

000 001 002 003 004 005 FASTER-VPS: ACCELERATING OBJECT-LEVEL INTER- 006 PRETATION OF MULTIMODAL FOUNDATION MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Attribution is essential for interpreting object-level foundation models, yet existing
026 methods struggle with the trade-off between efficiency and faithfulness. Gradient-
027 based approaches are efficient but imprecise, while perturbation-based approaches
028 achieve high fidelity at prohibitive cost. Visual Precision Search (VPS) represents
029 the current state-of-the-art, but its greedy search requires a quadratic number of
030 forward passes, severely limiting practicality. We introduce Faster-VPS, which
031 replaces VPS’s greedy search with a novel Phase-Window (PhaseWin) algorithm.
032 PhaseWin combines phased pruning, windowed fine-grained selection, and adaptive
033 control mechanisms to approximate greedy attribution with near-linear complexity.
034 Theoretically, Faster-VPS retains approximation guarantees under monotonous
035 submodular conditions. Empirically, it achieves over 95% of VPS’s faithfulness
036 using only 20% of the computational budget, and consistently outperforms all other
037 attribution baselines on tasks such as object detection and visual grounding with
038 Grounding DINO and Florence-2. Faster-VPS thus establishes a new state-of-the-
039 art in efficient and faithful attribution.
040

1 INTRODUCTION

041 Understanding the decision-making process of large-scale foundation models (Dwivedi et al., 2023;
042 Gao et al., 2024) is a fundamental challenge in artificial intelligence. Attribution methods (Montavon
043 et al., 2017; Yamauchi et al., 2024), which aim to identify the input features most relevant to a model’s
044 output, are our primary tools for this endeavor. Effective attribution is not merely an academic exercise;
045 it is critical for debugging models, diagnosing failures, uncovering hidden biases from training data,
046 and ensuring that model behavior aligns with human values and safety constraints (Miller et al.,
047 2019; Feng et al., 2021; Wilson et al., 2023; Stocco et al., 2022; Shu et al., 2024). For instance, in
048 applications like autonomous driving, faithful attribution for object detection models is essential for
049 building trustworthy systems (Liang et al., 2021; 2022a; Wei et al., 2019; Liang et al., 2022b; Liu
050 et al., 2023).

051 Attribution methods are broadly classified into two paradigms: gradient-based (Zhao et al., 2024a;
052 Yamauchi, 2024) and perturbation-based (Petsiuk et al., 2018; 2021). While gradient-based methods
053 are computationally efficient, they often struggle with issues like artifact effects and multimodal
054 interactions in gradient transfer (Selvaraju et al., 2020; Zhao et al., 2024a; Jiang et al., 2024),
055 producing attribution maps that lack precision. In contrast, perturbation-based methods, which
056 measure the model’s response to systematically masking parts of the input, generally achieve much
057 higher faithfulness. However, their superior performance is crippled by a steep computational
058 cost (Novello et al., 2022; Jiang et al., 2023; Shapley, 1953), as the search for the most informative
059 features often requires thousands of forward passes. The core research challenge, therefore, is to
060 drastically reduce this computational overhead, making the high faithfulness of perturbation methods
061 practical for real-world use.

062 The current state-of-the-art in faithful attribution is Visual Precision Search (VPS) Chen et al. (2025).
063 VPS provides a complete workflow for perturbation-based attribution, formulating the problem as
064 maximizing a submodular-like objective function (Edmonds, 1970; Chen et al., 2024b). Its core
065 component is a greedy search over candidate regions, which ensures high faithfulness but also
066 dominates the runtime (Fujishige, 2005). This quadratic complexity of VPS remains the principal
067 barrier to its adoption in real-world, time-sensitive scenarios. The critical question we address is thus:

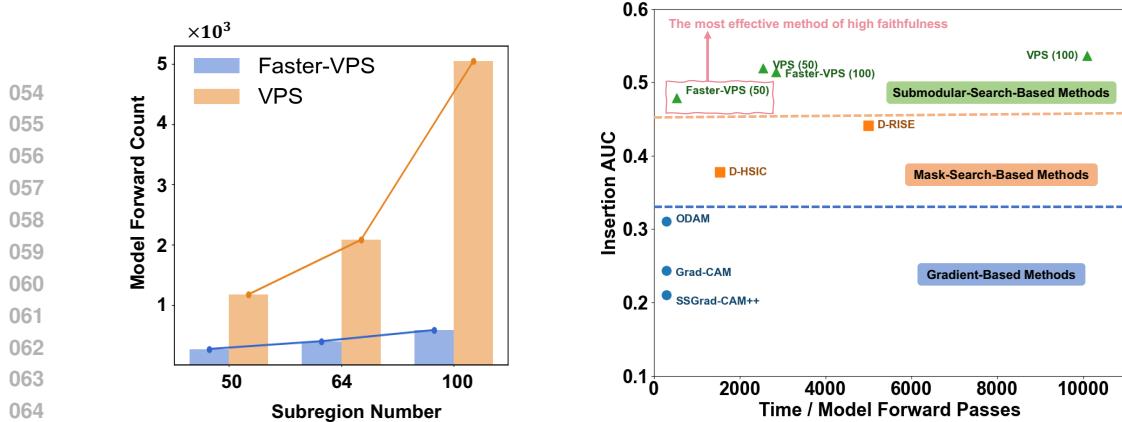


Figure 1: Efficiency-faithfulness trade-off in attribution methods. Left: comparison of model forward counts between VPS and Faster-VPS (window Size fixed as 16) across different subregion numbers. Right: comparison of Insertion AUC and computational cost among representative methods, where Faster-VPS achieves near-VPS faithfulness with a fraction of the computational budget.

How can we retain the high faithfulness of a greedy perturbation search while drastically reducing its computational overhead?

To overcome this limitation, we replace the greedy search with our Phase-Window (PhaseWin) algorithm, an efficient near-linear approximation to the greedy solution. PhaseWin begins with a phased coarse-to-fine search, where an anchor region is selected to set adaptive thresholds, pruning the majority of irrelevant candidates. The remaining high-potential regions are then processed by a windowed fine-grained selection, guided by two control mechanisms: a dynamic supervision policy that adaptively terminates phases with diminishing returns, and an annealed deferral strategy that helps escape poor local optima. By integrating PhaseWin into the VPS workflow, we assemble the complete Faster-VPS pipeline, which preserves the high faithfulness of VPS while drastically reducing its computational cost. As illustrated in Figure 1, VPS achieves excellent attribution quality but at the prohibitive cost of thousands of forward passes, whereas Faster-VPS reduces the overhead by an order of magnitude while retaining comparable faithfulness.

Our extensive experiments on object detection and visual grounding tasks with models such as Grounding DINO (Liu et al., 2024) and Florence-2 (Xiao et al., 2024) validate the effectiveness of Faster-VPS. Across MS COCO, LVIS, and RefCOCO, Faster-VPS achieves over 95% of VPS’s faithfulness using only about 20% of the computational budget, establishing a new state-of-the-art in the efficiency-faithfulness trade-off. Moreover, ablation studies demonstrate that Faster-VPS can flexibly adjust speed-quality trade-offs: it can run in a highly accelerated mode for real-time use cases, or, when tuned for maximum quality, fully recover the original performance of VPS.

Our contributions are summarized as follows:

- **Faster-VPS pipeline.** We propose Faster-VPS, an accelerated variant of Visual Precision Search that reduces computational cost by an order of magnitude while preserving attribution faithfulness.
- **PhaseWin algorithm.** We introduce PhaseWin, a windowed search strategy with dynamic supervision and annealed deferral, which retains near-greedy optimality under submodular conditions.
- **Extensive validation.** Experiments on MS COCO, RefCOCO, and LVIS show that Faster-VPS attains over 95% of VPS’s accuracy at only $\sim 20\%$ cost, and can flexibly trade efficiency for precision.

2 RELATED WORK

Object-level Foundation Models and Detection. Object detection has evolved from two-stage Ren et al. (2016); He et al. (2018) and one-stage Redmon & Farhadi (2018); Tian et al. (2020) designs to Transformer-based architectures Carion et al. (2020). Multimodal pre-training Radford et al. (2021); Li et al. (2022); Wu et al. (2024a) has spurred object-level foundation models like Grounding DINO Liu et al. (2024) and Florence-2 Xiao et al. (2024), alongside unified decoders Zou et al. (2023a), large-scale models Wu et al. (2024b), and real-time open-vocabulary systems Cheng et al. (2024); Yao et al. (2024). The need for robustness and transparency in applications like contextual detection Zang et al. (2024), uncertainty-aware prediction Miller et al. (2019); Feng et al. (2021); Wilson et al.

108 (2023), and autonomous driving Wen et al. (2024); Chen et al. (2024a); Hu et al. (2023) highlights
 109 key challenges, as summarized in recent surveys Zou et al. (2023b); Liang et al. (2024).
 110

111 **Explaining Object Detectors.** Explaining detector decisions is challenged by their intertwined
 112 localization and classification signals. Approaches range from adapting gradient-based attribution
 113 Gudovskiy et al. (2018); Selvaraju et al. (2020); Zhao et al. (2024a) and randomized perturbations
 114 Petsiuk et al. (2018; 2021) to refining Grad-CAM for spatial sensitivity Yamauchi & Ishikawa (2022);
 115 Yamauchi (2024); Chattopadhyay et al. (2018). While some methods explore diverse rationales at high
 116 computational cost Jiang et al. (2023), recent state-of-the-art work uses causal search to generate
 117 high-fidelity explanations Chen et al. (2025). Other studies compare architectures Jiang et al. (2024),
 118 decompose representations Gandselman et al. (2024), or analyze pixel collectives Yamauchi et al.
 119 (2024), with broader XAI surveys providing context Dwivedi et al. (2023); Gao et al. (2024).
 120

121 **Submodular Function Maximization Algorithm.** Our research draws heavily on work that im-
 122 proves submodular function optimization (Edmonds, 1970; Fujishige, 2005). Since optimizing
 123 submodular functions doesn't necessarily mean optimizing AUC, this work can't be directly applied
 124 to attribution (Jegelka et al., 2011; Buchbinder et al., 2014). However, we considered how to exploit
 125 submodular properties (Wei et al., 2014; Breuer et al., 2020) and comprehensively designed our
 126 PhaseWin search algorithm, achieving a breakthrough in speed.
 127

128 3 METHOD

129 3.1 PROBLEM FORMULATION

130 Given an input image $\mathbf{I} \in \mathbb{R}^{h \times w \times 3}$ and an object-level foundation model $f(\cdot)$, the detection result
 131 can be represented as $f(\mathbf{I}) = \{(b_i, c_i, s_i) \mid i = 1, 2, \dots, N\}$, where b_i denotes the bounding box,
 132 c_i the predicted class label, and s_i the confidence score of object i . We aim to explain the model's
 133 prediction for a specific target (b_t, c_t, s_t) by selecting a sequence of critical input regions whose
 134 progressive insertion maximizes the model's confidence on the target.

135 We partition \mathbf{I} into m disjoint sub-regions $\mathcal{V} = \{\mathbf{I}_1^s, \dots, \mathbf{I}_m^s\}$, and define an *ordered* subset $\mathcal{S} =$
 136 (s_1, \dots, s_k) , where $s_i \in \mathcal{V}$. For a given ordering \mathcal{S} , let $F_{\mathcal{S}}(j) = f\left(\bigcup_{i=1}^j \mathbf{I}_{s_i}^s; b_t, c_t\right)$ denote the
 137 detection confidence after inserting the first j regions in \mathcal{S} .
 138

139 Our objective is to maximize the cumulative confidence along the insertion trajectory. Specifically,
 140 let $|\mathbf{I}_j^s|$ denote the pixel area of region s_j , and let $A = \sum_{r=1}^m |\mathbf{I}_r^s| = |\mathbf{I}|$ be the total image area. We
 141 define the optimal ordered subset \mathcal{S}^* as:
 142

$$143 \mathcal{S}^* = \arg \max_{\substack{\mathcal{S} = (s_1, \dots, s_k) \\ \mathcal{S} \subseteq \mathcal{V}}} \sum_{j=1}^k \frac{|\mathbf{I}_{s_j}^s|}{A} F_{\mathcal{S}}(j),$$

144 where $F_{\mathcal{S}}(j)$ is the model confidence after inserting the first j regions in \mathcal{S} .
 145

146 This formulation explicitly treats the problem as an *ordered subset optimization*, where the evaluation
 147 depends on the insertion order.
 148

149 3.2 SCORING FUNCTION

150 We adopt the scoring function \mathcal{F} from VPS Chen et al. (2025), which is designed to identify critical
 151 regions for object detection. The function intelligently combines two complementary metrics: a
 152 **clue score** that quantifies how well a set of regions S directly supports the target detection, and a
 153 **collaboration score** that measures the synergistic importance of S by evaluating the performance
 154 drop when it is removed. Although \mathcal{F} is not strictly submodular, its local submodularity makes it
 155 amenable to accelerated greedy search algorithms like our proposed PhaseWin method. The final
 156 objective function is:
 157

$$158 \mathcal{F}(S, \mathbf{b}_{\text{target}}, c) = s_{\text{clue}}(S, \mathbf{b}_{\text{target}}, c) + s_{\text{colla}}(S, \mathbf{b}_{\text{target}}, c).$$



Figure 2: **PhaseWin Workflow**. The algorithm alternates between (i) selecting an *anchor* region to set adaptive thresholds, (ii) pruning uninformative regions, and (iii) applying a windowed fine-grained selection with dynamic supervision.

3.3 PHASE-WINDOW ACCELERATED SEARCH

For maximizing the ordered insertion-AUC objective, a naive greedy search that evaluates all remaining candidates at each step is theoretically optimal, but its $\mathcal{O}(k \cdot m)$ scoring cost is prohibitive in practice. We propose the **Phase-Window (PhaseWin) Search**, an efficient approximation that matches greedy performance while reducing the number of expensive scoring function calls by an order of magnitude.

PhaseWin’s acceleration stems from a phased, coarse-to-fine search strategy, illustrated in Figure 2. The algorithm operates in phases, each beginning with a full evaluation to find a high-confidence *anchor* region. The gain from this anchor is used to set adaptive thresholds that aggressively prune the search space, creating a compact, high-potential candidate pool for the next stage. This high-level process is detailed in Algorithm 1. The core of our method lies in the `WindowSelection`

Algorithm 1 PhaseWin: Phase-Window Accelerated Search

```

Require: Candidate set  $\mathcal{V}$ , target size  $k$ , scoring function  $\mathcal{F}(\cdot)$ 
Ensure: Ordered subset  $S$ 
1:  $S \leftarrow \emptyset$ ;  $D \leftarrow \emptyset$ ;  $\mathcal{R} \leftarrow \mathcal{V}$ ;  $\Delta_{\text{prev}} \leftarrow \infty$ 
2: while  $|S| < k$  and  $\mathcal{R} \neq \emptyset$  do
3:    $g_r \leftarrow \mathcal{F}(S \cup \{r\}) - \mathcal{F}(S)$  for all  $r \in \mathcal{R}$ 
4:    $\alpha^* \leftarrow \arg \max_{r \in \mathcal{R}} g_r$ ;  $S \leftarrow S \cup \{\alpha^*\}$ ;  $\Delta_{\text{prev}} \leftarrow \max g_r$ 
5:    $\mathcal{R} \leftarrow \mathcal{R} \setminus \{\alpha^*\}$ 
6:    $\tau_{\text{sel}}, \tau_{\text{del}} \leftarrow \text{AdaptiveThresholds}(\Delta_{\text{prev}})$ 
7:    $\mathcal{P}_t, \mathcal{D}_{\text{phase}} \leftarrow \text{PartitionCandidates}(\mathcal{R}, \tau_{\text{sel}}, \tau_{\text{del}})$ 
8:    $D \leftarrow D \cup \mathcal{D}_{\text{phase}}$ 
9:    $S_{\text{phase}} \leftarrow \text{WindowSelection}(\mathcal{P}_t, S, k, \mathcal{F}, \Delta_{\text{prev}})$ 
10:   $S \leftarrow S \cup S_{\text{phase}}$ 
11:   $\mathcal{R} \leftarrow \mathcal{R} \setminus S_{\text{phase}}$  ▷ Unselected candidates form the pool for the next phase
12: end while
13: return  $S$ 

```

subroutine, which performs a fine-grained search on a pruned candidate pool. We begin with a sliding window W containing top-ranked candidates, while the rest remain in a queue. A window policy $\pi(\cdot)$ is then applied to select a subset A ; in practice, we mainly use two policies: (1) π_{LG} , which picks the top candidate, and (2) π_{BA} , which selects all candidates above an adaptive cut-off based on the window’s maximum gain.

For each candidate $\alpha \in A$, we compute its true marginal gain Δ_i and evaluate it with two control mechanisms. First, the **stage-exit** rule halts the phase if $\Delta_i < \theta \cdot \Delta_{\text{ref}}$, preventing unnecessary computation on diminishing returns. Otherwise, the candidate is further checked by an **annealing delay**, which decides whether to accept it immediately or defer acceptance. Accepted candidates are added to the current solution, their gains update the reference value, and the window is replenished from the queue until the process completes.

216 3.4 THEORY ANALYSIS
217

218 Greedy search is both a curse and a shackle in the development of submodular function maximization
219 algorithms: it has long been proven to be the optimal and fastest method to achieve the best possible
220 approximation under polynomial-time constraints. We first restate the classic result as follows.

221 **Proposition 3.1.** *For maximizing a monotone submodular objective $\mathcal{F} : 2^{\mathcal{V}} \rightarrow \mathbb{R}_+$ under a cardinal-
222 ity constraint k , let S_{greedy} denote the solution returned by the standard greedy algorithm and S_{OPT}
223 denote the optimal subset of size k . Then the greedy algorithm achieves the optimal approximation
224 ratio:*

$$225 \quad \mathcal{F}(S_{\text{greedy}}) \geq \left(1 - \frac{1}{e}\right) \mathcal{F}(S_{\text{OPT}}),$$

226 and no polynomial-time algorithm can surpass this bound unless $P = NP$ (Nemhauser et al., 1978;
227 Fujishige, 2005).

228 Therefore, greedy selection serves as the *de facto* gold standard, and our analysis focuses on matching
229 its empirical behavior while achieving substantial acceleration. Our phase-window accelerated search
230 (PHASEWIN) is analogous to quicksort for sorting: it is extremely fast in typical cases, yet it still
231 offers explicit approximation guarantees with the phase-supervised early exit mechanism enabled.

232 **Theorem 3.1** (Approximation Guarantee). *Let S_{PhaseWin} denote the solution returned by PHASEWIN,
233 and let $\theta \in [0, 1)$ be an upper bound on the fraction of phases where early exits occur due to dynamic
234 supervision. If the objective \mathcal{F} is monotone submodular, then*

$$235 \quad \mathcal{F}(S_{\text{PhaseWin}}) \geq \left(1 - \frac{1}{e} - \mathbf{o}(1)\right) \mathcal{F}(S_{\text{OPT}}).$$

236 *Remark 3.1.* This $\mathbf{o}(1)$ quantity is actually determined by $\tau_{\text{sel}}, \tau_{\text{del}}, k, \theta$. We have put the proof of
237 this theorem in Appendix E.

238 **Table 1: Comparison of approximation guarantee, complexity, and empirical acceleration.** k
239 denotes the subset size, m the total candidate set size, and ε the maximal early-exit ratio.

Method	Approx. Guarantee	# Marginal Evals	Complexity	Empirical Speedup
Greedy	$(1 - 1/e)$	$\mathcal{O}(mk)$	Quadratic	$1\times$
Lazy Greedy	$(1 - 1/e)$	$\sim 0.7mk$	Sub-quadratic	$\sim 1.3\times$
PhaseWin	$(1 - 1/e - \varepsilon)$	$\mathcal{O}(m)$	Near-linear	$5\text{--}10\times$

240 **Time Complexity Analysis.** Since the forward evaluation of the scoring function $\mathcal{F}(\cdot)$ dominates
241 runtime, we analyze complexity in terms of the number of calls to \mathcal{F} .

242 With dynamic supervision, each phase aggressively prunes the candidate pool and probabilistically
243 terminates when marginal gains diminish. Let N_{exit} be the expected number of early-exited phases.
244 The expected number of calls is:

$$245 \quad \mathbb{E}[\#\text{calls}] = O\left(m \cdot f(\omega) + m \cdot N_{\text{exit}}\right),$$

246 where w is the window size, and f decided by π we select. For π_{LG} , $f(\omega) = \omega$, for π_{BA} , $f(\omega) =$
247 $\log(\omega)$, so the effective complexity approaches $\mathcal{O}(m)$ if $\omega \ll m$.

248 Thus, PHASEWIN achieves *greedy-level accuracy* while reducing the number of expensive scoring
249 calls by up to an order of magnitude in practice. The above theoretical analysis takes into account
250 ideal situations and makes full use of the submodularity assumption. Our experiments confirm its
251 high efficiency. The definitions of submodularity and supermodularity and their corresponding AUC
252 curve properties are in Appendix F.

263 4 EXPERIMENTS

264 4.1 EXPERIMENTAL SETUP

265 We conduct a comprehensive evaluation of our method on object detection and referring expression
266 comprehension (REC) tasks. The experiments are performed using two powerful object-level
267 foundation models: Grounding DINO (Liu et al., 2024) and Florence-2 (Xiao et al., 2024).

Table 2: Comparison on three datasets for correctly detected or grounded samples using Grounding DINO.

Datasets	Methods	Faithfulness Metrics						Location Metrics		Efficiency Metrics		
		Ins. (↑)	Del. (↓)	Ins. (class) (↑)	Del. (class) (↓)	Ins. (IoU) (↑)	Del. (IoU) (↓)	Ave. high. score (↑)	Point Game (↑)	Energy PG (↑)	MEC _{ave} (↓)	A-C ratio (↑)
MS COCO (Lin et al., 2014) (Detection task)	Grad-CAM (Selvaraju et al., 2020)	0.2436	0.1526	0.3064	0.2006	0.6229	0.5324	0.5904	0.1746	0.1463	—	—
	SSGrad-CAM++ (Yamauchi & Ishikawa, 2022)	0.2107	0.1778	0.2639	0.2314	0.5981	0.5511	0.5886	0.1905	0.1293	—	—
	D-RISE (Petsiuk et al., 2018)	0.4412	0.0402	0.5081	0.0886	0.8396	0.3642	0.6215	0.9497	0.1850	5000	0.88
	D-HSIC (Novello et al., 2022)	0.3776	0.0439	0.4382	0.0903	0.8301	0.3301	0.5862	0.7328	0.1861	1536	2.46
	ODAM (Zhao et al., 2024b)	0.3103	0.0519	0.3655	0.0894	0.7869	0.3984	0.5865	0.5431	0.2034	—	—
	VPS (50) (Chen et al., 2025)	0.5195	0.0375	0.5941	0.0835	0.8480	0.3044	0.6591	0.9841	0.2046	2548.8	2.04
	Faster-VPS (50)	0.4785	0.0424	0.5562	0.0898	0.8323	0.3116	0.6353	0.9894	0.1843	536.8	8.92
	VPS (100) (Chen et al., 2025)	0.5459	0.0375	0.6204	0.0882	0.8581	0.3300	0.6873	0.9894	0.2046	10100	0.54
	Faster-VPS (100)	0.5141	0.0410	0.5890	0.0907	0.8505	0.3400	0.6644	0.9894	0.1628	2853.4	1.81
	VPS (50) (Chen et al., 2025)	0.3749	0.4237	0.4658	0.5194	0.7516	0.7685	0.7481	0.2380	0.2171	—	—
RefCOCO (Kazemzadeh et al., 2014) (REC task)	SSGrad-CAM++ (Yamauchi & Ishikawa, 2022)	0.4113	0.3925	0.5008	0.4851	0.7700	0.7588	0.7561	0.2820	0.2262	—	—
	D-RISE (Petsiuk et al., 2018)	0.6178	0.1605	0.7033	0.3396	0.8606	0.5164	0.8471	0.9400	0.2870	5000	1.24
	D-HSIC (Novello et al., 2022)	0.5491	0.1846	0.6295	0.3509	0.8504	0.5120	0.7739	0.7900	0.3190	1536	3.57
	ODAM (Zhao et al., 2024b)	0.4778	0.2718	0.5620	0.3757	0.8217	0.6641	0.7425	0.6320	0.3529	—	—
	VPS (50) (Chen et al., 2025)	0.7278	0.1240	0.7995	0.2473	0.8961	0.5053	0.8770	0.9580	0.3738	2290.6	3.18
	Faster-VPS (50)	0.7013	0.1473	0.7794	0.2747	0.8862	0.5273	0.8654	0.9580	0.3530	630.1	11.13
	VPS (100) (Chen et al., 2025)	0.7419	0.1250	0.8080	0.2457	0.9050	0.5103	0.8842	0.9460	0.3566	10100	0.73
	Faster-VPS (100)	0.7377	0.1529	0.8046	0.2823	0.9054	0.5466	0.8813	0.9360	0.3076	3382.5	2.18
	VPS (50) (Chen et al., 2025)	0.1253	0.1294	0.1801	0.1814	0.5657	0.5910	0.3549	0.1151	0.0941	—	—
	Faster-VPS (50)	0.3071	0.0303	0.3645	0.0893	0.8245	0.3097	0.4325	0.9939	0.1369	465.9	6.59
LVIS V1 (Gupta et al., 2019) (rare) (Zero-shot det. task)	VPS (100) (Chen et al., 2025)	0.3695	0.0277	0.4275	0.0799	0.8479	0.3242	0.4969	0.9758	0.1785	10100	0.37
	Faster-VPS (100)	0.3363	0.0309	0.3944	0.0839	0.8379	0.3374	0.4688	0.9697	0.1175	2726.8	1.23

Datasets and Baselines. We conduct experiments on three benchmarks. MS COCO 2017 (Lin et al., 2014) covers 80 object classes; we sample correctly detected, misclassified, and undetected instances for evaluation. LVIS V1 (Gupta et al., 2019) spans 1,203 categories with 337 rare ones, where Grounding DINO (Liu et al., 2024) is used for zero-shot detection. RefCOCO (Kazemzadeh et al., 2014) is adopted for the REC task, including both correct and incorrect grounding cases. We compare against representative attribution methods: gradient-based (Grad-CAM (Selvaraju et al., 2020), SSGrad-CAM++ (Yamauchi & Ishikawa, 2022), ODAM (Zhao et al., 2024b)), perturbation-based (D-RISE (Petsiuk et al., 2018), D-HSIC (Novello et al., 2022)), and the original Visual Precision Search (VPS (Chen et al., 2025)), a greedy quadratic algorithm that serves as our acceleration target.

Implementation Details. For Faster-VPS, we adopt a default window size of 16 for 50 sub-regions and 32 for 100 sub-regions. Since the score function is not strictly monotonic submodular, we implement the stopping criterion using a numerically stable ratio-based formulation: $\frac{S_{k-2}}{S_{k-1}} - \frac{S_{k-1}}{S_k} \leq \tau$, where we set $\tau = 0.025$ for 50 sub-regions and $\tau = 0.01$ for 100 sub-regions. Complete implementation details are provided in Appendix D.

4.2 EVALUATION METRICS

We evaluate the quality of attributions along three key axes: faithfulness, localization accuracy, and computational efficiency. This enables a holistic comparison of Faster-VPS against all baselines.

1. Faithfulness. We adopt standard insertion and deletion metrics to evaluate how well attribution maps reflect the model’s reasoning, applied to both classification confidence and IoU. We also report the highest box confidence ($\text{IoU} > 0.5$) and the Explaining Successful Rate (ESR) for failure cases.

2. Localization Accuracy. We follow prior work and use the Point Game (Zhang et al., 2018) and Energy Point Game metrics (Wang et al., 2020) to quantify the alignment between attribution maps and ground-truth objects. **3. Efficiency.** We measure runtime efficiency using Model Evaluation Count (MEC), where one unit corresponds to a single forward pass. To combine accuracy and cost, we also report the Accuracy–Cost Ratio (AC-Ratio). Details of the above metrics are provided in Appendix C.

4.3 FAITHFULNESS ANALYSIS ON CORRECT SAMPLES

We follow the experimental design of VPS and conduct faithfulness, locality, and efficiency tests on correct detection, and faithfulness, error correction, and efficiency tests on misclassification and non-detection cases on three datasets.

4.3.1 CORRECT INTERPRETATION ON GROUNDING DINO

We follow the experimental design of VPS and conduct faithfulness, locality, and efficiency tests on correct detection, and faithfulness, error correction, and efficiency tests on misclassification

and non-detection cases on three datasets. Table 2 summarizes the results on correctly detected or grounded samples across three benchmarks. On the MS COCO detection task, Faster-VPS substantially improves efficiency while maintaining comparable faithfulness. Under the 50-region setting, it reduces the average model evaluations from 2548.8 to 536.8, a $4.7 \times$ reduction, with only a minor decrease in the Insertion score (0.5195 to 0.4785). This trade-off yields a marked improvement in the A-C ratio from 2.04 to 8.92. For the RefCOCO referring expression comprehension benchmark, Faster-VPS achieves similar faithfulness to VPS, with an Insertion score of 0.7013 versus 0.7278, while reducing model evaluations from 2290.6 to 630.1. This efficiency gain elevates the A-C ratio from 3.18 to 11.13, showing that Faster-VPS produces high-quality attributions at a fraction of the cost. On the challenging LVIS v1 rare-class detection task, both VPS and Faster-VPS show reduced overall faithfulness due to long-tail distributions. Nevertheless, Faster-VPS lowers the computation demand from 2544.6 to 465.9 evaluations in the 50-region setting, improving the A-C ratio from 1.34 to 6.59. These results highlight that the efficiency benefits of Faster-VPS become particularly valuable in computationally intensive scenarios, making attribution analysis more practical at scale.

4.3.2 CORRECT INTERPRETATION ON FLORENCE-2

Table 3 reports results on MS COCO and RefCOCO when using Florence-2 as the backbone. Across both datasets, Faster-VPS achieves faithfulness scores that are highly comparable to VPS. On MS COCO, Faster-VPS attains an Insertion score of 0.7615 versus 0.7678 from VPS, with a slightly lower Deletion value (0.0474 vs. 0.0550). Similarly, on RefCOCO, Faster-VPS produces an Insertion of 0.8312 against 0.8301 from VPS, with a minor increase in Deletion. These results indicate that the acceleration strategy preserves the fidelity of VPS

almost entirely. When contrasted with perturbation-based baselines, Faster-VPS consistently delivers higher faithfulness while requiring fewer model evaluations than D-RISE, and achieves efficiency comparable to D-HSIC but with stronger interpretability. The A-C ratio also reflects this balance: Faster-VPS improves upon VPS (3.49 vs. 2.98 on COCO; 3.53 vs. 3.25 on RefCOCO), showing more favorable faithfulness-to-cost trade-offs. It is worth noting that the acceleration gains are less pronounced compared to Grounding DINO. Florence-2 exhibits behavior that is nearly globally supermodular, while our acceleration relies on exploiting local submodularity. As discussed in appendix F, this structural property limits the extent of achievable speedup. Nevertheless, Faster-VPS remains a strong alternative to VPS, offering similar interpretability at reduced computational cost and outperforming other baselines across both benchmarks.

4.4 FAILURES INTERPRETATION

4.4.1 REC FAILURES INTERPRETATION

Table 4 presents results on RefCOCO samples where Grounding DINO produces incorrect grounding. Compared with gradient-based baselines such as Grad-CAM and ODAM, both VPS and Faster-VPS yield substantially higher insertion scores and average confidence, indicating that search-based attribution is better suited for recovering meaningful evidence under failure cases. Perturbation-based

approaches like D-RISE and D-HSIC achieve moderate improvements, but remain less faithful overall. Between the two search variants, Faster-VPS attains attribution quality that is highly comparable to VPS. Under the 100-region setting, Faster-VPS slightly surpasses VPS in insertion and classification-based scores (0.5047 vs. 0.4981 and 0.6023 vs. 0.5990), while using fewer model evaluations (3164.4 vs. 10100). In the 50-region setting, Faster-VPS achieves somewhat lower insertion metrics than VPS but with drastically reduced computational demand (614.4 vs. 10100 evaluations). This efficiency translates into a much higher A-C ratio, rising from 0.69 with VPS to 10.48 with Faster-VPS. These

Table 3: Evaluation of faithfulness (Insertion/Deletion AUC) and efficiency metrics on MS COCO and RefCOCO validation sets (Florence-2).

Datasets	Methods	Faithfulness Metrics		Efficiency Metrics	
		Insertion (↑)	Deletion (↓)	MEC _{ave} (↓)	A-C ratio (↑)
MS COCO (Detection task)	D-RISE	0.7477	0.0972	5000	1.50
	D-HSIC	0.5345	0.2730	1536	3.48
	VPS (50)	0.7678	0.0550	2548.1	2.98
	Faster-VPS (50)	0.7615	0.0474	2184.1	3.49
RefCOCO (REC task)	D-RISE	0.7922	0.3505	5000	1.24
	D-HSIC	0.7639	0.3560	1536	3.57
	VPS (50)	0.8301	0.1159	2547.8	3.25
	Faster-VPS (50)	0.8312	0.1205	2349.1	3.53

Table 4: RefCOCO (REC task): Faithfulness metrics and efficiency (Grounding DINO).

Datasets	Methods	Faithfulness Metrics			Efficiency Metrics	
		Ins. (↑)	Ins. (class) (↑)	Ave. high score (↑)	MEC _{ave} (↓)	A-Cratio (↑)
RefCOCO (REC task)	Grad-CAM	0.1536	0.2794	0.3295	—	—
	SSGrad-CAM++	0.1590	0.2837	0.3266	—	—
	D-RISE	0.3486	0.4787	0.6096	5000	1.21
	D-HSIC	0.2274	0.3488	0.4495	1536	2.92
	ODAM	0.1793	0.3001	0.3453	—	—
	VPS (100)	0.4981	0.5090	0.7007	10100	0.69
	Faster-VPS (50)	0.4455	0.5537	0.6437	614.4	10.48
	Faster-VPS (100)	0.5047	0.6023	0.7116	3164.4	2.25

378 results suggest that Faster-VPS can provide nearly the same level of interpretability as the greedy
 379 search, while significantly reducing the computational cost. This advantage is especially valuable
 380 when analyzing mis-grounded instances, where large-scale evaluation would otherwise be prohibitive.
 381

382 4.4.2 MISCLASSIFIED DETECTION FAILURES INTERPRETATION

383
 384 Table 5 reports results on misclassified samples from MS COCO
 385 and LVIS. Gradient-based methods
 386 such as Grad-CAM and ODAM
 387 show limited utility in this setting,
 388 while perturbation-based baselines
 389 (D-RISE and D-HSIC) provide mod-
 390 erate improvements in insertion and
 391 class-specific scores. Both VPS
 392 and Faster-VPS yield higher overall
 393 faithfulness, indicating that search-
 394 based approaches are better suited
 395 to reveal discriminative regions re-
 396 sponsible for misclassification. On

397 MS COCO, VPS achieves the strongest raw faithfulness metrics, with an Insertion score of 0.3357
 398 and an ESR of 69.73%. Faster-VPS produces slightly lower attribution quality under both 50- and
 399 100-region settings, but substantially reduces computational requirements. In particular, Faster-VPS
 400 (50) lowers the average model evaluations from 10100 to only 477.3, raising the A-C ratio from
 401 0.45 to 7.90. This demonstrates that Faster-VPS can provide competitive interpretability while
 402 making failure case analysis far more efficient. On LVIS rare-class detection, all methods perform
 403 worse due to the long-tail distribution, but the same trend holds. VPS delivers the highest insertion
 404 and ESR values, while Faster-VPS achieves comparable results at a fraction of the computational
 405 cost. Faster-VPS (50) reduces the model evaluations by over 20 \times compared to VPS, yielding an
 406 A-C ratio of 5.20 versus 0.26. These results show that Faster-VPS remains practical for large-scale
 407 misclassification analysis, where the quadratic cost of full VPS would be prohibitive.

408 4.4.3 UNDETECTED DETECTION FAILURES INTERPRETATION

409
 410 Table 6 presents results on MS
 411 COCO and LVIS samples where
 412 the target objects are not de-
 413 tected. In this challenging set-
 414 ting, gradient-based baselines such
 415 as Grad-CAM and ODAM yield
 416 low insertion and class-specific
 417 scores, reflecting limited explana-
 418 tory power. Perturbation-based
 419 methods (D-RISE and D-HSIC) of-
 420 fer some improvements, but remain
 421 costly or less stable. In contrast,
 422 both VPS and Faster-VPS deliver
 423 more reliable attribution maps, bet-
 424 ter capturing the evidence that is miss-
 425 ing in undetected cases. On MS COCO, Faster-VPS achieves
 426 faithfulness that is close to VPS, with Insertion and ESR values of 0.2156 and 44.44% under the
 427 100-region setting, slightly exceeding VPS. More importantly, it reduces the average model eval-
 428 uations from 10100 to 2160.2, raising the A-C ratio from 0.21 to 1.52. Under the 50-region setting,
 429 the efficiency advantage is even more pronounced, with only 427.8 evaluations required and an A-C
 430 ratio of 6.37. On LVIS rare-class detection, overall faithfulness scores are lower due to the long-tail
 431 distribution, but the same pattern holds. VPS achieves the highest raw insertion metrics, while
 432 Faster-VPS provides comparable results with far fewer model evaluations. For example, Faster-VPS
 433 (50) requires just 348.4 evaluations compared to 10100 for VPS, lifting the A-C ratio from 0.18 to
 434 3.76. These results show that Faster-VPS offers an effective trade-off in undetected failure analysis: it

Table 5: MS COCO and LVIS (misclassified samples): Faithfulness metrics and efficiency (Grounding DINO)

Datasets	Methods	Faithfulness Metrics				Efficiency Metrics	
		Ins. (\uparrow)	Ins. (class) (\uparrow)	Ave. high. score (\uparrow)	ESR (\uparrow)	MEC _{acc} (\downarrow)	A-C ratio (\uparrow)
MS COCO (Detection task)	Grad-CAM	0.1091	0.1478	0.3102	38.38%	—	—
	SSGrad-CAM++	0.0960	0.1336	0.2952	33.51%	—	—
	D-RISE	0.2170	0.2661	0.3603	50.26%	5000	0.72
	D-HSIC	0.1771	0.2161	0.3143	34.59%	1536	2.04
	ODAM	0.1129	0.1486	0.2869	32.97%	—	—
	VPS (100)	0.3357	0.3967	0.4591	69.73%	10100	0.45
LVIS V1 (rare) (Zero-shot det. task)	Faster-VPS (50)	0.2614	0.3198	0.3770	51.35%	477.3	7.90
	Faster-VPS (100)	0.3018	0.3583	0.4289	63.78%	2595.0	1.65
	Grad-CAM	0.0503	0.0891	0.1564	12.50%	—	—
	SSGrad-CAM++	0.0574	0.0946	0.1580	11.84%	—	—
	D-RISE	0.1245	0.1647	0.2088	28.95%	5000	0.41
	D-HSIC	0.0963	0.1247	0.1748	16.45%	1536	1.14
	ODAM	0.0575	0.0954	0.1520	9.21%	—	—
	VPS (100)	0.1776	0.2190	0.2606	43.29%	10100	0.26
	Faster-VPS (50)	0.1394	0.1817	0.2119	36.63%	426.5	5.20
	Faster-VPS (100)	0.1475	0.1845	0.2296	39.47%	2204.8	1.04

Table 6: MS COCO and LVIS (undetected failure samples): Faithfulness metrics and efficiency (Grounding DINO).

Datasets	Methods	Faithfulness Metrics				Efficiency Metrics	
		Ins. (\uparrow)	Ins. (class) (\uparrow)	Ave. high. score (\uparrow)	ESR (\uparrow)	MEC _{acc} (\downarrow)	A-C ratio (\uparrow)
MS COCO (Detection task)	Grad-CAM	0.0760	0.1321	0.2153	16.44%	—	—
	SSGrad-CAM++	0.0671	0.1151	0.2124	16.44%	—	—
	D-RISE	0.1538	0.2260	0.2564	26.94%	5000	0.31
	D-HSIC	0.1101	0.1716	0.1945	13.56%	1536	1.43
	ODAM	0.0745	0.1350	0.2037	13.78%	—	—
	VPS (100)	0.2102	0.3011	0.3014	41.33%	10100	0.21
LVIS V1 (rare) (Zero-shot det. task)	Faster-VPS (50)	0.1801	0.2641	0.2726	33.78%	427.8	6.37
	Faster-VPS (100)	0.2156	0.3045	0.3289	44.44%	2160.2	1.52
	Grad-CAM	0.0291	0.0689	0.0901	5.43%	—	—
	SSGrad-CAM++	0.0292	0.0680	0.0897	5.24%	—	—
	D-RISE	0.0703	0.1184	0.1312	18.73%	5000	0.26
	D-HSIC	0.0516	0.0920	0.1168	13.48%	1536	0.76
	ODAM	0.0283	0.0716	0.0851	4.68%	—	—
	VPS (100)	0.1155	0.1886	0.1784	30.15%	10100	0.18
	Faster-VPS (50)	0.0787	0.1286	0.1309	17.04%	348.4	3.76
	Faster-VPS (100)	0.0942	0.0069	0.1552	24.72%	1509.1	1.03

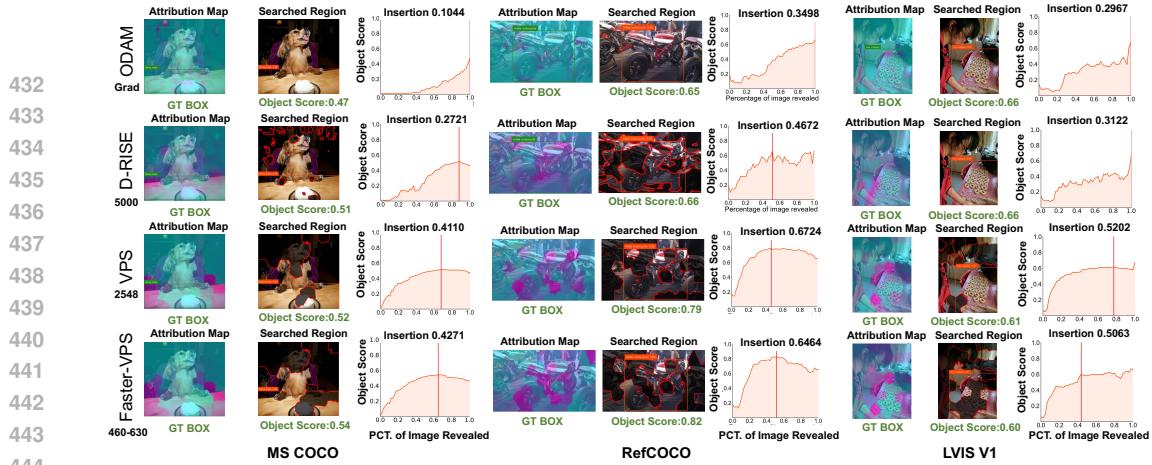


Figure 3: Visualization of correct attribution cases on MS COCO, RefCOCO, and LVIS V1. Compared with ODAM and D-RISE, Faster-VPS produces sharper and more faithful attributions. It matches or even exceeds VPS in insertion-AUC while requiring only $\sim 20\%$ of its computational cost.

maintains interpretability comparable to VPS while drastically reducing computational cost, enabling practical attribution studies even on large-scale failure cases.

4.5 SPEED AND PRECISION CONTROL

An appealing property of our acceleration algorithm is the ability to balance efficiency and accuracy through hyperparameter tuning. By slightly relaxing the speed constraint, Faster-VPS (50) can steadily improve its attribution quality. As shown in Figure 4, the insertion AUC increases monotonically with the number of model forward passes, approaching the performance of the greedy algorithm. Owing to the annealing strategy, our method can even surpass greedy search when fully trading off speed, demonstrating that efficiency and precision can be adaptively controlled.

4.6 VISUALIZATION

We further present visualization results for correctly attributed cases. As shown in Figure 3, ODAM produces diffuse heatmaps, while D-RISE generates noisy regions due to perturbation sampling. VPS (50) yields sharp attributions but at a prohibitive computational cost. In contrast, our Faster-VPS (50) achieves nearly the same attribution quality with only about 20% of the overhead, and its annealing strategy often allows the max object score to surpass VPS by better exploring the maximum submodular subset. More visualization results are included in Appendix G.

5 CONCLUSION

In this work, we addressed the challenge of efficient attribution for large multimodal foundation models in object detection. Building on the submodular hypothesis and task-specific properties, we proposed the PhaseWin algorithm as a replacement for the original greedy attribution search. Integrated into the Faster-VPS pipeline, our approach achieves up to 95% of state-of-the-art attribution fidelity while requiring only 20% of the computational overhead, establishing the current best practice for efficient interpretation of object-level multimodal models. Beyond object detection, the general applicability of our algorithm to image data suggests promising opportunities for extending this framework to a broader range of multimodal foundation models, which we leave for future research.

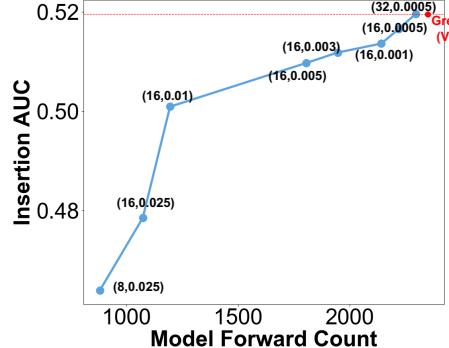


Figure 4: Trade-off between speed and precision.

486 REFERENCES
487

488 Adam Breuer, Eric Balkanski, and Yaron Singer. The fast algorithm for submodular maximization.
489 In *International Conference on Machine Learning*, pp. 1134–1143. PMLR, 2020. 3

490 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
491 with cardinality constraints. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on*
492 *Discrete algorithms*, pp. 1433–1452. SIAM, 2014. 3

493 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
494 Zagoruyko. End-to-end object detection with transformers. In *Eur. Conf. Comput. Vis. (ECCV)*, pp.
495 213–229, 2020. 2

496 Aditya Chattpadhyay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
497 CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In
498 *IEEE Winter Conf. Appl. Comput. Vis. (WACV)*, pp. 839–847, 2018. 3

499 Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-to-
500 end autonomous driving: Challenges and frontiers. *IEEE Trans. Pattern Anal. Mach. Intell.*, 2024a.
501 3

502 Ruoyu Chen, Hua Zhang, Siyuan Liang, Jingzhi Li, and Xiaochun Cao. Less is more: Fewer
503 interpretable region via submodular subset selection. In *Int. Conf. Learn. Represent. (ICLR)*, 2024b.
504 1

505 Ruoyu Chen, Siyuan Liang, Jingzhi Li, Shiming Liu, Maosen Li, Zhen Huang, Hua Zhang, and
506 Xiaochun Cao. Interpreting Object-level Foundation Models via Visual Precision Search. In *IEEE*
507 *Conf. Comput. Vis. Pattern Recog. (CVPR)*, 2025. 1, 3, 6

508 Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
509 Real-time open-vocabulary object detection. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*,
510 pp. 16901–16911, 2024. 2

511 Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Rana Omer, Pankesh Patel, Bin Qian,
512 Zhenyu Wen, Tejal Shah, Graham Morgan, et al. Explainable AI (XAI): Core ideas, techniques,
513 and solutions. *ACM Comput. Surv.*, 55(9):1–33, 2023. 1, 3

514 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. *Combinatorial Structures*
515 and Their Applications, pp. 69–87, 1970. 1, 3, 17

516 Di Feng, Ali Harakeh, Steven L Waslander, and Klaus Dietmayer. A review and comparative
517 study on probabilistic object detection in autonomous driving. *IEEE Transactions on Intelligent*
518 *Transportation Systems*, 23(8):9961–9980, 2021. 1, 2

519 Satoru Fujishige. *Submodular functions and optimization*. Elsevier, 2005. 1, 3, 5, 17

520 Yossi Gandelsman, Alexei A Efros, and Jacob Steinhardt. Interpreting clip’s image representation via
521 text-based decomposition. In *Int. Conf. Learn. Represent. (ICLR)*, 2024. 3

522 Yuyang Gao, Siyi Gu, Junji Jiang, Sungsoo Ray Hong, Dazhou Yu, and Liang Zhao. Going beyond
523 xai: A systematic survey for explanation-guided learning. *ACM Computing Surveys*, 56(7):1–39,
524 2024. 1, 3

525 Denis Gudovskiy, Alec Hodgkinson, Takuya Yamaguchi, Yasunori Ishii, and Sotaro Tsukizawa.
526 Explain to fix: A framework to interpret and correct dnn object detector predictions. *arXiv preprint*
527 *arXiv:1811.08011*, 2018. 3

528 Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary instance
529 segmentation. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, pp. 5356–5364, 2019. 6

530 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. *IEEE Trans. Pattern*
531 *Anal. Mach. Intell.*, 42(2):386–397, 2018. 2

540 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
 541 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *IEEE Conf. Comput.*
 542 *Vis. Pattern Recog. (CVPR)*, pp. 17853–17862, 2023. 3

543

544 Stefanie Jegelka, Hui Lin, and Jeff A Bilmes. On fast approximate submodular minimization.
 545 *Advances in Neural Information Processing Systems*, 24, 2011. 3

546

547 Mingqi Jiang, Saeed Khorram, and Fuxin Li. Diverse explanations for object detectors with nesterov-
 548 accelerated igos++. In *Brit. Mach. Vis. Conf. (BMVC)*, pp. 188–189, 2023. 1, 3

549

550 Mingqi Jiang, Saeed Khorram, and Li Fuxin. Comparing the decision-making mechanisms by
 551 transformers and cnns via explanation methods. In *IEEE Conf. Comput. Vis. Pattern Recog.*
 552 *(CVPR)*, pp. 9546–9555, 2024. 1, 3

553

554 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring
 555 to objects in photographs of natural scenes. In *Proc. Conf. Empir. Methods Nat. Lang. Process.*
 556 (*EMNLP*), pp. 787–798, 2014. 6

557

558 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
 559 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training.
 560 In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, pp. 10965–10975, 2022. 2

561

562 Siyuan Liang, Baoyuan Wu, Yanbo Fan, Xingxing Wei, and Xiaochun Cao. Parallel rectangle flip
 563 attack: A query-based black-box attack against object detection. In *Int. Conf. Comput. Vis. (ICCV)*,
 564 pp. 7697–7707, 2021. 1

565

566 Siyuan Liang, Longkang Li, Yanbo Fan, Xiaojun Jia, Jingzhi Li, Baoyuan Wu, and Xiaochun Cao. A
 567 large-scale multiple-objective method for black-box attack against object detection. In *Eur. Conf.*
 568 *Comput. Vis. (ECCV)*, pp. 619–636, 2022a. 1

569

570 Siyuan Liang, Aishan Liu, Jiawei Liang, Longkang Li, Yang Bai, and Xiaochun Cao. Imitated
 571 detectors: Stealing knowledge of black-box object detectors. In *ACM Int. Conf. Multimedia*, pp.
 572 4839–4847, 2022b. 1

573

574 Siyuan Liang, Wei Wang, Ruoyu Chen, Aishan Liu, Boxi Wu, Ee-Chien Chang, Xiaochun Cao, and
 575 Dacheng Tao. Object detectors in the open environment: Challenges, solutions, and outlook. *arXiv*
 576 *preprint arXiv:2403.16271*, 2024. 3

577

578 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 579 Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In *Eur. Conf.*
 580 *Comput. Vis. (ECCV)*, pp. 740–755, 2014. 6

581

582 Aishan Liu, Jun Guo, Jiakai Wang, Siyuan Liang, Renshuai Tao, Wenbo Zhou, Cong Liu, Xianglong
 583 Liu, and Dacheng Tao. {X-Adv}: Physical adversarial object attacks against x-ray prohibited item
 584 detection. In *USENIX Security Symposium*, pp. 3781–3798, 2023. 1

585

586 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 587 Yang, Hang Su, Jun Zhu, et al. Grounding DINO: Marrying dino with grounded pre-training for
 588 open-set object detection. In *Eur. Conf. Comput. Vis. (ECCV)*, 2024. 2, 5, 6

589

590 Dimity Miller, Feras Dayoub, Michael Milford, and Niko Sünderhauf. Evaluating merging strategies
 591 for sampling-based uncertainty techniques in object detection. In *Proc. IEEE Int. Conf. Robot.*
 592 *Autom. (ICRA)*, pp. 2348–2354, 2019. 1, 2

593

594 Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and Klaus-Robert
 595 Müller. Explaining nonlinear classification decisions with deep taylor decomposition. *Pattern*
 596 *Recognition*, 65:211–222, 2017. 1

597

598 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
 599 for maximizing submodular set functions—i. *Mathematical Programming*, 14(1):265–294, 1978.
 600 doi: 10.1007/BF01588971. 5

594 Paul Novello, Thomas Fel, and David Vigouroux. Making sense of dependence: Efficient black-box
 595 explanations using dependence measure. In *Adv. Neural Inform. Process. Syst. (NeurIPS)*, pp.
 596 4344–4357, 2022. 1, 6

597

598 Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized input sampling for explanation of
 599 black-box models. In *Brit. Mach. Vis. Conf. (BMVC)*, pp. 151, 2018. 1, 3, 6, 15

600 Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I Morariu, Ashutosh Mehra, Vicente Ordóñez,
 601 and Kate Saenko. Black-box explanation of object detectors via saliency maps. In *IEEE Conf.*
 602 *Comput. Vis. Pattern Recog. (CVPR)*, pp. 11443–11452, 2021. 1, 3

603 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 604 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 605 models from natural language supervision. In *Int. Conf. Mach. Learn. (ICML)*, pp. 8748–8763,
 606 2021. 2

607

608 Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement. *arXiv preprint*
 609 *arXiv:1804.02767*, 2018. 2

610 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
 611 detection with region proposal networks. *IEEE Trans. Pattern Anal. Mach. Intell.*, 39(6):1137–1149,
 612 2016. 2

613

614 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 615 and Dhruv Batra. Grad-CAM: visual explanations from deep networks via gradient-based localiza-
 616 tion. *Int. J. Comput. Vis.*, 128:336–359, 2020. 1, 3, 6

617 Lloyd S Shapley. A value for n-person games. *Contribution to the Theory of Games*, 2, 1953. 1

618

619 Shelley Zixin Shu, Aurélie Pahud de Mortanges, Alexander Poellinger, Dwarikanath Mahapatra, and
 620 Mauricio Reyes. Informer-interpretability founded monitoring of medical image deep learning
 621 models. In *International Workshop on Uncertainty for Safe Utilization of Machine Learning in*
 622 *Medical Imaging*, pp. 215–224, 2024. 1

623 Andrea Stocco, Paulo J Nunes, Marcelo d’Amorim, and Paolo Tonella. Thirdeye: Attention maps for
 624 safe autonomous driving systems. In *Proceedings of the 37th IEEE/ACM International Conference*
 625 *on Automated Software Engineering*, pp. 1–12, 2022. 1

626

627 Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: A simple and strong anchor-free object
 628 detector. *IEEE Trans. Pattern Anal. Mach. Intell.*, 44(4):1922–1933, 2020. 2

629

630 Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, and
 631 Xia Hu. Score-cam: Score-weighted visual explanations for convolutional neural networks. In
 632 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*,
 633 pp. 24–25, 2020. 6

634

635 Kai Wei, Rishabh Iyer, and Jeff Bilmes. Fast multi-stage submodular maximization. In *International*
 636 *conference on machine learning*, pp. 1494–1502. PMLR, 2014. 3

637

638 Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. Transferable adversarial attacks for
 639 image and video object detection. In *IJCAI*, pp. 954–960, 2019. 1

640

641 Licheng Wen, Xuemeng Yang, Daocheng Fu, Xiaofeng Wang, Pinlong Cai, Xin Li, MA Tao,
 642 Yingxuan Li, XU Linran, Dengke Shang, et al. On the road with gpt-4v (ision): Explorations of
 643 utilizing visual-language model as autonomous driving agent. In *ICLR 2024 Workshop on Large*
 644 *Language Model (LLM) Agents*, 2024. 3

645

646 Samuel Wilson, Tobias Fischer, Feras Dayoub, Dimity Miller, and Niko Sünderhauf. Safe: Sensitivity-
 647 aware features for out-of-distribution object detection. In *Int. Conf. Comput. Vis. (ICCV)*, pp.
 648 23565–23576, 2023. 1, 2

649

650 Jianzong Wu, Xiangtai Li, Shilin Xu, Haobo Yuan, Henghui Ding, Yibo Yang, Xia Li, Jiangning
 651 Zhang, Yunhai Tong, Xudong Jiang, et al. Towards open vocabulary learning: A survey. *IEEE*
 652 *Trans. Pattern Anal. Mach. Intell.*, 2024a. 2

Junfeng Wu, Yi Jiang, Qihao Liu, Zehuan Yuan, Xiang Bai, and Song Bai. General object foundation model for images and videos at scale. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, pp. 3783–3795, 2024b. [2](#)

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu, and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, pp. 4818–4829, 2024. [2](#), [5](#)

Toshinori Yamauchi. Spatial Sensitive Grad-CAM++: Improved visual explanation for object detectors via weighted combination of gradient map. In *CVPR Workshop*, pp. 8164–8168, 2024. [1](#), [3](#)

Toshinori Yamauchi and Masayoshi Ishikawa. Spatial sensitive grad-cam: Visual explanations for object detection by incorporating spatial sensitivity. In *IEEE Int. Conf. Image Process. (ICIP)*, pp. 256–260, 2022. [3](#), [6](#)

Toshinori Yamauchi, Hiroshi Kera, and Kazuhiko Kawamoto. Explaining object detectors via collective contribution of pixels. *arXiv preprint arXiv:2412.00666*, 2024. [1](#), [3](#)

Lewei Yao, Renjie Pi, Jianhua Han, Xiaodan Liang, Hang Xu, Wei Zhang, Zhenguo Li, and Dan Xu. Detclipv3: Towards versatile generative open-vocabulary object detection. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, pp. 27391–27401, 2024. [2](#)

Yuhang Zang, Wei Li, Jun Han, Kaiyang Zhou, and Chen Change Loy. Contextual object detection with multimodal large language models. *Int. J. Comput. Vis.*, pp. 1–19, 2024. [2](#)

Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-down neural attention by excitation backprop. *Int. J. Comput. Vis.*, 126(10):1084–1102, 2018. [6](#), [15](#)

Chenyang Zhao, Janet H Hsiao, and Antoni B Chan. Gradient-based instance-specific visual explanations for object specification and object discrimination. *IEEE Trans. Pattern Anal. Mach. Intell.*, 2024a. [1](#), [3](#)

Chenyang Zhao, Kun Wang, Xingyu Zeng, Rui Zhao, and Antoni B Chan. Gradient-based visual explanation for transformer-based clip. In *Int. Conf. Mach. Learn. (ICML)*, pp. 61072–61091, 2024b. [6](#)

Xueyan Zou, Zi-Yi Dou, Jianwei Yang, Zhe Gan, Linjie Li, Chunyuan Li, Xiyang Dai, Harkirat Behl, Jianfeng Wang, Lu Yuan, et al. Generalized decoding for pixel, image, and language. In *IEEE Conf. Comput. Vis. Pattern Recog. (CVPR)*, pp. 15116–15127, 2023a. [2](#)

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A survey. *Proceedings of the IEEE*, 111(3):257–276, 2023b. [3](#)

702 ACKNOWLEDGMENT OF LLM USAGE
703

704 During the preparation of this manuscript, large language models (LLMs) were employed in a limited
705 and auxiliary capacity. Specifically, their usage was restricted to the following three aspects: (1)
706 checking grammar and expression at the sentence level, thereby providing local linguistic refinement;
707 (2) performing global polishing after the draft was completed, ensuring that the overall exposition
708 conforms to idiomatic English usage; and (3) improving the readability of the proof details presented
709 in the appendix.

710 At no stage were LLMs used for generating research ideas, developing arguments, or modifying the
711 substantive content of this work. Their sole role was to assist in enhancing clarity and effectiveness
712 of communication.

714 A WINDOW SELECTION POLICES
715

716 In this section, we first introduce the four algorithms (described in Table 7) we can choose from for
717 the sub-process designed for a window of the phasewin algorithm.

719 First, the most basic approach is to apply greedy search within the window, which is also the slowest.
720 Our three subsequent designs all use the submodularity assumption to varying degrees to reduce the
721 number of searches within the window. π_{BA} uses an adaptive scaling search strategy, π_{T_2} considers
722 two elements with the smallest reduction in combined return, and π_{BAF} reduces the number of
723 comparisons by maintaining an upper bound list.

724 Table 7: Window selection policies $\pi(\cdot)$ used within the WindowSelection subroutine.
725

726 Policy	727 Description
π_{LG}	Local-Greedy: Picks the top candidate if its gain exceeds τ_{sel} .
π_{BA}	Beta-Adaptive: Selects all candidates above an adaptive cut-off based on the window's max gain.
π_{T_2}	Top-2: Jointly selects the top two candidates if their gains are high and their relative gap is small.
π_{BAF-B}	Batched Best-Above w/ Forward-checking: Processes the window in batches, using cached gains to terminate early and reduce evaluations.

736 B COMPLETE ALGORITHM PROCESS
737

738 The algorithm operates in discrete phases. At the start of each phase, it performs a full evaluation on
739 all remaining candidate regions (\mathcal{R}) and greedily selects the single best region to anchor the current
740 search state. This ensures consistent progress. Based on the maximum marginal gain (G_t) observed
741 in this step, it computes two adaptive thresholds: a selection threshold τ_{sel} to identify high-potential
742 candidates and a pruning threshold τ_{del} to discard low-utility regions. This adaptive pruning strategy
743 dynamically narrows the search space, focusing computational resources on the most promising
744 regions.

745 For the initial phases (controlled by a hyperparameter m_{active}), PhaseWin employs a sliding window
746 of size w over the sorted candidate pool \mathcal{P}_t . Within this window, a selection policy $\pi(\cdot)$ —such as
747 Beta-Adaptive (BA)—is applied to identify a batch of one or more regions for selection. This allows
748 the model to select complementary regions simultaneously, a capability absent in naive greedy search.
749 To further refine the candidate evaluation, a simulated annealing mechanism may defer the entry
750 of lower-scoring regions into the window, allowing more promising candidates to be assessed first.
751 After m_{active} phases, the algorithm transitions to a simplified greedy selection over the candidate
752 pool to ensure convergence.

753 A key innovation of PhaseWin is its *dynamic phase supervision*. We monitor the sequence of marginal
754 gains of the selected regions, $\Delta_i = \mathcal{F}(S_i) - \mathcal{F}(S_{i-1})$. If the current gain drops precipitously
755 compared to the previous one (i.e., $\Delta_i < \theta \cdot \Delta_{i-1}$, where θ is an adaptive supervision coefficient),
it signals a potential breakdown of local submodularity. In this event, the algorithm calculates a

756 probability p_{exit} to terminate the current phase prematurely. This probabilistic exit prevents the
 757 algorithm from wasting evaluations on a sequence of diminishing returns and allows it to restart with
 758 a new anchor region. The complete procedure is detailed in Algorithm 1.
 759

760 C EVALUATION METRICS 761

762 **Faithfulness.** To assess how well an attribution map reflects the model’s reasoning, we compute
 763 the Insertion and Deletion AUC scores, which quantify the change in model output as the most (or
 764 least) important superpixels are progressively revealed or removed Petsiuk et al. (2018). We apply
 765 these metrics both to classification confidence and to Intersection-over-Union (IoU), thus capturing
 766 the attribution’s influence on recognition and localization. We further measure the highest confidence
 767 score for any predicted box with $\text{IoU} > 0.5$ relative to the target. For failure cases, we evaluate the
 768 *Explaining Successful Rate (ESR)*, which measures whether a saliency map can guide the model to a
 769 correct detection for initially misclassified or low-confidence predictions.
 770

771 **Localization Accuracy.** We use two established metrics: (i) the *Point Game*, which checks whether
 772 the most salient pixel lies inside the ground-truth bounding box, and (ii) the *Energy Point Game*,
 773 which extends this by considering the energy concentration of saliency around the target Zhang et al.
 774 (2018). These metrics are evaluated only on correctly detected samples.
 775

776 **Efficiency.** To provide a fair and hardware-agnostic cost measure, we introduce the *Model Evalu-
 777 ation Count (MEC)* as our primary efficiency metric, where one unit corresponds to a single forward
 778 pass through the model. The total MEC reflects the algorithm’s runtime cost. Additionally, we
 779 define the *Accuracy–Cost Ratio (AC-Ratio)* as the primary performance metric (faithfulness score)
 780 multiplied by 1000 and divided by the MEC. This ratio is most meaningful when the faithfulness
 781 score meets a predefined quality threshold.
 782

783 D IMPLEMENTATION DETAILS 784

785 In all experiments, the ground-truth bounding box b_{target} and its category c are provided as references
 786 for generating attributions. Each image is segmented into 100 sparse sub-regions using the SLICO
 787 superpixel algorithm, which serve as the interpretable units.
 788

789 For Faster-VPS, we apply a window size of 16 when selecting from 50 sub-regions and 32 when se-
 790 lecting from 100 sub-regions. Results are averaged over five random seeds, with variance consistently
 791 below 2%.

792 As the scoring function is not strictly monotonic submodular, the stopping criterion is implemented
 793 in a ratio-based form:
 794

$$\frac{S_{k-2}}{S_{k-1}} - \frac{S_{k-1}}{S_k} \leq \tau.$$

795 We use $\tau = 0.025$ for 50 sub-regions and $\tau = 0.01$ for 100 sub-regions. This criterion ensures
 796 numerical stability across different settings.
 797

798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810

811

812

Algorithm 2 Phase-Window (PhaseWin) Search Algorithm

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

1: **Input:** A set of regions \mathcal{V} , desired number of regions k , scoring function $\mathcal{F}(\cdot, \mathbf{b}_{\text{target}}, c)$.
 2: **Hyperparameters:** Window size w , active window phases m_{active} , selection ratio α_{sel} , deletion ratio β_{del} , supervision coefficients $\{\theta_t\}$.
 3: **Output:** An ordered set S of k regions.
 4: $S \leftarrow \emptyset; \mathcal{R} \leftarrow \mathcal{V}; t \leftarrow 0; \Delta_{\text{prev}} \leftarrow \infty;$
 5: **while** $|S| < k$ **and** $\mathcal{R} \neq \emptyset$ **do**
 6: $t \leftarrow t + 1;$
 7: *//— Phase Initialization: Anchor Selection —*
 8: $g_r \leftarrow \mathcal{F}(S \cup \{r\}, \mathbf{b}_{\text{target}}, c)$ for all $r \in \mathcal{R}$;
 9: **if** $\max(g_r) \leq 0$ **then break;**
 10: **end if**
 11: $\alpha_{\text{best}} \leftarrow \arg \max_{r \in \mathcal{R}} g_r;$
 12: $S \leftarrow S \cup \{\alpha_{\text{best}}\}; \mathcal{R} \leftarrow \mathcal{R} \setminus \{\alpha_{\text{best}}\};$
 13: $\Delta_t \leftarrow g_{\alpha_{\text{best}}};$
 14: *//— Candidate Generation and Pruning —*
 15: Re-evaluate gains g_r for all $r \in \mathcal{R}$; Let $G_t = \max_{r \in \mathcal{R}} g_r$;
 16: $\tau_{\text{sel}} \leftarrow \alpha_{\text{sel}} \cdot G_t; \tau_{\text{del}} \leftarrow \beta_{\text{del}} \cdot G_t;$
 17: $\mathcal{R} \leftarrow \{r \in \mathcal{R} \mid g_r \geq \tau_{\text{del}}\};$ /* Prune low-gain regions */
 18: $\mathcal{P}_t \leftarrow \{r \in \mathcal{R} \mid g_r \geq \tau_{\text{sel}}\} \cup \text{RandomSample}(\{r \in \mathcal{R} \mid g_r < \tau_{\text{sel}}\});$
 19: Sort \mathcal{P}_t in descending order of gain;
 20: *//— Window-Based or Degenerate Greedy Selection —*
 21: **if** $t \leq m_{\text{active}}$ **then** /* Windowing Mode */
 22: Initialize window W with the top w elements of \mathcal{P}_t ;
 23: **while** $|W| > 0$ **and** $|S| < k$ **do**
 24: $A \leftarrow \pi(W, \mathcal{F}, \tau_{\text{sel}});$ /* Apply selection policy (e.g., BA) */
 25: **if** $A = \emptyset$ **then break;**
 26: **end if**
 27: **for all** $\alpha \in A$ **do**
 28: $\Delta_i \leftarrow \mathcal{F}(S \cup \{\alpha\}, \dots) - \mathcal{F}(S, \dots);$
 29: **if** $\Delta_i < \theta_t \cdot \Delta_{\text{prev}}$ **then** /* Dynamic Supervision Check */
 30: Calculate exit probability $p_{\text{exit}}(\Delta_i, \Delta_{\text{prev}}, \theta_t);$
 31: **if** $\text{rand}() < p_{\text{exit}}$ **then goto** end_phase;
 32: **end if**
 33: **end if**
 34: $S \leftarrow S \cup \{\alpha\}; \Delta_{\text{prev}} \leftarrow \Delta_i;$
 35: **end for**
 36: Update window W by removing selected elements and refilling from \mathcal{P}_t ;
 37: **end while**
 38: **else** /* Degenerate Greedy Mode */
 39: **for all** $\alpha \in \mathcal{P}_t$ **do**
 40: $\Delta_i \leftarrow \mathcal{F}(S \cup \{\alpha\}, \dots) - \mathcal{F}(S, \dots);$
 41: **if** $\Delta_i < \theta_t \cdot \Delta_{\text{prev}}$ **then** /* Dynamic Supervision Check */
 42: Calculate exit probability $p_{\text{exit}}(\Delta_i, \Delta_{\text{prev}}, \theta_t);$
 43: **if** $\text{rand}() < p_{\text{exit}}$ **then break;**
 44: **end if**
 45: **end if**
 46: $S \leftarrow S \cup \{\alpha\}; \Delta_{\text{prev}} \leftarrow \Delta_i;$
 47: **if** $|S| \geq k$ **then break;**
 48: **end if**
 49: **end for**
 50: **end if**
 51: **end phase;**
 52: **end while**
 53: **return** S ;

864 E FULL PROOF
865866 In this section, we will introduce the proof of Theorem 3.1. Property 3.1 is a classic result of
867 combinatorial optimization. If you are interested in Property 3.1, you can find the relevant proof in
868 Edmonds (1970); Fujishige (2005).
869870 **Proof of Theorem 3.1.**
871872 *Proof.* If the parameter for AdaptiveThreshold is (α, γ) (for select and delete), the parameter for
873 WindowSelection when $|S| = i$ is β_i with β_i increasing and $\alpha\beta_i \geq \gamma$.
874875 Let $S_{\text{PhaseWin}} = (v_1, v_2, \dots, v_k)$, $S_0 = \emptyset$ and $S_i = \{v_1, v_2, \dots, v_i\}$. Let $\rho_u(V) = \mathcal{F}(V \cup \{u\}) -$
876 $\mathcal{F}(V)$.877 For each $1 \leq i \leq k$ such that v_i is an element directly added into S_{PhaseWin} without going into
878 WindowSelection, let \mathcal{R}_i to be the set of choosable elements before v_i is selected, \mathcal{D}_i to be the set of
879 deleted elements after v_i is selected in PartitionCandidates. Then we have

880
$$a_i \triangleq \rho_{v_i}(S_{i-1}) = \max_{j \in \mathcal{R}_i} \rho_j(S_{i-1}),$$

881
$$\mathcal{D}_i \triangleq \{j \in \mathcal{R}_i \mid \rho_j(S_{i-1}) < \gamma a_i\},$$

882
$$V_i \triangleq \{j \in \mathcal{R}_i \mid \rho_j(S_{i-1}) > \alpha a_i\};$$

883
$$W_i \triangleq (e_{i,1}, e_{i,2}, \dots, e_{i,m_i}) \subseteq V_i$$
 is the maximum sequence such that
884
$$e_{i,j} = v_{i+j} = \operatorname{argmax}\{\rho_e(S_{i+j-1}) \mid e \in S_i \setminus \{e_{i,1}, \dots, e_{i,j-1}\}\}$$
 and
885
$$b_{i,j} \triangleq \rho_{e_{i,j}}(S_{i+j-1}) \geq \beta_{i+j} b_{i,0} \geq \alpha \beta_{i+j} a_i \geq \alpha \beta_{i+j} \max_{j \in \mathcal{R}_i} \rho_j(S_{i+j-1}).$$

886

887 Thus for any $1 \leq l \leq k$, we have
888

889
$$\rho_{v_l}(S_{l-1}) \geq \alpha \beta_l \max_{j \in \mathcal{R}_l} \rho_j(S_{l-1}).$$

890

891 Since \mathcal{F} is increasing and submodular, for any $1 \leq l \leq k$ we have
892

893
$$\begin{aligned} \mathcal{F}(S_{\text{OPT}}) &\leq \mathcal{F}(S_{l-1}) + \sum_{j \in (T \setminus S_{l-1}) \cap \mathcal{R}_l} \rho_j(S_{l-1}) + \sum_{m=1}^{l-1} \sum_{x \in (T \setminus S_{l-1}) \cap D_m} \rho_j(S_{l-1}) \\ &\leq \mathcal{F}(S_{l-1}) + \frac{k}{\alpha \beta_l} \rho_{v_l}(S_{l-1}) + k \gamma \sum_{m=1}^{l-1} \rho_{v_m}(S_{m-1}) \\ &= \frac{k}{\alpha \beta_l} \mathcal{F}(S_l) - \left(\frac{k}{\alpha \beta_l} - 1 - k \gamma \right) \mathcal{F}(S_{l-1}). \end{aligned}$$

894

905 Let $\lambda_i = \frac{\alpha \beta_i}{k}$ and $\mu_i = \frac{\alpha \beta_i}{k} \left(\frac{k}{\alpha \beta_i} - 1 - k \gamma \right)$, then we have
906

907
$$\mathcal{F}(S_{\text{PhaseWin}}) \geq \mathcal{F}(S_{\text{OPT}}) \cdot (\lambda_k + \mu_k \lambda_{k-1} + \mu_k \mu_{k-1} \lambda_{k-2} + \dots + \mu_k \mu_{k-1} \dots \mu_2 \lambda_1).$$

908

909 In particular, if $\beta_i = \beta$ for $i = 1, 2, \dots, k$, then
910

911
$$\mathcal{F}(S_{\text{PhaseWin}}) \geq \frac{\lambda_1(1 - \mu_1^k)}{1 - \mu_1} \mathcal{F}(S_{\text{OPT}}).$$

912

913 If k, α, β is big enough and γ is small enough, then
914

915
$$\mathcal{F}(S_{\text{PhaseWin}}) \geq \left(1 - \frac{1}{e} - o(1)\right) \mathcal{F}(S_{\text{OPT}}).$$

916

917

□

918 F SUBMODULARITY AND SUPERMODULARITY
919920 F.1 DEFINITIONS
921922 Let V denote a finite ground set of candidate regions and $F : 2^V \rightarrow \mathbb{R}$ be a set function that scores
923 any subset $S \subseteq V$.924 **Definition F.1** (Submodularity). A set function F is *submodular* if it satisfies the *diminishing returns*
925 property: for all $A \subseteq B \subseteq V$ and $\alpha \in V \setminus B$,

926
$$F(A \cup \{\alpha\}) - F(A) \geq F(B \cup \{\alpha\}) - F(B).$$

927

928 That is, the marginal gain of adding an element decreases as the context grows.

929 **Definition F.2** (Supermodularity). A set function F is *supermodular* if it satisfies the *increasing*
930 *returns property*: for all $A \subseteq B \subseteq V$ and $\alpha \in V \setminus B$,

931
$$F(A \cup \{\alpha\}) - F(A) \leq F(B \cup \{\alpha\}) - F(B).$$

932

933 That is, the marginal gain of adding an element increases as the context grows.

935 F.2 OPTIMIZATION SIGNIFICANCE
936937 Submodularity generalizes the notion of convexity to discrete set functions. Maximizing a monotone
938 submodular function under a cardinality constraint admits a simple greedy algorithm with a $(1 - 1/e)$ -
939 approximation guarantee, which is provably optimal under polynomial-time complexity assumptions.
940 In contrast, supermodular functions exhibit cooperative effects, and their maximization is generally
941 intractable, while their minimization is often easier.942 F.3 AUC CURVE PROPERTIES
943944 In attribution evaluation, we consider the insertion process: progressively adding sub-regions
945 s_1, s_2, \dots into the image. Let

946
$$\text{AUC}(k) = \frac{1}{|V|} \sum_{j=1}^k F(\{s_1, \dots, s_j\})$$

947

948 denote the cumulative insertion-AUC score up to step k .949 **Theorem F.1.** *If F is submodular, then the insertion AUC curve $\text{AUC}(k)$ is concave in k . If F is
950 supermodular, then $\text{AUC}(k)$ is convex in k .*951 *Sketch.* For submodular F , diminishing returns imply that the marginal gain $F(S \cup \{s\}) - F(S)$ is
952 non-increasing in $|S|$. Thus, the discrete derivative of $\text{AUC}(k)$ decreases with k , yielding concavity.
953 Conversely, if F is supermodular, marginal gains increase with k , so $\text{AUC}(k)$ is convex. \square 954 F.4 IMPLICATIONS FOR DEEP LEARNING
955956 Deep neural networks do not strictly satisfy either submodularity or supermodularity. Instead, their
957 attribution behavior reflects a hybrid of both: some features exhibit redundancy (submodular-like),
958 while others rely on synergy (supermodular-like). From the perspective of distributed computation,
959 submodularity and supermodularity describe not universal properties of the model but rather the
960 modes of feature aggregation. Submodularity corresponds to robust, redundant feature usage, while
961 supermodularity corresponds to cooperative, highly interactive feature combinations. These pat-
962 terns shed light on how models internally organize basic feature units, rather than providing exact
963 guarantees.964 The two models we selected are, respectively, dominated by submodularity and supermodularity.
965 Below, we show the Insertion AUC curves (Figure 5) for Grounding DINO and Florence-2 on the
966 same sample. Their unevenness indicates that Grounding DINO exhibits submodularity most of the
967 time, while Florence-2 is almost universally submodular. Our algorithm achieved acceleration on both
968 models, and the difference in performance is precisely due to the difference between submodularity
969 and supermodularity.

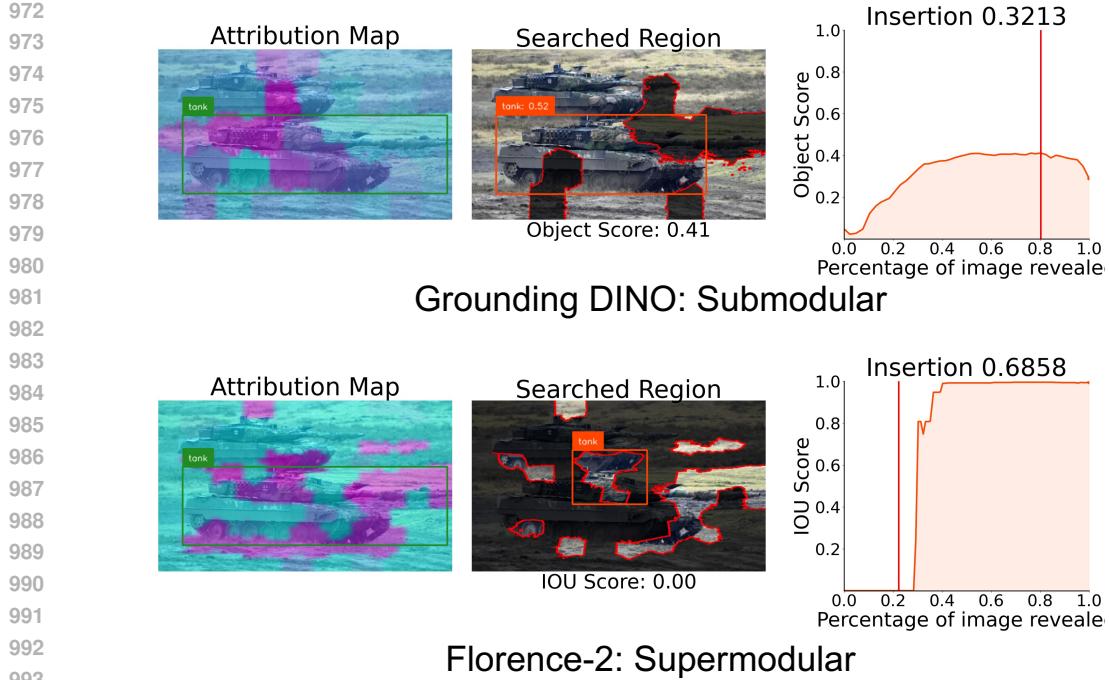


Figure 5: Insertion AUC under Greedy (VPS). Grounding DINO is almost concave with only a few exceptions, while Florence-2 is completely convex.

G ADDITIONAL VISUALIZATION RESULTS

In this section, we provide additional qualitative results to further illustrate the visual differences between the original Visual Precision Search (VPS) and our accelerated Faster-VPS. Each figure presents one representative example from different tasks and datasets. For each case, we show side-by-side attribution maps highlighting how both methods localize critical regions that drive the prediction of object-level foundation models. These examples complement the quantitative results in Section 4, demonstrating that Faster-VPS preserves interpretability quality while achieving substantial efficiency gains.

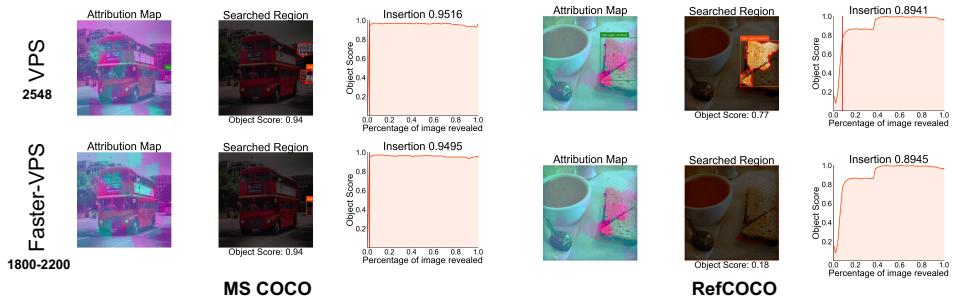
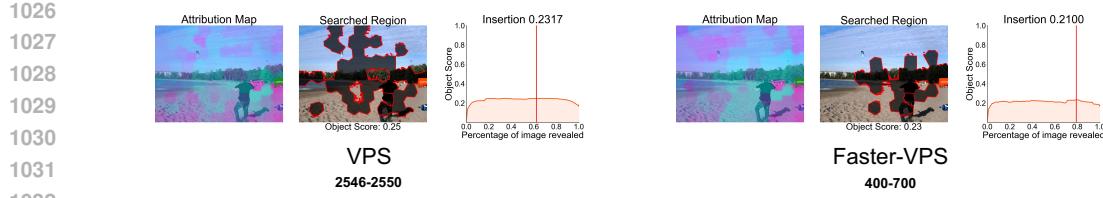


Figure 6: Comparison between VPS and Faster-VPS on Florence-2 for correctly detected samples in MS COCO and RefCOCO. Both methods highlight semantically relevant regions, while Faster-VPS produces equally faithful maps with far fewer evaluations.



1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 7: Visualization on Grounding DINO (MS COCO misclassification). VPS and Faster-VPS consistently attribute the incorrect prediction to the same misleading region, confirming that Faster-VPS maintains interpretive fidelity even in failure cases.

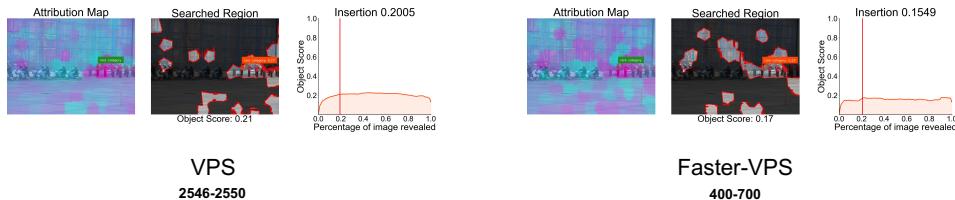


Figure 8: Visualization on Grounding DINO (LVIS misclassification). Both methods reveal the background context responsible for confusion, with Faster-VPS matching the fine-grained localization quality of VPS at lower computational cost.

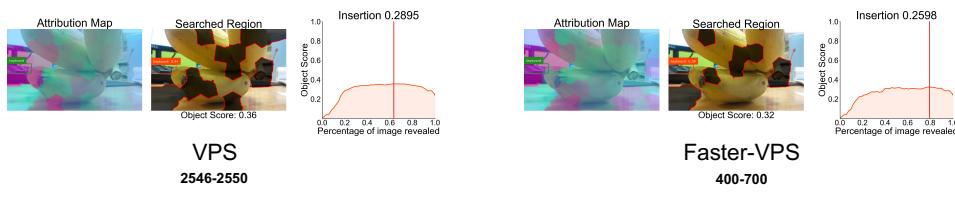


Figure 9: Visualization on Grounding DINO (MS COCO missed detection). VPS and Faster-VPS identify the overlooked object region. Faster-VPS effectively reproduces the trajectory of evidence accumulation with a fraction of the overhead.

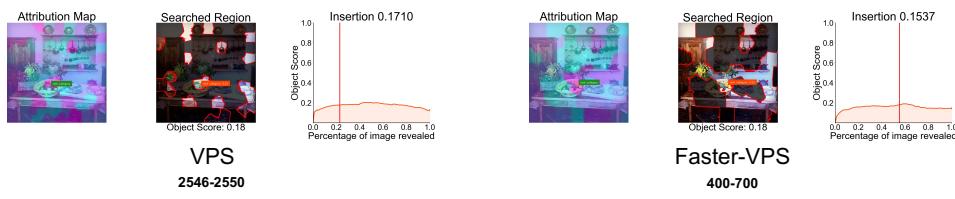


Figure 10: Visualization on Grounding DINO (LVIS missed detection). Faster-VPS successfully recovers the same key evidence regions highlighted by VPS, showing its robustness on challenging zero-shot categories.

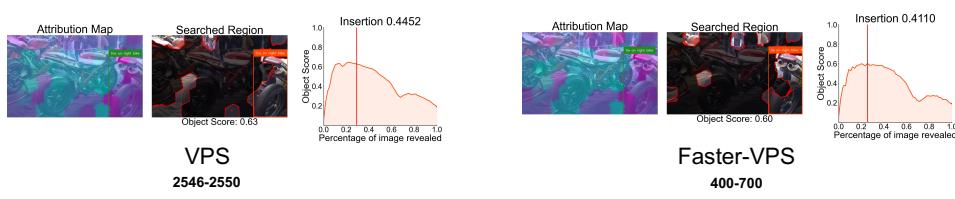


Figure 11: Visualization on Grounding DINO (RefCOCO grounding mistake). Both methods attribute the grounding failure to distractor regions, while Faster-VPS provides nearly identical explanations with significantly fewer model evaluations.