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Abstract

We show that the standard computational pipeline
of probabilistic programming systems (PPSs) can
be inefficient for estimating expectations and in-
troduce the concept of expectation programming
to address this. In expectation programming, the
aim of the backend inference engine is to directly
estimate expected return values of programs, as
opposed to approximating their conditional distri-
butions. This distinction, while subtle, allows us
to achieve substantial performance improvements
over the standard PPS computational pipeline by
tailoring computation to the expectation we care
about. We realize a particular instance of our ex-
pectation programming concept, Expectation Pro-
gramming in Turing (EPT), by extending the PPS
Turing to allow so-called target-aware inference to
be run automatically. We then verify the statistical
soundness of EPT theoretically, and show that it
provides substantial empirical gains in practice.

1 INTRODUCTION

Estimating expectations is at the center of many scientific
workflows. For example, the decision theoretic foundations
of most statistical paradigms, e.g. Bayesian decision theory,
are rooted in calculating the expectation of a loss func-
tion [Robert and Casella, 2004].

Carrying out this estimation often requires approximate
inference to be performed: we may not be able to directly
draw samples of the random variable we wish to calculate
the expectation of, or a simple Monte Carlo estimate might
produce problematically high variance.

Probabilistic programming systems (PPSs) provide a pow-
erful basis for encoding such inference problems and then
assisting with, or even fully automating, the approximation

of their solution [Gordon et al., 2014, van de Meent et al.,
2018]. In a PPS, programs are typically specified (often
indirectly) through an unnormalized density γ(x). Assum-
ing analytic solutions are not available, the role of the sys-
tem’s inference engine is now to construct an approximation,
π̂(x), for the distribution specified by the normalized den-
sity π(x) = γ(x)/Z, where Z is an unknown normalizing
constant and π(x) typically represents a conditional distri-
bution, such as the posterior in a Bayesian modeling setting.
This approximation can then be used in turn for downstream
tasks, such as approximating one or more expectations.

Though ostensibly very general, our key insight is that this
standard PPS computational pipeline—which is implicitly
followed by all contemporary PPSs that conduct inference
approximately (e.g. Bingham et al. [2019], Carpenter et al.
[2017], Cusumano-Towner et al. [2019], Ge et al. [2018],
Salvatier et al. [2016], Tran et al. [2016], Wood et al. [2014],
Mansinghka et al. [2014], Goodman and Stuhlmüller [2014],
Murray and Schön [2018], Minka et al. [2018])—can be
highly suboptimal when our ultimate aim is to estimate a
particular expectation, Eπ(x)[f(x)]. This is because such a
pipeline fails to perform estimation in a target-aware fash-
ion: it does not allow information about f to be exploited by
the inference engine, thereby forgoing the substantial empir-
ical gains that using information about f can yield [Torrie
and Valleau, 1977, Hesterberg, 1988, Wolpert, 1991, Oh and
Berger, 1992, Evans et al., 1995, Meng and Wong, 1996,
Chen et al., 1997, Gelman and Meng, 1998, Lacoste-Julien
et al., 2011, Owen, 2013, Golinski et al., 2019, Rainforth
et al., 2020]. Note here that it is not generally possible to in-
corporate the required information about f by adjusting the
model definition; fundamental changes to the computational
pipeline itself are required.

To address this, we introduce, and formalize, the concept of
expectation programming. Here an expectation program is
analogous to a probabilistic program, but its target quantity
of interest is the expected value of the program’s return
values, rather than their conditional distribution. This subtle
distinction leads to changes in the requirements for the pro-
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gram to be valid, and, critically, the estimation that must be
performed by the backend inference engine. This, in turn,
allows us to construct computational pipelines which are
target-aware, utilizing information in the program itself to
estimate expectations substantially more efficiently than can
be achieved by existing PPSs.

We realize our expectation programming concept through a
specific system we call EPT (Expectation Programming in
Turing), built upon the Turing PPS [Ge et al., 2018]. EPT
takes as input a Turing-style program and uses a combi-
nation of program transformations and existing inference
strategies to construct target-aware estimators via the TABI
approach of [Rainforth et al., 2020].

We formally demonstrate the statistical soundness of EPT,
proving that it produces consistent estimates under nominal
assumptions. We further show empirically that it can be
used to express and run effective inference for a number of
problems, finding that it produces estimates that are signifi-
cantly more accurate than conventional usage of Turing. As
part of this, we also implement a new annealed importance
sampling (AnIS) [Neal, 2001] inference engine for Turing,
finding that this allows for effective marginal likelihood es-
timation in a much wider array of problems than Turing’s
previously supported inference strategies.

To summarize, our key contributions are: a) identifying
the shortfall of existing PPSs when estimating expectations
and introducing the concept of expectation programming to
address this; b) developing EPT as a particular realization
of the expectation programming concept; c) formalizing the
notion of an expectation program and demonstrating the
statistical correctness of EPT; d) introducing a new AnIS
inference engine to Turing; and e) showing that EPT can
provide substantial empirical benefits over conventional use
of Turing on real problems.

2 BACKGROUND

2.1 TURING PROGRAMS AS DENSITIES

To provide a basis for introducing expectation programming,
we consider the PPS Turing (Ge et al. [2018], https://
turing.ml/dev/docs/using-turing/), but note that
the concepts introduced apply to PPSs in general. We pro-
vide a brief introduction to Turing here, along with our own
new formalism for the densities Turing program define by
extending the approach of Rainforth [2017, §4.3]. This is
necessitated by some technical intricacies of the expectation
programming approach. To assist with this, we will use the
following simple Turing program as a running example:

@model function model(y)
x ∼ Normal(0, 1)
@addlogprob!(0.1)
y ∼ Normal(x, 1)

end

A Turing program is defined similarly to a normal Julia func-
tion [Bezanson et al., 2017]: the @model macro indicates
the definition of a Turing model, with tilde statements inside
the body, e.g. x ∼ Normal(0, 1), to denote probabilistic
model components. Observed data can be passed in as a
formal argument to the function. If the variable name on
the left-hand side of the tilde statement is not part of the
arguments of the functions then it is interpreted as a random
variable.

Let x1:n denote the set of direct outputs from sampling
statements and y1:m the observed data. We can view Turing
programs as defining an unnormalized density γ(x1:n) (with
an implicit appropriate reference measure). To compute
the density for a given x1:n the program executes like a
normal Julia program, while keeping track of the density
of the current execution. Specifically, when Turing reaches
a tilde statement corresponding to a random variable, it
samples a value for xi, evaluates the density of this draw,
and factors this into the overall execution density. We denote
the density of the draw as gi(xi|ηi), where gi denotes the
form of the sampling statement and ηi its parameters. For
the tilde statements corresponding to the observed data, it
evaluates the density function hj(yj |φj)—where hj and φj
are analogous to gi and ηi respectively—and factors the
overall density accordingly.

Sometimes a user might want to add additional factors to
the density without using a tilde statement. For this, Turing
provides the @addlogprob!(log_p) primitive which mul-
tiplies the density of the current execution by an arbitrary
value exp(log_p). We use ψ1, . . . , ψK to denote all the
terms that are added to the density using @addlogprob!.

Putting these together, the unnormalized density defined by
any valid program trace can be written as

γ(x1:n) =

n∏
i=1

gi(xi|ηi)
m∏
j=1

hj(yj |φj)
K∏
k=1

exp(ψk). (1)

Our example program thus defines the den-
sity γ(x) = exp(0.1)N(x; 0, 1)N(y;x, 1), with
a fixed input y. Note here that everything (i.e.
n, x1:n, η1:n, g1:n,m, y1:m, φ1:m, h1:m,K, ψ1:K) can
be a random variable because of potential stochasticity
in the program path. However, using the program itself,
everything is deterministically calculable from x1:n, which
can thus be thought of as the ‘raw’ random draws that
dictate all the randomness of the program; everything else
is a pushforward of these.

2.2 TARGET-AWARE INFERENCE

Consider the problem of estimating an expectation of the
form Eπ(x)[f(x)] where f(x) is known, but π(x) cannot
be directly evaluated or sampled from. Namely, π(x) =
γ(x)/Z where γ(x) is a known unnormalized density, but Z
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is an unknown normalization constant (sometimes referred
to as the marginal likelihood or partition function).

The inference engines in PPSs like Turing are setup to ap-
proximate π(x) of this form. As such, the standard pipeline
to approximate an expectation using a PPS is to first ap-
proximate π(x) (e.g. with samples) and then use this to
approximate the expectation in turn.

Unfortunately, this ignores information about f and is there-
fore suboptimal if f is known [Golinski et al., 2019]. While
one might initially expect that information about f can be
easily incorporated through simple model adjustments, this
is unfortunately not the case in practice: any adjustments we
make will mean we need to estimate an additional corrective
factor on top of performing inference for the new model.
Indeed, naive approaches to incorporating information about
f , like adding |f(x)| as a density factor to the model, have
been found to typically worsen, rather than improve, the
final estimates [Rainforth et al., 2020].

Rainforth et al. [2020] recently showed that this issue
stems from fundamental limitations of the efficacy of us-
ing a single Monte Carlo estimator for such expectations.
Namely, through their Target-Aware Bayesian Inference
(TABI) framework, they show that by breaking down the
expectation into three parts:

Eπ(x)[f(x)] = (Z+
1 − Z

−
1 )/Z2, (2)

where Z+
1 =

∫
γ(x)f+(x)dx, Z−1 =

∫
γ(x)f−(x)dx,

Z2 =
∫
γ(x)dx, f+(x) = max(f(x), 0), and f−(x) =

−min(f(x), 0), and then estimating each term separately,
one can often achieve a substantially improved overall esti-
mator, Eπ(x)[f(x)] ≈ (Ẑ+

1 − Ẑ
−
1 )/Ẑ2.

The intuition here is that each individual term can often
be estimated more accurately in isolation than the original
expectation. To see this, first note that the three subcompo-
nents can be seen as the respective normalization constants
of the three densities

γ+1 (x) ∝ γ(x)f+(x),
γ−1 (x) ∝ γ(x)f−(x),
γ2(x) = γ(x).

(3)

The TABI framework now allows one to define a separate
estimator tailored to each of these problems. In general,
it allows one to repurpose any algorithm which provides
estimates of the normalization constant into a target-aware
inference algorithm by separately applying it to each of
γ+1 (x), γ−1 (x), and γ2(x). TABI can theoretically achieve
an arbitrarily low error for any fixed sample budget (≥ 3),
unlike standard approaches such as self-normalized impor-
tance sampling or MCMC whose expected error is lower
bounded, even when using an optimal proposal/sampler. The
achievable gains increase, both theoretically and empirically,
with the degree of mismatch between π(x) and π(x)f(x).

3 EXPECTATION PROGRAMMING

At a high level, expectation programming adapts probabilis-
tic programming systems to automate the estimation of ex-
pectations in a target-aware manner. As we now explain, an
expectation program is analogous to a probabilistic program,
but where the quantity of interest is the expectation of its
return values under the program’s conditional distribution,
rather than the conditional distribution itself.

3.1 FORMALIZATION

To formalize the concept of an expectation program, we first
statistically formalize probabilistic programs as follows.

Definition 1. A probabilistic program P in a probabilis-
tic programming language defines an unnormalized density
γ(x1:n) over the raw random draws x1:n ∈ X of the pro-
gram, which collectively we refer to as the program trace,
along with an implicitly defined reference measure µ.

We let π(x1:n) = γ(x1:n)/Z denote the normalized den-
sity with Z =

∫
X γ(x1:n)dµ(x1:n). Here π(x1:n) and

µ combined implicitly define the conditional probability
distribution specified by P , which we denote P(A) =∫
A
π(x1:n)dµ(x1:n).

To ensure that the induced probability measure of a program
is well-defined, we require that γ(x1:n) corresponds to a
valid unnormalized density. This guarantees that there is a
valid probability distribution the inference algorithm of the
particular PPS can converge to. We use this to formalize the
concept of a valid probabilistic program as follows.

Definition 2. A probabilistic program, P , is valid (and
defines a valid unnormalized probabilistic program density
γ(x1:n)) if and only if both of the following hold: γ(x1:n) ≥
0,∀x1:n ∈ X ; and 0 <

∫
X γ(x1:n)dµ(x1:n) <∞.

For Turing we have described how programs specify γ(x1:n)
in Section 2.1, but Definitions 1 and 2 apply more generally
and only require that we can derive an unnormalized density
function for a given program; a requirement that is satisfied
by most existing popular PPSs.

We can now formalize the concept of an expectation pro-
gram by associating return values to our program:

Definition 3. An expectation program, E , is a probabilistic
program (as per Definition 1) with an associated set of
return values F ∈ F ⊆ Rd that are a deterministic mapping
of the trace x1:n.

From this definition we see that expectation programs are
largely equivalent to probabilistic programs, indeed pro-
grams in any PPS that allows return values will also be
expectation programs provided their outputs are numeric
and fixed dimensional. However, as their underlying quan-
tity of interest is the expectation of their return values, E[F ],



they require a slightly different set of assumptions to ensure
validity as follows.

Definition 4. An expectation program E is valid if and only
if it is a valid probabilistic program and F is integrable.

Here the additional requirement of the expectation pro-
gram’s outputs being integrable essentially equates to requir-
ing that the expectation E[F ] exists and E[|Fi|] < ∞ for
each dimension Fi of F . This is generally a very weak re-
quirement, and strictly weaker than an assumption typically
implicitly made by existing PPSs when confirming the va-
lidity of their inference engines as discussed in Appendix B.

To link expectation programs back into our early expectation
notation, we now note that the requirement for the return val-
ues to be a deterministic mapping of the trace means that we
can write F = f(x1:n), such that E[F ] = Eπ(x1:n)[f(x1:n)].
Thus the formal definition of the function we are taking the
expectation of is that it is the full mapping from the raw
random draws to the returned values rather than what is lex-
ically written in any return statement(s). This is why, for
instance, it is still valid to have multiple different return
statements in a program; provided each return statement
defines the same number of return values. In practice, this is
not something we need to worry about when writing either
models or inference engines as the law of the unconscious
statistician relieves us from explicitly delineating the ran-
dom variable defined by our function (the expectation of
this random variable does not vary if we change the pa-
rameterization of our model). However, the distinction is
important for ensuring validity and to identify the precise
target function we wish to extract information about when
making the inference target-aware.

3.2 TARGET-AWARE INFERENCE ENGINES

The key idea of our expectation programming paradigm is
to use the formalisms from the previous section to set up
inference engines that exploit information from f to perform
target-aware estimation. As explained in Section 2.2, this
can lead to estimators that provide substantial performance
improvements over the standard PPS approach of simply
approximating π(x1:n), ignoring f(x1:n) completely.

Note that the approximate computation we are performing
here is fundamentally different to that of conventional in-
ference engines: we are estimating an expectation, rather
than approximating a conditional distribution. This means
the form of the outputs from our engine will change, while
we will have to exploit additional information about the
program. As such, we will generally need to make changes
to how the program itself is processed, rather than just im-
plementing a new inference engine in the existing PPS struc-
ture. Thankfully though, it will still usually be possible to
repurpose existing inference engines as part of an overall
target-aware estimation scheme, as we now show.

@expectation function expt_prog(y)
x ∼ Normal(0, 1) # x ∼ N (x; 0, 1)
y ∼ Normal(x, 1) # y ∼ N (y;x, 1)
return x^3 # f(x) = x3

end
expct_estimate, diagnostics =
estimate_expectation(expt_prog(2),
TABI(marginal_likelihood_estimator =
TuringAlgorithm(AnIS(),num_samples=100)))

Figure 1: An example of estimating an expectation with EPT.
Here estimate_expectation is our “do estimation” call
which takes in expectation program expt_prog (with input
y = 2) and an estimation method to apply (here a TABI
estimator using annealed importance sampling), and returns
an estimate for the expected return value of expt_prog.

3.3 EXPECTATION PROGRAMMING IN TURING

We now introduce a particular realization of the expectation
programming concept which we call Expectation Program-
ming in Turing (EPT). EPT builds on the PPS Turing to
provide a highly effective, and surprisingly simple, mecha-
nism to perform expectation programming. It allows users
to specify γ(x) analogously to how they would using Tur-
ing’s @model macro, and uses Turing’s return semantics
to define F and thus f(x).

The key component of the EPT is splitting up the estimation
of the desired expectation as per the TABI framework of
Section 2.2. To do so we use source-code transformations
to generate three different Turing programs, one for each of
the densities γ+1 (x), γ−1 (x), and γ2(x) (as per Equation (3)).
We then estimate the expectation by individually estimating
the normalization constant of each of these densities and
then combining them as per Equation (2). Generating valid
Turing programs allows us to leverage any inference algo-
rithm in Turing that provides marginal likelihood estimates
to estimate the quantities Z+

1 , Z−1 , and Z2. This modularity
means that we do not have to implement custom inference
algorithms that would only work with EPT.

Estimating expectations with EPT is done in two stages.
First, users define an expectation program with the
@expectation macro, which is a drop-in replacement for
@model, and an example for which is shown in Figure 1.
Using code transformations, @expectation automatically
generates the three Turing programs representing the den-
sities γ+1 (x), γ−1 (x), and γ2(x). This happens behind the
scenes and the user does not need to deal with the trans-
formed programs directly.

To estimate the expectation, the user then calls
estimate_expectation(expt_prog, method),
where method specifies the estimation approach to be
used. At present, the only supported class of methods is
TABI, which implements the previously explained TABI
estimators, but the syntax is designed to allow for easy
addition of hypothetical alternative approaches.



@expectation function expt_prog(y)
x ∼ Normal(0, 1)
y ∼ Normal(x, 1)
return x^3

end

@model function expt_prog(y)
x ∼ Normal(0, 1)
y ∼ Normal(x, 1)
tmp = x^3
@addlogprob!(log(max(tmp, 0)))
return tmp

end

Figure 2: The results of one of the three program transformations applied to the EPT @expectation program from
Figure 1 [left]. Presented is the transformation into a valid Turing @model program [right] corresponding to the density
γ+1 (x) ∝ γ(x)f+(x). The transformed code fragment is highlighted. The full transformation is slightly more complex due
to Turing’s internals. Appendix D shows the full source code transformation for this model.

EPT then estimates the normalization constants Z+
1 , Z−1 ,

and Z2 by running a Turing inference algorithm on each
Turing program generated by @expectation and combin-
ing the normalization constant estimates to form an estimate
of the expectation. In the example in Figure 1, we use TABI
with annealed importance sampling AnIS, which is a new
Turing inference algorithm that we have added to the system
for the purposes of this paper. TuringAlgorithm is a thin-
wrapper object storing the necessary information that allows
TABI to use a Turing inference method. AnIS can be substi-
tuted with any other Turing inference algorithm that returns
a marginal likelihood estimate. Here AnIS() implies the
use of some arbitrary default AnIS parameters regarding the
Markov chain transition kernel, and the number and spacing
of intermediate potentials used.

3.4 PROGRAM TRANSFORMATIONS

We now consider how to generate the Turing programs cor-
responding to each of the TABI densities. Note that expecta-
tion programs in EPT are also valid Turing models, i.e., re-
placing @expectation with @model yields a valid Turing
program. Such a program corresponds to the unnormalized
density γ2(x)=γ(x) without requiring any transformation
of the source-code.

To create a Turing program corresponding to γ+1 (x), we
need to multiply the unnormalized density of the unaltered
Turing program γ(x) by max(f(x), 0). This is achieved
using Turing’s aforementioned @addlogprob! primitive,
such that we can think of it as adding a new factor
max(f(x1:n), 0) to the program density definition in (1).
Our transformations are pattern matching procedures that
find all the return expr statements in the function body
and then a) create a new local variable tmp = expr (where
tmp is a unique identifier generated using gensym()), b)
insert a statement @addlogprob!(log(max(tmp, 0)))

before the return, and c) change the return state-
ment itself to return tmp. A concrete example of the
transformation is presented in Figure 2. The transfor-
mation for γ−1 (x) is analogous but inserts a statement
@addlogprob!(log(-min(tmp, 0))) instead.

Users can define multiple expectations by specifying mul-
tiple return values, while each individual return value

needs to almost surely be a numerical scalar. This en-
sures that each target expectation is well defined and
individually identified. For each return expression, we
apply our program transformation separately and derive
a corresponding TABI estimator for each. For exam-
ple, if we have return expr1, expr2, expr3, the
program transformation for {γ+1 (x)}2 would add the
statement @addlogprob!(log(max(expr2, 0))). Ap-
pendix I shows a full example of this.

3.5 VALIDITY OF EPT

We now formalize and demonstrate the statistical correct-
ness of the EPT approach. For simplicity, we will assume
throughout that programs almost surely return a single scalar
value (i.e. the probability that the return value fails to be a
well-defined scalar is 0). Generalization to programs with
multiple return values is straightforward (provided the num-
ber of return values is fixed) by considering each return
value separately in isolation (as EPT does itself).

Theorem 1. Let E be a valid expectation program in
EPT with unnormalized density γ(x1:n), defined on pos-
sible traces x1:n ∈ X , with return value F = f(x1:n).
Then γ+1 (x1:n) := γ(x1:n)max(0, f(x1:n)), γ−1 (x1:n) :=
−γ(x1:n)min(0, f(x1:n)), and γ2(x1:n) := γ(x1:n) are
all valid unnormalized probabilistic program densities. Fur-
ther, if {Ẑ+

1 }m, {Ẑ−1 }m, {Ẑ2}m are sequences of estima-
tors for m ∈ N+ such that

{Ẑ±1 }m
p→
∫
X
γ±1 (x1:n)dµ(x1:n),

{Ẑ2}m
p→
∫
X
γ2(x1:n)dµ(x1:n)

where
p→ means convergence in probability as m → ∞,

then ({Ẑ+
1 }m − {Ẑ

−
1 }m)/{Ẑ2}m

p→ E[F ].

Theorem 1, which is proved in Appendix B, shows that if
we have programs with the desired densities and we use
consistent marginal likelihood estimators for each, then our
resulting expectation estimates will themselves be consis-
tent. The latter is covered by the consistency of Turing’s own
inference engines. The former requires that our transformed
programs are valid Turing programs with the intended den-
sities. We now show that this is indeed the case.



Given an input EPT program E , EPT applies transforma-
tions to get the three Turing programs P+

1 , P−1 , and P2 with
γ+1 (x1:n), γ−1 (x1:n), and γ2(x1:n) as their respective den-
sities. To ensure that the transformations for γ+1 (x1:n) and
γ−1 (x1:n) are correct, we need to ensure that a) the inserted
code in our transformations is itself valid, b) the transfor-
mation does not have any unintended side effects, and c)
the new density terms add valid factors to the program den-
sity. The first is true as the operation of the transformed
sections of code are identical to the originals except for the
new @addlogprob! terms, which themselves produce no
outputs and, by construction, use only the variables that
are in scope. The second is guaranteed by ensuring that the
tmp variables are given unique identifiers that cannot clash
with each other or any other variables in the program. The
third follows from the restriction that each return value must
almost surely be a numerical scalar, coupled with the fact
that the added density factors (namely max(tmp, 0) and
-min(tmp, 0)) are non-negative by construction.

Thus, we have shown that EPT will produce a consistent
estimation of program expectations, under the assumptions
of Definition 4 and the consistency of the base inference
algorithms implemented in Turing.

4 RELATED WORK

Our focus is explicitly on the case of estimating expecta-
tions. Though a few papers [Gordon et al., 2014, Zinkov and
Shan, 2017] have provided alternative formalizations for the
expectation defined by a probabilistic program, none do this
from the perspective of directly targeting this expectation as
the quantity to estimate. Relatedly, a few languages provide
primitives to compute expectations analytically in the rare
situation where this is possible, such as Hakaru [Zinkov
and Shan, 2017] or λPSI [Gehr et al., 2020]. Unlike in our
setting, these do not require notable changes to the backend
computation from the standard inference setting because the
underlying problem remains the same: calculate an integral
analytically. The contributions of these works are thus some-
what tangential to our own, with our key message being
that estimating expectations efficiently requires a distinct
computational pipeline to that of modern PPSs.

Some PPSs also provide syntactic sugars for forming expec-
tation estimates from the samples produced by inference,
but these do not adjust the inference itself to exploit target
function information. For example, in Stan [Carpenter et al.,
2017] users can apply target functions to posterior samples
using the generated_quantities block. Similarly, in
Pyro [Bingham et al., 2019] the return values are stored
along with MCMC posterior samples, thus allowing expec-
tations to be estimated by taking empirical averages. PyMC3
[Salvatier et al., 2016] allows users to track deterministic
transformations of the latent variables. Turing itself also
provides a generated_quantities function, similar
to Stan (see Appendix C for an example).

5 EXPERIMENTS

We demonstrate the effectiveness of the EPT target-aware
inference methods on three problems: a synthetic numerical
example, an SIR epidemiology model, and a Bayesian hier-
archical model. Our EPT implementation and the code for
all experiments can be found at git.io/JZOqN.

The performance of EPT depends on the performance of the
chosen marginal likelihood estimator. At the time of writ-
ing, Turing provides implementations of Sequential Monte
Carlo [Del Moral et al., 2006] and Importance Sampling
(IS) as inference algorithms that provide marginal likeli-
hood estimates, but only allows using the prior as the pro-
posal which can never be target-aware. To address this issue,
we implemented a new Turing inference engine that uses
Annealed Importance Sampling (AnIS) [Neal, 2001] (see
Appendix A), chosen because of its ability to estimate nor-
malization constants in high dimensions [Wallach et al.,
2009, Salakhutdinov and Larochelle, 2010, Wu et al., 2017].

AnIS requires setting two hyperparameters: an anneal-
ing schedule and a transition kernel. Currently, users can
choose between two transition kernels: Metropolis-Hastings
(MH) implemented in AdvancedMH.jl [Turing Develop-
ment Team, 2020] and Hamiltonian Monte Carlo (HMC)
[Neal, 2011, Hoffman and Gelman, 2014, Betancourt, 2018]
in AdvancedHMC.jl [Xu et al., 2020]. To ensure a fair
comparison we use the same setup and hyperparameters for
both EPT’s backend and standard, non-target-aware AnIS.
We also compare directly to MCMC targeting the posterior
and using the same type of transition kernel as AnIS and
EPT. This transition kernel is MH in Section 5.1 and HMC
elsewhere. Detailed configurations are given in Appendix F.

To compare the performance of the estimators we look at
the effective sample size (ESS, see below) and the relative
squared error (RSE) δ̂ := (µ̂−µ)2/µ2, where µ denotes the
ground-truth value and µ̂ is the estimate. All our experiments
correspond to target functions which are always positive, so
we use Z1 to refer to Z+

1 as Z−1 = 0. Appendix E shows
how EPT can avoid computation for Z−1 when possible.

Both EPT and AnIS produce weighted samples {w`, x̂`1:n}`,
so we use ESS({w`, x̂`1:n}`) = (

∑
` w`)

2/
∑
` w

2
` .

EPT produces two sets of samples (for Z1 and
Z2 respectively), so we take our overall ESS as
min(ESSZ1 ,ESSZ2). For AnIS, we only produce one
set of samples (targeting Z2) but use them to estimate
both Z1 and Z2. Here ESSAnIS

Z2
can be calculated in

the normal way, but we have ESSAnIS
Z1

({w`, x̂`1:n}`) =
(
∑
` w`f(x̂

`
1:n))

2/
∑
`(w`f(x̂

`
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2. As MCMC produces
unweighted samples, we cannot directly calculate analo-
gous ESSs. Instead, we calculate an upper bound on the
true ESS by assuming that the autocorrelation between sam-
ples is zero, i.e. that samples are independent. ESSMCMC

Z2
is

then just equal to the number of samples produced, while
ESSMCMC

Z1
({x̂`1:n}`) = (

∑
` f(x̂

`
1:n))
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∑
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Figure 3: Relative squared error (RSE) and effective sample size (ESS) for the Gaussian posterior predictive experiment for
a given computational cost. This cost is normalized across approaches by using the same number of likelihood evaluations
and it has units of the combined number of samples used by EPT, which is equivalent to half the AnIS samples produced
or 1/(2n) of the number of MCMC samples produced, where n is the number of intermediary distributions used by AnIS.
The solid lines show the median of the estimator while the shaded region show the 25 % and 75 % quantiles. Medians and
quantiles are computed over 10 separate runs with different random seed for the posterior predictive problem. For the ESS
plot we are plotting min(ESSZ1 ,ESSZ2); note that our estimates are (quite loose) upper bounds for MCMC (see text).

Figure 4: RSE and ESS for the SIR experiment. Conventions as in Figure 3; results computed over 5 runs.

5.1 GAUSSIAN POSTERIOR PREDICTIVE

The first problem considered is calculating the posterior
predictive distribution of a Gaussian model with an un-
known mean, where γ(x) = N (x; 0, I)N (y;x, I) and
f(x) = N (−y;x, 12I) are the unnormalised density and
target function, respectively. We assume our observed data
is y = (3.5/

√
10)1 where 1 is a 10-dimensional vector of

ones. Using EPT we can express this expectation in just 5
lines of code—the full model is given in Appendix J. This
problem is amenable to an analytic solution so allows us to
compute the error of the estimates. Figure 3 compares the
performance of EPT, AnIS, and MCMC (here MH). We see
a clear benefit to using the target-aware inference algorithm
to estimate the expectation. EPT achieves a lower RSE, and
the ESS highlights the advantage of using separate estima-
tors for Z1 and Z2. Note that the high apparent ESS of
MCMC for small sample sizes is likely due to the looseness
of the bound, rather than the true actual ESS being large.

5.2 SIR EPIDEMIOLOGICAL MODEL

Our second problem setting is a more applied example based
on the Susceptible-Infected-Recovered (SIR) model of Ker-

mack et al. [1927] from the field of epidemiology. Assume
we face a disease outbreak. The government has provided
us with a function yielding the expected cost of the disease
which depends on the basic reproduction rate R0, which in-
dicates the expected number of people one infected person
will infect in a population where everyone is susceptible.
We seek to infer R0 and the expected cost of the outbreak.

The SIR model divides the population into three compart-
ments: people who are susceptible to the disease, those who
are currently infected, and those who have already recov-
ered. The dynamics of the outbreak are modelled by a set of
differential equations

dS

dt
= −βS I

N
,

dI

dt
= βS

I

N
− γI, dR

dt
= γI, (4)

with parameters β and γ. S, I and R correspond to the
number of people susceptible, infected and recovered, re-
spectively. The size of the total population isN = S+I+R.
Roughly, β models the constant rate of infectious contact
between people, while γ is the constant recovery rate of in-
fected individuals. From these parameters we can calculate
the basic reproduction rate R0 = β/γ. We assume γ to be
known, and we want to infer β and the initial number of



Figure 5: ESS plots for the Radon experiment. Conventions
as in Figure 3; estimates based on 10 runs/seeds.

infected people I0. The full statistical model and the cost
function (which is based on R0) is given in Appendix G.

This scenario is a good use case for EPT because we are
interested in estimating a specific expectation with high
accuracy. Our cost function has some outcomes which might
have low probability under the posterior but which incur
a very high cost. These outcomes are liable to be missed
by non-target-aware schemes, leading to extremely skew
estimators that almost always underestimate the expectation.

Figure 4 compares the performance of the estimators. Since
this problem is not amenable to an analytic solution, we esti-
mate the ground-truth using a customized IS estimator with
orders of magnitude more samples than estimates presented
in the plot (see Appendix F). EPT substantially improves
on the baselines, with MCMC (here HMC) failing to pro-
vide any meaningful estimate; it produces no samples where
f(x) is significant. EPT is able to overcome this through
its use of a separate estimator for γ(x)f(x). The fact that
MCMC does far worse than AnIS, despite neither being
target-aware, stems from the latter producing a greater di-
versity of (weighted) samples, a small number of which
land in regions of high f(x) by chance. To confirm that the
failure of MCMC is not due to the specific implementation
used we also computed results for this model in Stan, which
produced similar results, see Appendix L.

5.3 HIERARCHICAL CONCENTRATION MODEL

Our third problem setting is a Bayesian hierarchical model
for the radon concentration in households in different coun-
ties, adapted from Gelman and Hill [2006]. For the jth house
in county i, we would like to predict the log radon concentra-
tion yij inside the house. For each house we have a covariate
xij which is 0 if the house has a basement, and 1 if it does
not. With this setup, the model is defined as

µα ∼ N (0, 10), αi ∼ N (µα, 0.12), (5)
µβ ∼ N (0, 10), βi ∼ N (µβ , 0.22), (6)
ε ∼ HalfCauchy(0, 5), yij ∼ N (αi + βixij , ε). (7)

Table 1: Final estimates for the Radon experiments. Mean
and standard deviation estimated over 10 runs.

METHOD FINAL ESTIMATE

EPT 3.74e−8 ± 2.39e−9
ANIS 1.15e−9 ± 3.02e−9
MCMC 7.79e−18 ± 2.46e−17

We now want to find out whether the radon level in all
households is below an acceptable level, taking this thresh-
old to be 4pCi/L. The probability of this event is equal to
the expectation under the posterior of a step function f(x).
However, to allow the use of HMC transition kernels we use
a logistic function as a continuous relaxation of this step
function. See Appendix H for more details.

This problem cannot be solved analytically and estimating
the ground-truth with sufficient accuracy is computation-
ally infeasible. We, therefore, resort to comparing EPT and
AnIS based on their ESSs, noting that a low ESS almost
exclusively means a poor inference estimate, while a high
ESS is a strong (but not absolute) indicator of good perfor-
mance. As we can see in Figure 5, EPT outperforms standard
AnIS by several orders of magnitude. Additionally, Table 1
presents the final expectation estimates for each method. All
methods differ in their estimates. However, EPT is the only
one where the standard deviation of the estimate is small
relative to its mean estimate, which, coupled with our ESS
results, provides strong evidence that it is significantly out-
performing the baselines. In particular, it seems clear that
the MCMC (here HMC) estimate is very poor: the fact that
its estimate is many orders of magnitude smaller than the
others, coupled with its extremely low ESS (despite ignor-
ing sample correlations), shows that it is failing to produce
any samples in regions where f(x) is non-negligible.

6 CONCLUSION

We have introduced the concept of expectation program-
ming which describes the process of encoding expectations
programmatically and automating their estimation in an ef-
ficient, target-aware manner. This concept is realized by
extending the PPS Turing to EPT using a combination of
program transformations and target-aware estimators. We
have shown that EPT estimates expectations effectively in
practice, while its modularity means that it can easily be
built on by others. Moreover, we believe the introduction of
the high-level expectation programming concept can pave
the way for exciting future advances. While EPT focuses
on the automation of TABI estimators, other implementa-
tions focusing on different approaches are conceivable—for
example, systems targeting the automatic synthesis of con-
trol variates for a given input program—just as there are
different PPSs focusing on distinct inference algorithms.
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