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ABSTRACT

Attribution is essential for interpreting object-level foundation models, yet existing
methods struggle with the trade-off between efficiency and faithfulness. Gradient-
based approaches are efficient but imprecise, while perturbation-based approaches
achieve high fidelity at prohibitive cost. Visual Precision Search (VPS) represents
the current state-of-the-art, but its greedy search requires a quadratic number of
forward passes, severely limiting practicality. We introduce Faster-VPS, which
replaces VPS’s greedy search with a novel Phase-Window (PhaseWin) algorithm.
PhaseWin combines phased pruning, windowed fine-grained selection, and adaptive
control mechanisms to approximate greedy attribution with near-linear complexity.
Theoretically, Faster-VPS retains approximation guarantees under monotonous
submodular conditions. Empirically, it achieves over 95% of VPS’s faithfulness
using only 20% of the computational budget, and consistently outperforms all other
attribution baselines on tasks such as object detection and visual grounding with
Grounding DINO and Florence-2. Faster-VPS thus establishes a new state-of-the-
art in efficient and faithful attribution.

1 INTRODUCTION

Understanding the decision-making process of large-scale foundation models (Dwivedi et al., 2023;
Gao et al., 2024) is a fundamental challenge in artificial intelligence. Attribution methods (Montavon
et al., 2017; Yamauchi et al., 2024), which aim to identify the input features most relevant to a model’s
output, are our primary tools for this endeavor. Effective attribution is not merely an academic exercise;
it is critical for debugging models, diagnosing failures, uncovering hidden biases from training data,
and ensuring that model behavior aligns with human values and safety constraints (Miller et al.,
2019; Feng et al., 2021; Wilson et al., 2023; Stocco et al., 2022; Shu et al., 2024). For instance, in
applications like autonomous driving, faithful attribution for object detection models is essential for
building trustworthy systems (Liang et al., 2021; 2022a; Wei et al., 2019; Liang et al., 2022b; Liu
et al., 2023).

Attribution methods are broadly classified into two paradigms: gradient-based (Zhao et al., 2024a;
Yamauchi, 2024) and perturbation-based (Petsiuk et al., 2018; 2021). While gradient-based methods
are computationally efficient, they often struggle with issues like artifact effects and multimodal
interactions in gradient transfer (Selvaraju et al., 2020; Zhao et al., 2024a; Jiang et al., 2024),
producing attribution maps that lack precision. In contrast, perturbation-based methods, which
measure the model’s response to systematically masking parts of the input, generally achieve much
higher faithfulness. However, their superior performance is crippled by a steep computational
cost (Novello et al., 2022; Jiang et al., 2023; Shapley, 1953), as the search for the most informative
features often requires thousands of forward passes. The core research challenge, therefore, is to
drastically reduce this computational overhead, making the high faithfulness of perturbation methods
practical for real-world use.

The current state-of-the-art in faithful attribution is Visual Precision Search (VPS) Chen et al. (2025).
VPS provides a complete workflow for perturbation-based attribution, formulating the problem as
maximizing a submodular-like objective function (Edmonds, 1970; Chen et al., 2024b). Its core
component is a greedy search over candidate regions, which ensures high faithfulness but also
dominates the runtime (Fujishige, 2005). This quadratic complexity of VPS remains the principal
barrier to its adoption in real-world, time-sensitive scenarios. The critical question we address is thus:
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Figure 1: Efficiency–faithfulness trade-off in attribution methods. Left: comparison of model forward
counts between VPS and Faster-VPS (window Size fixed as 16) across different subregion numbers.
Right: comparison of Insertion AUC and computational cost among representative methods, where
Faster-VPS achieves near-VPS faithfulness with a fraction of the computational budget.

How can we retain the high faithfulness of a greedy perturbation search while drastically reducing
its computational overhead?

To overcome this limitation, we replace the greedy search with our Phase-Window (PhaseWin)
algorithm, an efficient near-linear approximation to the greedy solution. PhaseWin begins with a
phased coarse-to-fine search, where an anchor region is selected to set adaptive thresholds, pruning
the majority of irrelevant candidates. The remaining high-potential regions are then processed by a
windowed fine-grained selection, guided by two control mechanisms: a dynamic supervision policy
that adaptively terminates phases with diminishing returns, and an annealed deferral strategy that
helps escape poor local optima. By integrating PhaseWin into the VPS workflow, we assemble
the complete Faster-VPS pipeline, which preserves the high faithfulness of VPS while drastically
reducing its computational cost. As illustrated in Figure 1, VPS achieves excellent attribution quality
but at the prohibitive cost of thousands of forward passes, whereas Faster-VPS reduces the overhead
by an order of magnitude while retaining comparable faithfulness.

Our extensive experiments on object detection and visual grounding tasks with models such as
Grounding DINO (Liu et al., 2024) and Florence-2 (Xiao et al., 2024) validate the effectiveness
of Faster-VPS. Across MS COCO, LVIS, and RefCOCO, Faster-VPS achieves over 95% of VPS’s
faithfulness using only about 20% of the computational budget, establishing a new state-of-the-art in
the efficiency–faithfulness trade-off. Moreover, ablation studies demonstrate that Faster-VPS can
flexibly adjust speed–quality trade-offs: it can run in a highly accelerated mode for real-time use
cases, or, when tuned for maximum quality, fully recover the original performance of VPS.

Our contributions are summarized as follows:

• Faster-VPS pipeline. We propose Faster-VPS, an accelerated variant of Visual Precision Search
that reduces computational cost by an order of magnitude while preserving attribution faithfulness.

• PhaseWin algorithm. We introduce PhaseWin, a windowed search strategy with dynamic supervi-
sion and annealed deferral, which retains near-greedy optimality under submodular conditions.

• Extensive validation. Experiments on MS COCO, RefCOCO, and LVIS show that Faster-VPS
attains over 95% of VPS’s accuracy at only ∼20% cost, and can flexibly trade efficiency for
precision.

2 RELATED WORK

Object-level Foundation Models and Detection. Object detection has evolved from two-stage Ren
et al. (2016); He et al. (2018) and one-stage Redmon & Farhadi (2018); Tian et al. (2020) designs to
Transformer-based architectures Carion et al. (2020). Multimodal pre-training Radford et al. (2021);
Li et al. (2022); Wu et al. (2024a) has spurred object-level foundation models like Grounding DINO
Liu et al. (2024) and Florence-2 Xiao et al. (2024), alongside unified decoders Zou et al. (2023a),
large-scale models Wu et al. (2024b), and real-time open-vocabulary systems Cheng et al. (2024);
Yao et al. (2024). The need for robustness and transparency in applications like contextual detection
Zang et al. (2024), uncertainty-aware prediction Miller et al. (2019); Feng et al. (2021); Wilson et al.
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(2023), and autonomous driving Wen et al. (2024); Chen et al. (2024a); Hu et al. (2023) highlights
key challenges, as summarized in recent surveys Zou et al. (2023b); Liang et al. (2024).

Explaining Object Detectors. Explaining detector decisions is challenged by their intertwined
localization and classification signals. Approaches range from adapting gradient-based attribution
Gudovskiy et al. (2018); Selvaraju et al. (2020); Zhao et al. (2024a) and randomized perturbations
Petsiuk et al. (2018; 2021) to refining Grad-CAM for spatial sensitivity Yamauchi & Ishikawa (2022);
Yamauchi (2024); Chattopadhay et al. (2018). While some methods explore diverse rationales at high
computational cost Jiang et al. (2023), recent state-of-the-art work uses causal search to generate
high-fidelity explanations Chen et al. (2025). Other studies compare architectures Jiang et al. (2024),
decompose representations Gandelsman et al. (2024), or analyze pixel collectives Yamauchi et al.
(2024), with broader XAI surveys providing context Dwivedi et al. (2023); Gao et al. (2024).

Submodular Function Maximization Algorithm. Our research draws heavily on work that im-
proves submodular function optimization (Edmonds, 1970; Fujishige, 2005). Since optimizing
submodular functions doesn’t necessarily mean optimizing AUC, this work can’t be directly applied
to attribution (Jegelka et al., 2011; Buchbinder et al., 2014). However, we considered how to exploit
submodular properties (Wei et al., 2014; Breuer et al., 2020) and comprehensively designed our
PhaseWin search algorithm, achieving a breakthrough in speed.

3 METHOD

3.1 PROBLEM FORMULATION

Given an input image I ∈ Rh×w×3 and an object-level foundation model f(·), the detection result
can be represented as f(I) = {(bi, ci, si) | i = 1, 2, . . . , N}, where bi denotes the bounding box,
ci the predicted class label, and si the confidence score of object i. We aim to explain the model’s
prediction for a specific target (bt, ct, st) by selecting a sequence of critical input regions whose
progressive insertion maximizes the model’s confidence on the target.

We partition I into m disjoint sub-regions V = {Is1, . . . , Ism}, and define an ordered subset S =

(s1, . . . , sk), where si ∈ V . For a given ordering S, let FS(j) = f
( j⋃

i=1

Issi ; bt, ct

)
denote the

detection confidence after inserting the first j regions in S.

Our objective is to maximize the cumulative confidence along the insertion trajectory. Specifically,

let |Isj | denote the pixel area of region sj , and let A =

m∑
r=1

|Isr| = |I| be the total image area. We

define the optimal ordered subset S∗ as:

S∗ = arg max
S=(s1,...,sk)
S⊆V

k∑
j=1

|Issj |
A

FS(j),

where FS(j) is the model confidence after inserting the first j regions in S.

This formulation explicitly treats the problem as an ordered subset optimization, where the evaluation
depends on the insertion order.

3.2 SCORING FUNCTION

We adopt the scoring function F from VPS Chen et al. (2025), which is designed to identify critical
regions for object detection. The function intelligently combines two complementary metrics: a
clue score that quantifies how well a set of regions S directly supports the target detection, and a
collaboration score that measures the synergistic importance of S by evaluating the performance
drop when it is removed. Although F is not strictly submodular, its local submodularity makes it
amenable to accelerated greedy search algorithms like our proposed PhaseWin method. The final
objective function is:

F(S,btarget, c) = sclue(S,btarget, c) + scolla(S,btarget, c).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Subregion

Selected

∅

……

R

Wsub-region set

Deleted threshold
D

P

W

P

S

W

P

S

W

P

S

S(i) S(i) S(i+1) S(i) S(i+1) S(i+2)

VPS Faster-VPS

Window 
Selection 
Policy 𝝅

Window 
Selection 
Policy 𝝅

Window 
Selection 
Policy 𝝅

The Present Best
in Directly

R

Score
Function

Deletion Set

Selected Set

Unselected
Set

Comparing in A Whole Set Comparing in A Window

Input Phasewin External Loop:
Selecting a subset in whole set

Phasewin Internal Loop: Selecting in a fixed size Window 

Greedy -- Only a Loop: 
selecting the best in whole set

Phasewin Loop: selecting the best in a window

Selected Set Selected Set

Selected Set

Phase Unselected Set Phase Unselected Set Phase Unselected Set

Much Faster
Phase: the 

selected subset

Selected threshold

Figure 2: PhaseWin Workflow. The algorithm alternates between (i) selecting an anchor region to
set adaptive thresholds, (ii) pruning uninformative regions, and (iii) applying a windowed fine-grained
selection with dynamic supervision.

3.3 PHASE-WINDOW ACCELERATED SEARCH

For maximizing the ordered insertion-AUC objective, a naive greedy search that evaluates all re-
maining candidates at each step is theoretically optimal, but its O(k ·m) scoring cost is prohibitive
in practice. We propose the Phase-Window (PhaseWin) Search, an efficient approximation that
matches greedy performance while reducing the number of expensive scoring function calls by an
order of magnitude.

PhaseWin’s acceleration stems from a phased, coarse-to-fine search strategy, illustrated in Figure 2.
The algorithm operates in phases, each beginning with a full evaluation to find a high-confidence
anchor region. The gain from this anchor is used to set adaptive thresholds that aggressively prune
the search space, creating a compact, high-potential candidate pool for the next stage. This high-
level process is detailed in Algorithm 1. The core of our method lies in the WindowSelection

Algorithm 1 PhaseWin: Phase-Window Accelerated Search
Require: Candidate set V , target size k, scoring function F(·)
Ensure: Ordered subset S
1: S ← ∅; D ← ∅; R ← V ; ∆prev ←∞
2: while |S| < k andR ̸= ∅ do
3: gr ← F(S ∪ {r})− F(S) for all r ∈ R
4: α

⋆ ← argmax
r∈R

gr ; S ← S ∪ {α⋆}; ∆prev ← max gr

5: R ← R \ {α⋆}
6: τsel, τdel ← AdaptiveThresholds(∆prev)
7: Pt,Dphase ← PartitionCandidates(R, τsel, τdel)

8: D ← D ∪ Dphase

9: Sphase ← WindowSelection(Pt, S, k,F,∆prev)

10: S ← S ∪ Sphase

11: R ← R \ Sphase ▷ Unselected candidates form the pool for the next phase
12: end while
13: return S

subroutine, which performs a fine-grained search on a pruned candidate pool. We begin with a sliding
window W containing top-ranked candidates, while the rest remain in a queue. A window policy π(·)
is then applied to select a subset A; in practice, we mainly use two policies: (1) πLG, which picks
the top candidate, and (2) πBA, which selects all candidates above an adaptive cut-off based on the
window’s maximum gain.

For each candidate α ∈ A, we compute its true marginal gain ∆i and evaluate it with two control
mechanisms. First, the stage-exit rule halts the phase if ∆i < θ · ∆ref , preventing unnecessary
computation on diminishing returns. Otherwise, the candidate is further checked by an annealing
delay, which decides whether to accept it immediately or defer acceptance. Accepted candidates are
added to the current solution, their gains update the reference value, and the window is replenished
from the queue until the process completes.
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3.4 THEORY ANALYSIS

Greedy search is both a curse and a shackle in the development of submodular function maximization
algorithms: it has long been proven to be the optimal and fastest method to achieve the best possible
approximation under polynomial-time constraints. We first restate the classic result as follows.

Proposition 3.1. For maximizing a monotone submodular objective F : 2V → R+ under a cardinal-
ity constraint k, let Sgreedy denote the solution returned by the standard greedy algorithm and SOPT

denote the optimal subset of size k. Then the greedy algorithm achieves the optimal approximation
ratio:

F(Sgreedy) ≥
(
1− 1

e

)
F(SOPT),

and no polynomial-time algorithm can surpass this bound unless P = NP (Nemhauser et al., 1978;
Fujishige, 2005).

Therefore, greedy selection serves as the de facto gold standard, and our analysis focuses on matching
its empirical behavior while achieving substantial acceleration. Our phase-window accelerated search
(PHASEWIN) is analogous to quicksort for sorting: it is extremely fast in typical cases, yet it still
offers explicit approximation guarantees with the phase-supervised early exit mechanism enabled.
Theorem 3.1 (Approximation Guarantee). Let SPhaseWin denote the solution returned by PHASEWIN,
and let θ ∈ [0, 1) be an upper bound on the fraction of phases where early exits occur due to dynamic
supervision. If the objective F is monotone submodular, then

F(SPhaseWin) ≥
(
1− 1

e
− o(1)

)
F(SOPT).

Remark 3.1. This o(1) quantity is actually determined by τsel, τdel, k, θ. We have put the proof of
this theorem in Appendix E.

Table 1: Comparison of approximation guarantee, complexity, and empirical acceleration. k
denotes the subset size, m the total candidate set size, and ε the maximal early-exit ratio.

Method Approx. Guarantee # Marginal Evals Complexity Empirical Speedup
Greedy (1− 1/e) O(mk) Quadratic 1×
Lazy Greedy (1− 1/e) ∼ 0.7mk Sub-quadratic ∼ 1.3×
PhaseWin (1− 1/e− ε) O(m) Near-linear 5–10×

Time Complexity Analysis. Since the forward evaluation of the scoring function F(·) dominates
runtime, we analyze complexity in terms of the number of calls to F .

With dynamic supervision, each phase aggressively prunes the candidate pool and probabilistically
terminates when marginal gains diminish. Let Nexit be the expected number of early-exited phases.
The expected number of calls is:

E[#calls] = O
(
m · f(ω) +m ·Nexit

)
,

where w is the window size, and f decided by π we select. For πLG , f(ω) = ω, for πBA, f(ω) =
log(ω), so the effective complexity approaches O(m) if ω << m.

Thus, PHASEWIN achieves greedy-level accuracy while reducing the number of expensive scoring
calls by up to an order of magnitude in practice. The above theoretical analysis takes into account
ideal situations and makes full use of the submodularity assumption. Our experiments confirm its
high efficiency. The definitions of submodularity and supermodularity and their corresponding AUC
curve properties are in Appendix F.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct a comprehensive evaluation of our method on object detection and referring expression
comprehension (REC) tasks. The experiments are performed using two powerful object-level
foundation models: Grounding DINO (Liu et al., 2024) and Florence-2 (Xiao et al., 2024).

5
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Table 2: Comparison on three datasets for correctly detected or grounded samples using Grounding
DINO.

Datasets Methods
Faithfulness Metrics Location Metrics Efficiency Metrics

Ins.
(↑)

Del.
(↓)

Ins. (class)
(↑)

Del. (class)
(↓)

Ins. (IoU)
(↑)

Del. (IoU)
(↓)

Ave. high.
score (↑)

Point
Game (↑)

Energy
PG (↑)

MECave

(↓)
A-C ratio

(↑)

MS COCO (Lin et al., 2014)
(Detection task)

Grad-CAM (Selvaraju et al., 2020) 0.2436 0.1526 0.3064 0.2006 0.6229 0.5324 0.5904 0.1746 0.1463 — —
SSGrad-CAM++ (Yamauchi & Ishikawa, 2022) 0.2107 0.1778 0.2639 0.2314 0.5981 0.5511 0.5886 0.1905 0.1293 — —
D-RISE (Petsiuk et al., 2018) 0.4412 0.0402 0.5081 0.0886 0.8396 0.3642 0.6215 0.9497 0.1850 5000 0.88
D-HSIC (Novello et al., 2022) 0.3776 0.0439 0.4382 0.0903 0.8301 0.3301 0.5862 0.7328 0.1861 1536 2.46
ODAM (Zhao et al., 2024b) 0.3103 0.0519 0.3655 0.0894 0.7869 0.3984 0.5865 0.5431 0.2034 — —

VPS (50) Chen et al. (2025) 0.5195 0.0375 0.5941 0.0835 0.8480 0.3044 0.6591 0.9841 0.2046 2548.8 2.04
Faster-VPS (50) 0.4785 0.0424 0.5562 0.0898 0.8323 0.3116 0.6353 0.9894 0.1843 536.8 8.92

VPS (100) (Chen et al., 2025) 0.5459 0.0375 0.6204 0.0882 0.8581 0.3300 0.6873 0.9894 0.2046 10100 0.54
Faster-VPS (100) 0.5141 0.0410 0.5890 0.0907 0.8505 0.3400 0.6644 0.9894 0.1628 2853.4 1.81

RefCOCO (Kazemzadeh et al., 2014)
(REC task)

Grad-CAM (Selvaraju et al., 2020) 0.3749 0.4237 0.4658 0.5194 0.7516 0.7685 0.7481 0.2380 0.2171 — —
SSGrad-CAM++ (Yamauchi & Ishikawa, 2022) 0.4113 0.3925 0.5008 0.4851 0.7700 0.7588 0.7561 0.2820 0.2262 — —
D-RISE (Petsiuk et al., 2018) 0.6178 0.1605 0.7033 0.3396 0.8606 0.5164 0.8471 0.9400 0.2870 5000 1.24
D-HSIC (Novello et al., 2022) 0.5491 0.1846 0.6295 0.3509 0.8504 0.5120 0.7739 0.7900 0.3190 1536 3.57
ODAM (Zhao et al., 2024b) 0.4778 0.2718 0.5620 0.3757 0.8217 0.6641 0.7425 0.6320 0.3529 — —

VPS (50) (Chen et al., 2025) 0.7278 0.1240 0.7995 0.2473 0.8961 0.5053 0.8770 0.9580 0.3738 2290.6 3.18
Faster-VPS (50) 0.7013 0.1473 0.7794 0.2747 0.8862 0.5273 0.8654 0.9580 0.3530 630.1 11.13

VPS (100) (Chen et al., 2025) 0.7419 0.1250 0.8080 0.2457 0.9050 0.5103 0.8842 0.9460 0.3566 10100 0.73
Faster-VPS (100) 0.7377 0.1529 0.8046 0.2823 0.9054 0.5466 0.8813 0.9360 0.3076 3382.5 2.18

LVIS V1 (Gupta et al., 2019) (rare)
(Zero-shot det. task)

Grad-CAM (Selvaraju et al., 2020) 0.1253 0.1294 0.1801 0.1814 0.5657 0.5910 0.3549 0.1151 0.0941 — —
SSGrad-CAM++ (Yamauchi & Ishikawa, 2022) 0.1253 0.1254 0.1765 0.1775 0.5800 0.5691 0.3504 0.1091 0.0931 — —
D-RISE (Petsiuk et al., 2018) 0.2808 0.0289 0.3348 0.0835 0.8303 0.3174 0.4289 0.9697 0.1462 5000 0.56
D-HSIC (Novello et al., 2022) 0.2417 0.0353 0.2912 0.0928 0.8187 0.3550 0.4044 0.8303 0.1730 1536 1.57
ODAM (Zhao et al., 2024b) 0.2009 0.0410 0.2478 0.0844 0.7770 0.4082 0.3694 0.6061 0.2050 — —

VPS (50) (Chen et al., 2025) 0.3411 0.0265 0.3995 0.0805 0.8372 0.2986 0.4654 0.9939 0.1439 2544.6 1.34
Faster-VPS (50) 0.3071 0.0303 0.3645 0.0893 0.8245 0.3097 0.4325 0.9939 0.1369 465.9 6.59

VPS (100) (Chen et al., 2025) 0.3695 0.0277 0.4275 0.0799 0.8479 0.3242 0.4969 0.9758 0.1785 10100 0.37
Faster-VPS (100) 0.3363 0.0309 0.3944 0.0839 0.8379 0.3374 0.4688 0.9697 0.1175 2726.8 1.23

Datasets and Baselines. We conduct experiments on three benchmarks. MS COCO 2017 (Lin et al.,
2014) covers 80 object classes; we sample correctly detected, misclassified, and undetected instances
for evaluation. LVIS V1 (Gupta et al., 2019) spans 1,203 categories with 337 rare ones, where
Grounding DINO (Liu et al., 2024) is used for zero-shot detection. RefCOCO (Kazemzadeh et al.,
2014) is adopted for the REC task, including both correct and incorrect grounding cases. We compare
against representative attribution methods: gradient-based (Grad-CAM (Selvaraju et al., 2020),
SSGrad-CAM++ (Yamauchi & Ishikawa, 2022), ODAM (Zhao et al., 2024b)), perturbation-based
(D-RISE (Petsiuk et al., 2018), D-HSIC (Novello et al., 2022)), and the original Visual Precision
Search (VPS (Chen et al., 2025)), a greedy quadratic algorithm that serves as our acceleration target.

Implementation Details. For Faster-VPS, we adopt a default window size of 16 for 50 sub-regions
and 32 for 100 sub-regions. Since the score function is not strictly monotonic submodular, we

implement the stopping criterion using a numerically stable ratio-based formulation:
Sk−2

Sk−1
− Sk−1

Sk
≤

τ, where we set τ = 0.025 for 50 sub-regions and τ = 0.01 for 100 sub-regions. Complete
implementation details are provided in Appendix D.

4.2 EVALUATION METRICS

We evaluate the quality of attributions along three key axes: faithfulness, localization accuracy, and
computational efficiency. This enables a holistic comparison of Faster-VPS against all baselines.

1.Faithfulness. We adopt standard insertion and deletion metrics to evaluate how well attribution
maps reflect the model’s reasoning, applied to both classification confidence and IoU. We also report
the highest box confidence (IoU > 0.5) and the Explaining Successful Rate (ESR) for failure cases.
2.Localization Accuracy. We follow prior work and use the Point Game (Zhang et al., 2018) and
Energy Point Game metrics (Wang et al., 2020) to quantify the alignment between attribution maps
and ground-truth objects. 3.Efficiency. We measure runtime efficiency using Model Evaluation
Count (MEC), where one unit corresponds to a single forward pass. To combine accuracy and cost,
we also report the Accuracy–Cost Ratio (AC-Ratio). Details of the above metrics are provided in
Appendix C.

4.3 FAITHFULNESS ANALYSIS ON CORRECT SAMPLES

We follow the experimental design of VPS and conduct faithfulness, locality, and efficiency tests
on correct detection, and faithfulness, error correction, and efficiency tests on misclassification and
non-detection cases on three datasets.

4.3.1 CORRECT INTERPRETATION ON GROUNDING DINO

We follow the experimental design of VPS and conduct faithfulness, locality, and efficiency tests
on correct detection, and faithfulness, error correction, and efficiency tests on misclassification
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and non-detection cases on three datasets. Table 2 summarizes the results on correctly detected
or grounded samples across three benchmarks. On the MS COCO detection task, Faster-VPS
substantially improves efficiency while maintaining comparable faithfulness. Under the 50-region
setting, it reduces the average model evaluations from 2548.8 to 536.8, a 4.7× reduction, with only a
minor decrease in the Insertion score (0.5195 to 0.4785). This trade-off yields a marked improvement
in the A-C ratio from 2.04 to 8.92. For the RefCOCO referring expression comprehension benchmark,
Faster-VPS achieves similar faithfulness to VPS, with an Insertion score of 0.7013 versus 0.7278,
while reducing model evaluations from 2290.6 to 630.1. This efficiency gain elevates the A-C ratio
from 3.18 to 11.13, showing that Faster-VPS produces high-quality attributions at a fraction of the
cost. On the challenging LVIS v1 rare-class detection task, both VPS and Faster-VPS show reduced
overall faithfulness due to long-tail distributions. Nevertheless, Faster-VPS lowers the computation
demand from 2544.6 to 465.9 evaluations in the 50-region setting, improving the A-C ratio from
1.34 to 6.59. These results highlight that the efficiency benefits of Faster-VPS become particularly
valuable in computationally intensive scenarios, making attribution analysis more practical at scale.

4.3.2 CORRECT INTERPRETATION ON FLORENCE-2

Table 3: Evaluation of faithfulness (Inser-
tion/Deletion AUC) and efficiency metrics
on MS COCO and RefCOCO validation sets
(Florence-2).

Datasets Methods Faithfulness Metrics Efficiency Metrics

Insertion (↑) Deletion (↓) MECave (↓) A-C ratio (↑)

MS COCO
(Detection task)

D-RISE 0.7477 0.0972 5000 1.50
D-HSIC 0.5345 0.2730 1536 3.48

VPS (50) 0.7678 0.0550 2548.1 2.98
Faster-VPS (50) 0.7615 0.0474 2184.1 3.49

RefCOCO
(REC task)

D-RISE 0.7922 0.3505 5000 1.24
D-HSIC 0.7639 0.3560 1536 3.57

VPS (50) 0.8301 0.1159 2547.8 3.25
Faster-VPS (50) 0.8312 0.1205 2349.1 3.53

Table 3 reports results on MS COCO and Ref-
COCO when using Florence-2 as the backbone.
Across both datasets, Faster-VPS achieves faithful-
ness scores that are highly comparable to VPS. On
MS COCO, Faster-VPS attains an Insertion score
of 0.7615 versus 0.7678 from VPS, with a slightly
lower Deletion value (0.0474 vs. 0.0550). Similarly,
on RefCOCO, Faster-VPS produces an Insertion
of 0.8312 against 0.8301 from VPS, with a minor
increase in Deletion. These results indicate that the
acceleration strategy preserves the fidelity of VPS
almost entirely. When contrasted with perturbation-based baselines, Faster-VPS consistently delivers
higher faithfulness while requiring fewer model evaluations than D-RISE, and achieves efficiency
comparable to D-HSIC but with stronger interpretability. The A-C ratio also reflects this balance:
Faster-VPS improves upon VPS (3.49 vs. 2.98 on COCO; 3.53 vs. 3.25 on RefCOCO), showing
more favorable faithfulness-to-cost trade-offs. It is worth noting that the acceleration gains are less
pronounced compared to Grounding DINO. Florence-2 exhibits behavior that is nearly globally
supermodular, while our acceleration relies on exploiting local submodularity. As discussed in
appendix F, this structural property limits the extent of achievable speedup. Nevertheless, Faster-VPS
remains a strong alternative to VPS, offering similar interpretability at reduced computational cost
and outperforming other baselines across both benchmarks.

4.4 FAILURES INTERPRETATION

4.4.1 REC FAILURES INTERPRETATION

Table 4: RefCOCO (REC task): Faithfulness metrics
and efficiency (Grounding DINO).

Datasets Methods Faithfulness Metrics Efficiency Metrics

Ins. (↑) Ins. (class) (↑) Ave. high.score (↑) MECave (↓) A-C ratio (↑)

RefCOCO
(REC task)

Grad-CAM 0.1536 0.2794 0.3295 — —
SSGrad-CAM++ 0.1590 0.2837 0.3266 — —
D-RISE 0.3486 0.4787 0.6096 5000 1.21
D-HSIC 0.2274 0.3488 0.4495 1536 2.92
ODAM 0.1793 0.3001 0.3453 — —

VPS (100) 0.4981 0.5990 0.7007 10100 0.69
Faster-VPS (50) 0.4455 0.5537 0.6437 614.4 10.48
Faster-VPS (100) 0.5047 0.6023 0.7116 3164.4 2.25

Table 4 presents results on RefCOCO samples
where Grounding DINO produces incorrect
grounding. Compared with gradient-based
baselines such as Grad-CAM and ODAM,
both VPS and Faster-VPS yield substantially
higher insertion scores and average confi-
dence, indicating that search-based attribution
is better suited for recovering meaningful ev-
idence under failure cases. Perturbation-based
approaches like D-RISE and D-HSIC achieve moderate improvements, but remain less faithful overall.
Between the two search variants, Faster-VPS attains attribution quality that is highly comparable to
VPS. Under the 100-region setting, Faster-VPS slightly surpasses VPS in insertion and classification-
based scores (0.5047 vs. 0.4981 and 0.6023 vs. 0.5990), while using fewer model evaluations (3164.4
vs. 10100). In the 50-region setting, Faster-VPS achieves somewhat lower insertion metrics than VPS
but with drastically reduced computational demand (614.4 vs. 10100 evaluations). This efficiency
translates into a much higher A-C ratio, rising from 0.69 with VPS to 10.48 with Faster-VPS. These
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results suggest that Faster-VPS can provide nearly the same level of interpretability as the greedy
search, while significantly reducing the computational cost. This advantage is especially valuable
when analyzing mis-grounded instances, where large-scale evaluation would otherwise be prohibitive.

4.4.2 MISCLASSIFIED DETECTION FAILURES INTERPRETATION

Table 5: MS COCO and LVIS (misclassified samples): Faith-
fulness metrics and efficiency (Grounding DINO)

Datasets Methods Faithfulness Metrics Efficiency Metrics

Ins. (↑) Ins. (class) (↑) Ave. high. score (↑) ESR (↑) MECave (↓) A-C ratio (↑)

MS COCO
(Detection task)

Grad-CAM 0.1091 0.1478 0.3102 38.38% — —
SSGrad-CAM++ 0.0960 0.1336 0.2952 33.51% — —
D-RISE 0.2170 0.2661 0.3603 50.26% 5000 0.72
D-HSIC 0.1771 0.2161 0.3143 34.59% 1536 2.04
ODAM 0.1129 0.1486 0.2869 32.97% — —

VPS (100) 0.3357 0.3967 0.4591 69.73% 10100 0.45
Faster-VPS (50) 0.2614 0.3198 0.3770 51.35% 477.3 7.90
Faster-VPS (100) 0.3018 0.3583 0.4289 63.78% 2595.0 1.65

LVIS V1 (rare)
(Zero-shot det. task)

Grad-CAM 0.0503 0.0891 0.1564 12.50% — —
SSGrad-CAM++ 0.0574 0.0946 0.1580 11.84% — —
D-RISE 0.1245 0.1647 0.2088 28.95% 5000 0.41
D-HSIC 0.0963 0.1247 0.1748 16.45% 1536 1.14
ODAM 0.0575 0.0954 0.1520 9.21% — —

VPS (100) 0.1776 0.2190 0.2606 43.29% 10100 0.26
Faster-VPS (50) 0.1394 0.1817 0.2119 36.63% 426.5 5.20
Faster-VPS (100) 0.1475 0.1845 0.2296 39.47% 2204.8 1.04

Table 5 reports results on misclas-
sified samples from MS COCO
and LVIS. Gradient-based methods
such as Grad-CAM and ODAM
show limited utility in this setting,
while perturbation-based baselines
(D-RISE and D-HSIC) provide mod-
erate improvements in insertion and
class-specific scores. Both VPS
and Faster-VPS yield higher overall
faithfulness, indicating that search-
based approaches are better suited
to reveal discriminative regions re-
sponsible for misclassification. On
MS COCO, VPS achieves the strongest raw faithfulness metrics, with an Insertion score of 0.3357
and an ESR of 69.73%. Faster-VPS produces slightly lower attribution quality under both 50- and
100-region settings, but substantially reduces computational requirements. In particular, Faster-VPS
(50) lowers the average model evaluations from 10100 to only 477.3, raising the A-C ratio from
0.45 to 7.90. This demonstrates that Faster-VPS can provide competitive interpretability while
making failure case analysis far more efficient. On LVIS rare-class detection, all methods perform
worse due to the long-tail distribution, but the same trend holds. VPS delivers the highest insertion
and ESR values, while Faster-VPS achieves comparable results at a fraction of the computational
cost. Faster-VPS (50) reduces the model evaluations by over 20× compared to VPS, yielding an
A-C ratio of 5.20 versus 0.26. These results show that Faster-VPS remains practical for large-scale
misclassification analysis, where the quadratic cost of full VPS would be prohibitive.

4.4.3 UNDETECTED DETECTION FAILURES INTERPRETATION

Table 6: MS COCO and LVIS (undetected failure samples):
Faithfulness metrics and efficiency (Grounding DINO).

Datasets Methods Faithfulness Metrics Efficiency Metrics

Ins. (↑) Ins. (class) (↑) Ave. high. score (↑) ESR (↑) MECave (↓) A-C ratio (↑)

MS COCO
(Detection task)

Grad-CAM 0.0760 0.1321 0.2153 16.44% — —
SSGrad-CAM++ 0.0671 0.1151 0.2124 16.44% — —
D-RISE 0.1538 0.2260 0.2564 26.94% 5000 0.31
D-HSIC 0.1101 0.1716 0.1945 13.56% 1536 1.43
ODAM 0.0745 0.1350 0.2037 13.78% — —

VPS (100) 0.2102 0.3011 0.3014 41.33% 10100 0.21
Faster-VPS (50) 0.1801 0.2641 0.2726 33.78% 427.8 6.37
Faster-VPS (100) 0.2156 0.3045 0.3289 44.44% 2160.2 1.52

LVIS V1 (rare)
(Zero-shot det. task)

Grad-CAM 0.0291 0.0689 0.0901 5.43% — —
SSGrad-CAM++ 0.0292 0.0680 0.0897 5.24% — —
D-RISE 0.0703 0.1184 0.1312 18.73% 5000 0.26
D-HSIC 0.0516 0.0920 0.1168 13.48% 1536 0.76
ODAM 0.0283 0.0716 0.0851 4.68% — —

VPS (100) 0.1155 0.1886 0.1784 30.15% 10100 0.18
Faster-VPS (50) 0.0787 0.1286 0.1309 17.04% 348.4 3.76
Faster-VPS (100) 0.0942 0.0069 0.1552 24.72% 1509.1 1.03

Table 6 presents results on MS
COCO and LVIS samples where
the target objects are not de-
tected. In this challenging set-
ting, gradient-based baselines such
as Grad-CAM and ODAM yield
low insertion and class-specific
scores, reflecting limited explana-
tory power. Perturbation-based
methods (D-RISE and D-HSIC) of-
fer some improvements, but remain
costly or less stable. In contrast,
both VPS and Faster-VPS deliver
more reliable attribution maps, bet-
ter capturing the evidence that is missing in undetected cases. On MS COCO, Faster-VPS achieves
faithfulness that is close to VPS, with Insertion and ESR values of 0.2156 and 44.44% under the
100-region setting, slightly exceeding VPS. More importantly, it reduces the average model evalu-
ations from 10100 to 2160.2, raising the A-C ratio from 0.21 to 1.52. Under the 50-region setting,
the efficiency advantage is even more pronounced, with only 427.8 evaluations required and an A-C
ratio of 6.37. On LVIS rare-class detection, overall faithfulness scores are lower due to the long-tail
distribution, but the same pattern holds. VPS achieves the highest raw insertion metrics, while
Faster-VPS provides comparable results with far fewer model evaluations. For example, Faster-VPS
(50) requires just 348.4 evaluations compared to 10100 for VPS, lifting the A-C ratio from 0.18 to
3.76. These results show that Faster-VPS offers an effective trade-off in undetected failure analysis: it
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Figure 3: Visualization of correct attribution cases on MS COCO, RefCOCO, and LVIS V1. Com-
pared with ODAM and D-RISE, Faster-VPS produces sharper and more faithful attributions. It
matches or even exceeds VPS in insertion-AUC while requiring only∼20% of its computational cost.

maintains interpretability comparable to VPS while drastically reducing computational cost, enabling
practical attribution studies even on large-scale failure cases.

4.5 SPEED AND PRECISION CONTROL

(8,0.025)
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(16,0.01)
(16,0.005)

(16,0.003) (16,0.001)

(16,0.0005)
(32,0.0005)

Greedy 
(VPS)

Figure 4: Trade-off between speed and precision.

An appealing property of our acceleration al-
gorithm is the ability to balance efficiency and
accuracy through hyperparameter tuning. By
slightly relaxing the speed constraint, Faster-
VPS (50) can steadily improve its attribution
quality. As shown in Figure 4, the insertion
AUC increases monotonically with the number
of model forward passes, approaching the per-
formance of the greedy algorithm. Owing to
the annealing strategy, our method can even sur-
pass greedy search when fully trading off speed,
demonstrating that efficiency and precision can
be adaptively controlled.

4.6 VISUALIZATION

We further present visualization results for correctly attributed cases, As shown in Figure 3, ODAM
produces diffuse heatmaps, while D-RISE generates noisy regions due to perturbation sampling. VPS
(50) yields sharp attributions but at a prohibitive computational cost. In contrast, our Faster-VPS
(50) achieves nearly the same attribution quality with only about 20% of the overhead, and its
annealing strategy often allows the max object score to surpass VPS by better exploring the maximum
submodular subset. More visualization results are included in Appendix G.

5 CONCLUSION

In this work, we addressed the challenge of efficient attribution for large multimodal foundation
models in object detection. Building on the submodular hypothesis and task-specific properties,
we proposed the PhaseWin algorithm as a replacement for the original greedy attribution search.
Integrated into the Faster-VPS pipeline, our approach achieves up to 95% of state-of-the-art attribution
fidelity while requiring only 20% of the computational overhead, establishing the current best practice
for efficient interpretation of object-level multimodal models. Beyond object detection, the general
applicability of our algorithm to image data suggests promising opportunities for extending this
framework to a broader range of multimodal foundation models, which we leave for future research.
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ACKNOWLEDGMENT OF LLM USAGE

During the preparation of this manuscript, large language models (LLMs) were employed in a limited
and auxiliary capacity. Specifically, their usage was restricted to the following three aspects: (1)
checking grammar and expression at the sentence level, thereby providing local linguistic refinement;
(2) performing global polishing after the draft was completed, ensuring that the overall exposition
conforms to idiomatic English usage; and (3) improving the readability of the proof details presented
in the appendix.

At no stage were LLMs used for generating research ideas, developing arguments, or modifying the
substantive content of this work. Their sole role was to assist in enhancing clarity and effectiveness
of communication.

A WINDOW SELECTION POLICES

In this section, we first introduce the four algorithms (described in Table 7) we can choose from for
the sub-process designed for a window of the phasewin algorithm.

First, the most basic approach is to apply greedy search within the window, which is also the slowest.
Our three subsequent designs all use the submodularity assumption to varying degrees to reduce the
number of searches within the window. πBA uses an adaptive scaling search strategy, πT2

considers
two elements with the smallest reduction in combined return, and πBAF reduces the number of
comparisons by maintaining an upper bound list.

Table 7: Window selection policies π(·) used within the WindowSelection subroutine.

Policy Description
πLG Local-Greedy: Picks the top candidate if its gain exceeds τsel.
πBA Beta-Adaptive: Selects all candidates above an adaptive cut-off based

on the window’s max gain.
πT2 Top-2: Jointly selects the top two candidates if their gains are high and

their relative gap is small.
πBAF−B Batched Best-Above w/ Forward-checking: Processes the window in

batches, using cached gains to terminate early and reduce evaluations.

B COMPLETE ALGORITHM PROCESS

The algorithm operates in discrete phases. At the start of each phase, it performs a full evaluation on
all remaining candidate regions (R) and greedily selects the single best region to anchor the current
search state. This ensures consistent progress. Based on the maximum marginal gain (Gt) observed
in this step, it computes two adaptive thresholds: a selection threshold τsel to identify high-potential
candidates and a pruning threshold τdel to discard low-utility regions. This adaptive pruning strategy
dynamically narrows the search space, focusing computational resources on the most promising
regions.

For the initial phases (controlled by a hyperparameter mactive), PhaseWin employs a sliding window
of size w over the sorted candidate pool Pt. Within this window, a selection policy π(·)—such as
Beta-Adaptive (BA)—is applied to identify a batch of one or more regions for selection. This allows
the model to select complementary regions simultaneously, a capability absent in naive greedy search.
To further refine the candidate evaluation, a simulated annealing mechanism may defer the entry
of lower-scoring regions into the window, allowing more promising candidates to be assessed first.
After mactive phases, the algorithm transitions to a simplified greedy selection over the candidate
pool to ensure convergence.

A key innovation of PhaseWin is its dynamic phase supervision. We monitor the sequence of marginal
gains of the selected regions, ∆i = F(Si) − F(Si−1). If the current gain drops precipitously
compared to the previous one (i.e., ∆i < θ ·∆i−1, where θ is an adaptive supervision coefficient),
it signals a potential breakdown of local submodularity. In this event, the algorithm calculates a
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probability pexit to terminate the current phase prematurely. This probabilistic exit prevents the
algorithm from wasting evaluations on a sequence of diminishing returns and allows it to restart with
a new anchor region. The complete procedure is detailed in Algorithm 1.

C EVALUATION METRICS

Faithfulness. To assess how well an attribution map reflects the model’s reasoning, we compute
the Insertion and Deletion AUC scores, which quantify the change in model output as the most (or
least) important superpixels are progressively revealed or removed Petsiuk et al. (2018). We apply
these metrics both to classification confidence and to Intersection-over-Union (IoU), thus capturing
the attribution’s influence on recognition and localization. We further measure the highest confidence
score for any predicted box with IoU > 0.5 relative to the target. For failure cases, we evaluate the
Explaining Successful Rate (ESR), which measures whether a saliency map can guide the model to a
correct detection for initially misclassified or low-confidence predictions.

Localization Accuracy. We use two established metrics: (i) the Point Game, which checks whether
the most salient pixel lies inside the ground-truth bounding box, and (ii) the Energy Point Game,
which extends this by considering the energy concentration of saliency around the target Zhang et al.
(2018). These metrics are evaluated only on correctly detected samples.

Efficiency. To provide a fair and hardware-agnostic cost measure, we introduce the Model Evalua-
tion Count (MEC) as our primary efficiency metric, where one unit corresponds to a single forward
pass through the model. The total MEC reflects the algorithm’s runtime cost. Additionally, we
define the Accuracy–Cost Ratio (AC-Ratio) as the primary performance metric (faithfulness score)
multiplied by 1000 and divided by the MEC. This ratio is most meaningful when the faithfulness
score meets a predefined quality threshold.

D IMPLEMENTATION DETAILS

In all experiments, the ground-truth bounding box btarget and its category c are provided as references
for generating attributions. Each image is segmented into 100 sparse sub-regions using the SLICO
superpixel algorithm, which serve as the interpretable units.

For Faster-VPS, we apply a window size of 16 when selecting from 50 sub-regions and 32 when se-
lecting from 100 sub-regions. Results are averaged over five random seeds, with variance consistently
below 2%.

As the scoring function is not strictly monotonic submodular, the stopping criterion is implemented
in a ratio-based form:

Sk−2

Sk−1
− Sk−1

Sk
≤ τ.

We use τ = 0.025 for 50 sub-regions and τ = 0.01 for 100 sub-regions. This criterion ensures
numerical stability across different settings.
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Algorithm 2 Phase-Window (PhaseWin) Search Algorithm

1: Input: A set of regions V , desired number of regions k, scoring function F(·,btarget, c).
2: Hyperparameters: Window size w, active window phases mactive, selection ratio αsel, deletion

ratio βdel, supervision coefficients {θt}.
3: Output: An ordered set S of k regions.
4: S ← ∅;R ← V; t← 0; ∆prev ←∞;
5: while |S| < k andR ≠ ∅ do
6: t← t+ 1;
7: // — Phase Initialization: Anchor Selection —
8: gr ← F(S ∪ {r},btarget, c) for all r ∈ R;
9: if max(gr) ≤ 0 then break;

10: end if
11: αbest ← argmax

r∈R
gr;

12: S ← S ∪ {αbest};R ← R \ {αbest};
13: ∆t ← gαbest

;
14: // — Candidate Generation and Pruning —
15: Re-evaluate gains gr for all r ∈ R; Let Gt = max

r∈R
gr;

16: τsel ← αsel ·Gt; τdel ← βdel ·Gt;
17: R ← {r ∈ R | gr ≥ τdel}; /* Prune low-gain regions */
18: Pt ← {r ∈ R | gr ≥ τsel} ∪ RandomSample({r ∈ R | gr < τsel});
19: Sort Pt in descending order of gain;
20: // — Window-Based or Degenerate Greedy Selection —
21: if t ≤ mactive then /* Windowing Mode */
22: Initialize window W with the top w elements of Pt;
23: while |W | > 0 and |S| < k do
24: A← π(W,F , τsel); /* Apply selection policy (e.g., BA) */
25: if A = ∅ then break;
26: end if
27: for all α ∈ A do
28: ∆i ← F(S ∪ {α}, . . . )−F(S, . . . );
29: if ∆i < θt ·∆prev then /* Dynamic Supervision Check */
30: Calculate exit probability pexit(∆i,∆prev, θt);
31: if rand() < pexit then goto end_phase;
32: end if
33: end if
34: S ← S ∪ {α}; ∆prev ← ∆i;
35: end for
36: Update window W by removing selected elements and refilling from Pt;
37: end while
38: else /* Degenerate Greedy Mode */
39: for all α ∈ Pt do
40: ∆i ← F(S ∪ {α}, . . . )−F(S, . . . );
41: if ∆i < θt ·∆prev then /* Dynamic Supervision Check */
42: Calculate exit probability pexit(∆i,∆prev, θt);
43: if rand() < pexit then break;
44: end if
45: end if
46: S ← S ∪ {α}; ∆prev ← ∆i;
47: if |S| ≥ k then break;
48: end if
49: end for
50: end if
51: end phase;
52: end while
53: return S;
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E FULL PROOF

In this section, we will introduce the proof of Theorem 3.1. Property 3.1 is a classic result of
combinatorial optimization. If you are interested in Property 3.1, you can find the relevant proof in
Edmonds (1970); Fujishige (2005).

Proof of Theorem 3.1.

Proof. If the parameter for AdaptiveThreshold is (α, γ) (for select and delete), the parameter for
WindowSelection when |S| = i is βi with βi increasing and αβi ≥ γ.

Let SPhaseWin = (v1, v2, . . . , vk), S0 = ∅ and Si = {v1, v2, . . . , vi}. Let ρu(V ) = F(V ∪ {u}) −
F(V ).

For each 1 ≤ i ≥ k such that vi is an element directly added into SPhaseWin without going into
WindowSelection, letRi to be the set of choosable elements before vi is selected, Di to be the set of
deleted elements after vi is selected in PartitionCandidates. Then we have

ai ≜ ρvi(Si−1) = max
j∈Ri

ρj(Si−1),

Di ≜ {j ∈ Ri | ρj(Si−1) < γai},
Vi ≜ {j ∈ Ri | ρj(Si−1) > αai};
Wi ≜ (ei,1, ei,2, . . . , ei,mi

) ⊆ Vi is the maximum sequence such that
ei,j = vi+j = argmax{ρe(Si+j−1) | e ∈ Si \ {ei,1, . . . , ei,j−1}} and

bi,j ≜ ρei,j (Si+j−1) ≥ βi+jbi,0 ≥ αβi+jai ≥ αβi+j max
j∈Ri

ρj(Si+j−1).

Thus for any 1 ≤ l ≤ k, we have

ρvl(Sl−1) ≥ αβl max
j∈Rl

ρj(Sl−1).

Since F is increasing and submodular, for any 1 ≤ l ≤ k we have

F(SOPT) ≤ F(Sl−1) +
∑

j∈(T\Sl−1)∩Rl

ρj(Sl−1) +

l−1∑
m=1

∑
x∈(T\Sl−1)∩Dm

ρj(Sl−1)

≤ F(Sl−1) +
k

αβl
ρvl(Sl−1) + kγ

l−1∑
m=1

ρvm(Sm−1)

=
k

αβl
F(Sl)− (

k

αβl
− 1− kγ)F(Sl−1).

Let λi =
αβi

k
and µi =

αβi

k
(

k

αβi
− 1− kγ), then we have

F(SPhaseWin) ≥ F(SOPT) · (λk + µkλk−1 + µkµk−1λk−2 + · · ·+ µkµk−1 . . . µ2λ1).

In particular, if βi = β for i = 1, 2, . . . , k, then

F(SPhaseWin) ≥
λ1(1− µk

1)

1− µ1
F(SOPT).

If k, α, β is big enough and γ is small enough, then

F(SPhaseWin) ≥ (1− 1

e
− o(1))F(SOPT).
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F SUBMODULARITY AND SUPERMODULARITY

F.1 DEFINITIONS

Let V denote a finite ground set of candidate regions and F : 2V → R be a set function that scores
any subset S ⊆ V .
Definition F.1 (Submodularity). A set function F is submodular if it satisfies the diminishing returns
property: for all A ⊆ B ⊆ V and α ∈ V \B,

F (A ∪ {α})− F (A) ≥ F (B ∪ {α})− F (B).

That is, the marginal gain of adding an element decreases as the context grows.
Definition F.2 (Supermodularity). A set function F is supermodular if it satisfies the increasing
returns property: for all A ⊆ B ⊆ V and α ∈ V \B,

F (A ∪ {α})− F (A) ≤ F (B ∪ {α})− F (B).

That is, the marginal gain of adding an element increases as the context grows.

F.2 OPTIMIZATION SIGNIFICANCE

Submodularity generalizes the notion of convexity to discrete set functions. Maximizing a monotone
submodular function under a cardinality constraint admits a simple greedy algorithm with a (1−1/e)-
approximation guarantee, which is provably optimal under polynomial-time complexity assumptions.
In contrast, supermodular functions exhibit cooperative effects, and their maximization is generally
intractable, while their minimization is often easier.

F.3 AUC CURVE PROPERTIES

In attribution evaluation, we consider the insertion process: progressively adding sub-regions
s1, s2, . . . into the image. Let

AUC(k) =
1

|V |

k∑
j=1

F ({s1, . . . , sj})

denote the cumulative insertion-AUC score up to step k.
Theorem F.1. If F is submodular, then the insertion AUC curve AUC(k) is concave in k. If F is
supermodular, then AUC(k) is convex in k.

Sketch. For submodular F , diminishing returns imply that the marginal gain F (S ∪ {s})− F (S) is
non-increasing in |S|. Thus, the discrete derivative of AUC(k) decreases with k, yielding concavity.
Conversely, if F is supermodular, marginal gains increase with k, so AUC(k) is convex.

F.4 IMPLICATIONS FOR DEEP LEARNING

Deep neural networks do not strictly satisfy either submodularity or supermodularity. Instead, their
attribution behavior reflects a hybrid of both: some features exhibit redundancy (submodular-like),
while others rely on synergy (supermodular-like). From the perspective of distributed computation,
submodularity and supermodularity describe not universal properties of the model but rather the
modes of feature aggregation. Submodularity corresponds to robust, redundant feature usage, while
supermodularity corresponds to cooperative, highly interactive feature combinations. These pat-
terns shed light on how models internally organize basic feature units, rather than providing exact
guarantees.

The two models we selected are, respectively, dominated by submodularity and supermodularity.
Below, we show the Insertion AUC curves (Figure 5) for Grounding DINO and Florence-2 on the
same sample. Their unevenness indicates that Grounding DINO exhibits submodularity most of the
time, while Florence-2 is almost universally submodular. Our algorithm achieved acceleration on both
models, and the difference in performance is precisely due to the difference between submodularity
and supermodularity.
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Grounding DINO: Submodular

Florence-2: Supermodular

Figure 5: Insertion AUC under Greedy (VPS). Grounding DINO is almost concave with only a few
exceptions, while Florence-2 is completely convex.

G ADDITIONAL VISUALIZATION RESULTS

In this section, we provide additional qualitative results to further illustrate the visual differences
between the original Visual Precision Search (VPS) and our accelerated Faster-VPS. Each figure
presents one representative example from different tasks and datasets. For each case, we show
side-by-side attribution maps highlighting how both methods localize critical regions that drive the
prediction of object-level foundation models. These examples complement the quantitative results in
Section 4, demonstrating that Faster-VPS preserves interpretability quality while achieving substantial
efficiency gains.

VP
S

Fa
st
er
-V
PS

2548

1800-2200

MS COCO RefCOCO

Figure 6: Comparison between VPS and Faster-VPS on Florence-2 for correctly detected samples in
MS COCO and RefCOCO. Both methods highlight semantically relevant regions, while Faster-VPS
produces equally faithful maps with far fewer evaluations.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

VPS Faster-VPS
2546-2550 400-700

Figure 7: Visualization on Grounding DINO (MS COCO misclassification). VPS and Faster-VPS
consistently attribute the incorrect prediction to the same misleading region, confirming that Faster-
VPS maintains interpretive fidelity even in failure cases.

VPS Faster-VPS
2546-2550 400-700

Figure 8: Visualization on Grounding DINO (LVIS misclassification). Both methods reveal the
background context responsible for confusion, with Faster-VPS matching the fine-grained localization
quality of VPS at lower computational cost.

VPS Faster-VPS
2546-2550 400-700

Figure 9: Visualization on Grounding DINO (MS COCO missed detection). VPS and Faster-VPS
identify the overlooked object region. Faster-VPS effectively reproduces the trajectory of evidence
accumulation with a fraction of the overhead.

VPS Faster-VPS
2546-2550 400-700

Figure 10: Visualization on Grounding DINO (LVIS missed detection). Faster-VPS successfully
recovers the same key evidence regions highlighted by VPS, showing its robustness on challenging
zero-shot categories.

VPS Faster-VPS
2546-2550 400-700

Figure 11: Visualization on Grounding DINO (RefCOCO grounding mistake). Both methods attribute
the grounding failure to distractor regions, while Faster-VPS provides nearly identical explanations
with significantly fewer model evaluations.
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