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Abstract

Federated learning (FL) emphasizes decentralized training by storing data locally1

and transmitting only model updates, underlining user privacy. However, a line2

of work on privacy attacks undermines user privacy by extracting sensitive data3

from large language models during FL.Yet, these attack techniques face distinct4

hurdles: some work chiefly with limited batch sizes (e.g., batch size of 1), and5

others can be easily defended or are transparently detectable. This paper introduces6

an innovative approach that is challenging to detect and defend, significantly7

enhancing the recovery rate of text in various batch-size settings. Building on8

fundamental gradient matching and domain prior knowledge, we enhance the9

recovery by tapping into the input of the Pooler layer of language models, offering10

additional feature-level guidance that effectively assists optimization-based attacks.11

We benchmark our method using text classification tasks on datasets such as CoLA,12

SST, and Rotten Tomatoes. Across different batch sizes and models, our approach13

consistently outperforms previous state-of-the-art results.14

1 Introduction15

Language models trained under the Federated Learning paradigm play a pivotal role in diverse16

applications such as next-word predictions on mobile devices and electronic health record analysis in17

hospitals (Ramaswamy et al., 2019; Li et al., 2020). This training paradigm prioritizes user privacy18

by restricting raw data access to local devices and centralizing only the model’s updates, such as19

gradients and parameters (McMahan et al., 2017). While the FL framework is created to protect user20

privacy, vulnerabilities still persist. In the realm of Computer Vision (CV), there has been significant21

exploration, especially regarding image reconstruction attacks (Geiping et al., 2020; Yin et al., 2021;22

Jeon et al., 2021). In contrast, the Natural Language Processing (NLP) domain remains largely23

uncharted (Balunovic et al., 2022; Gupta et al., 2022).24

Recent studies have investigated vulnerabilities of training data in Federated Learning when applied25

to language models (Zhu et al., 2019; Deng et al., 2021). These researches generally fall into two26

categories: Malicious Attack and Eavesdropping Attack. Malicious attacks typically come from27

compromised servers that release malicious parameter updates or even alter model architectures to28

covertly acquire user data (Fowl et al., 2021, 2022; Boenisch et al., 2023). They are usually obvious29

and can be easily detected by examining predefined architectures or using real-time local feature30

monitoring (Fowl et al., 2022). On the other hand, eavesdropping attacks are subtle, making them31

harder to detect. Adhering to the honest-but-curious principle, adversaries leverage gradient data32

and prior knowledge to extract sensitive information (Zhu et al., 2019; Deng et al., 2021; Balunovic33

et al., 2022; Gupta et al., 2022). However, their efficacy is contingent on conditions like minimal34

batch sizes, with performance degradation as batch sizes grow, as noted by Balunovic et al. (2022).35
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Different from these findings, our research introduces a robust strategy that is difficult to both detect36

and counteract, significantly amplifying the effectiveness of the attack.37
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Figure 1: Architecture overview of our proposed attack mechanism on language models. A1: Subtle
modification of architecture and strategic weight initialization. A2: Two-layer-neural-network-based
reconstruction. B: Continuous optimization with gradient inversion and feature match. B: Discrete
optimization with gradient matching loss and perplexity from pre-trained language models.

Improved text privacy attack by leveraging unique feature information Upon examining the38

current vulnerabilities in FL, we have identified an issue with the gradient-based attack: the gradient39

will be averaged in the context of large batch sizes and long sentences, thereby diluting the embedded40

information and reducing the attack’s effectiveness. To address this challenge, we propose an inno-41

vative solution by recovering the intermediate feature to provide enhanced supervisory information.42

Specifically, we focus on Transformer-based language models equipped with a unique Pooler layer.43

This layer handles the final hidden state of the [CLS] token, capturing a comprehensive representation44

of the input text. Subsequently, we employ a two-layer-neural-network-based reconstruction tech-45

nique to meticulously retrieve the inputs destined for this layer. In this way, our method introduces46

a fresh continuous supervisory signal besides gradients by leveraging the recovered intermediate47

features as a reference point. When combined with gradient inversion and prior knowledge, our ap-48

proach consistently outperforms previous ones on a range of benchmark datasets and varied scenarios49

(where batch size > 1), underlining its resilience and versatility.50

Main Contributions Our main contributions are described as follows:51

1. Technical Contribution in Attack Method: We are the first to suggest utilizing intermedi-52

ate features as continuous supervised signals for text privacy attacks.53

2. Advancement in Intermediate Features Recovery: We pioneered refining a two-layer-54

neural-network-based reconstruction method in practical deep language models, successfully55

recovering intermediate features.56

3. Superiority in Diverse Settings: Our method consistently outperforms others across57

various benchmarks and settings by leveraging gradients, priors knowledge, and intermediate58

features, highlighting its robustness and adaptability.59

2 Related Work60

Federated learning, while emphasizing data privacy, is still vulnerable to privacy attacks. Specifically,61

in the realm of computer vision, model updates can be manipulated to reveal sensitive data, enabling62

almost perfect image recreation (Phong et al., 2017; Zhao et al., 2020). Textual data, particularly with63

prevalent Transformer architectures, presents distinct challenges, as their design inherently conceals64

specific token details (Huang et al., 2021; Geiping et al., 2020). Two primary types of attacks for text65

emerge: Malicious Attacks, where the central server itself is the threat, embedding backdoors or66

facilitating training data reconstruction (Fowl et al., 2021, 2022; Boenisch et al., 2023; Balunovic67

et al., 2022); and Eavesdropping Attacks, where even a trustable central server’s shared parameters68

can be exploited to unearth private data (Zhu et al., 2019; Deng et al., 2021; Balunovic et al., 2022;69

Gupta et al., 2022). Unlike them, Wang et al. (2023) focus on theoretical models with limitations70

in real-world applicability. To overcome these limitations, this study introduces an attack approach71
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that aims to be difficult to detect and counter while improving the success rate of such attacks across72

diverse datasets and settings. More details about related work can be found in the appendix.73

3 Preliminaries74

3.1 Gradient Inversion and Prior Knowledge75

Gradient inversion poses a privacy threat in federated learning by potentially allowing for the recon-76

struction of input training data from once-queried gradients and known models. Despite federated77

learning’s decentralized approach to ensuring local data privacy, gradient inversion demonstrates78

vulnerabilities in this system. When recovering textual information, researchers often complement79

gradient inversion with prior knowledge from pre-trained language models like GPT-2, using their80

predictive capabilities to enhance text quality assessment. More details are provided in appendix.81

3.2 Two-layer-neural-network-based Reconstruction82

Wang et al. (2023) identified a gap in existing literature regarding the capability of gradient information83

to unveil training data. Their study demonstrates that it might be possible to reconstruct training data84

solely from gradient data using a theoretical approach within a two-layer neural network.85

Consider a two-layer neural network: f(x; Θ) =
∑m

j=1 ajσ(wj · x), with parameters defined as86

Θ = (a1, ..., am, w1, ..., wm). Here, m represents the hidden dimension. The objective function is87

represented as: L(Θ) =
∑B

i=1(yi − f(xi; Θ))2. A notable finding is that the gradient for aj is solely88

influenced by wj , making it independent from other parameters. This gradient is represented as:89

gj := ∇aj
L(Θ) =

B∑
i=1

riσ
(
wT

j xi

)
(1)

where the residual ri is given by ri = f(xi; Θ) − yi. For wide neural networks with random90

initialization from a standard normal distribution, the residuals ri concentrate to a constant, r∗i . By set91

g(w) :=
∑B

i=1 r
∗
i σ(w

⊤xi), gj can be expressed as gj = g(wj) + ϵ, where ϵ represents noise. Then92

the third derivative of gw is represented as:93

∇3g(w) =

B∑
i=1

r∗i σ
(3)(wTxi)x

⊗3
i (2)

The researchers postulated that if they can accurately estimate ∇3g(w), it is possible to determine94

{xi}Bi=1 by using tensor decomposition techniques, especially when these features are independent.95

They used Stein’s Lemma, expressed as: E[g(X)Hp(X)] = E[g(p)(X)] to approximate ∇3g(w) as:96

T = EW [∇3
W g(W )] = EW∼N(0,I)[g(W )H3(W )] ≈ 1

m

m∑
j=1

g(wj)H3(wj) = T̂ (3)

Where H3(wj) is the p-th order tensor product of wj . By leveraging this approach, they successfully97

reconstructed each unique xi. Their approach is predominantly theoretical and is mostly restricted to98

two-layer fully connected networks. Specifically, when applied to deeper networks, their method uses99

identity modules and other transparently detectable weight manipulations, which limits its practical100

use. In this work, instead of attempting to recover the input of a deep neural network directly, we101

aim to retrieve the intermediate features that serve as the subsequent optimization-based supervisory102

signals. Because we concentrate solely on a specific segment of the deep neural network, it becomes103

simpler to meet certain constraints. Further details will be provided in Section 4.1.104

4 Methodology105

Gradient inversion aims to reconstruct original training data using the gradients of deep-learning106

models, but it faces challenges due to nonconvexity and the problem’s over-determined nature, making107
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it an NP-complete issue (Wang et al., 2023). Additionally, in recovering text input, averaging gradients108

for entire batches obscures individual token patterns, complicating precise token reconstruction. This109

raises the question: can a method offer an accurate feature-level supervisory signal to improve110

data reconstruction?111

4.1 Reconstruct Input of Pooler Layer112

The earlier research highlighted the potential to retrieve training data using only gradient data from113

a broad two-layer neural network (Wang et al., 2023). Notwithstanding its constraints, detailed in114

Section 3.2, and its inability to recover actual features (only their direction in the feature space), we115

shifted our focus. Instead of directly recovering deep neural network inputs, we now aim to recover116

their intermediate features. Intrigued by the prevalent Transformer architecture in language models117

like BERT, which commonly have a Pooler and Classifier, our goal is to reconstruct features for118

the Pooler layer. We hypothesize that these recovered intermediate features can present a unique119

supervisory signal, distinct from gradients and prior knowledge. This new pursuit entails adapting120

and honing techniques to cater to the specific needs of deep language models.121

Subtle Modification of Architecture: The initial configuration of language models often sets the122

hidden dimension of the Pooler layer to match the input dimension (For BERTBASE, it’s 768). This123

setting is insufficient to promise the accuracy of tensor decomposition when applying the two-layer-124

neural-network-based reconstruction method. To address this limitation, we expand the dimension125

of the Pooler layer to match the vocabulary size of the language models (For BERTBASE, this was126

adjusted from 768 to 30,522). The rationale behind this change is grounded in enhancing the model’s127

expressiveness while ensuring our modifications are not easily detectable.128

Moreover, our empirical observations indicated that the original activation function struggles to work129

harmoniously with the recovery method, leading to inaccurate information retrieval. This challenge130

arises due to its ith derivatives resulting in zero expectations, expressed as EZ∼N(0,1)[σ
(ith)(Z)] = 0,131

and leads to an inaccurate estimation of T̂ as described in Equation 3. To counter these challenges,132

we replace the Tanh function after the Pooler layer with two alternative functions: SELU or σ(x) =133

x3 + x2. Neither of these functions is strictly odd or even, which counter issues from derivatives. It’s134

worth noting that SELU, a commonly used activation function in deep learning, is less likely to draw135

attention. On the other hand, our empirical tests of the cube+square function indicate that while it136

compromises concealability, it offers enhanced attack performance in specific scenarios.137

Strategic Weight Initialization: We introduce key notations first: X is the input to the Pooler layer138

with a shape of (B, d), where B is the batch size and d is the feature dimension. The weights W1 and139

W2 correspond to the Pooler and Classifier layers, respectively, with shapes (|V |, d) and (N, |V |).140

Here, |V | is the vocabulary size and N is the number of classification classes.141

As mentioned in Section 3.2, m signifies the hidden dimension in a two-layer neural network. Ideally,142

|V | should be equivalent to m in our setting. However, during our computation of T̂ as outlined143

in Equation 3, we noticed an anomaly in gj . Due to the random initialization of W1, a substantial144

portion of gj approached a value close to 0. This side effect impacts the subsequent decomposition145

procedure. To address this issue, rather than setting |V | = m, we determined m = |V | − d. This146

approach ensures the remaining dimensions are randomly initialized and adequate to promise the147

accuracy of tensor decomposition. Simultaneously, the original weights are retained in the new148

weight matrix, allowing us to obtain optimal gradients for W1 and W2. For the classifier layer, we149

utilize a strategy similar to that of the Pooler layer, adjusting the remaining dimensions to a constant150

(i/m, where i represents the class index for the classification task).151

Flexibility of the Recovered Dimension: Wang et al. (2023) suggests significantly expanding the152

hidden dimension m in comparison to the input dimension d to reduce the tensor decomposition153

error. In our setting, we let m = |V | − d. Given that |V | represents the vocabulary size, it sounds154

straightforward to utilize this value as the dimension of the Pooler layer. Any other configuration155

for m appears less intuitive. Thus, it’s reasonable for our choice, and there is no reason to adjust the156

hidden dimension any further. On the other hand, for a fixed d (768 for BERTBASE), determining157

the optimal value for m can be challenging without adjustments. Recognizing these constraints, we158

kept m constant and explored alternative methods to tweak d. Specifically, instead of attempting to159

recover the full dimension d, our strategy focuses on recovering a dimension d′ where d′ ≤ d. This160

approach sets the subweights (d : , d′ : ) of W1 to zero. Then the gradient gj in Equation 3 remains161
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functional but is exclusively tied to the subweights ( : , : d′) of W1. As a result, we embrace a more162

directed and efficient methodology by centering our reconstruction on the feature subset (B, d′).163

Challenges in Order Recovery of Features : When applying tensor decomposition techniques164

to retrieve features from T̂ , a significant issue arises when the batch size exceeds one: the exact165

order of the recovered features remains uncertain. Under adversarial conditions, one might try166

every conceivable permutation as a reference. However, we simplify the procedure by sequentially167

comparing each recovered feature to the actual input features with cosine similarity until the best order168

is discerned. In certain cases, a single recovered feature displayed a notably high cosine similarity169

with multiple actual inputs simultaneously. Interestingly, although a 1-m greedy relationship might170

exhibit a high correlation, it did not exceed the attack performance of a straightforward 1-1 match in171

the final outcome. Consequently, we adopted the 1-1 relationship to achieve the best attack result.172

4.2 Feature Match173

Following Balunovic et al. (2022), we have segmented our entire text retrieval process into three174

phases: Initialization, Optimization, and Token Swap. In the initialization and token swap stages, we175

aim to leverage certain metrics to identify optimal starting or intermediary points for the subsequent176

optimization phase. This method is also commonly recognized as discrete optimization. In this setting,177

we’ve chosen a mix of metrics to guide the choice, including gradient match loss and perplexity178

obtained from pre-trained language models. More details can be found in Balunovic et al. (2022).179

In the optimization stage, we propose to optimize the embeddings derived from input IDs and the180

features directed into the Pooler layer simultaneously. We use gradient match loss and cosine distance181

between the input of the Pooler layer with the recovered intermediate features from Section 4.1 to182

guide the optimization. Moreover, we oscillate between continuous and discrete optimization phases183

to bolster the final attack performance.184

5 Experiments185

5.1 Set Up186

In our study, we focus on three primary binary text classification datasets for a thorough evaluation,187

namely CoLA and SST-2 from the GLUE benchmark, and the RottenTomatoes dataset, each varying188

in sequence lengths Balunovic et al. (2022); Warstadt et al. (2018); Socher et al. (2013); Wang et al.189

(2019); Pang & Lee (2005). From these datasets, we randomly draw a subset of 100 sequences from190

the training sets for evaluation, a method supported by Balunovic et al. (2022). The main architecture191

we experiment on is BERTBASE (Devlin et al., 2018), using models that have undergone fine-tuning192

for two epochs, even adopting those models fine-tuned by Balunovic et al. (2022). GPT-2 is our193

chosen auxiliary language model to garner prior knowledge (Radford et al., 2019). We adopt the194

ROUGE metric suite, particularly ROUGE-1, ROUGE-2, and ROUGE-L for evaluating attack195

performance, where padding tokens are disregarded (Deng et al., 2021; Lin, 2004). Our methodology196

is benchmarked against three primary baselines: DLG, TAG, and LAMP, with the latter considered197

the pinnacle. We utilize the open-source LAMP’s framework for implementation, ensuring parity198

in experimental conditions when juxtaposing our approach with these baselines. All experimental199

aspects, including the choice of hyperparameters and evaluation, are designed for a fair and consistent200

comparison, with results averaged across five random seeds. More details can be found in appendix.201

5.2 Results and Analysis202

We present experimental results in Table 1. These findings clearly demonstrate that our approach203

outperforms all baselines (DLG, TAG, and LAMP) across various datasets and batch sizes. There’s204

an average improvement of up to 9.3% for ROUGE-1, 6% for ROUGE-2, and 7% for ROUGE-L.205

Examining the impact of batch size variations, we notice that launching an attack becomes more206

challenging as the batch size increases. All attack methods, including ours, exhibit a decline in attack207

performance. However, our method brings a more noticeable improvement at batch sizes 2 and 4,208

surpassing its efficacy at batch sizes 1 and 8. We posit that for a batch size of 1, where the gradient is209

only averaged solely over tokens, the benefit of incorporating the feature information is less evident210
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because the gradient information still plays a leading role in the optimization process. For a batch size211

of 8, the improvement scale is also not pronounced, we explore the background reason in Section ??.212

Table 1: Text privacy attack on BERTBASE with Different Batch Sizes and Datasets. R-1, R-2, and
R-L, denote ROUGE-1, ROUGE-2, and ROUGE-L scores respectively.

Method B=1 B=2 B=4 B=8
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

CoLA
DLG 59.3 7.7 46.2 36.9 2.6 31.4 35.3 1.4 31.9 16.5 0.8 7.9
TAG 78.9 10.2 53.3 45.6 4.6 36.9 35.3 1.6 31.3 33.3 1.6 30.4
LAMP COS 84.8 46.2 73.1 57.2 21.9 49.8 40.4 6.4 36.2 36.4 5.1 34.4
Ours SELU 86.6 51.5 76.7 69.5 31.2 60.6 50.5 11.8 43.9 40.8 8.3 38.1
Ours x3+x2 84.6 45.2 72.4 57.3 19.2 49.8 43.9 11.4 40.1 37.8 5.9 34.8
SST-2
DLG 57.7 11.7 48.2 39.1 7.6 37.2 38.7 6.5 36.4 36.6 4.7 35.5
TAG 71.8 16.1 54.4 46.1 10.9 41.6 44.5 9.1 40.1 41.4 6.7 38.9
LAMP COS 87.7 54.1 76.4 59.6 26.5 53.8 48.9 17.1 45.4 39.7 10.0 38.2
Ours SELU 90.3 59.0 78.2 71.0 35.3 63.4 58.6 26.3 54.2 45.4 11.5 43.2
Ours x3+x2 93.1 61.6 81.5 78.3 40.9 67.9 60.6 23.1 54.9 49.5 16.5 47.3
Rotten Tomatoes
DLG 20.1 0.4 15.2 18.9 0.6 15.4 18.7 0.4 15.7 20.0 0.3 16.9
TAG 31.7 2.5 20.1 26.9 1.0 19.1 27.9 0.9 20.2 22.6 0.8 18.5
LAMP COS 63.4 13.8 42.6 38.4 6.4 28.8 24.6 2.3 20.0 20.7 0.7 17.7
Ours SELU 71.9 19.2 48.7 48.1 8.2 34.2 33.0 4.23 25.3 24.6 2.0 20.6
Ours x3+x2 72.2 21.0 49.3 44.6 7.0 31.8 29.9 3.5 24.3 23.6 1.7 19.8

Turning our attention to variations in sequence length across datasets, we notice a clear trend: as213

sequences get longer, the benefit from intermediate features at a batch size of 1 becomes more214

pronounced. Specifically, for the CoLA dataset with token counts between 5-9, we see an average215

improvement in ROUGE metrics of 3%. This improvement grows to 5% for the SST-2 dataset216

with token counts from 2 to 13. For the Rotten Tomatoes dataset, which features even longer217

sequences with token counts ranging from 14 to 27, the average ROUGE metric improvement further218

increases to 8%. This suggests a correlation between sequence length and the extent of improvement219

observed. However, when the batch size exceeds one, the benefits observed for these three datasets220

are consistently notable. Recall that gradient averaging occurs only over tokens at a batch size of221

1, it implies that with longer sentences, the gradient information becomes less effective, leading222

to greater benefits from intermediate feature supervision signals. When batch sizes are larger than223

1, averaging happens over tokens and sentences simultaneously. This broadened scope results in224

our method consistently yielding pronounced benefits across sequences with different lengths. Our225

findings further reinforce the idea that relying exclusively on gradient information diminishes efficacy226

with larger batch sizes and longer sequences.227

Additionally, with the inclusion of feature information as a supervision signal, our method can recover228

not only a greater number of tokens but also more accurate token orderings. In comparison to other229

baselines, we can recover longer text sequences. The improvement in ROUGE-2 and ROUGE-L230

metrics supports these observations.231

6 Conclusion232

This paper presents a novel method for text privacy attacks that is difficult to detect and defend.233

Instead of solely relying on traditional gradients and prior knowledge, our approach incorporates234

unique feature-level information. Comprehensive empirical studies across various model architectures,235

datasets, and batch sizes affirm the effectiveness of our method.236
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A Appendix313

A.1 Federated Learning314

Introduced by McMahan et al. (2017), federated learning solves data privacy concerns by promoting315

decentralized model training. In this approach, models are refined using local updates from individual316

clients, which are then merged at a central server (Konečný et al., 2015, 2016, 2017). This field has317

attracted significant attention due to its potential business applications, underlining its relevance and318

promise in academia and industry (Ramaswamy et al., 2019; Li et al., 2020).319

A.2 Data Privacy Attack320

While federated learning features with data privacy, recent studies show that model updates (gradients321

and parameters) can be intentionally leveraged to uncover sensitive data (Phong et al., 2017; Zhao322

et al., 2020; Zhu & Blaschko, 2020; Zhu et al., 2019). This susceptibility is especially pronounced in323

the field of CV. In fact, some researchers have been able to recreate images almost perfectly by using324

gradients along with prior knowledge (Huang et al., 2021; Geiping et al., 2020; Yin et al., 2021; Jeon325

et al., 2021).326

Textual data poses unique challenges in the context of private data attacks, especially given the327

prevalence of Transformer architectures. In Transformer, gradients average across sequences and328

tokens, which inherently masks specific token details. Furthermore, the inputs, expressed as discrete329

token IDs, starkly contrast the continuous features found in image data. Nonetheless, numerous330

studies have highlighted the risks associated with textual information. Current research on this topic331

can be broadly categorized into two groups.332

Malicious Attacks: In this category, the central server has malicious intent. It may distribute333

networks with embedded backdoors or parameters that facilitate easy reconstruction of training334

data (Fowl et al., 2021, 2022; Boenisch et al., 2023). However, one can employ prefixed, recognized335

architectures to counter the former attack and guard against potential backdoor threats. For the latter336

attack, consistently monitoring statistics of features across different layers can help detect malicious337

parameter (Balunovic et al., 2022).338

Eavesdropping Attacks: This approach assumes a trustworthy central server. Even with its integrity,339

the shared parameters and gradients could still be leveraged to extract private data (Zhu et al., 2019).340

For example, methods introduced by Zhu et al. (2019) and Deng et al. (2021) employ optimization-341

based strategies using finely-tuned objective functions for data retrieval. Balunovic et al. (2022)342

leverages prior knowledge from extensive language models for data recovery. However, these343

methods tend to be less effective with larger batch sizes. Notably, the method introduced by (Gupta344

et al., 2022) remains effective even with considerable batch sizes. Nevertheless, this vulnerability can345

be easily defended by suspending updates to the language model’s embedding matrix.346

Recently, Wang et al. (2023) proposed a method that can reconstruct the inputs of a two-layer neural347

network using only the model structure and gradients. However, their approach is heavily theoretical,348

relying on various assumptions about the model. Moreover, when extended to deeper networks, their349

method imposes additional constraints by requiring more identity modules, significantly hindering its350

practical applicability. To address the shortcomings of prior research, our paper introduces a practical351

attack method that is not only challenging to detect and counteract but also aims to improve the352

success rate of attacks across diverse batch sizes and datasets.353

A.3 Re-Think Gradient Inversion354

Gradient inversion seeks to reconstruct the original training data by harnessing the gradients of a355

known deep-learning model. A closer look at this method reveals several challenges. Central to these356

is the nonconvexity of the issue, marked by the presence of numerous local minima that complicate357

the pursuit of the global optimum. Additionally, the problem is over-determined because it has358

more equations to resolve than unknown parameters. While these equations remain consistent, they359

complicate the optimization process. This complexity persists even when reduced to a single-sample360

scenario. As a result, gradient inversion remains an NP-complete problem, implying that procuring361

an exact solution within a feasible time frame is difficult (Wang et al., 2023).362
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When we take a broader perspective, a distinct challenge arises in recovering text input. Language363

models typically handle batches of sentences, each containing multiple tokens. In the gradient364

inversion technique, the gradients of the entire batch are averaged. However, this doesn’t only average365

the gradients for whole sentences but also for individual tokens within them. This process obscures366

the unique gradient patterns of each token, making their retrieval more complex. While the averaged367

gradient provides a general picture of the data, it conceals the finer details vital for precise token368

reconstruction. Given this intricacy, a pivotal question emerges: can we design a clever method by369

providing an accurate feature-level supervisory signal to enhance data reconstruction?370

A.4 Extend to Cross Entropy Loss371

Wang et al. (2023) grounded their research on the assumption that the loss function of the neural372

network is Mean Square Error (MSE). Building upon this foundation, we extend the method to the373

scenario of classification tasks utilizing Cross-Entropy Loss (CEL). In the classification context, the374

gradient of gj is calculated for all class outputs. While a straightforward approach might only random375

choose the gradient for a single class to satisfy the equation 3, we chose a more holistic method,376

leveraging the gradient of the pooler layer to compute T̂ rather than the classifier layer. Based on this377

methodology, the gradient of wj we derived is as follows:378

ĝj = ∇wj
L(Θ) =

B∑
i=1

riajσ
′ (w⊤

j xi

)
xi (4)

Let aj = 1
m ,∀j ∈ [m] and wj ∈ N(0, 1), by Stein’s lemma, we have:379

T1 =

m∑
i=1

ĝjH2(wj) (5)

=
1

m

B∑
i=1

r∗i xi ⊗

 m∑
j=1

σ′ (w⊤
j xi

)
(wj ⊗ wj − I)

 (6)

≈
B∑
i=1

r∗i xi ⊗ E
[
σ′ (w⊤

j xi

)
(wj ⊗ wj − I)

]
(7)

=

B∑
i=1

r∗i E
[
σ(3)(wTxi)

]
x⊗3
i (8)

= T (9)

By defining the tensors T2 and T3 such that: T2(i, j, k) = T1(k, i, j) and T3(i, j, k) =380

T1(j, k, i), we can deduce: T̂ =
T+T 2

3 +T3

3 ≈ T . This computation results in T̂ being symmet-381

ric. Wang et al. (2023) even observed that this method offers a more precise estimation when382

attempting to recover features. We also adopt this strategy in all our experiments.383

A.5 Set Up384

Datasets: Following previous work Balunovic et al. (2022), our experimental design incorporates385

three binary text classification datasets to ensure a comprehensive evaluation. Specifically, we utilize386

CoLA and SST-2 from the GLUE benchmark (Warstadt et al., 2018; Socher et al., 2013; Wang387

et al., 2019), with their sequences predominantly ranging between 5-9 and 3-13 words, respectively.388

Additionally, the RottenTomatoes dataset presents a more complex scenario with sequence lengths389

oscillating between 14 and 27 words (Pang & Lee, 2005). You may find more details about datasets390

in the appendix. Within the scope of our experiments, we utilize a subset of 100 randomly selected391

sequences from the training sets of these datasets as our evaluation benchmark, a method also392

endorsed by Balunovic et al. (2022).393

Models: We conduct experiments primarily on the BERTBASE (Devlin et al., 2018) architecture.394

Consistent with Balunovic et al. (2022), we use models that have undergone fine-tuning for down-395

stream tasks over two epochs. To ensure a fair comparison, we even adopt the same fine-tuned396
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models from Balunovic et al. (2022). As for the auxiliary language model employed to extract prior397

knowledge, we choose GPT-2 (Radford et al., 2019), a choice also used by Balunovic et al. (2022).398

Metrics: Following Deng et al. (2021) and Balunovic et al. (2022), we evaluate attack performance399

using the ROUGE metric suite (Lin, 2004). Specifically, we present the collective F-scores for400

ROUGE-1, ROUGE-2, and ROUGE-L. These metrics respectively assess the retrieval of unigrams,401

bigrams, and the proportion of the longest continuous matching subsequence relative to the entire402

sequence’s length. We omit all padding tokens in the reconstruction and evaluation phases.403

Baselines: We benchmark our approach against three key baselines: DLG, TAG, and LAMP. Among404

them, LAMP represents the state-of-the-art. We employ the open-sourced implementation from405

LAMP, which encompasses the implementations for all three baselines (Deng et al., 2021; Zhu406

et al., 2019; Balunovic et al., 2022). Following previous work, we assume the lengths of sequences407

are known for both baselines and our attacks, as an adversary can run the attack for all possible408

lengths (Balunovic et al., 2022).409

Implementation: Our method is implemented based on LAMP’s framework, utilizing the exact same410

datasets, evaluation metrics, and similar models. To ensure a fair comparison, we standardized the411

experimental conditions and settings when comparing our approach with baselines, particularly the412

state-of-the-art LAMP. We adopt all of LAMP’s hyperparameters, including the optimizer, learning413

rate, learning rate schedule, regularization coefficient, optimization steps, and random initialization414

numbers. For hyperparameters unique to our method, we made selections using a grid search on415

BERTBASE and shared them in different settings (LAMP also adopts this strategy). It’s also important416

to note that all our experiment results are averaged over five different random seeds.417

A.6 Datasets Details418

CoLA: The CoLA (Corpus of Linguistic Acceptability) dataset is a seminal resource for evaluating419

the grammatical acceptability of machine learning models in natural language processing. Consisting420

of approximately 10,657 English sentences, these annotations are derived from various linguistic421

literature sources and original contributions. The sentences are categorized based on their grammatical422

acceptability. Spanning a comprehensive range of linguistic phenomena, CoLA provides a robust423

benchmark for tasks requiring sentence-level acceptability judgments. Its diverse set of grammatical424

structures challenges models to demonstrate both depth and breadth in linguistic understanding,425

making it a popular choice in the field.426

SST-2: The SST-2 (Stanford Sentiment Treebank Version 2) dataset is a widely recognized benchmark427

for sentiment analysis tasks in natural language processing. Originating from the Stanford NLP428

Group, this dataset contains around 67,000 English sentences, drawn from movie reviews, annotated429

for their sentiment polarity. Unlike its predecessor which had fine-grained sentiment labels, SST-2430

has been simplified to a binary classification task, where sentences are labeled as either positive or431

negative. This dataset not only provides sentence-level annotations but also contains a unique feature:432

a parsed syntactic tree for each sentence. By leveraging both sentiment annotations and syntactic433

information, we can investigate various dimensions of sentiment understanding and representation in434

machine learning models.435

Rotten Tomatoes: The Rotten Tomatoes dataset is a compilation of movie reviews sourced from436

the Rotten Tomatoes website. This dataset has been instrumental in sentiment analysis research.437

In its various versions, the most notable being SST-2, the dataset consists of sentences from these438

reviews, annotated for their sentiment polarity. These sentences are labeled either as positive or439

negative, making it a binary classification challenge. The dataset’s value lies in its representation of440

real-world opinions, rich in diverse sentiment expressions, and has been a cornerstone for evaluating441

the performance of natural language processing models in sentiment classification tasks.442

A.7 More Discussion443

Impact of Recovery Dimension: In Section 4.1, we propose fixing m and adjusting d′ to identify444

the optimal mapping for d′ (where d′ < d) and m. Accordingly, we conduct experiments using445

BERTBASE with various batch sizes to investigate the quality of the recovered intermediate features446

by calculating their cosine similarity with the ground truth. The results are illustrated in Figure 2.447

Our findings suggest that when the batch size is 1, the recovered quality gradually degrades as the448
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recovery dimension d′ increases, yet it remains as high as 0.99 across all configurations. However,449

this pattern does not hold when the batch size exceeds 1. We also observed that the recovered quality450

consistently declines as the batch size increases. We hypothesize that multiple inputs might exhibit451

some undisclosed dependencies, particularly features within the deeper layers of language models,452

thereby affecting the efficacy of tensor decomposition. For simplicity, we set d′ = 100 across all453

experiments. However, under adversarial conditions, attackers might experiment with various d′454

settings to enhance their attack performance.455

Table 2: Influence of cosine distance in dif-
ferent text retrieval phases on BERTBASE and
SST-2 dataset

Phase R-1 R-2 R-L
Batch Size=1
Non-use (LAMP) 87.7 54.1 76.4
Only Discrete 92.5 59.3 79.9
Only Continuous 93.1 61.6 81.5
Both 90.0 53.9 76.8
Batch Size=4
Non-use (LAMP) 48.9 17.1 45.4
Only Discrete 57.9 23.4 52.3
Only Continuous 60.6 23.1 54.9
Both 61.7 23.0 55.7
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Figure 2: Cosine similarity between recovered fea-
tures and ground Truth on BERTBASE across varying
dimensions (50-750 in 50-step intervals) and batch
sizes (1, 2, 4)

456

457

Impact of Feature Match in Different Optimization Phase: In Section 4.2, we propose a novel458

optimization objective: the cosine distance between the input of the Pooler layer and the recovered459

intermediate features from Section 4.1. It’s worth noting that we can also apply this distance as460

a new metric like gradient match loss in the discrete optimization stage to select the best starting461

or intermediary points for the subsequent training phase. Therefore, we add the new metric to the462

discrete and continuous optimization phases separately to observe its impact on the final attack463

performance. The results are illustrated in Table 2. Notably, our introduced metric has a positive464

effect on both phases. However, when the new metric is used in discrete and continuous optimization465

together, the results are not always two-win.466

Table 3: Text privacy attack on RoBERTa BASE. R-1, R-2, and R-L are same within Table 1. CosS
indicates the average cosine similarity between references and recovered samples.

Dataset Method R-1 R-2 R-L CosS Recovered Samples

CoLA
reference sample: The box contains the ball

LAMP 15.5 2.6 14.4 0.36 likeTHETw box contains divPORa
Ours 17.4 3.8 15.9 0.41 like Mess box contains contains balls

SST2
reference sample: slightly disappointed

LAMP 20.1 2.2 15.9 0.56 likesmlightly disappointed a
Ours 19.7 2.1 16.8 0.59 like lightly disappointed a

Toma
reference sample: vaguely interesting, but it’s just too too much

LAMP 19.9 1.6 15.1 0.48 vagueLY’, interestingtooMuchbuttoojusta
Ours 21.5 1.8 16.0 0.51 vagueLY, interestingBut seemsMuch Toolaughs

Impact on Other Models: To demonstrate the effectiveness of our attack method on various model467

architectures, we also apply our method on the RoBERTa (Liu et al., 2019). While RoBERTa shares468

similarities with BERT, it distinguishes itself through unique training configurations and datasets.469

Notably, unlike BERTBASE, RoBERTa does not have a Pooler layer. Instead, it employs a classifier470

composed of two linear layers in the head. In our experiments, we treat the first layer as an analogous471

Pooler layer and endeavor to reconstruct its input. All the models used in this experiment are from472

Hugging Face, contributed by TextAttack. As for the auxiliary model, we employ RoBERTa itself473

due to a specific challenge: we can’t locate another generative model using the same tokenizer with474

RoBERTa. However, it’s essential to note that we use the exact same settings for baselines and475
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our method. We present the experiment results in Table 3. While the overall attack performance476

significantly decreases due to the auxiliary masked language model, our approach still outperforms477

the baseline. Furthermore, in numerous instances (as illustrated in Table 3), our method appears478

to restore the essence of the reference sample almost flawlessly. However, due to the limitation of479

traditional evaluation metrics, they may have equal or even worse evaluation numbers than some480

obvious bad recovery. Therefore, we propose to use the cosine similarity between the embeddings of481

reference and recovery generated by SBERT (Reimers & Gurevych, 2019).482

A.8 Impact of Activation Function483

When applying the two-layer-neural-network-based reconstruction method to the Pooler layer of484

language models, we also substitute the original Tanh activation function with the ReLU. However, the485

third-order derivative of the ReLU function is odd, leading to zero expectation EZ∼N(0,1)[σ
(3)(Z)] =486

0. This property of the ReLU renders it unstable for third-order tensor decomposition. To address487

this challenge, we follow the approach proposed by Wang et al. (2023), instead of using a third-order488

Hermite function to estimate T , we use a fourth-order function. The estimation is represented as:489

T̂ :=
1

m

m∑
j=1

gj(wj)H4(wj)(I, I, I, a) (10)

where a is a unit vector, pointing in a specific direction in space. However, the result of the experiment490

is not ideal even compared with baselines, which means we need to find a more practical method to491

resolve this problem.492

A.9 Influence of Data Dependence493

We made a noteworthy observation during our implementation of the two-layer-neural-network-494

based reconstruction technique. When the batch size goes beyond a single data point, ensuring the495

independence of features across various data points becomes crucial. However, there’s an inherent496

challenge in achieving this. Delving deeper into the language model, particularly close to the Pooler497

layer, we find that dominant features are those closely aligned with the downstream task. Using498

sentiment analysis as an example, features directed to the Pooler layer somewhat have characteristics499

that describe similar emotions. Unfortunately, this similarity can degrade the quality of the features500

we are trying to recover. As a result, the reliability of these recovered features might be diminished501

when they are used as ground truth during optimization.502

Wang et al. (2023)’s analysis also underscores this puzzle: the reconstruction quality is closely tied503

to the condition number, defined by the data matrix’s smallest singular value. To elaborate further,504

if a sample is heavily influenced by or dependent on other samples (like two sentences mirroring505

each other or belonging to identical classes), the assurance of accurate recovery falters. This decline506

is attributed to the inherent limitation of tensor decomposition when faced with almost identical507

data. For instance, with two strikingly similar sentences, tensor decomposition might only be able to508

discern the collective span of the sentences, failing to distinguish between them. Resorting to feature509

matching in such scenarios would invariably perform negatively.510

Reference Recovery
slightly disappointed slightly disappointed
splendidly splendidly
gaining much momentum gaining much momentum
flawless film flawless film
tiresomely tiresomely
enjoyable ease ease enjoyable
grayish grayish
no cute factor here ... not that i mind ugly ;
the problem is he has no character , loveable
or otherwise .

he no problem is here i really love cute, not
ugly the mind or no character ; the loveable
love factor cute has.
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of softheaded metaphysical claptrap softhead of metaphysical clap claptrap
ably balances real-time rhythms with propul-
sive incident .

time ably balances incident with real inci-
dent.ulsive rhythms.

was being attempted here that stubbornly re-
fused to gel

here was attempted stubbornly that being re-
fused to gel

that will be seen to better advantage on cable
, especially considering its barely

, that better to barely advantage will be seen
on cable considering its advantage

point at things that explode into flame point things flame that explode into explode
undeniably intriguing film undeniably intriguing film
efficient , suitably anonymous chiller . efficient, suitably anonymous chiller shady
all of this , and more this and all this more,
want to think too much about what s going on think want to think too much about what s

going on
invigorating invigorating
to infamy to infamy
the perverse pleasure the perverse pleasure
the way this all works out makes the women
look more like stereotypical caretakers and
moral teachers , instead of serious athletes .

the stereotypical this way all works out
( the more like oxygenmissible caretaker
makes teachers of athletes instead look moral.
women instead

a successful adaptation and an enjoyable film
in its own right

a successful and enjoyable film adaptation
right in its own right

while some will object to the idea of a vietnam
picture with such a rah-rah , patriotic tone ,
soldiers ultimately achieves its main strategic
objective : dramatizing the human cost of the
conflict that came to define a generation .

will achieve object main while idea conflict
drama with the such tone a political picture
cost : vietnam thetih ra, vietnam insulted
achieves objective objective, some patriotic
dramazing a tone of soldiers generation that
strategic its drama ultimately generation to
define.

taken outside the context of the current politi-
cal climate ( see : terrorists are more evil than
ever ! )

the climate terrorists than outside the context
of current political climate ( see : are evil ever
taken! )

strange and beautiful film strange and beautiful film
this ) meandering and pointless french
coming-of-age import from writer-director
anne-sophie birot

this meander pointless director - anne french -
coming from pointless importing of writer )
and ageing - -rot

are so generic are so generic
for only 71 minutes for 71 minutes only
i also believe that resident evil is not it . it is also i not.. believe resident evil
fizzability fizzability
a better vehicle a better vehicle
pull together easily accessible stories that res-
onate with profundity

hand together stories resonate with pullclun-
dity easily accessible

higher higher
build in the mind of the viewer and take on
extreme urgency .

build urgency in the extreme of viewer ur-
gency and take on mind.

we ve seen it all before in one form or another
, but director hoffman , with great help from
kevin kline , makes us care about this latest
reincarnation of the world s greatest teacher .

thesegreatest of form seen beforeall reinna-
tiondirector we, directorstand wele great hoff-
man in ve latest makes us help teacher care
about greatestnation in this thelancenation,
but one of
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s horribly wrong shorribly wrong
eccentric and eccentric and
scare scare
finds one of our most conservative and hide-
bound movie-making traditions and gives it
new texture , new relevance , new reality .

gives our finds new finds, conservative new-
bound movie making traditions - and reality
texture it hide. reality texture and one movie
relevance

pummel us with phony imagery or music imagery pummel us or phony with music
consistently sensitive consistently sensitive
the project s filmmakers forgot to include any-
thing even halfway scary as they poorly rejig-
ger fatal attraction into a high school setting
.

s scary filmmakers forgot anything forgot to
include even halfway fatal attraction as they
poorlyjigger regger into high school scary
project setting

narcissistic narcissistic
has been lost in the translation ... another
routine hollywood frightfest in which the
slack execution italicizes the absurdity of the
premise .

slack has the includesity in the executionalic
translation. another frightfest. the absurd
premise which lost, it routineizes the premise
of hollywood.

– bowel movements than this long-on-the-
shelf , point-and-shoot exercise in gimmicky
crime drama

movements - - than long - shoot - - this exer-
cise, and this - the bowel shelf - on gimmick
in crime drama point

visually striking and slickly staged visually striking and slickly staged
downright transparent downright transparent
rotting underbelly underbelly rotting
could possibly be more contemptuous of the
single female population .

could possibly be more contemptuous of the
single female population.
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what the english call ‘ too clever by half what ‘ call call by clever english too half
sucks , but has a funny moment or two . has funny sucks but moment or two funny

sucks.
trailer-trash trash trailer -
flinching flinching
hot topics hot topics
settles too easily settles too easily
films which will cause loads of irreparable
damage that years and years of costly analysis
could never fix

films which will cause loads ofparable dam-
age that years and years of costly analysis irre
could never fix

wears wears
is an inspirational love story , capturing the
innocence and idealism of that first encounter

innocence is an inspirational story capturing
the idealism of first encounter, and love that

has the charisma of a young woman who
knows how to hold the screen

has the the thea of char young who knows
how hold of screen womanism

circuit is the awkwardly paced soap opera-ish
story .

h - is awkwardly paced circuit story is the
soap opera story

, beautiful scene beautiful scene,
grace to call for prevention rather than to
place blame , making it one of the best war
movies ever made

to call for prevention rather than to place
blame, grace making it one of the best war
movies ever made

looking for a return ticket looking for a return ticket
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the strange horror the strange horror
, joyous romp of a film . , a joyous romp of film.
a longtime tolkien fan a longtime tolkien fan
heartwarming , nonjudgmental kind heartwarming, nonmingjugmental kind
uncouth , incomprehensible , vicious and ab-
surd

absurdhensible, uncouth, vicious and in-
compmbled

a real winner – smart , funny , subtle , and
resonant .

a winner. resonant and funny - ami subtle,
smart, real res

gets clunky on the screen gets on screenunk clunky
there s not a single jump-in-your-seat moment
and

there s not a single jump and seat in your seat
- - - moment

has a tougher time balancing its violence with
kafka-inspired philosophy

acter has a tough time balancing itsfka philos-
ophy with violence - inspired

bad filmmaking bad filmmaking
share share
this excursion into the epicenter of percolat-
ing mental instability is not easily dismissed
or forgotten .

this excursionenter is the mentalenter into in-
stability or iserving easily dismissed or not
easily forgotten.

s as if allen , at 66 , has stopped challenging
himself .

as if regarding sums, allen has stopped s 66,
challenging himself.

is its make-believe promise of life that soars
above the material realm

its promise that life is promiseence make
soars above the material realm -

exit the theater exit the theater
is fascinating fascinating is
wise , wizened wise, wizened
is not the most impressive player is not the most impressive player
it s undone by a sloppy script its undone by a sloppy script
know what it wants to be when it grows up know what grows up when it wants it to be
people have lost the ability to think people have lost the ability to think
unfortunately , it s also not very good . . very, unfortunately it also s not very good
clarity and emotional and emotional clarity
propulsive propulsive
p.t. anderson understands the grandness of
romance and how love is the great equalizer
that can calm us of our daily ills and bring
out joys in our lives that we never knew were
possible .

l of will understands joy is our romance. daily
we ill of how of t a grand anderson. the an-
derson romanceing calms never at us lives
guest bearings daily and ofness of coulds p
the grand.

tactic to cover up the fact that the picture
is constructed around a core of flimsy – or
, worse yet , nonexistent – ideas

tactic to cover up the fact picture the core or
the coreim constructed,‘ - none worse yet - -
aroundum orstensyim. and central ideas

how ridiculous and money-oriented how ridiculous and - money oriented
muy loco , but no more ridiculous muy loco, but no more ridiculous
deceit deceit
in its understanding , often funny way understanding in its often funny way,
a caper that s neither original nor terribly
funny

s that original a caper neither original nor
terribly funny

( denis ) story becomes a hopeless , unsatisfy-
ing muddle

denis use ) becomes a hopeless muddle story,
unsatisfying (

force himself on people and into situations
that would make lesser men run for cover

would himself / people run for cover of situa-
tions and make force on lesser men
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and unforgettable characters unforgettable and characters
unfulfilling unfulfilling
walked out muttering words like “ horrible
and “ terrible , but had so much fun dissing
the film that they did nt mind the ticket cost

walked out muttering words words like di fun
the‘ ‘ mind the horrible filmbut had so much
fun that they did tired, the terriblenssing ticket
the film cost
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