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ABSTRACT

We propose a formal setup of Learning from Language Feedback (LLF) and a new
benchmark, LLF-Bench (pronounced as “elf-bench”), to evaluate the ability of Al
agents to interactively learn from natural language feedback and instructions. LLF
is essential for people, largely because the rich information provided by language
feedback can help a learner avoid much of trial and error and thereby speed up the
learning process. Al agents, thanks to being powered by Large Language Models
(LLMs), can potentially benefit from language feedback during learning like peo-
ple do. However, existing benchmarks do not assess this crucial capability. They
either use numeric reward feedback or require no learning at all (only planning or
information retrieval). LLF-Bench, the benchmark we introduce, is designed to
fill this omission. It is a diverse collection of decision-making tasks that includes
user recommendation, poem writing, navigation, and robot control. LLF-Bench
implements several randomization techniques to ensure that the agent actually
needs to learn in order to complete these tasks. In addition, LLF-Bench allows
configuring the kind of information conveyed by the feedback (e.g., performance
assessment, explanations or suggestions), which facilitates studying how agents
respond to different feedback types. Together, these features make LLF-Bench a
unique research platform for developing and testing LLF agents.

1 INTRODUCTION

Natural language is an intuitive medium for a person to teach an Al agent, since that is how humans
learn from and teach each other. Compared to rewards — the feedback modality typically used in
the reinforcement learning (RL) paradigm (Sutton & Barto, 2018) — language feedback can provide
rich signals about agent behaviors beyond a quantitative measure of instantaneous performance. For
instance, language feedback can explain why the agent’s previous suboptimal behaviors should be
avoided, rather than just punishing the agent without giving justification. Language feedback can
also provide direct suggestions on how the agent can improve its future behavior, similar to action
feedback used in imitation learning (IL) (Ross et al., 2011; Spencer et al., 2021). However, providing
action feedback to a robot as has traditionally been done in IL requires a teleoperation setup, which
might not always be feasible. Language feedback, on the other hand, can be given verbally by an
ordinary user (Liu et al., 2023a). In recommendation systems, incorporating user feedback has been
studied under coactive learning (Shivaswamy & Joachims, 2015). Reinforcement learning from
human feedback (RLHF, (Christiano et al., 2017)) and preference learning (Rafailov et al., 2024)
incorporate ranking-based, not verbal feedback.

We capture the essence of using language as a feedback modality in a new learning paradigm —
Learning from Language Feedback (LLF). In an LLF problem, an agent interacts with a task en-
vironment and receives language instructions and feedback. At the start of an episode, the agent
is first given a natural language instruction that describes the objective of the task, the rules, and
(optionally) side information that may help solve the problem. After executing an action in the en-
vironment, the agent receives teacher feedback in natural language, which can be used as a learning
signal. LLF generalizes reinforcement learning (RL) from return maximization to general problem-
solving. Like RL, LLF focuses on sequential decision problems. However, in contrast to RL, an
LLF agent does not receive rewards in numeric form and is not necessarily tasked with maximizing
returns.
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Figure 1: An example navigation task to illustrate our setup, Learning from Language Feedback
(LLF). A single episode in LLF starts with a given instruction and can be multi-step long. The
actions are taken by the agent that changes the observation and provides a fext feedback to the agent.
The agent receives no reward or any other form of feedback.

Figure 1 shows an example LLF flowchart. LLF replaces RL’s assumption of numeric rewards with
generic task instructions and feedback expressed in natural language. We can recover RL as an in-
stance of LLF, e.g., with the instruction “Maximize the accumulated rewards.” and the feedback
template “You've received a reward of X.”, under the assumption that the agent is prepared to parse
the value of X out of this template. But LLF covers many other scenarios that would be unneces-
sarily difficult to describe in the conventional RL framing, e.g., training a robotic arm controller by
giving it general advice about the types of actions it should consider in certain situations, or asking
an agent to write a poem in a certain style by showing a few examples.

In addition to the new learning paradigm, this work’s contribution is LLF-Bench (Learning from
Language Feedback Benchmark; pronounced as “elf-bench’”), a simulation benchmark designed to
evaluate an Al agent’s ability to adapt quickly in LLF settings based on just language feedback.
LLF-Bench is a collection of sequential decision-making problems, ranging from item recommen-
dation to poem writing to robot control. Each of them has a natural-language description and a
natural-language feedback generator that replaces RL’s rewards as the learning signal (Section 3).
Additionally, LLF-Bench provides a high-level wrapper that can convert any existing RL environ-
ment with OpenAl Gym interface into an LLF setup (Appendix C).

Prior to LLF-Bench, several benchmarks have been proposed to evaluate LLM-based agents for
decision-making (e.g., AgentBench (Liu et al., 2023b), OpenAGI (Ge et al., 2023), MINT (Wang
et al., 2023b), and LMRL Gym (Abdulhai et al., 2023)). However, most tasks in these benchmarks
center around planning and information retrieval problems; only few require the agent to learn and
adapt beyond what an LLM can already do. Also, many existing benchmarks lack language varia-
tions, so developers might accidentally identify a specific prompt that overfits to a particular verbal
formulation of the task specification. This fails to reflect a key property of LLMs’ real-life use
cases, where a user needs LLM-based agents to handle tasks whose solution cannot be directly in-
ferred from the task description and has to be learned from interactions and feedback instead (such
as “make the title text larger” or “wrap the code with an error-catching block.”). Are LLM-based
agents capable of learning from general language feedback? LLF-Bench aims to provide a set of
environments to help answer this question while addressing the challenges in reliable LLM agent
benchmarking.

2 LLF: LEARNING FROM LANGUAGE FEEDBACK

We begin by introducing the Learning from Language Feedback (LLF) paradigm, and describe LLF-
Bench in Section 3.
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2.1 THE MECHANICS OF LLF

LLF is an abstract learning setup that models the interaction between an agent (e.g., a learning
algorithm), a world (e.g., a robot hardware, or a recommendation system backed by a database),
and a teacher (e.g., a person). The agent in the LLF setup is asked by the teacher to complete a
task in the world via a natural-language instruction. The task’s objective described in the instruction
may be different from reward maximization and could include information about how to interpret
observations, what the valid actions are, and what tips (such as examples) may help the agent solve
the problem. After receiving the instruction, the agent sees the initial observation of the world state
and starts to interact with the world by taking actions within the problem’s prescribed action space
(which can e.g. be a finite space, a continuous vector space, or a free-form text space just like that
in RL). After an action is executed, the world’s internal state may change and the agent sees the
next observation of the world. As the agent interacts with the world, the teacher provides natural
language feedback on how the agent performs to guide the agent to do better. This language feedback
is a strict generalization of the reward signal in RL and can provide richer information to help agent
learn (e.g., suggestions, explanations, etc.). If we group the world and the teacher in LLF together
as an abstract environment, we see that LLF mainly replaces the reward maximization objective and
numeric feedback in RL with a generic task instruction and language feedback. In LLF-Bench, we
simulate LLF problems through the OpenAl Gym interface, described in Appendix C.

2.2 IsN’T RL ENOUGH?

The LLF setup is motivated by the inefficiency and unnaturalness of communicating intentions via
rewards in the real world. The concept of return maximization in RL, while giving a simple ab-
straction of interactive learning, often creates a barrier for people to transfer knowledge and convey
intentions to Al agents. The reward paradigm forces one to compress all the information one wishes
to convey to the agent at a given step into a single numerical value expected to encourage or pe-
nalize certain behaviors. In addition, rewards are received only after the agent takes actions, so the
agent has to not only learn to solve the task but also learn to understand the task’s objective. This
bottleneck limits the information that can be transferred to the agent and couples solution learning
with intention understanding, causing the agent to learn inefficiently in a trial-and-error manner.

In many cases, it is also difficult for human designers to fully understand the long-term effects
of maximizing return (the expected sum of rewards), even when each instantaneous reward makes
sense. This misalignment has led to many surprising behaviors of RL agents (Amodei et al., 2016).
Consequently, reward engineering has been a common practice in building RL systems, where the
user iteratively tweaks the task’s rewards by observing how the agent behaves after maximizing the
current reward function. However, reward engineering is an expensive process. If agents were able
to learn directly from language feedback, learning systems could be built more economically.

Overall, compared to RL, LLF embraces the rich language feedback used in human-to-human learn-
ing. Its expressivity provides a potentially more efficient mechanism for training agents than RL.

2.3 WHY SHOULD WE STUDY LLF Now?

Interactive learning settings with language-based instructions (Misra et al., 2018; Chen et al., 2019)
or observations have been extensively studied in the literature (Wang et al., 2016; Guu et al., 2017,
Zhong et al., 2021). However, in all these settings, one assumes access to either gold actions or
rewards. In contrast, in LLF the agent is provided with neither of these, which makes LLF appear
harder than RL. We argue that this difficulty of working with general language feedback has been
the reason why LLF hasn’t received much attention previously, despite its potential benefits. Re-
cently, Large Language Models (e.g., GPT4 (OpenAl, 2023), Gemini (Gemini Team, 2023)) have
demonstrated impressive natural language processing abilities. In addition, multiple LLM agents
have shown promising signs of solving text-based problems involving decision making, planning,
information retrieval, and tool use (Wang et al., 2023a; Schick et al., 2023; Wu et al., 2023). There-
fore, with LLMs, it may be possible to design algorithms to systematically solve general LLF prob-
lems. Conversely, solving LLF can also be viewed as a way to measure LLMs’ ability to tackle new
learning tasks.
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Figure 2: LLF-Bench (“Elf-bench”) includes 8 sets of LLF problems. Image by Bing Chat.

In fact, with access to accurate LLMs, LLF is not harder than RL if the task instructions in LLF
are detailed enough to allow the LLM to infer from observations alone (without language feedback)
whether the agent has succeeded at following the instruction. (Note that this assumption does not
mean that the instruction necessarily shows the agent how to solve the problem.) Under this assump-
tion, LLF problems can always be solved without the feedback, by a reduction to an RL problem
with sparse binary reward of success (the binary reward can be computed using a LLM to detect
success based on the instruction and the observation). However, such a reduction approach would
lead to inefficient learning.

3 LLF-BENCH

The main research question of LLF is how to best leverage the language feedback, which can convey
more information than just success/failure, to learn the optimal policy for the task in a sample-
efficient manner. We design LLF-Bench as a research platform to facilitate the development and
evaluation of LLF agents (e.g., LLM agents) built to make progress on this research agenda.

3.1 PROBLEM SETS AND TASKS

LLF-Bench consists of 8 diverse sets of decision-making problems (see Figure 2), with different
action spaces (discrete, continuous, and free-form text spaces) and decision horizons. Their brief
descriptions follow below, with more details in Appendix B:

* 11f-bandit is a verbalized version of the classic multi-armed bandit problem, which we im-
plement based on gym-bandits. 11f-bandit tests the agent’s learning ability in an unknown
environment with a finite number of actions.

* 11f-poem consists of a set of poem writing tasks, where the agent needs to write a poem sat-
isfying certain syllable- and line-constraints. These problems tests the agent’s learning ability to
infer and solve constraint satisfaction problems.

* 11f-reco-movie simulates the scenario where a user wants movie or TV show recommenda-
tions based on some preferences. The user specifies their preferences in text, and any recommen-
dation made by the agent is matched to a movie database for checking whether the preferences are
matched correctly.

* 11f-optimization consists of 8 loss functions (Rosenbrock, Bohachevsky, etc.) and pro-
vides an interface to give verbal feedback for the task of optimization on any loss function.


https://github.com/JKCooper2/gym-bandits/tree/master
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llf-parking extends the Highway gym environment, providing a long-horizon goal-
conditioned continuous control task. The agent must control an ego-vehicle to park in a given
location without colliding with any obstacles in the environment.

l1f-gridworld evaluates the agent’s ability to navigate in a graph-based environment. Each
node of the graph is a room and the edges are doors connecting the rooms. The agent’s goal is to
navigate from the room it starts in to the room with treasure.

11f-alfworld adds a wrapper on top of the Alfworld text-based environment (Shridhar et al.,
2021) to provide language feedback instead of reward. In 11 f-al fworld, the agent is tasked to
solve problems in a text-based house environment. The agent is tested for generalization as each
episode can contain a new task in a new house environment.

ll1f-metaworld is based on the existing Meta-World v2 benchmark (Yu et al., 2019) and sup-
ports both text (of low-dimensional states) and image observations. It comprises 50 simulated
robotic manipulation tasks featuring a Sawyer arm and various objects that this arm needs to
bring into desired configurations, such as opening doors, placing cubes in boxes, etc. As such,
l1f-metaworld is suitable for evaluating Vision-Language Models (VLMs) like GPT-40, and
we conduct studies of this kind in Section 5.

3.2 DESIGN OF LLF-BENCH

When designing a learning benchmark, an important consideration is whether the evaluation can
truthfully reflect an agent’s learning and generalization abilities and separate them from overfitting.
To this end, we make two important design choices:

1.

Following the framing of LLF, LLF-Bench implements the task instruction as part of the envi-
ronment, as opposed to as part of the agent. The latter is common in the current literature of LLM
agents, and many LLM agents heavily rely on using task-specific prompt templates (Yao et al.,
2023; Wang et al., 2023a). Via this design, we encourage users of LLF-Bench to develop agents
that can simultaneously work well across different problems sets in LLF-Bench. We hope that
this paradigm shift will facilitate the development of more general learning agents that can solve
multiple tasks, rather than agents tailored to a single task.

LLF-Bench provides the option to further randomize the textual description of task instruction
and feedback that the agent receives. In addition, for several environments, we randomize the en-
vironment’s latent parameters (e.g., to permute the action ordering in 11f-bandit or change
the room connectivity in 11f-gridworld) when the environment is reset. Sensitivity to dif-
ferent phrasings of the same instruction is often used to measure the robustness of a text-based
model (Ribeiro et al., 2018; Wallace et al., 2019). This design is motivated by the observation
that LLMs as of now do not always perfectly understand semantics and can be sensitive to the
exact texts that are presented (Zhu et al., 2023). It has been shown LLMs suffer from recency
bias and can give drastically different outputs for semantically similar inputs (Arora et al., 2023;
Leidinger et al., 2023). To combat that, for each problem instance in LLF-Bench, we manu-
ally curate a set of syntax templates via paraphrasing, which are used to produce a diverse yet
semantically equivalent set of task instructions and feedback during interactions. Through ran-
domization, LLF-Bench can better evaluate the agent’s task solving ability and prevent the agent
from overfitting a single text realization.

Configurable Feedback System One prominent feature of LLF-Bench is its configurable feed-
back system. Taking inspiration from the education research literature (Shute, 2008) and research
on effective learning signals for reinforcement learning agents, such as heuristics-guided learn-
ing (Cheng et al., 2021) and hindsight learning (Sinclair et al., 2023), we classify the language
feedback into 3 different types:

1. Reward: Feedback of performance on the current action (similar to reward scalars and success

booleans, generalized and expressed via language). By using this feedback type, several classical
RL environments can be comparably tested with LLF agents in LLF-Bench.

2. Future Feedback: Suggestions of future behaviors, such as hints (positive feedback) or things

to avoid (negative feedback).


https://github.com/Farama-Foundation/HighwayEnv
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3. Hindsight Feedback: Explanation of past behaviors, such as why some behaviors are bad (neg-
ative feedback) or why some behaviors are helpful (positive feedback).

This taxonomy is inspired by the education research literature (Shute, 2008). While LLF-Bench can
provide textualized numeric reward (i.e. the Reward type), learning from the Reward-type feedback
is different from learning scalar rewards directly (e.g., in RL). Even when given textualized rewards,
an LLM agent still has to understand the text and take actions accordingly, a challenge that is absent
in RL where rewards are separately available as scalars. This is similar to the challenge of video-
game agents that see the game score is on the screen but need a good semantic understanding of the
screenshots to use it as a reward signal.

We also note that hindsight and future feedback types are different from text-based RL and language-
grounding tasks. The latter two use only numeric feedback (if framed as RL) or actions (if framed
as imitation learning). In LLF, the feedback is text. As Table 1 shows, text-based RL and language-
grounding tasks are only similar to LLF in that they have observations that are text and/or images.
However, in both cases feedback conveys a different type of information than observations: obser-
vations (partially) describe world state, while feedback says something about the agent’s actions.

By default, an LLF-Bench environment provides a mix of these feedback types (when appropriate).
It can also be easily configured to provide only a subset of these feedback categories. This makes
for a more realistic learning problem, rather than the same type of atomic feedback at every step.
LLF-Bench generates the feedback through templates. For each problem instance, we curated 5-20
versions of each atomic type of feedback. The environment, when queried, randomly samples from
them and composes the samples together into overall feedback messages based on the configuration.
Compared with generating feedback through an LLM-based simulated teacher, this template-based
approach, while being less realistic, ensures reproducibility (through controlling the random seeds)
and is efficient to run. See Appendix C.1 for details.

Interface For ease of use, LLF-Bench adopts the OpenAl Gym API (Brockman et al., 2016),
which abstracts the interaction with reset and step API functions. LLF-Bench environments
return the natural language instruction and feedback as the observation (a Python dict) and the action
spaces vary across problems. LLF-Bench environments also return rewards per the Gym step APL
While agents in the LLF setup do not use rewards, the returned rewards can be used to evaluate an
LLF agent’s performance; this feature makes the LLF-Bench environments also usable as typical
RL environments. LLF-Bench also provides a text-mode option (where both the observation and the
action are free-form texts), so that it can also be used as a benchmark for evaluating LLMs as agents
as well. Please see Appendix C for details of the API and the implementation of LLF-Bench.

4 RELATED WORK

In this section, we describe other benchmarks that focus on language-based agents. Works related
to the LLF paradigm are covered in Appendix D.

RL Benchmarks with Natural Language Many RL environments incorporate natural language.
We provide a list summarizing their main features in Table 1. The RL environments can use lan-
guage to describe the reward/goal (instructions), the observations, or the actions. Commonly,
language is used as goal-specifying instructions (which is essentially a reward function) for an RL
agent (e.g., GridLU by Bahdanau et al. (2019), ViZDoom Text by Chaplot et al. (2018), ISI Block
by Misra et al. (2017), and Puddle World by Janner et al. (2018)). In this context, understanding and
mapping instructions/goals to the state of the environment is the key challenge. Some RL environ-
ments naturally have observations in text; these include text-based adventure games (Text World
by Coté et al. (2019) and NetHack by Kiittler et al. (2020)) and HTML webpages (MiniWoB by Shi
etal. (2017), MiniWOB++ by Liu et al. (2018), and WebShop by Yao et al. (2022)). Other RL envi-
ronments have action spaces in text, i.e. an RL agent can generate a sequence of tokens as an action,
such as a structured text representing a short executable program (e.g. SHRDLURN by Wang et al.
(2016)). However, this was considered challenging due to the relatively large vocabulary space and
the difficulty of learning to generate a sequence. None of these environments provide rewards as text

'The scalar reward is for evaluation, not for agent learning in the LLF setup.
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Observation  Action Reward Language Language

Environment Space Space Space Variations Feedback

| Language Grounding Envs

SHRDLURN (Wang et al., 2016)|  Vector Text Scalar None No
GridLU (Bahdanau et al., 2019) Image Discrete Scalar None No
VizDoom Text (Chaplot et al., 2018)| Image Discrete Scalar None No
ISI Block (Misra et al., 2017)|  Image Discrete Scalar None No
Puddle World (Janner et al., 2018)| Image Discrete Scalar None No

| Text-based Games

BabyAI (Chevalier-Boisvert et al., 2019)|  Image Discrete Scalar None No
Zork (Narasimhan et al., 2015) Text Text Scalar None No
TextWorld (Coté et al., 2019) Text Text Scalar None No

NetHack (Kiittler et al., 2020)| Image Discrete Scalar None No

| ‘Web-Navigation Envs

MiniWoB (Shi et al., 2017)| Text/Image Disc/Cont Scalar None No
MiniWOB++ (Liu et al., 2018)| Text/Image Disc/Cont  Scalar ~ Observation No
WebShop (Yao et al., 2022)| Text/Image  Text Scalar None No

| LLM Agent Benchmark Envs

AgentBench (Liu et al., 2023b) Text Text Scalar None No
OpenAGI (Ge et al., 2023) Text Text Scalar None No
MINT (Wang et al., 2023b) Text Text Scalar None Yes (LLM)
LMRL Gym (Abdulhai et al., 2023) Text Text Scalar None No
DialOp (Lin et al., 2023) Text Text Scalar+Text None Yes (LLM)
MLAgentBench (Huang et al., 2023) Text Text Scalar None No

LLF-Bench (Ours)l Text/Image All Scalar! +Text All Yes (Synthetic)

Table 1: Comparison of decision-making environments that use natural language to instruct model
behavior, represent observation, or is part of the action output. “Language Variations” refers to
whether there are multiple descriptions of the same instruction, observation, or reward. “Disc/Cont”
means the output is a mix of discrete and continuous variables. LLF-Bench offers text representa-
tion for instruction, observation, and reward, generates paraphrasing to prevent prompt hacking, and
offers procedurally generated synthetic feedback for fast and cheap evaluation.

and do not provide feedback on actions. They also do not consider variations in language expres-
sions — such as different phrasing or writing that represent the same underlying goal or state of the
environment. Many of these environments are unsuitable for testing LLM agents due to having an
observation space that is pixel or vector-based, and the types of tasks are dissimilar to what people
use LLMs for today.

LLM Agent Benchmarks Building agents based on LLMs has ushered in a new set of challenges.
In general, the environments included in these benchmarks only require planning and information
retrieval, and have sparse reward signals at the end of each attempt to solve the task. Very few of
these benchmarks measure the ability of an agent to learn and adapt to a task (e.g., the Abstraction
and Reasoning Corpus by Chollet (2019)). Liu et al. (2023b) proposed a set of environments that
cover a few popular types of task setups, such as web browsing, game, and code generation. Their
focus is on the diversity of tasks, not LLMs’ robustness or ability to incorporate feedback — two
factors crucial for LLMs’ successful operation in user-centric environments. Ge et al. (2023) con-
structed a set of tasks where LLMs are prompted to use language or vision-related models to solve a
complex task that requires multiple steps. The task-level feedback they provide is a numerical score
from a domain-specific evaluation method. MINT (Wang et al., 2023b) is a benchmark that also
offers natural language style feedback. However, MINT synthesizes user feedback by prompting
LLMs. This incurs additional costs, introduces additional variability in the evaluation process, and
makes it challenging to represent the diversity of human feedback styles. LMRL Gym (Abdulhai
et al., 2023) provides a set of 8 environments that include full and partial observability. The tasks
are similar to language-grounding tasks and text games. However, no interim feedback is provided
during multi-round interactions. DialOp (Lin et al., 2023) provided three constraint-satisfaction-
style planning tasks where an agent carries out a conversation with a human user. They collected a
dataset with real human responses and noted LLM-provided responses have low quality and halluci-
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Zgi’ggliﬁ gpt-4o ‘ gf;;i;g:is ‘ gpt-3.5-turbo | llama3-70b ‘ gemini-pro | phi3-mini-128k
Bandits
10ArmedUniform 1.38 (0.04) 1.49 (0.08) 1.35 (0.05) 1.34 (0.04) 1.40 (0.03) 1.65 (0.10)
10ArmedGaussian 1.20 (0.27) ‘ 2.21 (0.60) ‘ 1.60 (0.24) ‘ 1.19 (0.22) ‘ 1.42 (0.24) ‘ 1.46 (0.24)
Optimization
Booth -3.93 (0.68) -100.46 (27.04) -112.60 (9.55) -38.25 (12.72) -119.02 (17.12) -493.96 (15.06)
McCormick -0.19 (0.05) -0.40 (0.08) -2.07 (0.28) -0.72 (0.09) -1.63 (0.20) -2.49 (0.33)
Rosenbrock -1.19 (0.33) -0.64 (0.16) -344.43 (65.87) -82.29 (35.32) -306.49 (69.31) -601.08 (60.37)
SixHumpCamel -0.23 (0.06) -0.29 (0.22) -5.60 (0.51) -0.99 (0.28) -3.15 (0.44) -11.13 (0.38)
Movie Rec.
reco-movie -5.28 (1.55) [ -9.10 (3.48) [ -7.17 (1.54) [ -6.10 (1.49) [ -3.45 (1.13) [ -14.23 (1.91)
Highway
parking -1432(0.39) [ -13.69 (1.04) ]| -14.53 (0.47) [ -1449(051) [ -7.03(0.97) | -13.94 (0.35)
Poem
Haiku -6.59 (1.51) -0.80 (0.34) -18.00 (1.87) -14.94 (1.49) -1.08 (0.29) -4.58 (1.04)
Tanka -9.03 (1.49) -0.36 (0.17) -18.71 (1.83) -24.04 (1.34) -1.52(0.33) -11.56 (1.47)
LineSylConstr -13.92 (1.33) -23.49 (2.60) -27.44 (0.57) -25.01 (0.98) -0.37 (0.13) -28.06 (0.43)
Navigation
gridworld 1.00 (0.00) 1.00 (0.00) 0.70 (0.06) 1.00 (0.00) 0.92 (0.04) 0.12 (0.05)
alfworld 0.80 (0.06) 0.86 (0.05) 0.44 (0.07) 0.78 (0.06) 0.52 (0.07) 0.00 (0.00)
Meta-World
reach 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.92 (0.04) 0.54 (0.07) 0.36 (0.(
button-press-wall 0.82 (0.05) 0.90 (0.09) 0.76 (0.06) 0.88 (0.05) 0.36 (0.07) 0.02 (0.
bin-picking 0.88 (0.05) 1.00 (0.00) 0.30 (0.06) 0.52 (0.07) 0.02 (0.02) 0.00 (0.
pick-place 0.68 (0.07) 0.70 (0.15) 0.30 (0.06) 0.70 (0.06) 0.10 (0.04) 0.00 (0.
assembly 0.00 (0.00) 0.10 (0.09) 0.06 (0.03) 0.00 (0.00) 0.10 (0.04) 0.00 (0.
push 0.86 (0.05) 0.80 (0.13) 0.56 (0.07) 0.88 (0.05) 0.00 (0.00) 0.02 (0.
box-close 0.88 (0.05) 0.70 (0.15) 0.36 (0.07) 0.60 (0.07) 0.00 (0.00) 0.02 (0.
hand-insert 0.16 (0.05) 0.30 (0.15) 0.28 (0.06) 0.20 (0.06) 0.02 (0.01) 0.00 (0.
faucet-open 1.00 (0.00) 1.00 (0.00) 0.84 (0.05) 0.94 (0.03) 0.26 (0.06) 0.02 (0.
dial-turn 1.00 (0.00) 1.00 (0.00) 0.92 (0.04) 0.96 (0.03) 0.48 (0.07) 0.06 (0.

Table 2: Mean and standard error of the return of the Basic Agent with all feedback types available
to the agent. For GPT-4-0125-preview, because of cost, the statistics are computed over 10 episodes
(except for Alfworld, for which, due to high problem instance variability, we used 50 episodes).
For other language models, 50 episodes are used. For Meta-World, Alfworld, and Gridworld, the
mean return is defined as the policy’s success rate, which uniquely determines the standard error.
Therefore, for the problems from these three problem sets, the st.e. is shown in gray.

nate. MLAgentBench (Huang et al., 2023) evaluates the ability of agents to build machine learning
models, but no verbal feedback is provided.

5 EXPERIMENTAL RESULTS

To demonstrate the usability of LLF-Bench and the difficulty spectrum of its tasks, we experimented
with state-of-the-art (S0TA) LLMs (GPTs? (OpenAl, 2023), Gemini (Gemini Team, 2023), Llama-
3 (Touvron et al., 2023), Phi-3 (Abdin et al., 2024)).

Agent and Setup We use the TEXTWRAPPER provided with LLF-Bench to format observations
and feedback into text, suitable for evaluating LLMs as agents. Then we implemented a Reflexion-
based? basic agent (Shinn et al., 2023) that formats up to 20 most recent observation-feedback pairs
into an LLM’s context along with a system prompt as listed Figure 4 in Appendix. We conduct
all experiments using API access to SOTA LLMs queried during the month of May 2024. All en-
vironments are initialized with horizon of H = 30 (i.e., the RESET function of the environment is
called after 30 time-steps to initiate a new episode), and statistics are computed by 50 independent
episodes. All experiments are run with the basic instruction (see Appendix C).

Results Table 2 shows the results of learning with full feedback of all types, and Table 3 shows the
results of learning from a restricted feedback set (Reward and Hindsight Feedback), which shares

2We use gpt-40-2024-05-13 and gpt-4-0125-preview.

*Our implementation differs from the original Reflexion in that the original Reflexion implementation ad-
ditionally stores the reflections in the agent’s memory buffer but here we store the past observation-feedback
pairs only. We found that this simplified version performs better. See Appendix E.1.
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:;’g’; lr‘;)'glizi ‘ gpt—4o ‘ gf;;:;giis ‘ gpt-3.5-turbo | llama3-70b ‘ gemini-pro | phi3-mini-128k
Bandits
10ArmedUniform 2.65(0.13) 3.18 (0.37) 4.19 (0.59) 4.44 (0.43) 0.58 (0.05) 1.65 (0.10)
10ArmedGaussian 1.17 (0.37) ‘ 1.54 (0.76) ‘ 1.62 (0.76) ‘ 1.25 (0.53) ‘ 2.03 (1.03) ‘ 429 (2.42)
Optimization
Booth -14.26 (1.81) -11.53 (3.27) -125.93 (12.07) -38.32 (6.64) -112.57 (14.24) -515.72 (15.58)
McCormick -0.26 (0.03) -0.32 (0.08) -1.91(0.32) -1.06 (0.16) -1.38 (0.15) -0.97 (0.18)
Rosenbrock -10.51 (3.55) -1.49 (0.93) -281.24 (64.88) -73.01 (34.56) -12.83 (6.22) -317.71 (33.96)
SixHumpCamel -0.56 (0.07) -0.27 (0.14) -6.03 (0.49) -2.02 (0.48) -0.15 (0.04) -9.86 (0.56)
Movie Rec.
reco-movie -6.98 (1.08) [ 975339 | -11.88 (1.81) [ -961(1.73) [ -1874(1.77) ] -18.36 (1.97)
Highway
parking -1432(028) [ -1324(1.06) ]| -14.95 (0.45) [ -1449(051) [ -7.87(0.94) | -13.94 (0.35)
Poem
Haiku -3.98 (0.82) -7.63 (3.62) -18.99 (1.76) -9.02 (1.28) -0.67 (0.08) -9.49 (1.48)
Tanka -20.68 (1.35) -0.34 (0.19) -20.77 (1.79) -15.96 (1.55) -1.34 (0.22) -15.26 (0.94)
LineSylConstr -23.97 (0.64) -28.73 (0.36) -28.44 (0.44) -24.81 (0.98) -0.51 (0.17) -28.45 (0.41)
Navigation
gridworld 0.95 (0.02) 0.70 (0.15) 0.30 (0.06) 0.92 (0.04) 0.00 (0.00) 0.10 (0.04)
alfworld 0.64 (0.07) 0.54 (0.07) 0.18 (0.05) 0.78 (0.06) 0.30 (0.06) 0.00 (0.00)
Meta-World
reach 0.82 (0.04) 0.70 (0.15) 0.08 (0.04) 0.16 (0.05) 0.00 (0.00) 0.02 (0.02)
button-press-wall 0.56 (0.05) 0.50 (0.16) 0.00 (0.00) 0.34 (0.07) 0.00 (0.00) 0.08 (0.04)
bin-picking 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
pick-place 0.46 (0.05) 0.20 (0.13) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
assembly 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
push 0.35 (0.05) 0.90 (0.09) 0.02 (0.02) 0.06 (0.03) 0.00 (0.00) 0.00 (0.00)
box-close 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
hand-insert 0.13 (0.03) 0.20 (0.13) 0.02 (0.02) 0.04 (0.03) 0.00 (0.00) 0.00 (0.00)
faucet—-open 0.57 (0.05) 0.40 (0.15) 0.00 (0.00) 0.94 (0.03) 0.06 (0.03) 0.10 (0.04)
dial-turn 0.05 (0.02) 0.10 (0.09) 0.02 (0.02) 0.84 (0.05) 0.02 (0.02) 0.00 (0.00)

Table 3: Mean and standard error of the return of the Basic Agent with Reward and Hindsight
feedback types only. For GPT-4-0125-preview, because of cost, the statistics are computed over
10 episodes (except for Alfworld, for which, due to high problem instance variability, we used
50 episodes). For other language models, 50 episodes are used. For Meta-World, Alfworld, and
Gridworld, the mean return is defined as the policy’s success rate, which uniquely determines the
standard error. Therefore, for the problems from these three problem sets, the st.e. is shown in gray.

similarities with text-based RL environments. Table 2 establishes Basic Agent’s performance when
the feedback contains (nearly) all information required to act optimally, because the Future feedback
explicitly tells the agent the (near-) optimal action to take, and the agent just needs to be “smart”
enough to recognize this information among other, less useful feedback. On the other hand, Table 3
shows the agent’s performance under the more difficult conditions, when the agent gets only indirect
feedback. Thus, for a given LLM, we should expect its corresponding performance in Table 2 to be
generally higher than in Table 3.

We observe that different environments test the capabilities of different LLMs (Table 2). For in-
stance, GPT-4 variants perform the best in numerical optimization, whereas Gemini-Pro performs
the best in temporally extended control problems like Highway parking. There is a definite bene-
fit from model size. E.g., Phi-3-mini and GPT-3.5-turbo perform significantly worse than frontier
models like GPT-4 or Gemini-pro across all tasks. However we observe that Llama3-70b can be
competitive in Navigation and Bandit optimization tasks at a fraction of the cost of frontier models.
Moving from Table 2 to Table 3 , we observe that the information in the feedback can significantly
affect the learning quality of LLM agents. For instance, across all the Meta-World tasks, we observe
a sharp decline in agent performance without the Future Feedback from the environment. However,
on easier environments such as Bandits (black-box) and Poem (text editing), the best LLM perfor-
mance is comparable across the different feedback sets, suggesting that the headroom to improve
using Future Feedback is smaller in those environments.

In Table 4, we also report the experiments results of gpt —4 0 using image observations (in addition
to text) in the Meta-World tasks. When all feedback types are provided, using image observation
does not lead to better performance; but when Future Feedback (which suggests expert moves) is
removed, using image observation improves the agent’s performance. We note that the focus of our
paper is not on evaluating whether images are useful for some tasks or designing the best vision-
based agent, but instead on designing LLF-Bench to make studying such questions convenient.
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Models gpt-4o (T+V) gpt-4o (T) Models gpt-4o (T+V) gpt-4o (T)
reach 1.00 (0.00) 1.00 (0.00) reach 0.64 (0.07) 0.82 (0.04)
button-press-wall 0.82 (0.05) 0.82 (0.05) button-press-wall 0.36 (0.07) 0.56 (0.05)
bin-picking 0.72 (0.06) 0.88 (0.05) bin-picking 0.00 (0.00) 0.00 (0.00)
pick-place 0.50 (0.07) 0.68 (0.07) pick-place 0.26 (0.06) 0.46 (0.05)
assembly 0.00 (0.00) 0.00 (0.00) assembly 0.00 (0.00) 0.00 (0.00)
push 0.88 (0.05) 0.86 (0.05) push 0.52 (0.07) 0.35 (0.05)
box-close 0.74 (0.06) 0.88 (0.05) box-close 0.00 (0.00) 0.00 (0.00)
hand-insert 0.18 (0.05) 0.16 (0.05) hand-insert 0.20 (0.06) 0.13 (0.03)
faucet-open 1.00 (0.00) 1.00 (0.00) faucet-open 0.78 (0.06) 0.57 (0.05)
dial-turn 1.00 (0.00) 1.00 (0.00) dial-turn 0.16 (0.05) 0.05 (0.02)
(a) All feedback types (b) Reward and Hindsight feedback types

Table 4: Mean and standard error of the success of the Basic Agent solving 11f-metaworld
tasks, which provide simulated camera images along with low-level states as observations, as shown
in the mean (st.e.) format and computed with 50 episodes. (T) denotes using only text observations;
(T+V) denotes using both text and image observations.

6 CONCLUSION

We introduced LLF-Bench to evaluate Al agents’ ability to learn interactively from instructions
and language feedback. We conjecture that the LLF paradigm will be significant for speeding up
the agents’ learning process by avoiding trial and error. LLF-Bench contains a diverse collection
of tasks such as recommendation, constrained writing, navigation and robot control. LLF-Bench is
designed to reflect an agent’s learning and generalization capability, separating them from over-fitted
performance on any given task. A key highlight is the configurable feedback system, classifying
language feedback into performance, past behaviour explanations, and future suggestions — this
encompasses existing RL environments, as well as imitation learning problems. Finally, we hope
that LLF-Bench will serve as a research platform for developing and testing LLF agents, enabling
the development of more general-purpose agents capable of learning to solve multiple tasks.
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APPENDIX

A ACCESSIBILITY CHECKLIST

1. Persistent URL: https://github.com/microsoft/LLF-Bench

2. Framework: We use the standard Gym API (Installation instructions and example codes
are provided in the README.md of the github page.)

3. Long-term preservation: The project is hosted on a public repo on Github
4. License: MIT License

5. MetaData: On the project github page, we included a meta data table conforming to the
stanford of schema.org

B TASKS IN LLF-BENCH

LLF-Bench consists of 8 different problem sets, ranging from user-recommendation, poem-writing,
navigation, to robot control. In the LLF setup, the reward is masked out (though the environments
in LLF-Bench still return rewards for evaluation purposes). To solve these problem efficiently, an
LLF agent needs to have sufficient common sense understanding of the natural language instruction
and the feedback. In addition, the agent needs to be able to learn from environmental interactions
and feedback. We intentionally design these suites of problems such that, while the agent can tell
success from the instruction and the environmental observation, it is difficult for the agent to infer
the optimal policy from them without additional learning.

These problem sets feature different action spaces, problem horizons, and test different abilities of
LLF agents. We provide a summary in Table 5 and next describe each problem set in more detail.

Problem Set Action Space | Horizon | Stateful | Instruction | Feedback
llf-bandit Discrete 1 No b,p,c all
llf-poem Text 1 No b all
llf-reco-movie Text 1 No b, c all
llf-optimization Continuous 10 Yes b all
llf-parking Continuous 100 Yes b 1, hp, hn
llf-gridworld Finite 20 Yes b, p, c all
llf-alfworld Text 100 Yes b all
llf-metaworld Continuous 30 Yes b t, hp, hn, fp

Table 5: Properties of problem sets included in LLF-Bench. Instruction and Feedback column
denote the types of instruction and feedback that are supported by the environment. If feedback is
all, then it means that all 5 feedback (r, hn, hp, fn, and fp) are supported.

B.1 LLF-BANDIT

l11f-bandit is a verbalized version of the classic multi-armed bandit problem. We built
11f-bandit based on gym-bandits* by adding natural language task instruction and feedback.
There are a total of 8 bandit problems in 11 f-bandit. For each problem, the task instruction tells
the task name from the underlying gym-bandit s, that the goal is a bandit problem, as well as the
feasible actions. While being a bandit problem, 11 f-bandit’s feedback does not necessarily con-
vey the reward value in text (it depends on the configuration of the feedback type). When reset,
the environment randomizes the order of actions and, if applicable, the underlying reward function.
The agent here needs to learn to explore and exploit in multiple rounds of interactions to find the
best arm as fast as possible with small regret (measured in terms of the hidden rewards). Overall,
11f-bandit tests the agent’s learning ability in an unknown environment with a finite number of
actions.

“MIT License
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B.2 LLF-POEM

11f-poemis a collection of text-generation tasks requiring a poem to be written that conforms to a
particular number of lines and number of syllables for each line. Even though there are many types
of formal poems, the current set of tasks supports basic types that follow syllable and line-based
constraints. Such formal poems include Haiku (a three-line short poem following a 5-7-5 syllable
pattern), Tanka (a five-line short poem following a 5-7-5-7-7 pattern), and custom environments
where a user can specify the number of lines and how many syllables per line. We use the CMU
Pronouncing Dictionary for syllable verification®. 11f-poem provides detailed fine-grained feed-
back on each line — a good environment to test whether the LLM-based agents can improve quickly
given feedback.

B.3 LLF-RECO-MOVIE

l1f-reco-movie is an environment that simulates user-recommendation system interactions on
the topic of recommending movies. To simulate a user, the environment will first randomly sample a
user preference profile over a set of attributes such as the type of entertainment (TV show or movie),
year range (80s, 90s, 2000s, or recent), preferred genres (Action, Comedy, Documentary, etc.), and
age restriction (child/family-friendly or R-rated). Then, a mask will be sampled to randomly hide
one or more of the preferences in the initial request. An agent needs to recommend a few items (no
restriction on the number of items) that all satisfy the stated preference. An item-by-item feedback
is provided in this environment to point out detailed preference violations that can allow LLMs to
improve their recommendations. The reward is defined as the percentage of recommended items
being correct. r € [0, 1]. This is a classic slate recommendation setup (Li et al., 2011; Swaminathan
etal., 2017).

B4 LLF-OPTIMIZATION

llf-optimization provides an easy-to-use interface with automatic procedurally generated
feedback that examines LLMs’ ability to make a series of proposals x to minimize a particular loss
function y = f(z). The feedback provided in this environment is created by computing gradient %
and then verbalizing this information based on the change in input between the previously proposed
z and the current chosen x. For each optimization problem, the input range is bounded: = €
[©min, Tmax), and the reward is simply min(—y;, —Ymax) (to prevent any choice of z that is outside
of the bound). We provide implementations of 8 classic loss functions (Rosenbrock, Bohachevsky,
etc.), and the base class is easily extendable to cover other loss functions. This is an environment
where we can measure LLM’s ability to make decisions with observed information on an unknown
loss landscape.

B.5 LLF-PARKING

11f-parking extends the Highway gym environment to LLF-Bench. It is a long-horizon goal-
conditioned continuous control task where the agent can manipulate the throttle and steering input to
an ego-vehicle. It must park the ego-vehicle in a given location without colliding with any obstacles
in the environment. We extended the environment by (1) describing the observation and action
spaces in text, and (2) verbalizing the per-time-step reward (distance to goal) to provide text feedback
about goal progress and obstacle collisions. An agent must learn how its control inputs affect the
vehicle’s dynamics, and plan to accomplish the eventual parking goal.

B.6 LLF-GRIDWORLD

The 11 f-gridworld domain models a navigation agent in a graph-based gridworld. The world is
represented by a graph where rooms are denoted by nodes and edges denote doors. A room can have
at most 4 doors along the north, south, east and west direction. These directions form the agent’s
action space. At any given time, the agent is in exactly one of the rooms. The agent’s observation
describes the current room including all the objects in it, and the different doors that are available.
If the agent takes an action, such as a = north, then it will transition from its current room, to the

Shttp://www.speech.cs.cmu.edu/cgi-bin/cmudict
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room connected by the door along the north direction, if one exists. If no such door exists, then the
agent stays in the same room. All transitions are deterministic. A room can contain many different
types of objects. A unique room, called the treasure room, contains the treasure object. The agent
starts in a start room and its goal is to navigate to the treasure room. The number of rooms, objects,
object type, and distance to the treasure, can be easily customized.

B.7 LLF-ALFWORLD

The 11f-alfworld environment is a wrapper built on top of the popular A1 fWorld text-game
environment® (Shridhar et al., 2021) which itself is built as a parallel to the embodied A1 fred
dataset (Shridhar et al., 2020). 11f-alfworld contains multi-step reasoning tasks, where in each
episode, the agent is given an instruction in a house setting and must take a sequence of actions to
fulfill this instruction. In each step, the agent is given a textual description of what it sees and a
list of valid actions. The agent generates a text action (e.g., open drawer 1), which if it is valid can
change the agent’s observation, and if it is invalid then results in no change. The agent additionally
gets a reward for each action. The goal of the agent is to maximize the total reward by solving the
task. Unlike the 11f-gridworld setting, the agent is tested for generalization as each episode
can contain a new task in a possibly new house environment. The main additionin 11f-alfworld
is the capability to provide text feedback instead of reward. The text feedback is generated using an
optimal trajectory for that episode, as well as the instantaneous reward and the list of valid commands
for each time step.

B.8 LLF-METAWORLD

11f-metaworld is based on the existing Meta-World v2 benchmark’ (Yu et al., 2019) and sup-
ports both text (of low-dimensional states) and image observations. Meta-World consists of 50
simulated robotic manipulation tasks, in each of which a robotic Sawyer arm needs to move an ob-
jectinto a specified position, e.g., push a puck to a goal location or press a button. An agent trying to
accomplish an 11 f-metaworld task is presented with an instruction stating that the task is about
getting a robotic manipulator to successfully handle an object and explaining what each dimension
of the agent’s 4D state space means. By default, the environment interprets an agent’s action as a
target pose where the arm should move®, and tries to move the arm there using Meta-World’s built-in
P-controller. At each time step, the agent receives as observation a description of the current state
mentioning the pose of the arm and all relevant objects in the scene. The language feedback here
may include advice on where to move the arm next and where not to move it.

C GYM INTERFACE OF LLF-BENCH

LLF-Bench formalizes a wide variety of decision-making problems by extending the popular Ope-
nAl Gym API. The API contains three key functions — make, reset, step — that are seman-
tically similar to their Gym namesakes and detailed below. A sample code snippet for interaction
with LLF-Bench’s Gym interface can be found in Figure 3.

* make: Returns an Environment object similar to gym.make. An LLF-Bench Environ-
ment extends classic Gym Environments (e.g., with well-defined ActionSpace and
ObservationSpace) with two additional concepts, instruction and feedback,
that are explained below.

* reset: After an environment is initialized using make, it should be reset to receive
the initial Observation from the Environment. LLF-Bench Observation is a Python dic-
tionary containing gym.Observation (i.e., an observation that is contained in the

SMIT License
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8The dynamics of 11f-metaworld differs from the one in the original Meta-World. Here the agent
controls the target location (the simulator runs the P-controller to act in the original Meta-World environment
for several steps until the target location is reached or it is timed out), whereas in the original environment
the agent controls force to incrementally change the end-effector. This design is to make the problem horizon
shorter and more closely mimic the common use cases of industrial robotic manipulators.
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import llfbench as gym
3 # Environments in the benchmark are registered following
4 # the naming convention of 11f-x

5 env = gym.make (' 1l1f-gridworld-v0’)

7 done = False
3 cumulative_reward = 0.

0 # First observation is acquired by resetting the environment
observation = env.reset ()

3 while not done:

5 # Observation is dict having ’observation’, ’instruction’, ’feedback’
6 # Here we print the observation and ask the user for an action

7 action = input( observation[’observation’] + ’\n’ +

8 observation[’instruction’] + '\n’ +

9 observation[’ feedback’] + "\n’ +

0 "Action: ' )

1

22 # Gridworld has a text action space, so TextWrapper is not needed

23 # to parse a valid action from the input string

24 observation, reward, terminated, truncated, info = env.step(action)
25

26 # reward is never revealed to the agent; only used for evaluation

27 cumulative_reward += reward

28

29 # terminated and truncated follow the same semantics as in Gymnasium

30 done = terminated or truncated
3
32 print (£’ Episode reward: {cumulative_reward}’)

Figure 3: Sample Python code snippet for interacting with LLF-Bench environments.

environment .ObservationSpace) as well as instruction and feedback
keys. If the environment uses randomization, then the random number generator can be
seeded with the seed parameter as input.

* step: Takes as input an action that is contained in the environment .ActionSpace,
and returns a LLF-Bench Observation dictionary which includes the instruction and
feedback keys. In addition to the Observation, st ep also returns scalar reward, boolean
flags truncated and terminated and a miscellaneous info dictionary which have the same
semantics as Gymnasium environments. An agent for LLF-Bench is expected to solve
tasks using the feedback contained within Observation, without using the reward signal.
Signals like reward and info are provided for backward compatibility with Gymnasium and
for automated evaluation.

Note that under the hood, LLF-Bench implements all Environment objects as compatible with the
Gymnasium standard. We provide EnvironmentCompatibility wrappers if the Environment
is instead otherwise compatible with the deprecated Gym (pre-0.21 version) standard. We simi-
larly include TextWrapper wrappers that can convert any LLF-Bench Environment with bespoke
ObservationSpace and Act ionSpace into one with text as the observation and action spaces.
This wrapper allows one to directly interface LLM-based agents with LLF-Bench environments and
assess their learning and decision-making behavior.

Although each step also returns a scalar reward, the convention we follow (and recommend to
users of LLF-Bench) is that the agent never sees the reward. It can only access the information in
observation, instruction and feedback to decide its actions (e.g., see line 17 in Figure 3).
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C.1 INSTRUCTION AND FEEDBACK

Instruction is a string that is defined inside the Environment and describes in natural language the
problem that a decision-maker must solve. We recommend that agent-designers should not inspect
and overfit to a specific instruction describing the desired task in an environment; the default be-
havior of LLF-Bench environments is to paraphrase instructions in different ways to minimize the
chances of prompt overfitting. Three different types of Instruction are supported in LLF-Bench,
and can be toggled by passing an appropriate instruction_type to the make command of a
LLF-Bench environment:

* Basic: instruction_type = ‘b’. Thisis the defaultinstruction type for LLF-Bench
environments. The instructions provide an agent with the goal, semantics of its action
space, as well as the expected syntax of its responses. The instruction provides enough
information for a competent agent (e.g., a literate human) to begin interacting with the
environment.

e Complete: instruction_type = ‘c’. The instructions additionally provide infor-
mation to reliably infer (e.g., by a literate human) an optimal policy for achieving the goal.

e Practical: instruction_type = ‘p’. It contains the Basic instructions, and ad-
ditionally includes Feedback for previously executed actions. The goal of a learning
agent is to infer the optimal policy (i.e., comparable in performance to the one with
instruction_type = ‘c’)as quickly as possible.

Feedback is a string that provides the signal for an agent to learn from its interaction. LLF-Bench
implements two kinds of feedback: an atomic feedback, and a composite feedback. The type of
feedback an environment provides to an agent is set by passing an appropriate feedback_type
parameter to make. Atomic feedbacks are inspired by the education research literature (Shute,
2008). LLF-Bench currently supports 5 different types and we plan to include new styles (to include
e.g., questioning) in the future:

* feedback_type = ‘r’: This is the textualization of the scalar reward signal or suc-
cess signal from classical RL. By using the text-wrapper and this feedback type, several
classical RL environments (implemented in OpenAl Gym or Gymnasium) can be compa-
rably tested with LLF agents in LLF-Bench.

* feedback_type = ‘hp’: This hindsight positive feedback provides an explanation
about a past action by the agent that was desirable.

e feedback_type = ‘hn’: This hindsight negative feedback provides an explanation
about a past action by the agent that was undesirable.

* feedback_type = ‘fp’: This future positive feedback provides a suggestion for a
potential future action that could be desirable.

* feedback_type = ‘fn’: This future negative feedback provides a suggestion for po-
tential future actions that should be avoided.

feedback_type = ‘r’ corresponds to the current performance evaluation from the educa-
tion research literature, whereas feedback_type = ‘fp’, ‘fn’ correspond to future be-
havior suggestion. Finally, feedback_type = ‘hp’, ‘hn’ correspond to the past behavior
explanation style of feedback studied in the education research literature.

Composite feedback types allow the environment to provide the agent multiple kinds of atomic
feedbacks. This makes for a more realistic learning problem, rather than the same type of atomic
feedback at every step of the environment.

* feedback_type = ‘a’: All of the Atomic feedback types that are supported by the
environment are provided to the agent at each round of interaction.

* feedback_type = ‘m’: The agent receives a Mix of different atomic feedbacks. A
random subset of the supported feedback types are sampled by LLF-Bench to provide to
the agent at each step.

* feedback_type = ‘n’: The agent receives No feedback, this mode is provided for
debugging purposes.
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The make API accepts any of the composite feedback types, or any subset of the atomic feedback
types to allow fine-grained control of the learning signal that an agent can receive from LLF-Bench
environments. The default behavior in make for any environment uses feedback_type = ’"a’.

C.2 INSTRUCTION AND FEEDBACK RANDOMIZATION

To reduce the sensitivity of learning agents to a specific text realization, LLF-Bench implements a
template-based paraphrasing system, by which users can randomize the instruction and the feedback
that the agent receives. For each problem in LLF-Bench, we implement about 4-20 paraphrased
templates for each instruction and each feedback type. When the randomization options are turned
on, the LLF-Bench environment will randomly choose one from these curated templates to formulate
the language instruction and feedback returned to the agent. LLF-Bench also provides the option to
deterministically use a particular template. The randomness of paraphrasing can be controlled by
setting the seed parameter in the OpenAl Gym reset function.

Compared with using language models to generate feedback on-the-fly, the use of templates offers
advantages: (1) the latter is free, while the former can be very expensive. (2) The latter results in far
higher reproducibility: it is very hard or even impossible to guarantee that an LLM produces exactly
the same output (gives the same feedback) for the same prompt (for the same state). (3) Some
generic templates can be broadly useful across many environments, serving as an initial example
when building a new environment. All three reasons are very important for a benchmark, and in
general the use of synthetic data has been common in the literature (Hudson & Manning, 2019;
Hermann et al., 2020; Blukis et al., 2018), although we acknowledge that it has its own drawbacks.

D RELATED WORK

Grounded Language Learning Reinforcement learning with textual information has been stud-
ied under the branch of multi-modal representation learning. This branch of study has several fo-
cuses that are both similar and different from our goal with LLF-Bench. One focus deals with
ambiguity and difficulty in understanding instructions or goals specified by natural language (Wang
et al., 2016; Bahdanau et al., 2019; Chaplot et al., 2018). While the ambiguity of instructions is a
concern, we focus more on robustly behaving under different instructions that all represent the same
underlying goal. Another focus of this body of work is to ground visual information with textual
instruction — a core aim of multi-modal representation learning (Bisk et al., 2016; Misra et al., 2017),
with an extension to robotic interaction (Karamcheti et al., 2022; 2023). Language provides a natu-
ral shared representation that enables easier transfer between different tasks (Hanjie et al., 2021) or
supplies important information such as safety constraints for a policy (Yang et al., 2021). In previ-
ous work, feedback is often not considered. When feedback is considered, it is usually framed as
error messages from a syntax parser (if the action space is text) and can indeed be incorporated into
learning (C6té et al., 2019). This type of feedback corresponds to feedback_type = ‘hn’ in
our setup.

Text-based Games Extending from using reinforcement learning for solving complex games,
there are many text-based games that include challenges such as the navigation of space, manip-
ulation of the environment to achieve goals, and reaction to random events. Narasimhan et al.
(2015) repurposed a classic text adventure game, Zork, where both observation and action space
are text. Coté et al. (2019) proposed a set of text-based game environments and included a few
carefully designed challenges for RL to solve, such as large state and action space (determined by
the vocabulary size) and long credit assignment. On the other spectrum, Kiittler et al. (2020) cre-
ated a learning environment from the game NetHack. Although the game state is represented with
hundreds of text symbols, policy learning is conducted on the screenshot of the terminal. Similarly,
BabyAlI (Chevalier-Boisvert et al., 2019) is a set of procedurally generated grid-like maze environ-
ments — the objects and representation in the environment are a fixed set of symbols. None of these
environments consider providing language feedback on the agent’s action.

Learning from Language Feedback Providing feedback to an RL agent’s action as part of the
learning signal beyond task rewards has been studied in robotics. However, most of the efforts
were limited to eliciting binary preference feedback (Sadigh et al., 2017; Biyik & Sadigh, 2018) or
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ranking-based feedback from real people (Basu et al., 2019). Sumers et al. (2021) crowd-sourced
a small feedback dataset on a small game. They considered three types of feedback, evaluative
feedback (which corresponds to feedback_type = ‘r’), descriptive feedback (which in our
setup is decomposed into feedback_type = ‘hp’, ‘hn’), and imperative feedback (which
corresponds to feedback_type = ‘fp’, ‘fn’). They then used a sentiment classifier to
extract coarse information from this feedback to improve the policy’s behavior. Nguyen et al. (2021)
proposed an approach to map textual instructions to trajectories in embodied settings by assuming
that a user can label a generated trajectory with the instruction that is likely to generate the trajectory
under the optimal policy. More recently, Cui et al. (2023); Liu et al. (2023a) studied the case of
language feedback as corrections to a robotic arm at any time of the task execution, which is an
instance of the LLF setup that we are considering.

LLM Sensitivity to Prompts A long line of work has investigated smaller-scale language-based
systems’ sensitivity to different expressions that have the same underlying meaning. They can be
categorized as adversarial attacks to text-based systems (Ribeiro et al., 2018; Wallace et al., 2019)
or as mechanisms to improve language-based systems’ output via self-consistency (Edunov et al.,
2018). More recently, the lack of robustness to prompts has been found on large language models
as well (Liu et al., 2023c; Wolf et al., 2023). Zhu et al. (2023) proposed a benchmark dataset to
investigate the robustness of LLMs on different types of prompts that can contain user errors for
tasks related to natural language.

E EXPERIMENT DETAILS

We use the TEXTWRAPPER provided with LLF-Bench to format observations and feedback into
text, suitable for evaluating LLMs as agents. Then we implemented a Reflexion-based basic
agent (Shinn et al., 2023) that formats up to 20 most recent observation-action-feedback tuples into
an LLM’s context. Its system prompt is listed Figure 4 and its user prompt Figure 5 (For Meta-world
tasks with image observations, we add an additional instruction to let it reflect on the observation
before making the decision.) We extract the action from the LLM’s output using template matching
starting with “Response: > and feedback the extracted action to the LLF-Bench environment’s Gym
interface. When error happens due to LLM outputting inadmissible actions, we catch the error and
send it back as feedback to the agent; we found that LLMs often are able to understand such error
feedback and use them to correct the action format in the next round.

All environments are initialized with horizon of H = 30 and are stopped if success earlier if the
agent successfully solves the problem (e.g., in Meta-World problems). That is, the RESET function
of the environment is called after at most 30 time-steps to initiate a new episode. We reset the
agent at the start of each episode and compute the statistics by 50 independent episodes (using seed
0).” All experiments are run with the basic instruction of LLF-Bench (see Appendix C). Note that
in the experiments, the agents do not see the numerical reward as feedback necessarily, while the
language feedback might contain some information of the instantaneous performance. We conducted
all experiments using API access to SOTA LLMs queried during the month of May 2024 on a single
computer with Intel(R) Core(TM) 19-9980XE CPU @ 3.00GHz and 64GB of memory.

E.1 COMPARISON BETWEEN BASIC AGENT AND ORIGINAL REFLEXION AGENT

Our Reflexion-based agent, denoted as Basic Agent, differs from the original Reflexion agent in
that the original Reflexion agent implementation additionally stores the reflections in the agent’s
memory buffer. We also implemented and run the original Reflexion agent (denoted as Reflexion
Agent below), and compared it with the Basic Agent we used in the paper on the challenging LLF-
Meta-World tasks. The results are shown below in Figure 6 and Figure 7. We observe that Basic
Agent, despite being simpler, performs better across different tasks.

°Since there is no additional training runs, using a single seed with multiple independent evaluation
episodes is equivalent to using multiple seeds with one evaluation each.
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You are an agent tasked to solve an interactive problem with verbal
feedback. You will see an Instruction. After you choose an action,
you will see the feedback from the environment. Your goal is to
choose the right actions to solve the task as fast as possible,
according to the Instruction.

Answer in the following format: First, begin with "Thought:" and write
down your reflection on the feedback. Then in the next line write
your response beginning with "Response:" and provide your chosen
action. ONLY provide the chosen action after "Response:", without any

additional comments or thoughts. Anything extra will cause errors,
as your responses will be parsed by a computer program, not a human.

Here is an example for an Instruction which asks you to choose a number
between 1 and 10:

Thought: I should choose a number that is not too high or too low, so I
will choose 5.
Response: 5

An invalid response would be:

Thought: I should choose a number that is not too high or too low, so I
will choose 5.

3 Response: I choose number 5

Figure 4: System prompt used for all LLMs.

History of feedbacks: {history}

Current observation: {observation}

Instruction: {instruction}
Listing 1: User Prompt for All Problems, except Meta-World with Image Observation

History of feedbacks: {history}

Current observation: {observation}

Instruction: {instruction}

Change of reply format: The new reply format is Observation, Thought, and
Response. Write down what you see in the image in Observation

section, and in Thought reflect on the feedback as well as
Observation.

Listing 2: User Prompt for Meta-World Problems with Image Observation

Figure 5: User prompts used for all LLMs.

F EXAMPLE INSTRUCTION, OBSERVATION, AND FEEDBACK

This section provides some examples of instruction, observation, and feedback of environments
in LLF-Bench. For environments without observation, we do not list the Example Observation
below. Also, for compactness, we remove the text formatting (such as spacing and indentation)
of instruction, observation, and feedback. Please refer to the code for the exact text presentation
given to the agent. Example image observation of 11f-metaworld environments can be found
in Figure 1.
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Zgl;)lreolg]:rtlss Basic Agent | Reflexion Agent
reach 1.00 (0.00) 1.00 (0.00)
button-press-wall | 0.82(0.05) 0.86 (0.05)
bin-picking 0.88 (0.05) 0.68 (0.07)
pick-place 0.68 (0.07) 0.68 (0.07)
assembly 0.00 (0.00) 0.00 (0.00)
push 0.86 (0.05) 0.86 (0.05)
box-close 0.88 (0.05) 0.64 (0.05)
hand-insert 0.16 (0.05) 0.28 (0.06)
faucet-open 1.00 (0.00) 1.00 (0.00)
dial-turn 1.00 (0.00) 1.00 (0.00)

Figure 6: Comparison between Basic Agent and Reflexion Agent on 11f-metaworld tasks with
all feedback types. Both agents use GPT-40. Table shows mean and standard error of return,
computed with 50 episodes.

Zgl;)lgﬁlzzi Basic Agent | Reflexion Agent
reach 0.82 (0.04) 0.58 (0.07)
button-press-wall | 0.56 (0.05) 0.46 (0.07)
bin-picking 0.00 (0.00) 0.00 (0.00)
pick-place 0.46 (0.05) 0.10 (0.04)
assembly 0.00 (0.00) 0.00 (0.00)
push 0.35 (0.05) 0.28 (0.06)
box—-close 0.00 (0.00) 0.00 (0.00)
hand-insert 0.13 (0.03) 0.06 (0.03)
faucet-open 0.57 (0.05) 0.78 (0.06)
dial-turn 0.05 (0.02) 0.04 (0.03)

Figure 7: Comparison between Basic Agent and Reflexion Agent on 11 f-metaworld tasks with
Reward and Hindsight feedback types only. Both agents use GPT-40. The table shows mean
and standard error of return, computed with 50 episodes. Note that the performance drops markedly
compared to using all feedback types (Figure 6).

F.1 LiLF-RECO-MOVIE-VO

Example Instruction You are a helpful assistant trying to recommend movies or tv shows to your
users according to what they want. Sometimes, your users don’t fully tell you their preferences
at the start, but once you make recommendations, they will tell you truthfully what they like and
don’t like. Please produce a valid json list with a dictionary: [title”: "moviel”, “title”: “movie2”]
Example Hit me with your best Western movie suggestions from the 2000s or 80s. Please point me

in the right direction.

Example Feedback I can find all the recommendations online, nice! Your recommended picks
are movies, wonderful! The recommendations span a broader range than just Western movies. The
recommendations are not from the 2000s or 80s. The recommendations are all child-friendly, awe-
some! Indeed, these recommendations are categorized as Western: Unforgiven is Drama or Western,
True, these recommendations are from the 2000s or 80s: No Country for Old Men is from 2007,
Silverado is from 1985, 3:10 to Yuma is from 2007, It turns out that these recommendations are
not Western: No Country for Old Men is Crime, Drama, or Thriller, Silverado is Action, Crime, or
Drama, 3:10 to Yuma is Action, Crime, or Drama, These recommendations are not from the 2000s
or 80s: Unforgiven is from 1992, Make recommendations that are Western, like True Grit and The
Good, the Bad and the Ugly. Identify movies that were released during 2000s or 80s, like Pearl
Harbor and Black Hawk Down. Do not make recommendations that are not Western, not like L.A.
Confidential or The Addams Family. Do not make recommendations that are not from 2000s or 80s,
like True Grit or L.A. Confidential.
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F.2 LLF-0PTIMIZATION-MCCORMICK-VO

Example Instruction You are trying to minimize the output (y) of a function by choosing input
(x). The goal is to choose x such that y is as small as possible. You get to observe y once you choose
the value of x, where x is a 2-dimensional vector. This means x = [x1, x2], where x1 and x2 are real
numbers. The range of x1 and x2 is [-1.5, 4]. Please do not choose x outside of this range. Choose
x within 10 attempts. You can choose to stop at any time. Output format: x = [x1, x2]

Example Observation x=[-1.2746, -1.4091] Function outputs y =-1.034818410873413 You have
10 attempts left! Please output the next x that will make this function output the smallest y. Format:
x = [x1, x2]

Example Feedback You are yet to achieve the minimum! You selected x = [-1.2, -1.5] from [-1.3
-1.4]. Correctly, increasing the first number in -1.3 contributes to minimizing y. Your decision was
x =[-1.2, -1.5] from [-1.3 -1.4], and it’s accurate that Decreasing the second number in -1.4 aids in
minimizing y. Your pick was x = [-1.2, -1.5]. Minimize y by issuing a larger number than the first
element of -1.2. You went with x = [-1.2, -1.5]. Now, aim to output a smaller number than what is
at the start of -1.5 to achieve a smaller y. You decided on x = [-1.2, -1.5]. Avoid producing a smaller
number than the first number in -1.2 if you want to minimize y.Your selection fell on x = [-1.2,
-1.5]. For the purpose of minimizing y, do not provide a larger number than the second from -1.5.
Thought: From the feedback, it seems that further decreasing the first element and increasing the
second element from [-1.2746, -1.4091] did not minimize y. I should try increasing the first element
and decreasing the second element within the given range to see if the function’s output decreases
further.

F.3 LLF-GRIDWORLD-VO

Example Instruction You are in a house that has multiple rooms. When you are in a room, you
can see all the objects that this room contains but cannot see objects in different room. At a given
time, you can only be in one room. Each room can have a door along the North, South, East and
West direction. Different rooms can different number of doors. You can follow a direction to go
from one room to another, provided there is a door in that direction. If there is no door along that
direction, then you will remain where you are. You will start in a room. Your goal is to navigate to
the unique room which has the treasure. You have an action space of size 4. Action 0 leads to going
North. Action 1 leads to going East. Action 2 leads going west. Action 3 leads to going South.

Example Observation You are in lobby-1 room. You have a door to the south of you that takes
you to the toilet-1 room. You have a door to the west of you that takes you to the drawing room-3
room. You have a door to the east of you that takes you to the corridor-3 room.

Example Feedback You got a reward of 0.0. You did the right thing by following the south
direction in lobby-1. You were right in not going in the west direction in your latest move. Now that
you are in toilet-1, make sure to follow the east direction. You should not follow the west direction
in this toilet-1.

F.4 LLF-HIGHWAY-PARKING-VO

Example Instruction Your goal is to control a vehicle to park in a desired location, while ensuring
that it does not collide with any obstacles or other vehicles. You will receive the observation of the
vehicle’s state as well as the desired parking location represented by an array of numbers. The
dimensions of the array correspond to [X, y, VX, vy, cos_h, sin_h]. That is, the first 2 dimensions
denote the position, the next 2 denote the velocity, and the last 2 denote the orientation. Your
action is a 2-dim vector, where the first dimension controls the throttle input, and the last dimension
controls the steering input. Throttle is a number between -5 and 5, representing acceleration in units
of m/s"2. Steering is a number between -pi/4 and pi/4, representing the steering angle in radians.
Present a correct action in the form of [throttle input, steering input].
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Example Observation OrderedDict([(’observation’, array([-0.10405679, -0.04218505,
-2.68598268, -1.33622492, 0.89532756,  0.44540831))), (’achieved_goal’, array([-
0.10405679, -0.04218505, -2.68598268, -1.33622492, 0.89532756, 0.44540831])), (’de-
sired_goal’, array([2.000000e-02, 1.400000e-01, 0.000000e+00, 0.000000e+00, 6.123234e-17,
1.000000e+0071)])

Example Feedback The reward is -0.4557528810103727

F.5 L1LF-POEM-LINESYLLABLECONSTRAINEDPOEM-VO

Example Instruction Are you competent to write a poem for me? It should be 4 lines long and
the syllable count for each line should match a 10-10-5-8 pattern.

Example Feedback The poem that was assembled is not right. The lines are correct because they
follow the right syllable count: line 1 has 10 syllables,line 2 has 10 syllables,line 4 has 8 syllables.
Poem must contain exactly 10-10-5-8 syllables across 4 lines, but line 3 does not. Here are some
pointers to help you resolve your error: The sentence: ”Gentle whispers,” has 4 syllables, not the 5
syllables it should have. You need to revise the sentence to have more syllables.

F.6 LLF-BANDITS—-BANDITTENARMEDGAUSSIAN-VO

Example Instruction 10 armed bandit mentioned on page 30
of Sutton and Barto’s [Reinforcement Learning: An Introduction]
https://www.dropbox.com/s/b3psxv2rOccmf80/book20150ct.pdf?dl=0) Actions always pay out
Mean of payout is pulled from a normal distribution (0, 1) (called g*(a)) Actual reward is drawn
from a normal distribution (q*(a), 1) Find the best action as fast as possible. Your action is an
integer between 0 and 9.

Example Feedback You’ve been rewarded with 2.041880926155133. This arm isn’t the best
because it doesn’t offer the highest expected reward. If you decide on action 7, you’ll be rewarded
with an expected 1.4102046311312142. Observation: The action 4 is not the best choice as it results
in an expected reward of -0.18158257273119596

F.7 11Fr-ALFWORLD-VO

Example Instruction You are in a house with a variety of objects. Your task is to: find two
saltshaker and put them in sidetable. You have to take a sequence of actions to full fill it. When you
take an action, you can change the world. You will be told at each step, what actions are allowed
and you must pick only one of those actions.

Example Observation -= Welcome to TextWorld, ALFRED! =-

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet
3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a
diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a sidetable 1, a sinkbasin 1, a
stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.

Your task is to: find two saltshaker and put them in sidetable.. You are allowed to take the following
actions: go to cabinet 1, go to cabinet 2, go to cabinet 3, go to cabinet 4, go to coffeemachine 1, go to
countertop 1, go to diningtable 1, go to diningtable 2, go to diningtable 3, go to drawer 1, go to fridge
1, go to garbagecan 1, go to microwave 1, go to sidetable 1, go to sinkbasin 1, go to stoveburner 1,
go to stoveburner 2, go to stoveburner 3, go to stoveburner 4, go to toaster 1, inventory, look.

Example Feedback Your latest action gives you a reward of 0. The action look, is what you
should have chosen in your last move. At the last step, you did not take the action go to microwave
1, and this was a good thing as it was a bad action. The optimal action to take in the next step is
open cabinet 1. You should avoid the action go to sidetable 1 in the next step. Thought: To find the
saltshakers, it’s logical to start searching places where kitchen items are typically stored. Cabinets
are a good starting point.
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F.8 LLF-METAWORLD-BUTTON—-PRESS—WALL-V2

Example Instruction Your job is to control a Sawyer robot arm to solve a button-press-wall task.
You will get observations of the robot state and the world state in the form of json strings. Your
objective is to provide control inputs to the robot to achieve the task’s goal state over multiple time
steps. Your actions are 4-dim vectors, where the first 3 dimensions control the movement of the
robot’s end effector in the x, y, and z directions, and the last dimension controls the gripper state (0
means opening it, and 1 means closing it). You action at each step sets the robot’s target pose for
that step in absolute coordinate. The robot will move towards that pose using a P controller.

Example Observation “hand_pos”: ”[0.012 0.561 0.138]”, “hand_closed”: 0.287”, “but-
ton_pos”: ”’[-0.016 0.687 0.115]” Action: [-0.02, 0.56, 0.3, 1.0]

Example Feedback You’ve received a reward of 0.3445458270735896. You are making progress
towards achieving the goal. Keep it up! The target [-0.02 0.57 0.3 1. ] is promising.

26



	Introduction
	LLF: Learning from Language Feedback
	The Mechanics of LLF
	Isn't RL Enough?
	Why Should We Study LLF Now?

	LLF-Bench
	Problem Sets and Tasks
	Design of LLF-Bench

	Related Work
	Experimental Results 
	Conclusion
	Accessibility Checklist
	Tasks in LLF-Bench
	llf-bandit
	llf-poem
	llf-reco-movie
	llf-optimization
	llf-parking
	llf-gridworld
	llf-alfworld
	llf-metaworld

	Gym Interface of LLF-Bench
	Instruction and Feedback
	Instruction and Feedback Randomization

	Related Work 
	Experiment Details
	Comparison between Basic Agent and Original Reflexion Agent

	Example instruction, observation, and feedback
	llf-reco-movie-v0
	llf-optimization-McCormick-v0
	llf-gridworld-v0
	llf-highway-parking-v0
	llf-poem-LineSyllableConstrainedPoem-v0
	llf-bandits-BanditTenArmedGaussian-v0
	llf-alfworld-v0
	Llf-metaworld-button-press-wall-v2


