] - Ho(2', 2)[y]

c

= q(z)W(z)/c ey

pe+1(7)

for some normalization constant c.

e-global observation positivity implies that for all z € X both p;41(z) > 0 = ¢(z) > 0 and
W(x) > 0(see Algorithm Line 5). Since T and H¢ output probability mass functions, W (z) <

1forallz € X. Asaresult, we can apply Lemma|B.1{and get that ﬂgi)l (@) == Ep,,, [flasn — <.

This implies that embedding 0 = &4 (21,,,, w1:n) and regenerating z7,,, by pe;,, (z) = pry1(z)

using a perfect model gives the desired result.

Almost sure convergence of the sequence. Now that we have shown almost sure convergence
for any ¢ < tiax, We can complete the proof of the theorem. For any 6 > 0, there exists a random

integer N; = min{n : Vm > n, \,&t") (0) = Ep,[p]] < 0}. Let N = supgeycy, ANt 0 T < timax)s
then for all n > N we have |ﬂ§")(g0) —E,, [¢]] <6 forevery t < tmay.
O

Corollary B.3. Under the same conditions as Theorem[d.1} as n — oo,

sup @™ (¢) — By, [¢]] = Op(n~1/?)
Ogtgtmax

Proof. From Equation let py(x) o epe(z) = W(x)q(z) and denote w; Lof W(z;) = % for

1<i<n LetZ ¥ w;(p(x) — Eplg]). Then,
Eq[Zi] = q()wi(p(x) — Eylel])
= Bile(z) — Eyle])

= cBp[p] = cBplp] =0
So Z; have mean zero and are independent.
Now take the denominator of the estimate B, = > ., w;. By e-global observation positivity,
w; > 6,50 B, >ne = B2 < (2n?)"L

Since,
~(n Z?: ZZ
i () — Ep,[¢] = =,
it follows that, by independence and zero mean of Z;,

n

B[4 (p) ~ By, [p])?] = BB (Y Z0°) < 5 VarlZ].
i=1 =1

¢ is bounded, so Var[Z;] < Vary,[¢] < ||¢|2, < oo. Define 02 % Var,, [¢], so Sor o Var[Z;] <
no?. Plugging this into the previous bound and taking the supremum over ¢ gives

swp B[ () By o) < sup = T
0<t<tms " T 0<t<tn, €1 €21
for 02 déf SupOStStmax 0’%.
Applying Chebyshev’s inequality gives, for any 6 > 0
2
- (1) g%
P —-E > 9] <
tlli () = Ep ol 2 0] < 55
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Therefore,
(tmax + 1)02

. ~(n)
Pr[ sup iy "(p) — Ep,[¢]] > 6] < 202

0<t <tmax

Setting 6 = M/+/n for M > 0 gives:

(tmax + 1)02

PV sup | () — By lp)] = M] < %5

0<t<tmax

which lets us apply the definition of stochastic boundedness (Van der Vaart, |2000) to finish the
proof. O

C WALL-CLOCK TIME EXPERIMENTS

We conducted experiments comparing the time required to perform update steps in the filtering
algorithms from Section [5] The experiments were restricted to fixed two- and three-dimensional
grids of sizes 5 and 8. Since differences in other environments arise only from the transition func-
tions, which are identical across all filters, we did not include them. We benchmarked the runtime
of a single update step using time.perf_counter () on a 2024 MacBook Pro with a 12-core
M4 Pro processor. The final results, reported in milliseconds, are presented in Table 2] We report
the mean and standard deviation computed from 10,000 update-step measurements. To mitigate
the influence of outliers, we applied IQR filtering, removing any measurements outside the range
[Q1 — 1.5 x IQR, ; @3 + 1.5 x IQR], where the interquartile range is defined as IQR = @3 — Q1.

The results in Table [2] show that the cost of inference in NBF can be comparable to a particle
filter with more particles. This depends on model size, number of particles, and the complexity of
simulating the environment one step. Complex environments may require more expressive, slower
models, but on the other hand, computation time may also be dominated by particle simulation.

Table 2: Time (in milliseconds) needed to perform one update step during filtering.

5-2D

5-3D

8-2D

8-3D

Recurrent 0.1714 +£0.0042 0.1731 £0.0043 0.1718 £0.0044 0.1737 £ 0.0047
PF (32) 0.2931 £0.0074 0.3094 £ 0.0068  0.2961 £+ 0.0068  0.3243 £ 0.0109
PF (64) 0.4074 £0.0134 0.4325+0.0129 0.4223 £0.0126 0.4436 £ 0.0148
PF (128) 0.7191£0.0246 0.7588 £0.0238 0.7464 £0.0259 0.7736 = 0.0279
NBF (16) 0.5939 £0.0129 0.6273 £ 0.0078  0.6053 £ 0.0078  0.6295 %+ 0.0075
NBF (32) 0.8243 £0.0184 0.7952+0.0080 0.8350 £ 0.0143  0.7955 + 0.0079

To compare with methods that rely on gradient fine-tuning, we also measured the wall-clock time
of gradient updates for the recurrent model used in the Gridworld experiments in Section[5} The
reported results (Table[3) show the average time needed for one update step, using a precomputed
batch of data of size 32. Batch computation is excluded from the timing, and the average is computed
over 10 000 gradient update steps.

The results in Table[3|show that even a single gradient update on a relatively small recurrent network
takes significantly more time than an update step in either of the two filters. Though the increased
cost of a single update step may seem acceptable given the favorable time needed to perform one
filtering update step (one forward pass), test-time gradient fine-tuning may require hundreds or thou-
sands of gradient updates (Sokota et al.,2022).

Table 3: Time (in milliseconds) needed to perform one gradient update of a Recurrent filter.

5-2D

5-3D

8-2D

8-3D

Recurrent

2.3056 £ 0.0230

2.9947 + 0.0445

2.6437 £+ 0.0518

5.1424 + 0.1303
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Embedding Network

€ VL(p.y)

Normalizing Flow

Jy(-30)

n Samples from p(x) *

Samples from pj(x)

Figure 7: Training belief embedding models. Colored arrows show the flow of training sample
points from the target distribution.

D ADDITIONAL EXPERIMENTAL DETAILS

Figure [D| outlines the training process for the belief models used to embed distributions in all of
our experiments. Belief embedding models are trained by generating n samples from a belief state
instance p(z) from the set of target distributions Pg. Half of the samples are used to compute the
embedding 6 that conditions the generative model fy;(z;6). The rest of the samples are used to
approximate the gradient of £(¢, ).

All experiments were implemented in Jax using standard libraries from the Jax ecosystem. We
used custom implementations for Normalizing Flows and all three environments. All source code is
available as part of the supplementary material. Next, we provide domain-specific details about the
models used in our experiments.

D.1 GRIDWORLD

In our Gridworld experiments, the observer has access to the agent’s policy and a simulator for the
grid. Policies are generated by biasing the agent’s movement toward a randomly selected goal—
softmax temperature controls policy entropy to create noise in the agent’s path. In each configura-
tion, the number and size of obstacles are constant, but their location is either fixed or randomized.
Each experiment was repeated for 500 episodes to compute a model’s average JS divergence at a
given step, and model training was repeated for 100 random seeds. Parameters for the set of grids
used for training and evaluation are shown in Table 5]

Belief Embedding Model. The embedding function £4 consisted of a standard MLP with 3 layers
of 128 units each and ReLU activations. The generative model f;(z;6) used a uniform prior and 5

coupling layers (Dinh et al.,[2016) with masked inputs. Variational dequantization (Ho et al., 2019)

was performed to smooth discrete grid locations. More hyperparameters are shown in Table |4]

Recurrent Model. The recurrent baseline learns a mapping from a sequence of observations about
movement in the grid to an approximation of p(x). These observations are the same as those used
to define the posteriors in the filtering tasks. Since belief states in Gridworlds of these sizes are
small, the model outputs a softmax distribution over potential grid locations. JS divergence between
model output and belief state instances was minimized directly. More hyperparameters are shown
in Table[dl

Computational Resources. For each random seed, model training required roughly 2 CPU-hours
on commodity consumer hardware. Each evaluation (consisting of 500 episodes) took at most 3
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CPU-hours. Since every experiment was repeated for 100 seeds, the end-to-end compute require-
ments were roughly 500 CPU-hours for each of the 8 grid configurations. We used cluster resources
provided by a source that will be revealed upon publication.

Table 4: Gridworld model and training hyperparameters.

Belief Embedding Model Recurrent Baseline

Embedding size 32 -
Embedding network hidden units 128 -
Embedding network hidden layers 3 -
Dequantization hidden units 32 -
Dequantization hidden layers 2 -
Normalizing Flow / RNN hidden units 32 32
Normalizing Flow / RNN hidden layers 5 2
Normalizing Flow coupling layers 5 -
Batch size 32 32
Training steps 100 000 100 000
Training samples (per p(z)) 64 -
Optimizer AdaGrad AdaGrad
Learning rate 0.10 0.10

Table 5: GridWorld environment parameters.

Parameter 5x5 8§x8
Obstacle cubes 1 2
Cube width 2 3

Softmax temp. (for random policies) 1 x 1075 1 x 1075

D.2 GOOFSPIEL

In k-card Goofspiel, both players and the prize deck start with the same set of cards, labeled 0
through £ — 1. A round starts when a prize card is revealed, indicating the value of winning the
round. Players act by simultaneously bidding a card and then observe only the outcome of who
played the highest card (win, draw, or loss). In our variant, the card symmetry is broken: each player
and the prize deck receives a random subset of size k — 1, while all other rules remain unchanged.
Small £ means exact posterior computation is tractable, enabling efficient training and evaluation of
our models and baselines.

During training, samples are obtained by following policies of both players to a randomly selected
depth and sampling opponent action histories from the true posterior given the generated observa-
tions. The policies are sampled randomly from a pool generated by independent self-play using
PPO (Schulman et al., 2017). These policies were randomly split into a training and test set used
only for evaluation. We trained each model on five different random seeds and each filter’s reported
performance is averaged over 10 different runs, each consisting of 500 episodes.

Goofspiel Policy Generation. We generated a sequence of policies by independent self-play using
PPO to simulate the effect of changing policies during learning, as in classical self-play settings. We
used the Jax version of StableBaselines 3 (SBX) (Ratfin et al., 202 1)—modified to support action
masking. In self-play, we trained a policy against its previous checkpoint for 524 288 timesteps and
saved a checkpoint every 4096 timesteps. We repeated this self-play loop four times, producing a
sequence of 512 policies in total.

Belief Embedding Model. The belief embedding model for Goofspiel uses a Standard Normal
prior, and consists of a variational dequantization layer parameterized by a single coupling layer,
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followed by a series of coupling layers. The dequantization coupling layer uses an affine transfor-
mation, and each of the following layers use one-dimensional non-linear squared (NLSq) transfor-
mations. All coupling layers transform masked inputs. After dequantization, each coupling layer is
further parameterized by 6. Concrete hyperparameters used in our experiments are listed in Table[6]

Recurrent Model. Observations in Goofspiel consist of features such as the player’s hand, the
prize deck, the current one-hot encoded prize card, and the winnings. The recurrent baseline learns
a mapping from a sequence of these observations to an embedding. This embedding conditions a
Normalizing Flow with the same architecture as described above. The key difference is that the
recurrent model maps the observation sequence to an embedding directly, whereas the belief em-
bedding model embeds sample sets from p(z).

Computational Resources. Goofspiel experiments were run on computing resources provided by
a source that will be revealed upon publication. For each game size and each random seed, belief
model training required approximately 12 hours and recurrent model training approximately 3 hours
on 32 CPU cores. Afterwards, each model was evaluated for 500 episodes, which took between
several minutes and three hours on 12 CPU cores, depending on the size of the game. The evaluation
was repeated 10 times.

Table 6: Goofspiel model and training hyperparameters.

Belief Embedding Model Recurrent Baseline

Embedding size 48 48
Embedding network LSTM hidden units - 64
Embedding network LSTM hidden layers - 2
Embedding network MLP hidden units 128 64
Embedding network MLP hidden layers 3 2
Dequantization hidden units 48 48
Dequantization hidden layers 2 2
Normalizing Flow MLP hidden units 128 64
Normalizing Flow MLP hidden layers 4 4
Normalizing Flow coupling layers 8 8
Batch size 64 64
Training steps 150000 16 000
Training samples (per p(z)) 64 32
Optimizer Nadam Nadam
Learning rate 0.001 0.001

D.3 TRIANGULATION

Triangulation is a noisy localization task on a bounded grid. At the start of each episode, the agent
is placed uniformly at random in [—5; 5]2. Every timestep, it can move 0.5 units in any of the four
cardinal directions, issue a st op action to end the episode, or scan to query a range sensor. The
objective is to navigate as close as possible to the origin and then stop. Performance is evalu-
ated by measuring the Euclidean distance to the origin at termination. Both motion execution and
range measurements are corrupted by Gaussian noise. Beacons are fixed and located at (—2, —2),
(0,4/8), and (2, —2). Only one beacon is “active” at any time step, and the active identity rotates
deterministically each step in a fixed cyclic order. A scan action returns a noisy scalar equal to
the distance from the agent’s current (noisy) position to the currently active beacon. This induces
partial observability even with frequent scans: the agent must reason jointly about its position and
the active-beacon phase while trading off movement toward the origin with information-gathering
scans, under both transition and measurement noise.

The set of policies used to control agents in our experiments consists of mixtures between single
cardinal actions and scan. The policy for each episode is chosen at random and is available to the
filters at evaluation time.
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Belief Embedding Model. The belief embedding model for Triangulation uses a Standard Normal
prior and consists of a series of coupling layers that use parameterized affine transformations and
transform masked inputs. No dequantization is necessary because the domain is continuous, and
each coupling layer is further parameterized by 6. Hyperparameters were not tuned extensively, and
are listed in Table [

Computational Resources. Triangulation experiments were run on computing resources provided
by a source that will be revealed upon publication. A model for this environment can be trained in a
few minutes on a single GPU.

Table 7: Triangulation model and training hyperparameters.

Belief Embedding Model

Embedding size 32
Embedding network MLP hidden units 128
Embedding network MLP hidden layers 3
Normalizing Flow MLP hidden units 64
Normalizing Flow MLP hidden layers 2
Normalizing Flow coupling layers 6
Batch size 32
Training steps 30000
Optimizer Adam
Learning rate 0.001

D.4 DONUTS

For our illustrative example from Section[3] we used a scaled-down version of the belief embedding
model used in the main experiments. Model and training hyperparameters are shown in Table
Donuts models train in several minutes on a laptop.

Table 8: Donuts model and training hyperparameters.
Normalizing Flow Model Cond. FM Model

Embedding size 8 8
Embedding network hidden units 64 64
Embedding network hidden layers 3 3

Dequantization hidden units - -
Dequantization hidden layers - -

Normalizing Flow MLP hidden units 32 64
Normalizing Flow MLP hidden layers 3 4
Normalizing Flow coupling layers 8 -
Batch size 32 32
Training steps 30000 30000
Training samples (per p(x)) 128 128
Optimizer Adam Adam
Learning rate 0.001 0.001

E ILLUSTRATIVE EXAMPLE USING CONDITIONAL FLOW MATCHING

To highlight the versatility of our proposed approach, we applied a Conditional Flow Matching
(CFM) model (Lipman et al., 2022} [Tong et al., 2023) to the donut-shaped distributions introduced
as a toy domain described in Section We experimented with both independent coupling and
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optimal transport (OT) coupling (Lipman et al.} [2022)) to define the target vector fields that generate
the conditional probability paths in our flow matching models. An example of a CFM model trained
with optimal transport coupling predicting the density for a randomly sampled set of donuts is shown
in Figure[8(b)} The model was conditioned using 256 samples sampled from the true distribution and
asked to predict the density of each point in a 512 x 512 grid. Model and training hyperparameters

are shown in Table 8l

3 R Il D 34
RS BN
SN

(a) Sample donut distributions. Each distribu-  (b) Learned densities after conditioning the
tion has three parameters: mean, radius, and model on 256 samples from the target distri-

width. bution.

Figure 8: Embedding the set of donut distributions in R? using Conditional Flow Matching

F CoDE

We will release all of our training and evaluation code on GitHub upon publication.
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