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Abstract

Accurate modeling of atomic-scale processes, such as protein dynamics and catal-
ysis, is a central challenge in computational structural biology, chemistry, and
materials science. While machine learning force fields (MLFFs) have emerged as
powerful tools, approaching quantum mechanical accuracy with promising gener-
alisation capabilities, their application is hindered by prohibitive inference times,
particularly for long timescale simulations of large systems required for many
biological applications. In this work, we introduce BoostMD, a MLFF surrogate
architecture, designed to mitigate this computational bottleneck. BoostMD lever-
ages node features from previous molecular dynamics time steps to predict forces
and energies, enabling the use of a smaller, faster model between evaluations of a
large reference MLFF. The approach provides up to 8x speedup over the ground
truth reference model. Testing on unseen dipeptides demonstrates that BoostMD
accurately generalises and reproduces Boltzmann-distributed samples, making it a
robust tool for efficient, long-timescale molecular simulations.

1 Introduction
Accurate modeling of atomic-scale processes, such as protein folding, catalysis, and carbon capture,
is a long-standing challenge in computational biology, chemistry, and materials science [1–4]. Recent
advancements in geometric deep learning have led to the development of machine learning force fields
(MLFFs), which can predict atomic forces and energies based on 3D atomic configurations at near
quantum mechanical accuracy [2, 5–11]. MLFFs promise cost-effective insight in the biomolecular
structure, allowing in-silico screening of various desired properties. These models, trained on high-
quality quantum mechanical data, typically scale linearly with system size, are more than 3 orders
of magnitude faster for even small systems, while maintaining predictive accuracy [10, 11]. The
emergence of generalizable MLFF foundation models, capable of modeling a wide range of molecules
and materials, represents a significant breakthrough [1, 12]. Their transferable nature allows for direct
application without a need to generate large expensive datasets or training from scratch. Furthermore,
although trained on only small molecules the are sufficiently transferable for stable and accurate
simulations of large peptides [1].

However, a main limitation of modern MLFFs is not their accuracy, but their inference time. Sampling
algorithms such as Markov Chain Monte Carlo or Molecular Dynamics (MD) simulations need
small time steps on the order of femtoseconds (10−15 s), to ensure reasonable acceptance rates and
numerical stability, respectively. Sampling equilibrium configurations often requires hundreds of
millions of such steps, to capture relevant conformational changes over longer timescales. With
inference speeds on the order of 106 evaluations per day [1], MLFFs remain computationally
prohibitive for many large-scale biological and material science applications.

In this work, we introduce BoostMD, a surrogate architecture designed to reduce the computational
bottleneck of MLFFs. Typically, the majority of computational expense in MLFFs arises from
generating expressive, atom-centered features of the 3D environment, while energy and forces are
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predicted using relatively simple and computationally inexpensive readout functions. BoostMD
leverages node features computed at previous time steps to predict energies and forces for subsequent
configurations. Hence, the full reference MLFF model is evaluated only everyN steps, with a smaller,
more efficient model operating in between. By leveraging previously computed features, a shallow
and fast architectures remains accurate during these interim steps, significantly reducing the overall
computational cost while maintaining accuracy. Our contributions are as follows:

• We introduce, BoostMD, a new approach for accelerating ML force fields, by using previously
computed node features to predict the energy and forces on atoms of subsequent simulation
steps.

• We describe the design space of possible BoostMD models, both for training and sampling.
We empirically test and contrast various fundamental architectural choices.

• We present the first BoostMD model, which provides more than eight times speedup. We show
that it is transferable to unseen molecules and capable of accurately sampling equilibrium
structures with the right probability distribution.

2 Background and Notation
Equivariant message passing neural networks Recent progress in equivariant message passing
neural networks [10, 11], have allowed for unprecedentedly accurate MLFFs. In these models, a
graph is constructed from a point cloud of atoms by connecting atoms within a cutoff distance.
For equivariant models, the messages passed between nodes (atoms) encode the atoms geometric
environment and transform with rotations in a controlled way. After a set number of message passing
steps, the node features pass through a readout that predicts the atom centered energy (a scalar
quantity). The majority of the computational cost originates from creating many-body, descriptive
node features. The final readout are small MLPs or linear layers [2, 10, 11].

Irreducible representations and tensor products When learning equivariant features from atomic
positions, it is helpful to use the irreducible representations of the SO(3) group. The spherical
harmonics Y l

m, where l is the degree and m is the order, form a basis for the vector spaces on which
the irreducible representations act. Nodes can thus have scalar features (l = 0) that are invariant
under rotation or higher-order features (l > 0), such as vectors, that transform equivariantly with
rotations.

In non-geometric machine learning we can use tensor products of two features (A⊗B)ijkl = AijBjk

to generate higher dimensional tensors. For E(3) equivariant features, we need to map the output
back to the irreducible representation (irreps). Furthermore, the coefficients for the weights are
restricted as to maintain the underlying equivariance. Spherical tensors, like the spherical harmonics
are indexed by the degree l and order m. Assuming two spherical tensors Am1

l1
and Bm2

l2
a learnable

fully connected tensor product in irreducible representations is defined as

Dm3

l3
= (A

α
⊗B)m3

l3
:=

∑
l1m1,l2m2

Cl3m3

l1m1,l2m2
Fl1l2l3 (α)Am1

l1
Bm2

l2
, (1)

where Fl1l2l3 is a multi-layer perceptron (MLP) with scalar inputs α and Cl3m3

l1,m1;l2,m2
are the

Clebsch–Gordan coefficients. This is, for example, how the position is combined with the sending
node features in equivariant MPNNs. For more details please see the e3nn paper [13] or classic
literature [14].

3 BoostMD
The BoostMD model predicts the node features, hi, and energy, Ei, of atom i at position ri, given
a reference node feature H ref

i for a configuration with positions rref
i . This task can be approached

with many different architectures. We build on the equivariant MACE [11] blocks, which provide
an efficient way to obtain many-body equivariant features. We use the tensor product notation (⊗)
introduced in Section 2 without explicitly writing the indices. Please see Appendix B for a more
explicit equations and dimensions of all tensors.

Set Reference Frame To be transitionally and rotational equivariant, the reference frame is trans-
formed as visualised in Figure 2. Firstly, the origin is shifted to the central atom current position
ri. Then, the reference is rotated by θ̄, as to minimise the L2 norm of displacements between the
neighbouring atoms’ reference and current position,
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method model size Lref mode speedup E (meV) F (meV/Å)
XS 0 feats 8.4 1.30 64.5

BoostMD XS 0 energy 8.6 0.84 75.3
Model XS 1 feats 2.3 0.64 57.6

XS 1 energy 2.3 0.63 56.9
MACE XS+ - - 5.6 1.80 121.1

Table 1: Comparing design choices on dipeptide dataset. BoostMD models trained on a dipeptide
MD dataset subselected from SPICE [16]. The energy per atom and force RMSE are computed with
respect to the MACE-OFF23-medium ground truth. The reference model, MACE-OFF23-M, achieves
an error of 0.85 meV/atom compared to DFT, higher than many of the boost models. Speedups are
compared to the ground truth model. For details on hyperparameters corresponding to size (XS, XS+)
and the timing see Appendix D.1 and D.2 respectively.

rji = rj − ri, rref
ji = rref

j − rref
i , xji = rji −Rθ̄i(r

ref
ji ), (2)

where xij encodes the change in position and rij encodes the current displacement. The optimal
rotation θ̄i is efficiently computed using the Kabsch algorithm [15] and ensures rotational equivariance.
Further detail and its relevance for conservation of momentum can be found in Appendix B.1.

Equivariant message passing We now construct a complete basis for functions of the change in
positions xij , current positions rij and the sender’s reference node features H ref

i . The initial edge
features hji are then summed across neighbours j, to create the BoostMD A-Basis.

hji = Y m1

l1
(r̂ji)

|x||r|
⊗ Y m2

l2
(x̂ji)⊗Rθ̄i(H

ref
j ) Ai =

(∑
j∈N(i) h

(t)
ij

)
(3)

We subsequently use the MACE [11] product basis to construct many body messages, m, from the
two body A-basis. Finally we use a readout MLP to map internal BoostMD features to either (1)
the energies Ei directly or (2) the node features of the true MLFF at position ri. For BoostMD with
readout-mode (2), the original reference’s readout is used to predict the final atom centered energy.

3.1 BoostMD at inference

In BoostMD, the full reference MLFF model is evaluated every N steps, while a smaller, more
efficient model operates in between. This new architecture can be used to accelerate molecular
dynamics in various ways, each with different impacts on performance:

Serial evaluation of reference and BoostMD model On a single GPU, the MD simulation pauses
while the reference model is evaluated. After the reference features are calculated, the BoostMD
model takes N steps, then waits for the next reference calculation. This approach trades some of the
speedup for the benefit of directly incorporating the reference model’s true forces into the MD run.

Parallel evaluation of reference and BoostMD model Alternatively, the reference calculations
could be performed on another GPU in parallel. The BoostMD model does not have to wait for the
reference model evaluation, resulting in greater acceleration.
There are many more ways BoostMD models can be used at inference such as having adaptive step
sizes based on observed errors or changes in receptive field. This broad design space underscores the
potential of this approach for various applications.

Symmetries and Conservation Laws The resulting trajectory from a BoostMD run does not
conserve energy exactly. This is because the energy at a given position is dependant on the refer-
ence configuration. Consequently it is possible to have a different energy predicted for the same
configuration depending on the reference. However, in-between time-steps of the reference MLFF
the method is energy, momentum and angular momentum conserving due to the reference framing.
There are multiple methods, such as QM/MM calculations with adaptive QM regions that are not
exactly energy conserving [17]. It has been shown that the thermostat may ensure ergodic sampling
at the correct temperature even in the presence of energy conservation violation [18].

4 Experiments
In this section we train BoostMD models to accelerate a foundation model for organic molecules,
namely MACE-OFF23 [1]. The force field has been shown to replicate folding dynamics of peptides
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Figure 1: Free energy surface of unseen alanine-dipeptide Comparison of the samples obtained
by running ground truth MD and boostMD. The free energy of the Ramachandran plot, is directly
related to the marginalized Boltzmann distribution exp [−F (ϕ, ψ)/kBT ]. The reference model is
evaluated every 10 steps. Both simulations are run for 5 ns (5× 106 steps).

and accurately predict experimental observable relevant for drug discovery. We show how choices in
the BoostMD architecture affect accuracy and performance, illustrating up to 8x speedup and stable
dynamics.

Dipeptide dataset: the building blocks of proteins To assess the performance gains of various
BoostMD models, we trained them on a dataset of dipeptides, generated by running molecular
dynamics (MD) simulations using the MACE-OFF23 medium foundation model [1]. The training set
dynamics are initialised from the dipeptide subset of the the SPICE dataset [16]. We observe that
single-layer BoostMD models provide speedups exceeding 8×, as shown in Table 1 with low errors.
With a single layer, the BoostMD model has a receptive field of 5Å, in principle allowing for more
efficient parallelisation across GPUs using domain decomposition.

MACE-OFF23-M achieves an error of 0.85 meV/atom compared to DFT, with BoostMD models
showing similar or lower accuracy relative to MACE-OFF23-M. We explored models, using only
invariant reference node features (Lref = 0) as well as those incorporating equivariant features
(Lref = 1). The inclusion of equivariant features improves accuracy at some computational cost.
Additionally, we examined the two readout strategies from Section 3, finding that directly predicting
energy changes is both marginally more accurate and faster than predicting changes in node features.

A natural alternative to training a BoostMD model would be to simply train a faster model from
scratch. Motivated by this, we trained a single layer MACE model (XS+), chosen to provide the same
order of speed-up over the reference MACE-OFF23-M model as achieved by BoostMD. However,
we find that the energy and force’s are less accurate than those achieved by BoostMD, highlighting
the advantages of biasing on previous features.

Sampling of unseen Dipeptide Beyond low RMSE values, the true test of BoostMD is its ability
to accurately sample equilibrium configurations at a given temperature. We found that BoostMD is
stable during MD simulations, remaining robust even after 10 ns (107 steps). When tested on an
unseen molecule, alanine dipeptide, BoostMD accurately sampled molecular configurations. Figure 1,
shows the free energy, F , as a function of the backbone angle. The typical Ramachandran plot, is
directly related to the marginalized Boltzmann distribution exp [−F (ϕ, ψ)/kBT ], where T is the
temperature. This demonstrates that BoostMD can efficiently and accurately sample configurations,
making it a valuable tool for long-timescale molecular simulations.

5 Discussion
We introduce BoostMD, a surrogate architecture to accelerate molecular sampling with machine
learning force fields (MLFFs). BoostMD leverages node features from a reference MLFF model
at previous steps, allowing a smaller, efficient model to predict energies and forces in subsequent
steps. This significantly reduces computational costs, achieving up to a 8× speedup with minimal
accuracy loss. Notably, BoostMD retains its performance on unseen systems, accurately sampling
the Boltzmann distribution of unseen dipeptides. Future work will involve implementing adaptive
inference schemes and scaling training to larger datasets, further enhancing BoostMDs ability to
accelerate MLFF molecular simulations. We hope that BoostMD will enabling routine, accurate,
large scale simulations to accelerate computational screening of biological compounds for catalytic
and medical applications.
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Appendices
A Related Work

Enhanced sampling techniques Enhanced sampling methods, such as metadynamics [19] and
umbrella sampling [20], introduce controlled biases to overcome energy barriers and access rare events
that are difficult to observe with standard molecular dynamics (MD). Samples can be reweighted
to recover unbiased equilibrium observables. BoostMD can be combined with these methods,
compounding the efficiency gains and further increasing its practical relevance.

Reference system propagator algorithms In traditional non-ML force fields it is possible to
evaluate a part of the force field every time step, while other, more expensive parts of the force field
are only evaluated every x time steps [21, 22]. The core idea is that some terms (eg. shortrange
bonded interactions) change more rapidly than others (long-range electorstatics). Recently, a similar
approach has been applied to ML force fields [23]. This approach is different from BoostMD, as
it does not bias the potential on the node features of previous time-steps. BoostMD’s speedup is
independent of the interaction range and can be combined with such range separated efforts.

Generative modeling Generative models, including diffusion models and normalizing flows [24],
offer an alternative to sequential approaches by directly generating samples from a target distribu-
tion [25–31]. Although promising, these models often lack transferability, require extensive data
generation for each specific problem, or have only demonstrated effectiveness on small systems with
lower dimensionality [25, 26]. Consequently, they have yet to surpass the performance of MLFFs
combined with traditional sampling methods. Unlike MLFFs, like BoostMD, it is not trivial to
combine these approaches with enhanced sampling techniques [32].

Others It is possible to train a smaller model on synthetic data generated by a larger teacher model,
to obtain computational speedup [33]. Additionally, there exist parallel-in-time integrator methods,
where computational cost for a sequential MD trajectory can be parallelised, such as the parareal
approach [34, 35].

B Detailed equations and BoostMD architecture

In this section we provide the details of the BoostMD architecture. The BoostMD model predicts the
node features, hi, and energy, Ei, of atom i at position ri, given a set of reference node feature Href

j

{(𝑟, 𝑧)!} {(𝑟"#$, 𝐻"#$)!}

BoostMD MPNN

Readout 

𝐻

𝐸

𝐸
OR

𝑟! − 𝑟!"#$ 𝑟!% − 𝑟!%"#$ 𝑥!% = 	𝑟!% − 𝑹/%𝑟!%"#$

current
reference

Reference Framing

{𝑟% , 𝑧% , 𝑥%! , 𝑹/%(𝐻!
&'()}

Figure 2: BoostMD and reference framing Showing the steps of BoostMD models, highlighting the
reference framing step. The reference node features and reference positions are transformed to make
BoostMD translationally and rotationally equivariant between steps as detailed in equation 2. The
figures show the receptive field of an atom i with neighbours j, showing both the current (blue) and
reference (red) positions. The central red arrow represents an equivariant reference feature of atom i,
while the black arrows show the vectors associated with the label underneath each image.
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for a configuration with positions rref
j , where j is within the neighbourhood N (i) of atom i. This task

can be approached with many different architectures. The first BoostMD model we present in this
paper makes use of blocks from the e3nn [13] and MACE[11] library.

We start by motivating the choice of coordinates, ie reference framing. We then provide equations for
the entire architecture.

B.1 Reference framing

To ensure translational and rotational equivariance, the reference frame is transformed, as visualised
in Figure 2. We refer to the sending and receiving nodes/atoms as j and i are the respectively.

Firstly, we determine the displacement between atoms j and i for both the current position, rij and
the reference position, rref

ji ,

rji = rj − ri, rref
ji = rref

j − rref
i (4)

This ensures translational equivalence, which guarantees conservation of momentum in between
BoostMD steps and that the forces sum to zero.

To handle environment changes that correspond purely to rotations, parameterizing changes in
displacement as rji − rref

ji is insufficient because rotational changes should directly map to rotated
node features. To ensure exact equivariance, we compute the optimal rotation matrix R̄i that best
aligns the reference configuration with the current configuration:

R̄i = argmin
Ri

∑
j∈N (i)

∥∥rji −Rir
ref
ji

∥∥2 .
The optimal rotation R̄i is efficiently computed using the Kabsch algorithm [15]. The rotation is
also applied to the reference node features and guarantees rotational equivariance between BoostMD
steps. The change in positions, xij , is hence defined as

xji = rji − R̄ir
ref
ji , (5)

B.2 First layer-features

Firstly we take a tensor product between the changes in displacement with learnable weights, defining
the X basis:

X l3m3
ji =

∑
l1m1,l2m2

Cl3m3

l1m1,l2m2
Fl1l2l3 (rji, xji)Y

m1

l1
(r̂ji)Y

m2

l2
(x̂ji) , (6)

where Fl1l2l3 is a multi-layer perceptron (MLP) of the inter-atomic distance rji and the size of the
change in displacement xji. Before being passed to the MLP, the distances are embedded using
Gaussian basis functions. We now perform a tensor-reduced tensor product [36] with the reference
features,

A
(1)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈N (i)

F ′
kl1l2l3

(
rji, xji,H

ref
j,l=0

)
X l3m3

ji

∑
k̃,t

W
(t)

kk̃l2
DR̄iH

ref,(t)
j,k̃l2m2

(7)

where DR̄i is the Wigner-D matrix corresponding to the previously determined optimal rotation,
H

ref,(t)
j,k̃l2m2

are the reference node features of the tth layer of the reference model and F ′ is defined
similar to F . Summing over all neighbours N (i), we can now employ the density trick and take
tensor powers of the A-basis to create many-body features. Here we directly use the MACE [11]
architecture (equ. 10) to construct the B-basis,

B
(1)
i,ηνkLM =

∑
lm

CLM
ην ,lm

ν∏
ξ=1

∑
k̃

w
(1)

kk̃lξ
A

(1)

i,k̃lξmξ
, lm = (l1m1, . . . , lνmν) , (8)
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where ν is the correlation order and CLM
ην ,lm

are the generalised Clebsch-Gordan coefficients. For more
details please see the MACE [11] paper directly. The B-basis is used to update the node features,

m
(1)
i,kLM =

∑
ν

∑
ην

W
(1)
zikL,ην

B
(1)
i,ηνkLM , h

(2)
i,kLM =

∑
k̃

W
(1)

kL,k̃
m

(t)

i,k̃LM
, (9)

where h are the internal BoostMD features. The architecture for the next layers of the BoostMD
model are identical to that of MACE [11]. While it is possible to run multi-layer BoostMD models,
for speed purposes this is rarely of interest. Consequently, all presented results are performed with
single layer models.

B.3 Readout

Finally, BoostMD can either be used to (1) directly predict changes in energies Ei or (2) changes in
the node features of the true MLFF hi at position ri. Assuming the BoostMD model has t′ layers,
the final energy depends on the readout mode:

1. Direct energy readout The reference model has an energy associated with each of its layers t.
We perform a readout on each of the BoostMD layers t′ for each reference layer energy t,

E
(t)
i = E

ref,(t)
i +

∑
t′

MLP(t
′)(h

(t′)
i )

∑
j

|xij |, (10)

where the multiplicative factor |xij |, ensures that when there is no change in environment, then
there is no change in predicted energy.

2. Reference node feature readout Here we predict the changes to the reference’s models node
features.

h
(t)
i = Rθ̄i(Hi,k) +

∑
t′

MLP(t
′)(h

(t′)
i )

∑
j

|xij | (11)

The original readout of the reference model Rt can then be used to compute the energy as

E
(t)
i = Rt

(
h
(t)
i

)
. (12)

The final total energy is simply a sum over layer energies and atoms,
∑

t,iE
(t)
i . Forces can be

determined using backpropagation. As previously mentioned, for speed reasons all experiments are
performed with a single layer BoostMD model.
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Figure 3: Node feature properties Showing the fluctuations of the reference node features as a
function of simulation time (a) and the change in node features as a function of change in position
inside the atomic environment.
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C Node feature and their properties

The equivariant node features of large foundation models are highly expressive low-dimensional
representations of the many-body atomic environment. Indeed, similarity kernels of reference
descriptors have already been used for zero-shot molecular generation [31]. Figure 3a, shows how
the node features change as a function of time during a typical MD simulation. It is clear that they
vary very smoothly and the changes remain small with periodic fluctuations. This motivates to
goal of predicting node features with the BoostMD architecture. Furthermore the magnitude of the
change in node features is proportional to the change in the atomic environment as visible in Figure 3,
motivating the multiplicative factor in readout equations B.3 and 12.

D Details on Experiments

D.1 Model hyper-parameters

The aim is to produce a fast architecture while maintaining sufficient accuracy. We restrict ourselves
to a single layer BoostMD model as this not only reduces the model cost, but would also allow for
more parallelisation. For big simulations, local models can be partitioned into smaller overlapping
regions and evaluated in parallel on multiple GPUs. The size of the overlap needed depends on the
total receptive field. A single layer reduces the receptive field from 10Å to 5Å significantly increasing
its prallelisation abilities.

For the BoostMD models, we define the XS size as a single model, with correlation order 2, compared
to 3 for the reference foundation model. Furthermore, the maximum order of the spherical harmonics
is set to 2, compared to 3 for the MACE-OFF-M model. We use 125 channels for the BoostMD
model. As the BoostMD architecture requires one additional edge tensor product in equation 6,
comapred to the MACE architecture, a MACE model is faster than a BoostMD model with the
same hyperparameters. For a fair comparison, we hence give the compared MACE model additional
flexibility by increasing the number of channels to 256 (XS+). As visible in Table 1, even with this
added flexibility the MACE model underperforms a BoostMD model, which depends on previously
computed node features. All experimental results do not use the rotational reference framing during
training or inference, due to the associated computational cost.

D.2 Timings

Timing measurements were conducted on a system consisting of a 3BPA molecular box with a total
of 3,375 atoms. This large system size is representative of typical biomolecular simulations and
minimizes the impact of PyTorch overhead on the measured runtime. The reported timings are
averaged over 100 evaluations, following an initial warm-up period of 50 evaluations, and were
performed on an NVIDIA A100 GPU.
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