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Abstract

Missing values are a common problem in many supervised learning contexts. While
a wealth of literature exists related to missing value imputation, less literature has
focused on the impact of imputation on downstream supervised learning. Recently,
impute-then-predict neural networks have been proposed as a powerful solution
to this problem, allowing for joint optimization of imputations and predictions.
In this paper, we illustrate a somewhat surprising result: multi-layer perceptrons
(MLPs) paired with zero imputation perform as well as more powerful deep impute-
then-predict models on real-world data. To support this finding, we analyze the
results of various deep impute-then-predict models to better understand why they
fail to outperform zero imputation. Our analysis sheds light onto the difficulties of
imputation in real-world contexts, and highlights the utility of zero imputation for
tabular deep learning.

1 Introduction

Missing values are a ubiquitous problem for real-world tabular data problems. For supervised learning
tasks, dealing with missing values is paramount, as most supervised learning models cannot naturally
handle missing values. In such cases, imputation is a popular approach, where missing values are
replaced by estimates using the observed data. Substantial research exists related to imputation, but
often focusing on the imputation task itself rather than the impact on the downstream supervised
learning objective. Recent research suggests that accurate imputations in terms of reconstructing
the missing values are not necessary for optimal predictions, thus suggesting to jointly optimize
imputation and prediction to fully search the imputation space [10, 1].

Neural networks have recently gained more popularity as an alternative to tree-based models for
tabular supervised learning [12]. However, unlike trees-based models that can more naturally handle
missing values [16], there is no consensus on the best way to handle missing values for neural
networks. One promising direction which has been explored recently involves using one joint neural
network model for both imputation and prediction, thus directly learning the imputations best for
prediction [6, 10, 21, 14]. These deep impute-then-predict models are more efficient, since they learn
imputations and predictions all in one training stage, and also align with impute-then-predict theory
that advocates for such joint optimization [10].

Despite the promise of these recently proposed deep impute-then-predict models, this paper presents
an alternative and somewhat surprising conclusion: zero imputation often performs at least as well as
deep impute-then-predict models, if not better, on real-world supervised learning tasks with missing
values. To support this conclusion, we explore why these deep impute-then-predict models cannot
beat zero imputation. Our contributions are the following:

• To our knowledge, we are the first to compare multiple deep impute-then-predict pipelines to each
other on realistic supervised learning tasks, as well as to zero imputation as a baseline. These
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experiments show that impute-then-predict pipelines rarely outperform zero imputation for tabular
deep learning.

• We investigate why deep impute-then-predict models fail to beat zero imputation, revealing novel
insights into how the imputations of different deep impute-then-predict models differ and when
such imputations succeed or fail.

2 Deep Impute-Then-Predict

Deep impute-then-predict models employ one neural network for both imputation of missing values
and prediction of supervised labels, constrasting traditional approaches that use separate models
for imputation and prediction. There are multiple benefits, at least intuitively, for this deep impute-
then-predict setup. For one, using neural networks for both imputation and prediction allows for
joint optimization of the imputation and prediction models via backpropagation of the supervised
loss. Since the true values for the missing entries are not known, optimizing the imputation network
separately is less desirable, since the quality of the imputations cannot be assessed. Further, optimizing
imputations and predictions jointly is more efficient, since only one round of optimization is required,
and standalone imputations models can be considerably slower than supervised models [17].

2.1 Deep Impute-Then-Predict Models

A deep impute-then-predict model can be created by combining any imputation and prediction neural
networks, as long as both models can be optimized via a supervised loss. Nonetheless, some recent
papers have presented models specifically designed to be used together for both imputation and
prediction. We consider the following impute-then-predict models in this paper:

• NeuMiss: a deep impute-then-predict model inspired by the EM algorithm [9]. Under the assump-
tion that the complete data X is multivariate normal, NeuMiss uses a specialized neural network
to combine EM-like imputations with supervised predictions. Theory and experiments show that
NeuMiss works well for MCAR, MAR, and even certain MNAR data.

• supMIWAE: a deep impute-then-predict model that use a Variational Autoencoder (VAE) for
multiple imputation [6]. Instead of a normal supervised loss, supMIWAE optimizes an evidence
lower bound objective for the entire pipeline, including imputations and predictions.

• GRAPE: a deep impute-then-predict model based on graph neural networks [21]. A bipartite
graph is built from the features and samples of a tabular dataset, with edges only for observed
feature-sample pairs.

For each model, we also consider using the missing indicator method (MIM) to capture any infor-
mativeness in the missing values [17]. For MIM with SupMIWAE, we combine SupMIWAE and
NotMIWAE [5], which we call SupNotMIWAE, to incorporate MIM into the loss function, see
Appendix D for more details.

2.2 Other Related Work

Despite significant research on imputation, including using deep learning [3, 20, 11], much less
previous work has focused on the impact of imputation on supervised learning. Other than the
aforementioned deep impute-then-predict papers, some papers on decision trees [16, 7] and some
empirical studies [2, 19] have studied the impact of imputation on supervised learning. Additionally,
some previous work has advocated for simple alternatives like zero imputation. For one, the missing
indicator method often pairs with zero imputation [17]. Specific to neural networks, some recent
tabular deep learning models propose using zero imputation to handle missing values [15, 4].

3 Experiments

3.1 Setup

We empirically evaluate the deep impute-then-predict models discussed in Section 2.1 compared to
the baseline of an MLP model with zero imputation. Since all 3 deep impute-then-predict models
we consider use MLPs for prediction, all 4 methods (including zero imputation) we consider differ
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Figure 1: Prediction and imputation scores (lower is better) for deep impute-then-predict models on
various OpenML datasets, with and without MIM. Datasets without results for GRAPE were too
large for GRAPE to terminate.

in architecture only in their imputation networks. We select several datasets from OpenML [18]
that initially have no missing values for evaluation (see Table 1 in Appendix A). For each dataset,
we generate missing values using a missing completely at random (MCAR) missing mechanism
(for results on missing not at random (MNAR) data, see Appendix B). For each dataset and model
combination, we run 5 trials with different random seeds as well as different missing masks. We
report 1 - AUC for binary classification tasks, 1 - accuracy for multiclass classification tasks, and
RMSE for imputation error and regression tasks (so lower is always better). Additional experiment
details are available in Appendix A, and code to reproduce the results is available 1.

3.2 Main Results

The top panel of Figure 1 shows the performance of the selected deep impute-then-predict models
and zero imputation (MLP) on the OpenML datasets with MCAR missing values. Even though
non-zero imputation is usually most effective on MCAR data, zero imputation has very competitive
performance compared to the deep impute-then-predict models. These results illustrate the utility
of zero imputation, especially since it is more simple and more efficient than the deep impute-then-
predict models, and it allows imputed values to be ignored by gradient updates (see Appendix C for
details).

3.3 Analysis

Why does zero imputation perform as well as deep impute-then-predict models? On the one hand,
theory [1, 10] suggests that any imputation can result in a Bayes optimal model given a powerful
enough prediction function. On the other hand, finding such a powerful prediction function in practice
is challenging if not impossible, and thus it is reasonable to think jointly optimizing imputation and
prediction would yield the best performance.

What imputations do deep impute-then-predict models produce? Do deep impute-then-predict
models try to reconstruct the missing values? If not, do they make imputations that follow some
noticeable pattern? Answers to these questions do not appear in previous literature, including in
papers that propose deep impute-then-predict models. The bottom panel in Figure 1 shows the
imputation RMSEs for each model. In many cases, the deep impute-then-predict models do not
reconstruct the missing values more accurately than zero imputation. This is somewhat surprising,
since reconstructing the missing values is easier with MCAR missing values, yet these models either
cannot find such imputations with lower imputation RMSE, or do not think they are better. Further,
Figure 2 shows that the deep impute-then-predict models (except GRAPE) tend to find imputations
with Gaussian-like distributions, despite the true values being clearly non-Gaussian (see Figure 5

1https://anonymous.4open.science/r/deep-impute-then-predict-2712/README.md
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in the Appendix for more imputation distribution plots). The NeuMiss imputations additionally are
centered below 0, indicating a bias towards imputing under the true values.

When is it possible to beat zero imputation? When deep impute-then-predict models can out-
perform zero imputation on synthetic data (as in [5, 10]), what is unique about the synthetic data,
and what imputations do the models produce? To investigate, we run NeuMiss and SupMIWAE
on synthetic data generating as in [9] (we exclude GRAPE due to inefficiency), using the latent
dimension (rank) of the data covariance matrix as a proxy for imputation difficulty, with a smaller
latent dimension resulting in imputation easier. The results are shown in Figure 3. When imputation
is easier (smaller latent dimension), the deep impute-then-predict models are able to significantly
outperform zero imputation, as expected. When imputation is harder (larger latent dimension),
however, SupMIWAE is much worse than zero imputation, while NeuMiss performs comparably to
zero imputation (likely because the assumptions for NeuMiss are met on the synthetic data). This
result suggests that the deep impute-then-predict models struggle to beat zero imputation in Figure 1
because imputation is too challenging on real-world data, even with MCAR missingness. Looking
at the imputation reconstruction errors is also insightful: SupMIWAE finds imputations that try to
reconstruct the missing values, while NeuMiss does not, yet both are successful with sufficiently
small latent dimension. This serves as an example that imputations with large RMSE can outperform
zero imputation, but only when imputation is sufficiently easy.

4 Conclusion

We present an analysis of various strategies for neural networks to manage missing values in tabular
supervised learning. A very useful finding emerges: zero imputation performs as effectively as, if not
better than, complex deep impute-then-predict models in terms of supervised loss. This observation
underscores the utility of zero imputation as a easy, reliable, and efficient strategy for tabular deep
learning. Furthermore, by analyzing the imputations discovered by deep impute-then-predict models,
we find that these models vary in what imputations they produce, and can outperform zero imputation
only when imputation is sufficiently easy. We hope that this paper guides practitioners in treating
missing values in tabular deep learning, and promotes researchers to consider strategies other than
standard deep impute-then-predict models for future papers on missing values.
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Figure 4: Results parallel to Figure 1 but for data with MNAR missing values.

A Additional Experiments Details

For all datasets, we do a 60/20/20 train/validation/test split. All features are standardized by subtract-
ing by the mean and dividing by the standard deviation over the observed values on the training data.
Note that zero imputation is equivalent to mean imputation after standardization. We run 5 trials and
average the results for all experiments. Error bars in each result are the standard errors of the mean.
We use the Adam optimizer [8] with a learning rate of 1e-4. We train each model for a maximum
of 100 epochs, and early stop any trials that do not improve performance on the validation set for 5
consecutive epochs.

To generate missing values, for MCAR we mask each feature value with a probability of 0.5.
For MNAR missing values (see Appendix B), we generate missing values following [17] with an
informativeness parameter γ of 2. Once values are masked, we only use the underlying true values to
calculate imputation RMSE, not for any part of training.

Lastly, Table 1 below describes the OpenML datasets used for our experiments.

Table 1: OpenML data sets used.

OpenML ID Name n p Task n_classes

23512 higgs 98050 28 binary 2
41150 miniboone 130064 50 binary 2
41145 philippine 5832 309 binary 2
41142 christine 5418 1599 binary 2
1489 phoneme 5404 5 binary 2
41166 volkert 58310 147 multiclass 10

B Results on MNAR Data

The results in Section 3 focus on data with MCAR missing values. However, real-world data often
has missing values that follow some MNAR mechanism, e.g. informative missingness in healthcare
data [17, 13]. Thus, we also run experiments to analyze the performance of deep impute-then-predict
models on MNAR data. We generate MNAR missing values following [17] using an informativeness
parameter γ of 2. The results are shown in Figure 4. Similarly to the MCAR case, MLP with
zero imputation performs as well as the deep impute-then-predict models. Unlike the MCAR case,
however, the missing indicator method boosts performance almost all models, and MLP with MIM
achieves as good performance as any other method. This supports the conclusions in [17] that
zero imputation with MIM is a generally strong way to handle missing values when optimizing for
supervised learning.
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C Zero imputation in Neural Networks

Mean imputation (or zero imputation are standardization) is perhaps the most common approach for
imputing missing values across all supervised learning models. For neural networks, though, zero
imputation is somewhat unique amongst imputation approaches. Consider the first layer of a neural
network as a linear layer

h = Wx+ b =
∑
i

wixi + b, W = [w1 w2 · · · wp] (1)

for input x ∈ Rp, weight W ∈ Rd×p, and bias b ∈ Rd. If xi is imputted with 0, then the
corresponding terms disappears in the sum in Equation 1. Further, the derivative of h with respect to
wi is

∂h

∂wi
= xiI (2)

where I is the d× d identify matrix. Thus, if xi is imputed with 0, then ∂h/∂wi = 0 (where 0 here
means the d× d matrix of all zeroes). Since the derivative is 0, assuming standard gradient decent,
wi will receive no update during backpropagation. Therefore, the weights connected to the missing
entry are not updated when the missing entry is imputed with 0. In other words, the network only
updates the weights in the first layer corresponding to the entries that are observes, allowing the
missing entries to be ignored in a sense. This is desirable behavior, and may partially explain why
zero imputation achieves pretty strong performance in our experiments.

D MIM with SupMIWAE

For NeuMiss and GRAPE, it is straightforward to incorporate MIM by concatenating the indicator
features to the output of the imputation network. With SupMIWAE, however, the imputation and
prediction networks are optimized via an evidence lower bound (ELBO) that needs to be adjusted to
incorporate MIM. Let y be a supervised response and x a vector of features, partitioned into observed
parts xo and missing parts xm, and r the vector of missing indicators. SupMIWAE optimizes the
observed log-likelihood log pϕ,θ,ψ(y, xo, r) assuming the latent variable model

log pϕ,θ(Y,Xo) = log

∫
pϕ(Y | Xo, Xm)pθ(Xo, Xm | Z)pθ(Z)dZdXm. (3)

This log-likelihood can be maximized by maximizing the ELBO:

ELBOsupmiwae = Epθ(Xm|Z),qγ(Z|Xo)

[
log

1

K

K∑
i=1

pϕ(Y | Xo, X
i
m)pθ(Xo | Zi)p(Zi)

qγ(Zi | Xo)

]
, (4)

see [6] for more details. To incorporate MIM into this ELBO, instead of maximizing the observed
log-likelihood in Equation 3, we have to maximize the full log-likelihood

log pϕ,θ,ψ(Y,Xo, R)

= log

∫
pϕ(Y | Xo, Xm, R)pψ(R | Xo, Xm)pθ(Xo, Xm | Z)pθ(Z) dZ dXm (5)

where pϕ(Y | Xo, Xm, R) represents the prediction neural network that uses MIM. The correspond-
ing ELBO to maximize is

ELBOsup−notmiwae

= Epθ(Xm|Z),qγ(Z|Xo)

[
log

1

K

K∑
i=1

pϕ(Y | Xo, X
i
m, R)pψ(R | Xo, Xm)pθ(Xo | Zi)p(Zi)

qγ(Zi | Xo)

]
.

This combines the ideas from SupMIWAE (MIWAE for prediction) and NotMIWAE (MIWAE for
MNAR data) [5].
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Figure 5: Parallel figure to Figure 2 for the remaining features in the phoneme datasets. The trends
from Figure 2 are similar in the remaining features.
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