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Identification of cancer sub-types is a pivotal step for developing personalized

treatment. Specifically, sub-typing based on changes in RNA splicing has been

motivated by several recent studies. We thus develop CHESSBOARD, an un-

supervised algorithm tailored for RNA splicing data that captures “tiles” in

the data, defined by a subset of unique splicing changes in a subset of pa-

tients. CHESSBOARD allows for a flexible number of tiles, accounts for un-

certainty of splicing quantification, and is able to model missing values as

additional signals. We first apply CHESSBOARD to synthetic data to as-

sess its domain specific modeling advantages, followed by analysis of several

leukemia datasets. We show detected tiles are reproducible in independent

studies, investigate their possible regulatory drivers and probe their relation to

known AML mutations. Finally, we demonstrate the potential clinical utility
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of CHESSBOARD by supplementing mutation based diagnostic assays with

discovered splicing profiles to improve drug response correlation.

Introduction

Analysis of RNA sequencing (RNA-seq) data from large patient cohorts is commonly used to

reveal transcriptomic variations that are associated with complex disease. Within the framework

of machine learning, such analysis can be framed as either supervised or unsupervised learning

tasks. In a supervised setting, the objective is usually to identify transcriptomic variations that

act as predictive markers for disease state or are strongly correlated with clinically significant

variables1;2;3. Unsupervised analysis typically involves identifying latent substructures in the

data which can be used to learn more about disease etiology, such as cancer subtypes4;5. One

approach to quantify changes in the transcriptome is at the level of alternative splicing (AS).

AS is the process by which different segments of pre-mRNA can be removed while others are

joined, or spliced, together to form mature mRNA. AS is regulated by intricate interactions

between hundreds of RNA binding proteins (RBPs) and is thus highly susceptible to disease-

causing disruption, especially in cancer6;7;8. Given the strong association between splice vari-

ants and disease, we propose an unsupervised learning algorithm for identifying substructures

in a matrix of RNA splicing measurements from cancer patients.

The focus on identifying substructures in RNA splicing cancer data is motivated by several

additional observations. First, in cancers such as acute myeloid leukemia (AML), the mutation

burden is particularly low such that analyzing genetic mutations alone is insufficient for ex-

plaining disruption of key oncogenic pathways9. Instead, several works have pointed to splicing

aberrations which can severely perturb the function of regulatory proteins involved in apoptosis

and cancer suppression10;11. Second, many cancers have been shown to be heterogeneous, with

patients exhibiting high variability in splicing measurements. While some of this variability is
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likely due to confounders such as batch effects, recent studies have shown that this variability

can result from mutations which seldom appear in a large fraction of the patients12. Rather,

they are observed in small subsets of patients with both cis acting effects due to mutations at

splice sites and trans acting effects due to mutations in splicing regulatory machinery13. These

observations motivate the derivation of a dedicated method for identifying “tile” substructures

in the RNA splicing data matrix, i.e. subsets of patients that exhibit distinct splicing changes in

a subset of genes.

Splicing variations derived from RNA-seq are commonly defined at the level of whole tran-

scripts or at the level of AS “events”. Transcript based approaches rely on estimating the abun-

dance of whole isoforms (e.g. RSEM14, SALMON15, Kalisto16) or relative isoform usage (e.g.

MISO17, BANDITS18). In contrast, methods such as MAJIQ19, SUPPA220, rMATS21, quan-

tify splicing of events, or local splicing variations (LSVs), such as cassette exons. These local

splice variations measure splicing as the ratio of RNA segment (e.g. exon) inclusion (defined

as percent spliced in or Ψ ∈ [0, 1]) for isoforms that contain the segment vs. isoforms that

do not. While quantifying whole isoforms is clearly appealing, we focus here on event based

splicing quantification. Some advantages of using AS events include the fact they do not require

a-priori assumptions about the underlying isoforms, can handle un-annotated (denovo) isoforms

which is crucial in cancer analysis, and can be directly validated with orthogonal methods (e.g.

RT-PCR).

Despite the above advantages, there are several modeling challenges associated with unsu-

pervised tile identification using event based quantifications. First, splicing measurements are

inherently different from gene expression measurements which are modeled as Gaussian (TPM)

or negative binomial (read counts) distributions in many previous works22;23;24;25;26. In contrast,

Ψ is bounded in the [0, 1] interval, with inclusion levels commonly exhibiting a U shape dis-

tribution, favoring either high or low exon inclusion values. Furthermore, Ψ quantifications
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typically involve only a small subset of reads that span splice junctions, thus accounting for

uncertainty of Ψ estimates is important. Finally, when identifying substructures in cancer RNA

splicing measurements it is important to address the inherent heterogeneous nature of the data

and natural variations between individuals. Specifically, global patterns across rows (Ψ for spe-

cific AS events) or columns (patients) are unlikely. Instead, only a small subset of LSVs may

be perturbed in a subset of samples.

Another important challenge we address here, which has implications beyond the analysis

of RNA splicing data, is the modeling of missing values. Genomics data often contains missing

values that result from technical limitations in sequencing technologies and are assumed to be

missing completely at random (MCAR). Under this model, the missingness rate does not de-

pend on observed or unobserved values and can be imputed or ignored27. However, in RNA-seq

data, the missingness rate is inversely proportional to the sequencing depth where higher read

coverage results in a lower probability of missingness. Furthermore, splicing quantifications,

unlike expression measurements, cannot be meaningfully imputed since a missing Ψ quantifi-

cation can be denoted by a 0 or 1 representing alternate junction usage. Thus, naive imputation

(e.g. mean) can lead to unlikely intermediate values. This necessitates an alternate model in

which values are MNAR (missing not at random). Under this model, the missingness rate de-

pends on observations in the data matrix and external factors such as coverage. In cancer data

specifically, values can also be systematically missing due to genetic mutations which could

result in a specific junction not being observed (e.g. mutations near splice sites) and should be

modeled as a secondary signal.

Here we address the above modeling challenges, by developing CHESSBOARD (Charac-

terizing Heterogeneity of Expression and Splicing by Search for Blocks of Abnormalities and

Outliers in RNA Datasets). CHESSBOARD is a Bayesian tile finding algorithm tailored for

splicing data with missing values and includes a suite of data processing and visualization tools
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(Fig. 1). The input consists of a matrix of junction spanning reads counts to account for uncer-

tainty in splicing quantifications (Fig. 1a). The algorithmic task is to identify splicing patterns

in the form of tiles in this matrix (Fig. 1b). This is achieved by first employing model based

pre-filtering to remove irrelevant LSVs and reduce and data size (Fig. 1c, left). Next, CHESS-

BOARD’s non-parametric Bayesian tiles model is fit to the data using efficient blocked Gibbs

sampling (Fig. 1c center). Finally, posterior summary statistics can be visualized to perform

downstream analysis (Fig. 1c right).

We first apply CHESSBOARD to synthetic datasets to show it outperforms several baseline

methods and validate the effectiveness of our modeling approach. Next, we show that CHESS-

BOARD recovers tiles characterized by splicing aberrations which are reproducible in multiple

AML patient cohorts. Finally, we show that tiles we discover are correlated with drug responses,

pointing to translational potential of our findings. We also develop GAMBIT (Graphical Anno-

tated Map for Basic Inspection of Tiles), a web-based visualization tool which allows users to

visually explore the discovered tile structures and Bayesian output. Both CHESSBOARD and

GAMBIT are available as open source tools to facilitate reproducible workflow and analysis.

Results

CHESSBOARD robustly models alternative splicing and missing values to
discover tile structures in large heterogeneous datasets

To address the challenges of analyzing heterogeneous alternative splicing datasets, CHESS-

BOARD directly models properties of the data that arise from biological and technical pro-

cesses. Briefly, the model’s input data matrix X contains the number of junction spanning reads

xij mapped to the representative (i.e. most variable) splice junction of LSV j in sample i and the

total number of reads mapped to the LSV, denoted ηij (more input details in Supplementary Note

1.2). Under CHESSBOARD’s model, naturally occurring splicing variations in each LSV are
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captured by a (learned) mixture of a Beta-binomial distribution over each xij and a binomial dis-

tribution (defined by missingness rate θj0) for having a missing value. This mixture distribution

over observed and missing values captures the background. In specific patient subsets however,

additional variation or signal in underlying Ψ (captured by a separate Beta-binomial distribu-

tion over observed values) or an elevated missingness rate (captured by a separate θj1) may be

observed. Thus, the first part of the CHESSBOARD pipeline is to filter out non-informative

splicing events which can be captured well by the background distribution. This is achieved us-

ing a parametric bootstrap Kolmogorov-Smirnov test (Supplementary Note 2.1). Then, for the

remaining LSVs in the data matrix, CHESSBOARD aims to find latent “tiles” in which multiple

LSVs deviate from the background in the same subset of samples. In practice, this means that

every sample i belonging to tile k has its (unknown) group indicator variable set ci = k and

every LSVs j belonging to this tile has a matching (also unknown) indicator variable rjk = 1.

A specific CHESSBOARD model is represented by a learned tile configuration and distribution

parameters for all the background and signal groups. Under this Bayesian formulation, every

such model can be assigned a posterior probability, and the CHESSBOARD algorithm uses an

efficient blocked Gibbs sampling procedure to sample from the posterior distribution over pos-

sible models given the observed data matrix X . See Methods for a detailed description of the

CHESSBOARD model.

In this section we demonstrate the utility of the CHESSBOARD model formulation de-

scribed above. First, we show that CHESSBOARD accounts for uncertainty in splicing mea-

surements due to low sequencing coverage. Specifically, CHESSBOARD includes a beta bi-

nomial distribution which attributes higher variance to LSVs with low coverage, capturing in-

creased uncertainty in their underlying Ψ. To assess whether this model is advantageous for

estimating variability in splicing data, we simulate Ψ values from a Beta distribution modeling

low exon inclusion (Beta(10, 90)) and generate reads for each Ψ at various coverage levels from
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a binomial distribution (Fig. 2a). We compute the empirical variance using MLE (maximum

likelihood estimation) under the CHESSBOARD model and two alternative models: a Beta

model which also functions on a domain of [0,1] analogous to Ψ values and a Gaussian model

which represents a generic approach. This analysis shows the error in the variance estimation is

lowest for the Beta Binomial model and all 3 models converge at about 50 reads. However, in

real life datasets the majority of quantifiable LSVs have read coverage significantly lower than

50. For example, in the beatAML and TARGET datasets used in this study (see Fig. 2a as red

and blue histograms), 38% and 88% respectively have coverage below this level, indicating a

substantial portion of the data benefits from CHESSBOARD’s modeling.

CHESBOARD’s model further alleviates the effect of coverage dependent uncertainty in

heterogeneous data by sharing information across samples. Specifically, CHESSBOARD uses

empirical Bayesian shrinkage to learn group specific priors, taking advantage of samples with

higher coverage assigned to the same cluster to improve estimates for samples with lower cov-

erage (Methods). To demonstrate the advantages of CHESSBOARD’s modeling approach we

generated Ψ values from Beta(10, 90) and read counts from each Ψ at varying levels of cov-

erage as before. The results shown in Fig. 2b demonstrate that indeed there is lower error in

Ψ estimates in samples with lower read counts when estimates are shrunken to the group mean

compared to computing Ψ̂ without prior information. Furthermore, we show that shrinkage

significantly increases correlation of Ψ̂ and the true value of Ψ, especially in samples with low

coverage. As denoted in Fig. 2c, Ψ̂ for darker data points representing low coverage samples

is closer to the ground truth with group shrinkage (right) compared to individual quantifica-

tion (left). Together these experiments show that CHESSBOARD’s generative Beta-Binomial

model acting on read counts can substantially improve analysis of splicing data by accounting

for uncertainty in the RNA sequencing measurements.

Next, we turned to assess CHESSBOARD’s missing values modeling. To account for miss-
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ing values, CHESSBOARD uses a MNAR model where missing values are treated as a sec-

ondary signal when the missingness rate of an LSV is much higher than expected under the null

missingness rate associated with sequencing limitations. We first replace each unquantifiable

splicing event with a missingness indicator. We then estimate priors for the missingness rates

using an Empirical Bayes procedure (Methods). During CHESSBOARDs model fit, we obtain

posterior estimates for both the background and signal missingness rate, where the latter can

account for other factors such as unobserved values due to mutations (Methods). We show that

the MNAR missing value model is effective in identifying tiles containing missing value sig-

nals. For comparison, we implemented an alternative version of CHESSBOARD that uses the

MCAR model assumption where missing values are integrated out. Both CHESSBOARD and

CHESSBOARD-MCAR were then applied to a simulated homogeneous data matrix in which

the read counts for each LSV (row) were drawn from a background distribution with parameters

estimated from beatAML and values were missing at a fixed dropout rate of 10%. To these we

added a single tile of varying size with a missingness rate of 60%. We then assessed the algo-

rithm’s ability to recover this tile by information gain which measures the purity of the clusters

(Supplementary Note 2.2). Fig. 2d shows that the MCAR model was unable to identify this tile

(information gain close to 0) regardless of tile size, as it relies solely on the observed Ψ values

to identify tiles. The MNAR model is able to effectively recover the tile, but as expected the

information gain decreases as the tile size decreases. When the size of the tile increases to 40

LSVs, the information gain reaches a maximum.

After assessing the CHESSBOARD modeling components individually, we turned to assess

its ability to recover tiles. For this, we generated synthetic splicing data modeled based on

statistics collected from the BeatAML dataset (Supplementary Note 2.3). For comparison, we

also ran two commonly used algorithms for biclustering as baselines: single-link hierarchical

biclustering (HBC) and spectral co-clustering (SCC)28. Since these algorithms lack some of
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CHESSBOARD’s features, both were given data with scalar Ψ and no missing values to fit

their input definition. We also ran both with the correct number of clusters given as input. Since

CHESSBOARD learns the number of clusters using an infinite mixture modeling approach with

a Chinese Restaurant Process (CRP) prior (Methods), we first evaluated the behavior of this

feature under various parameters (Supplementary Note 2.4). Then the ability of the algorithms

to recover tiles was evaluated using a tile precision (τpr) and recall (τrc) statistic adapted from

the recovery and relevance score25 (Supplementary Note 2.2). Intuitively, these scores identify

the tile in the test set that maximizes precision or recall with respect to each of the reference

tiles, then average the precision or recall across the tiles. In addition, we evaluated sample group

clustering using adjusted rand index (ARI) (Supplementary Note 2.2). The results in Fig. 2e

show that all algorithms were able to recover sample groups well (ARI > 0.9). This result is

to be expected given the strong group signal (number of changing LSV, magnitude of change)

in the original data (see BeatAML analysis below) and the fact the baseline algorithms were

initialized with the exact cluster number. However, CHESSBOARD significantly outperformed

the baseline algorithms in recovering the exact tiles, achieving τpr = 1.00, τrc = 0.98 compared

to τpr = 0.33, τrc = 0.68 for HBC and τpr = 0.78, τrc = 0.55 for SCC.

CHESSBOARD Discovers reproducible tiles in AML data which correlate
with cancer associated regulators

Having established strong performance of the CHESSBOARD model on synthetic data, we

applied it to several primary leukemia sample datasets to discover tiles that correspond to can-

cer associated regulators. We ran the standard CHESSBOARD pipeline (Supplementary Note

3.1) on the beatAML12 dataset (samples = 477, LSVs = 2299) (Supplementary Data 1). The

algorithm detected a single large tile consisting of 217 samples and 1910 LSVs (Fig. 3a). Con-

fidence in the predicted tile structure was high with most probabilities of sample assignment to
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the tile cluster and LSV assignment to the signal distribution being close to 1 (Supplementary

Fig. 4a). To confirm whether this tile constitutes a real biological signal, we first assessed its

reproducibility in Penn HTSC, an independent in-house dataset consisting of 77 adult AML

samples. We trained the CHESSBOARD model on a random subset of the beatAML cohort

(samples = 400) and used this as a predictive model to predict the tile assignments of the held

out beatAML samples (samples = 77) and Penn HTSC (samples = 77) samples (Supplementary

Note 3.2). We used MOCCASIN29 to account for confounding factors between the datasets.

The prediction yielded a similar tile structure in the Penn HTSC dataset (Fig. 3b). Furthermore,

the median(∆Ψ) (change in Ψ) of LSVs belonging to the tile between the 2 groups in each

dataset are highly correlated (r = 0.779) suggesting that the splicing perturbations captured by

the tile are similar in both datasets (Fig. 3c). Sample likelihoods were also comparable be-

tween the held out and external data indicating that the model has similar confidence in the tile

structure predictions (Supplementary Fig. 4b).

Having established the reproducibility of the AML splicing tile in two independent cohorts,

we then turned to investigate potential mechanisms for formation of this tile. First, we tested

whether the identified tile was enriched for differentially spliced junctions that are co-regulated

by RNA Binding Proteins (RBPs). Intersecting the tile’s differentially spliced junctions with

those observed as differentially spliced in ENCODE’s RBP knockdown experiments implicated

17 RBPs, all of which were either differentially expressed or spliced between the signal and

background patient groups (Supplementary Note 3.3). Put together, all 106 RBPs considered

in the analysis affected approximately 11.75% of the junctions in the signal tile. Notably, two

RBPs with the most significantly enriched DS junction overlap include SRSF1 (2.48%) and

U2AF2 (1.54%), both of which have known roles in promoting expression of antiapoptotic

isoforms of oncogenes in several hematopoietic maglicanies30. Another candidate splicing reg-

ulator which appeared to be differentially expressed and spliced between the signal and back-
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ground groups is HNRNPC (2.44%), which has been implicated in AML in a recent study31.

Next, we analyzed eCLIP data for each RBP to test whether there was evidence for direct RBP

binding around the tile’s differentially spliced junctions. We observed high binding rates for

SRSF1 and U2AF2 (> 4% of tile junctions). However, the binding rate was lower compared

to spliceosome components including AQR, SF3B4, PRPF8 and EFTUD2 which are known to

bind spuriously to constitutive splice sites. Surprisingly, almost no binding was observed for

HNRNPC. For SRSF1 specifically, there was also significant enrichment of CLIP binding to

junctions that were also DS suggesting direct splicing regulation by SRSF1 (Fig. 3d).

Interestingly, SRSF1 itself undergoes alternative splicing whereby one isoform includes

exon 4 for the production of the full protein while the other skips exon 4, resulting in a transcript

that contains a premature termination codon that is targeted for nonsense-mediated decay32. We

thus assessed whether variation in SRSF1 exon 4 splicing between the 2 clusters corresponds

to splicing variations in its known targets. Observed differences in SRSF1 splicing between the

signal and background occurred almost exclusively at exon 4 (Supplementary Fig. 4c). The

background cluster had a higher rate of inclusion for exon 4 (Ψ = 0.759) compared to the signal

cluster (Ψ = 0.490) and higher expression of the functional transcript (log2FC = 1.16). This

suggests there is higher expression of the productive isoform in the background cluster due to

lack of NMD-induced degradation. Over expression of SRSF1 has been associated with aber-

rant splicing of several apoptotic factors in cancer32;33. We analyzed several cancer-associated

genes with experimentally verified splice variations that are affected by SRSF1 overexpres-

sion. Notably, BIN1 exon 12a inclusion is upregulated in the background and is associated

with antiapoptotic processes33. Furthermore, exon 3-6 inclusion in CASP9 is upregulated in the

background and is associated with proapoptotic processes34 (Supplementary Fig. 4c).
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CHESSBOARD offers a gene ranking method that implicates mTORC sig-
naling in identified differentially spliced gene set

In order to more broadly assess whether the AML identified tiles correspond to known biolog-

ical functions, we performed a gene ontology analysis of biological processes with the genes

harboring LSVs in an extended tile containing all DS LSVs between the two clusters. The anal-

ysis shows that genes with differential splicing in the tile are enriched for roles related to gen-

eral functions commonly found in cancer transcriptomics studies such as gene expression and

transcription, RNA processing, and post-translational modifications (Supplementary Fig. 4d).

However, we also found that a subset of genes participate in stress-related cellular responses,

including regulation of cholesterol/lipid storage and MAPK-signaling (Supplementary Fig. 4d

highlighted in red) suggesting that samples from the two clusters exhibit different cellular stress

profiles.

To further explore possible tile characterization, we sought to use gene set enrichment anal-

ysis (GSEA) to identify similar pathways in the tile gene sets. Since GSEA requires ranking

genes within a group we developed a probabilistic ranking method based on the CHESSBOARD

model which account for both splicing changes and missingness rates. Specifically, we score

each LSV based on the likelihood gain achieved in the learned tile configuration compared

to an inverted tile configuration and then used the score for the highest scoring LSV in each

gene as input to GSEA (see Supplementary Note 3.4 for details). Indeed, GSEA revealed an

enrichment of differentially spliced genes in the tile among the hallmark mTORC1 signaling

gene set (Fig. 3e), a signaling pathway centrally involved in stress response35. Drawing from

experimentally validated interactions extracted from the Ingenuity Pathway Analysis software,

we confirmed that several genes that harbor high-ranking LSVs in the tile interact directly with

mTORC1 or one of its direct regulators, and that many of these genes activate mTOR signal-

ing, although it is unclear how the splicing variations that we observe might affect the function
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of the proteins (Supplementary Fig. 4e). Collectively, these results suggest that the main tile

structure CHESSBOARD identified in the BeatAML data represents a highly reproducible and

biologically relevant AML subtype.

CHESSBOARD Enables Scalable Recursive Clustering to Discover Alter-
nate Subtype Definitions

Although CHESSBOARD was able to successfully discover a tile corresponding to an AML

subtype characterized by a specific set of splicing events, other subtype definitions may ex-

ist. Alternative tile structures representing these subtypes can emerge when the inclusion of

additional features or exclusion of selected features alters the amount of evidence supporting

existing tile boundaries. Intuitively, a tile can be interpreted as a collection of correlated tran-

scriptomic signatures that each capture a misregulated biological process. For example, the tile

discovered in the previous section is partially explained by misregulation of RBPs. Removal

of a signal dominated by certain processes can lead to discovery of tiles characterized by mis-

regulation of orthogonal, possibly less pronounced (in terms of number of splicing changes and

their magnitude), pathways where other splicing perturbations exist in a different subset of pa-

tients. Similarly, LSVs not present in the initial pre-filtered data matrix may provide additional

support for such tiles. To address this scenario we developed a recursive clustering solution that

naturally fits into CHESSBOARD’s probabilistic model and serves as a scalable means to probe

the entire transcriptome (Supplementary Note 4.1). In short, our approach iteratively reclusters

the LSVs that are not assigned to a tile and after each recursive step, tests for termination by

assessing the likelihood ratio of the tile model to a null model in which tile structure is removed.

This null model can be interpreted as a distribution over tile structures in datasets where tiles

are not expected to occur. Furthermore, the result of each recursive step can be extended to the

whole transcriptome using MAJIQ or similar tools for differential splicing analysis between the
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sample groups identified by CHESSBOARD.

We performed recursive clustering on the beatAML dataset using this approach, treating

the result from the previous section as the base case. The first recursive step yielded a smaller

signal tile (samples = 196, LSVs = 389) corresponding to a different subset of the patients

(ARI = 0.0066 between recursive and base case sample clusters) (Supplementary Data 2). In

addition, the new cluster had high correlation with several known AML mutations (Fig. 4a).

Specifically, we observed a significant permutation test p-value for enrichment of mutations in

FLT3-ITD (p < 0.001), NPM1 (p < 0.001), and CEBPA (p = 0.025) in patients assigned to the

tile cluster (Supplementary Note 4.2). Mutations in these 3 genes are associated with normal

karyotype AML which is a known subtype of the disease36. We observed a fourth association

of the cluster was with mutations in NRAS (p = 0.025), but mutations in this gene were actually

depleted in the tile samples. Continued recursive tile discovery showed a sharp decrease in the

likelihood ratio (Fig. 4b) indicating there are no more significant tiles in the matrix to discover.

CHESSBOARD Identifies Tiles that Correlate with Drug Responses

To demonstrate the translational utility of conducting a CHESSBOARD analysis, we assessed

whether tiles discovered by the algorithm correlate with patient response to therapeutics. We

ran the CHESSBOARD pipeline on the beatAML dataset again but now limited the analysis to

only LSVs in 70 AML associated genes (Supplementary Data 3). These genes have been iden-

tified as commonly mutated, truncated or translocated in AML patients36;37 and their mutational

status is used by clinicians to decide on drug administration. This targeted tile finding approach

based on known gene sets is motivated by several observations. First, we demonstrated above

that a transcriptome wide approach can be dominated by signals orthogonal to pathways inhib-

ited by a drug. Second, and as we show below, CHESSBOARD’s unsupervised approach can

detect splicing signals not directly captured by the mutational landscape in such AML associ-
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ated genes. Finally, as demonstrated in Rivera et al. 202110, clustering splicing changes across

those 70 genes gives rise to clear groups and several candidate regulators.

Our splicing analysis of the 70 AML associated genes recovered 2 clusters (Fig. 5a) with re-

sulting patient subgroups similar to the original clustering (ARI = 0.958). This result is notable

since the LSV set used for this analysis was significantly different, with shared LSVs constitut-

ing only 0.57% of the original LSV set and 14.4% of the current set. This result suggests the

splicing changes in AML related genes are part of perturbations to pathways captured in the

original, unbiased, LSVs tile finding.

Since the mutational status in many of these AML associated genes is used by clinicians

to decide on drug administration we correlated the samples belonging to each tile with drug

response measured by area under the IC50 curve (AUC). Details about this measurement are

discussed in Supplementary Note 5.1. We observed strong correlations between drug response

and the tiles, and noticed the tiles included aberrant splicing in many gene targets of the most

correlated drugs (Supplementary Data 4). We therefore first tested whether our splicing based

patient stratification can serve as good predictors of drug response. Specifically, we computed

for each drug the percent of AUC variance that can be explained (Supplementary Note 5.2)

by CHESSBOARD’s discovered sample groupings compared to that explained by known muta-

tions. However, this analysis conclusively found the variance explained by the patient subgroups

to be relatively low, maxing at 6.7% compared to a much higher percentage for known muta-

tions and drug combinations (Fig. 5b). Specifically, the variance explained by FLT3 mutation

is highest for Gilteritinib and FLT3-ITD is highest for Sunitinib/Sorafenib which are known

mutation-drug associations.

Next, given the possible functional consequences of splicing changes between the identified

tiles in many AML associated genes, we hypothesized that our splicing based patient grouping

could improve clinical decisions based on mutation analysis alone. Notably, the added value
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of splicing changes to AML classification has been shown recently for FLT3-ITD and NPM1

for FAB classification AML genes38 as well as RUNX1 and SF3B139. To assess usefulness of

combining splicing changes and mutations in AML genes splicing we prioritize FLT3-ITD and

Sorafenib and NPM1 and Venetoclax due to reliable mutation calls and their prominent role in

AML clinical diagnosis. Specifically, we developed a simple decision tree (Fig. 5c) combining

both FLT3-ITD and patient subgroups which increased the AUC variance explained by FLT3-

ITD for Sorafenib from 26.0% to 36.8% (Fig. 5d). We also looked at median change in AUC

and IC50 fold change (FC) to confirm that the effect size differences between the groups is

biologically meaningful. Accordingly, using FLT3-ITD alone had median(∆AUC) = 64.36 and

Log3FC = 2.09, while the combined classification had a median(∆AUC) = 76.29 and Log3FC

= 2.73 (p = 0.034 by permutation test, see Supplementary Note 5.3). Similarly for NPM1, using

the NPM1 mutation status alone had a median(∆AUC) = 23.34 and Log3FC = 0.86, while the

combined classification had a median(∆AUC) = 57.91 and Log3FC = 2.65 (p = 0.048).

CHESSBOARD’s identified tiles include splicing changes in AML drugs’
target genes

To assess potential mechanisms by which CHESSBOARD tiles explain drug response as de-

scribed above, we looked for specific targets of Sorafenib in the tile that were differentially

spliced between the 2 groups. Sorafenib is commonly used as a treatment for AML patients

with a FLT3-ITD mutation and functions as a tyrosine kinase inhibitor with high specificity

for FLT3. At a molecular level, FLT3-ITD result in constitutive activation of receptors that

lead to downstream activation of PI3K/AKT/mTOR, Ras/Raf/MEK/ERK, and JAK/STAT path-

ways. This activation in turn results in enhanced proliferation and reduced apoptosis of the

myeloblasts, which contribute to leukemogenesis40. Inline with this known mechanism, we ob-

served multiple LSVs in FLT3 that were differentially spliced between the patients’ subgroups.
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We therefore analyzed several specific splicing events in FLT3 to determine if there was en-

richment of splice isoforms in the signal that may lead to reduced transcript viability and thus

higher sensitivity. Indeed, for FLT3 we identified two differential splicing events involving

skipping of exon 4b (p = 1.13e-43, ∆Ψ = 0.110) and exon 17b (p = 4.34e-33, ∆Ψ = 0.115) that

are highly correlated (r = 0.858) and have a higher skipping rate in the background. Notably,

exon 4b has not been previously reported (de-novo exon and junctions) and both events have

not been previously reported with respect to AML to the best of our knowledge. Skipping both

of these exons results in the functional canonical isoform of FLT3 which was correlated with an

increase in expression of FLT3 (Fig. 5e). In contrast, inclusion of this exon introduces a PTC

or frameshift in the alternate isoform.

Taken together, the above analysis suggests that there is over-expression of FLT3 in the

background cluster due to constitutive expression of canonical FLT3 and failure of regulatory

systems to induce NMD. Noting that Sorafenib is a tyrosine kinase inhibitor, which includes

FLT3, an increase in the concentration of its target would therefore be expected to increase drug

sensitivity, as the splicing changes we detected could mimic the gain of function effect of FLT3-

ITD. Inline with this mechanistic hypothesis, we find that when combining the splicing signals

and FLT3-ITD status, the group of patients that were FLT3-ITD negative and assigned to the

signal group had much worse responses than patients that were FLT3-ITD positive and assigned

the background tile (Fig. 5d). Indeed, this latter group of patients has significant enrichment

of patients (55/66 patients, p = 8.95e-8) with constitutive FLT3 canonical isoform expression,

defined as inclusion of both events being > 0.9. In contrast, the patients that were FLT3-ITD-

and in the signal group showed enrichment for intermediate canonical isoform levels (152/159

patients, p = 4.59e-22).

Finally, in another investigation of tile associated splicing changes in AML genes we ob-

served high enrichment of missing values in the background cluster for EZH2. The change in
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inclusion levels was not particularly large, yet there was over a 15% increased missingness rate

of two EZH2 LSV in the background cluster (Fig. 5e). One of these events corresponds to an

event recently reported by Rivera et al. 202110 and validated to introduce a PTC that induces

NMD and results in reduced protein levels. The other splicing change we identified introduces

an un-annotated exon into the highly conversed WD domain of the protein. This suggests

there was rapid degradation of the transcript making it more difficult to sequence which in turn

resulted in elevated missing values. In summary, our analysis of CHESSBOARD’s tile with

respect to drug response indicated that the RNA splicing tiles correlate with AML specific drug

responses and offer insights into potential underlying mechanisms captured by both changes of

Ψ and missing values.

CHESSBOARD Finds More Complex Tile Structures in other Leukemia
Datasets

While our analysis focused on adult AML, we also applied CHESSBOARD to several other

datasets and disease to demonstrate CHESSBOARD’s general utility for splicing pattern dis-

covery. First we applied CHESSBOARD to a joint dataset (samples = 1089, LSV = 2965 )

consisting of TARGET pediatric AML and beatAML samples (Supplementary Data 5). Studies

have show that there are many genetic differences between pediatric and adult AML41. How-

ever the mutation burden in pediatric AML is lower suggesting that alternative disease causing

modalities should be investigated. Specifically, LSVs that are included in tiles that are enriched

for samples of a single disease type can be used to distinguish the diseases at the transcriptomic

level. On the other hand, LSVs which appear in tiles with mixed sample composition represent

splicing variations that are shared between diseases. CHESSBOARD discovered 5 clusters in

this dataset. Notably, tiles segregate by disease with C1, C2, and C4 representing pediatric

AML and C3 and C5 representing adult AML (Fig. 6a). However a subset of LSVs are unique
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to adult (green) and pediatric (blue) AMLs respectively. Other LSVs are either shared between

subtypes of each disease type (yellow) or unique to only a single subtype of a disease (pur-

ple). Many of these splice variations occur in genes that are commonly differentially mutated

between pediatric and adult disease types42;43.

Next we applied CHESSBOARD to TARGET B-ALL (B-cell Acute Lymphoblastic Leukemia)

data (samples = 517,LSVs = 1562), a markedly different type of leukemia characterized by pro-

liferation of lymphoid blasts in the bone marrow (Supplementary Data 6). We recovered 5

clusters with a distinctively more complex tile structure compared to the result on the beatAML

dataset (Fig. 6b). Of note, one identified subgroup was enriched for patients which are RUNX1-

ETV6 fusion negative who also have high relapse rates. This mutation is often used as a positive

prognostic marker which suggests the splicing signature associated with this tile can be used in

a similar manner44.

Discussion

There is increasing evidence for the pathogenicity of splicing aberrations in heterogeneous can-

cers such as AML and B-ALL10;11;45;46, pointing to a need for methods dedicated to unsu-

pervised discovery of splicing based disease subtypes. Here, we develop CHESSBOARD, a

method which offers several contributions to the densely populated area of clustering and miss-

ing value modeling. Specifically, previous works on tile finding and biclustering approaches

were either not domain specific23;24 or tailored for other data modalities such as gene expression

and genetic mutations22;25;26. Consequently, these algorithms do not consider crucial character-

istics of heterogeneous splicing cancer data such as the uncertainty in splicing quantifications

and missing values. We demonstrate here using both synthetic and real data, the usefulness of

modeling these data characteristics. Furthermore, CHESSBOARD’s MNAR model could also

be applicable in domains well beyond RNA splicing or even clustering, for example in algo-
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rithms for dimensionality reduction such as sparse probabilistic PCA or factor analysis47;48.

Beyond the CHESSBOARD model, we also implement several additional algorithms and

tools to enable more extensive exploration of the data. First, we developed a prefiltering and

recursive clustering method to facilitate analysis of the entire transcriptome. We then used the

recursive clustering to discover alternate AML subgroups definitions which strongly correlated

with mutations in key AML genes. Second, we implement a LSV ranking system to enable

prioritization of driver genes for use in downstream analysis like GSEA. This system is unique

in that we can rank LSVs based on differences in Ψ distribution and enrichment of missingess

value signals. Finally we implement the CHESSBOARD algorithm and all analytical tools in a

Python package. The package is accompanied by an online interactive visualization tool called

GAMBIT that enables users to manually inspect the LSVs and samples contained in each tile.

While we applied CHESSBOARD to several leukemia datasets, we focused on beatAML as

it offered both a large set of samples and drug response measurements. In beatAML, we found a

single strong “signal” tile that divided the dataset to two main subgroups of patients which were

highly reproducible in an independent dataset. Investigating possible splicing factors which

may form these tiles, we find that SRSF1 is a key regulatory factor and affects the splicing of

2.49% of the junctions in the tile through direct binding. However it is important to note that

taken together all of these RBPs can still only explain 11.75% of the splicing variations in the

observed tiles. This arguably low fraction could be due to a myriad of reasons, including the

difference between ENCODE’s cell lines and tumor specimens, the limited number of RBPs

served by ENCODE, and inherent noise in the CLIP and KD assays.

When we investigated possible functional consequences of the two BeatAML subgroups,

we found that the genes containing events differentiating the groups were enriched for genes in

the mTORC1 pathway. As mTOR is frequently activated in cancer in a manner that affects drug

susceptibility49;50, our clusters might reflect variations in cellular metabolism that could alter
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drug susceptibilities in AML samples. Furthermore, we suspect that the signal tile corresponds

to a subtype of AML that may be less adverse (see Supplemental Note 7.1 and Supplementary

Fig. 7). Inline with this hypothesis, we find that the background tile was characterized by

SRSF1 misregulation which affects several oncogenes including BIN1 and CASP9 in the tile.

We demonstrated the utility of CHESSBOARD’s recursive clustering by detecting an al-

ternative tile in the BeatAML data which correlated with FLT3-ITD, NPM1, and CEBPA mu-

tations, defined together as normal karyotype AML36. The discovery of this known subtype

points to the power of recursive clustering. By removing the dominant signal driven by splicing

variations caused by misregulation of RBPs/SFs, we enabled further discovery of an alternate

tile structure associated with a different AML subtype characterized by weaker splicing signals

but a strong mutation signature. We then demonstrated the clinical utility of CHESSBOARD

by analyzing correlation of tiles with drug response data. Notably, we found that while muta-

tions were better predictors of drug response than splicing signals, combining the two yielded

a better prediction overall, specifically for FLT3-ITD and Sorafenib and NPM1 and Veneto-

clax. An interesting hypothesis related to these results is that Sorafenib sensitivity may have

been reduced by enrichment of the PI3K/mTOR pathway in the signal group as suggested by

previous work51. Indeed, such a connection between Sorafenib and mTOR pathway has also

been observed in hepatocellular carcinoma where treatment with Sorafenib in patients with in-

creased PI3K/mTOR pathway activity results in reduced relapse rates52;53;54. A similar effect

has recently been observed in AML patients too55.

There are several limitations in this study which are important to highlight. Specifically, the

narrow IC50 concentration ranges used in the beatAML experiments limited fitting of sensitivity

curves and thus we had to use AUC as a proxy for sensitivity. Furthermore, despite the many

advantages of the CHESSBOARD model, we make several modeling assumptions that could be

improved upon. For example, CHESSBOARD assumes there is only a single signal distribution.
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In many scenarios, there can be multiple sources of heterogeneity that lead to signal distributions

that are a mixture of Beta distributions. We note though that in practice, given the noisy nature of

splicing and its quantification from limited read counts, we did not find many clear LSV cases

in the data used here that would justify the additional complexity beyond a two component

mixture model of signal vs. background.

In summary, we developed CHESSBOARD, the first RNA splicing tailored algorithm for

signal detection in heterogeneous RNA-seq datasets. We showed its applicability on several

leukemia datasets, connecting the splicing tiles discovered to potential regulators, drug re-

sponse, and known pathways. Although we present a model of splicing, CHESSBOARD can be

easily adapted for alternate datatypes such as expression and multi-omics data integration using

a multiview model56. We also hope the research community will take advantage of the open

source code and apply CHESSBOARD to many other analysis tasks in large, heterogeneous

cancer datasets, pushing further our understanding of the role of splicing in complex disease.

Methods

Filtering

To enable analysis of large datasets, CHESSBOARD uses a pre-filtering pipeline to select LSVs

of interest followed by a recursive clustering procedure. This 2-step process allows the algo-

rithm to analyze the most potentially interesting splicing events at a high resolution by removing

noisy events that could potentially confound true signals. The filtering pipeline is detailed be-

low:

• Remove LSVs that correspond to lowly expressed genes. We quantified gene expres-

sion using Salmon and aggregated transcript level quantifications into gene level quan-

tifications by summing the TPMs. Any LSV corresponding to a gene with TPMs in the
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lowest 5th percentile was removed from further analysis.

• Remove LSVs with high missingness rates. A LSV is considered quantifiable if at

least 10 reads are observed as being mapped to its splice junctions. Any LSV that is not

quantifiable in more than 80% of the samples is removed. Note that we allow for such a

high missingness rate because the algorithm is designed to handle missing values.

• Select highly variable LSVs. For each LSV j in sample i, we compute the variance across

all samples σ2
j =

∑N
i

(Ψij−µj)
2

N
. We construct the empirical CDF of variances and choose

a cutoff based on where the graph plateaus. This procedure selects for approximated

1500-2500 events in our datasets.

• Select for LSVs with a bimodal Ψ distribution. Intuitively, a mode that tends toward 0

or 1 with low variance is likely to represent a background distribution since most splicing

events favor high or low inclusion. A mode with high variance favoring intermediate

values is likely to represent an interesting biological signal that could explain disease

state. To select for bimodal LSVs, we use the parametric-bootstrap Kolmogorov Smirnov

test. Under this test, the null hypothesis H0 is the data was drawn from a single component

beta distribution while the alternate hypothesis H1 is the data was drawn from multiple

beta distributions. The steps for the test are as follows:

– For each LSV j, fit a beta distribution to the observed Ψ values by obtaining the

maximum likelihood estimates of α and β. Since there is no closed for solution for

the MLE, we optimize it numerically.

– Obtain the observed test statistic, the Kolmogorov Smirnov D, using a 1 sample KS

test with the observed data and the CDF of Beta(α̂, β̂)

– Given α̂ and β̂, simulate B bootstrapped datasets.

23



– For each bootstrapped dataset, estimate α̂b and β̂b and compute Db.

– Compute the empirical p-value of the test as the fraction of boostrapped test statics

that are greater than the observed test statistic.

We then select all LSVs with p < 0.05. This can be interpreted as selecting LSVs that

are multimodal with a 5% chance of being a false positive. If a lower proportion of false

positives is desired, one could correct the false discovery rate using a procedure such as

Benjamini-Hochberg.

Modeling observed splicing events

Consider a data matrix Xn×m with n columns representing patient samples and m rows repre-

senting AS events or LSVs. For a given sample i and LSV j, xij contains the number of junction

spanning reads that are mapped to a splice junction of interest while ηij denotes the total number

of reads mapped to all junctions in the LSV (e.g two alternative 5’ splice sites of an exon). Un-

der CHESSBOARD’s formulation, each sample has an unobserved label {c1, c2, . . . , cn} which

assigns it to a patients’ group or type k ∈ Z+. Each such group k is defined by a vector

rk ∈ {0, 1}m where m is the dimension of the vector. The assignment rjk = 0 indicates LSV

j is not part of the unique pattern of group k such that observed inclusion levels for this LSV

in samples that do not belong to group k follow some (learned) background Ψ distribution. In

contrast, rjk = 1 indicates an abnormal splicing signal in LSV j across all samples belonging to

group k. We thus formulate the generative process for each observed Ψ entry of the data matrix
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as

xij ∼ Binomial(ηij,Ψij)

Ψij|ci = k, rjk ∼ rjkBeta(µj1, κ1) + (1− rjk)Beta(µj0, κ0)

µj0 ∼ Beta(α0, β0)

µj1 ∼ Beta(α1, β1) (1)

rk ∼ Bernoulli(δ)∑
k

rjk ∼ Exp(λ)

ci ∼ Categorical(ϕ)

ϕ ∼ Dirichlet(αo/K)

A plate visualization of this model is shown in Supplementary Fig. 8. A table documenting all

variables is given in Supplementary Note 6.1. Under this model, the read rate of sample i in

LSV j follows a Binomial distribution with a Beta mixture prior over the level of inclusion Ψij .

This Beta-Binomial model naturally handles uncertainty in Ψ estimates since observations with

low read counts will have higher variance. If observation xij is assigned to the signal in group

k as denoted by ci = k, rjk = 1, its likelihood is evaluated using the signal prior distribution

Beta(µj1, κ1). Likewise, the observation is evaluated using the background prior distribution

Beta(µj0, κ0) when rjk = 0. Notice that we reparameterize the Beta in terms of mean and

variance using µj = αj/(αj + βj) and κj = (µj(1 − µj))/σ
2
j where the concentration κ is

inversely proportional to variance. This reparameterization enables the use of a Beta hyperprior

over the mean of each mixture component to capture known biological behavior of alternative

splicing. Specifically, normal splicing dynamics have a propensity toward high or low inclusion

levels which can be modeled using the Jeffery prior α0 = 0.5, β0 = 0.5 and high concentration

κ. Intermediate levels of inclusion modeled by a distribution with a long tail generally indicate

aberrant splicing and can be modeled as a Beta distribution with α1 = β1 and low concentration.
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To control the number of tiles, we impose a L1 penalty with hyperparameter λ to induce sparsity

in the number of groups for which LSV j is assigned to the signal distribution. Specifically,∑
k rjk ∼ Exp(λ).

In most biological contexts, the number of tiles is unknown a priori. This can be modeled

as an infinite mixture of groups using a Dirichlet Process prior with Bernoulli base distribution

Ψi|ci = k, r ∼ f(rk)

rk ∼ G

G ∼ DP (G0, αo) (2)

G0 ≡ Bernoulli(δ)m

ci ∼ CRP (αo)

where G0 is Bernoulli(δ)m and α0 is the concentration parameter. A larger value of α will

result in the discovery of more sample groups. In taking the limit of k, the distribution of ci can

be interpreted as a distribution of partitions of natural numbers which is usually formulated as

the Chinese Restaurant Process (CRP) or stick breaking process.

Modeling missing values

In gene expression data, missing values typically arise due to low sequencing coverage which

results in some transcripts lacking any observable reads even if they are expressed. However in

splicing data, a lack of junction spanning reads mapped to a transcript that is expressed indicates

inclusion of an alternative exon. Many algorithms handle missing values under the MCAR

(missing completely at random) model of missingness by integrating missing values out of the

model27. Under this model, the missingness rate of a feature does not depend on any observed

or unobserved values. However, this is generally only a valid assumption in scenarios when the

data generating instrument malfunctions such as a defective microarray probe. The missingness
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rate of transcriptomic quantifications from RNA-seq is proportional to sequencing depth thus a

model in which values are MNAR (missing not at random) will yield better estimates for the

missingness rate. Under this model, the missingness rate of features depends on observations in

the data matrix and external factors. In cancer data specifically, values can also be systematically

missing due to genetic mutations resulting in no reads being mappable to the splice junction.

This can occur when a mutation near a splice site reduces junction usage due to changes in

splice factor binding or when the mutation introduces a PTC into an exon resulting in rapid

degradation of the transcript due to NMD. Thus it becomes necessary to treat missing values as

a secondary signal when the missingness rate of an LSV is much higher than expected under the

null missingness rate associated with sequencing limitations. To handle missing values under

the MNAR model and detect missing value signals, CHESSBOARD identifies unquantifiable

LSVs with ηij < 10 and replaces xij with indicator ωij = 1. The indicator is modeled as

ωij|ci = k, rjk ∼ rjkBernoulli(θj1) + (1− rjk)Bernoulli(θj0)

θj0 ∼ Beta(aj0, bj0) (3)

θj1 ∼ Beta(aj1, bj1)

where θ0 is the background missingness rate that represents values that are missing due to te-

chinical factors such as coverage and θ1 represents the signal missingness rate that is expected

to be higher and represents values that are missing due to mutations. The priors can be es-

timated empirically. Specifically, we estimate the background priors by fitting the following

Beta-Binomial regression model.

υj ∼ BetaBinomial(n, µjΦ, (1− µj)Φ)

logit(µj) = β0 + β1χj (4)
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Here, χj = median({η1j, η2j, . . . , ηnj}) is the median number of reads η that are mapped

to LSV j across the n samples. υj is the number of samples with missing observations for LSV

j. The fitted model returns MLE estimates for the coefficients β0 and β1 and the dispersion

Φ. This trained model can then be used to estimate background priors αj0 = µjΦ and βj0 =

(1 − µj)Φ by predicting µj from the median read depths for each LSV j in the cancer data

to be analyzed. In this study the above model was fitted to whole blood samples from GTEX

V8. Users can of course fit the model to more relevant healthy tissue samples for their specific

cancer of interest. Generally, we expat that in healthy control samples the missingness rate

will be inversely proportional to sequencing depth (MNAR) but these missing values would

not represent signals caused by cancer. In a similar way, we use the same procedure over the

training data (beatAML or TARGET) to get estimates for the matching signal prior αj1 and βj1.

Posterior Sampling

The entire joint likelihood of the CHESSBOARD model is given by:

P (x,ω|η, c, r,Ψ,θ,µ,κ,α,β, λ) ∝∏
(i,j)∈{i,j|∀ωij=0}

P (xij|ηij,Ψij)P (Ψij|ci, rjci , µj1, µj0, κ1, κ0)P (µj1|α1, β1)P (µj0|α0, β0)

n∏
i=1

m∏
j=1

P (ωij|ci, rjci , θj0, θj1)P (θj0|, aj0, bj0)P (θj1|, aj1, bj01)P (
∑
k∈{c}

rjk|λ) (5)

where a bold variable indicates a vector containing the variables across all possible indices. To

sample from the model’s posterior, we develop an efficient blocked Gibbs sampling scheme

which we will use to sample from each conditional posterior. The full conditional posterior of
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ci is denoted by

P (ci = k|η, r,Ψ,θ,µ,κ,x,ω,α,β, λ) ∝∏
j∈{j|∀ωij=0}

P (xij|Ψij)P (Ψij|ci = k, rjk, µj1, µj0, κ1, κ0)P (µj1|α1, β1)P (µj0|α0, β0)

m∏
j

P (ωij|ci = k, rjk, θj0, θj1)P (θj0|, aj0, bj0)P (θj1|, aj1, bj01)P (
∑
k∈{c}

rjk|λ)P (ci = k) (6)

Due to beta-binomial conjugacy, we can integrate out Ψ and θ. This allows us to write

P (ci = k|η, r,Ψ,θ,µ,κ,x,ω,α,β, λ) ∝{
nk

n−1+α0

∏m
j=1 P (xij|rjk,Θ)P (Θ) if ci = k

α0

n−1+α0

∏m
j=1

∫
P (xij|rj(k+1),Θ)P (Θ)P (rj(k+1))drj if ci = k + 1

(7)

Here, the term before the product represents the prior P (ci = k) which Intuitively captures

the cluster’s proportion. The term Θ captures all other variables in the above likelihood not

explicitly written again (for clarity). Since the integral over each rj(k+1) here is intractable, we

follow Neal 2000 and sample vector r(k+1) from its prior distribution when attempting to open

a new cluster. We choose the prior to be δj = P (rjk = 1) for each element for the vector j.

Note that ω is not included in the notation above for clarity but is trivial to include. With Ψ

and θ integrated out, we will only need to then explicitly sample r, α and β. The full posterior

conditional of rjci is given below.

P (rjci = 1|η, r,Ψ,θ,µ,κ,x,ω,α,β, λ) =
P (xij|rjci = 1, ηij, µj1, µj0, κ1, κ0)∑

rjci
P (xij|rjci , ηij, µj1, µj0, κ1, κ0)

(8)

However, due to high correlation between the rjcis, we must sample them simultaneously. In

other words, rather than sampling rjci for each ci = k, sample a vector rj. with length k. Note

that as k becomes large (i.e. the number of clusters grows in each MCMC iteration), computing

this posterior becomes intractable since there are 2k binary vectors. Therefore, we approximate

this posterior by sampling rj. in blocks of rja...rjb where b− a is the maximum blocksize.
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Finally, to sample µj0 and µj1, we use a discrete approximation. We use possible values of

µ on the interval p ∈ [0.025, 0.975] from 20 discrete bins. Thus we can evaluate the posterior

of µ using a discrete categorical distribution defined as:

P (µj0 = p|r,Ψ,θ,µ,κ,x,ω,α,β, λ) =
P (xij|ci, rjci , ηij, µj1, µj0 = p, κ1, κ0)∑
p P (xij|ci, rjci , ηij, µj1, µj0 = p, κ1, κ0)

(9)

The concentration κ0 and κ1 are hyperparameters that are inversely proportional to the variance

of the prior distribution. We choose κ0 = 20 and κ1 = 10 to model low expected variance of

the background and high expected variance of the signal.

Posterior Summary and Convergence

To obtain a point estimate for rjk and ci, we apply the following posterior summary procedure.

First, we obtain the pairwise matrix of probabilities that any two samples clustered together

across all posterior samples (after burn-in and thinning). In other words, the probability that

ci = cj for any two samples i and j. Determining the portion of the chain to discard can

be evaluated using the Heidelberger-Welch diagnostic (Supplementary Note 3.2). However in

practice, we found for real high dimensional data splicing as we used here that the estimated

model parameters converge very quickly and exhibit low posterior variance. In such cases, few

MCMC iterations are needed and the optimization can be treated as a variational Bayes approx-

imation (Supplementary Note 3.1). Convergence is then determined to be where the posterior

likelihood of the model stops changing. We apply hierarchical clustering to the pairwise prob-

ability matrix with the number of clusters k being the median number of clusters across all

posterior samples to obtain final clustering assignments. To obtain a point estimate for r, we

obtain a matrix of the marginal probabilities that sample i in LSV j is assigned to the signal

distribution. rjk = 1 if the mean of rjci∀ci = k > 0.7. Note that we also provide an alterna-

tive approach to point summary by using the posterior sample that minimizes the MSE to the
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posterior mean. In other words, we generate the mean pairwise clustering matrix and pick the

sample that minimizes MSE to this mean matrix.

Data Availability

The beatAML dataset can be accessed through the National Cancer Institute (NCI) at https:

//www.cancer.gov/about-nci/organization/ccg/blog/2019/beataml. The

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset, phs000218,

managed by the NCI can be accessed at www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000218.v22.p8. Information about TARGET

can be found at http://ocg.cancer.gov/programs/target. The Penn HTSC dataset

is available at GEO (GSE142514). The ENCODE knockout and eCLIP datasets from Van Nos-

trand et al. 2020 are available at https://www.encodeproject.org57. The GTEx v7

whole blood data is available at https://www.gtexportal.org/home/datasets.

Source data are provided with this paper. All processed datasets are available in the Zenodo

repository associated with this publication. The data generated in this study including algo-

rithm output and data used to figures is described in the Supplementary Information and Source

Data files and can be accessed in the Zenodo repository.

Code Availability

All code for the algorithm, Python API and GAMBIT is publically available at https://

bitbucket.org/biociphers/chessboard/src/master/. A list of Python pack-

age dependencies (pandas, scipy, numpy, seaborn, statmodels, scikit-learn, matplotlib) are listed

in the installation instructions in the repository and will be automatically installed when in-

stalling our software. The GAMBIT tool is available online at https://paros.pmacs.

upenn.edu/gambit/. Sample data for GAMBIT can be downloaded from the bitbucket
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repository. Documentation for the CHESSBOARD python API can be found at https:

//chessboard.readthedocs.io/en/latest/index.html. All code to reproduce

figures and analysis can be found in the Zenodo repository.
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Figures

Fig. 1: CHESSBOARD Pipeline. (A) Input: splice junction read counts (red and blue reads)

extracted from patients’ RNA sequencing. Each row in the input data matrix is a LSV (e.g. cas-

sette exon shown) and each rubric contains the junction spanning read counts for that LSV in

a specific sample. Complex LSV involving more than two junctions the most variable junction

is selected (Methods). (B) Task: CHESSBOARD’s objective is to identify latent tiles in the

input matrix. A tile consists of a subset of samples and a subset of LSVs where the Ψ distri-

bution of each LSV for samples within the tile differs from the background distribution. Note

that the matrices shown contain Ψ values for visualization purposes but CHESSBOARD acts

on the matrix described in (a) and it may not be possible to embed each tile as a continuous

square in a 2D image as shown here. (C) CHESSBOARD Pipeline: The pipeline includes three

steps. Filtering: Lowly expressed genes (lower 5% by default) are removed and LSVs observed

in too few samples (default 20%), retaining only those exhibiting high Ψ variability between

samples and multiple modes in the Ψ value distribution (Methods). MCMC: Blocked Gibbs

sampling based on CHESSBOARD’s model and the input data matrix yields posterior samples

for potential tile configurations. Intuitively, the algorithm iterates through a chain of solutions

that tend towards higher likelihood while varying the number of tiles using the Chinese Restau-

rant Process (Methods). Analysis: The MC samples are summarized into marginal posterior

distributions and possible point estimates for tiles. Tile analysis includes sample assignment

to subgroups, LSV assignment to a signal tile, the ∆Ψ and missingness rate associated with a

particular LSV in a tile (Methods). Visualization and analysis are conducted using the accom-

panying visualization package, GAMBIT.

Fig. 2: Model Evaluation. (A) Error in Ψ variance estimation under Gaussian (red), Beta
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(blue), and Beta-Binomial (green) models as a function of LSV coverage (x-axis). Absolute

error in Ψ variance estimates (y axis) is compared to the true variance, assuming a Beta(10,90)

distribution. Inset histograms show empirical distributions of LSV coverage in beatAML and

TARGET data. (B) Error in Ψ̂ quantification estimates under a naive and empirical shrinkage

model as a function of read coverage (x-axis, 1000 samples from the same Beta as above for

each point). Naive approach uses only read ratios to estimate Ψ̂ while shrinkage model uses the

expectation over the posterior for the Beta. Error bars represent the 90% confidence interval for

the error in Ψ. (C) Correlation between Ψ and Ψ̂ estimates under a naive (left) and empirical

shrinkage model (left). Ψ was sampled as in (A) while number of reads n was sampled ran-

domly from [10,500]. (D) Information gained (Supplementary Note 2.2) from missing signals.

Here a background matrix was used, consisting of 100 samples and 100 LSVs with a fixed

missingness rate of 10%, into which a signal tile was implanted. The signal tile consisted of

50 samples and a varying number of LSVs (x-axis) with an elevated missingness rate of 60%.

The observed values in both tile and background were drawn from the same distribution. Green

represents the CHESSBOARD model (MNAR), red represents a missing completely at random

(MCAR) version of CHESSBOARD. As a reference, we also plot (grey) the information gain

from a similarly sized signal tile where the signal is based on a significantly different Ψ distri-

bution simulated with parameters estimated from real data (Supplementary Note 2.3). Missing

signals (green) contribute to increase in information gain as the number of missing signals in-

creases. (E) Evaluation of CHESSBOARD’s (top right) performance on synthetic data, sampled

to mimic BeatAML, compared to hierarchical clustering (bottom left) and spectral co-clustering

(bottom right). Ψ values are represented as heatmap, sample groups as colored bars and tiles

as red rectangles. Note that tiles may appear permuted. Performance was evaluated using a

modified version of recovery relevance score (Supplementary Note 2.2) which are permutation

invariant.
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Fig. 3: BeatAML Dataset Analysis. (A) Heatmap showing the tile discovered by CHESS-

BOARD on the beatAML dataset (samples = 477, LSVs = 2299). The signal (samples = 217,

LSVs = 1910) is outlined in red. Note that although CHESSBOARD was run on junction span-

ning read rates as input, the heatmap shows Ψ values to facilitate visualization. (B) Heatmap

of Ψ values in the Penn HTSC dataset (samples = 77, LSVs = 2299), showing reproducibil-

ity of the tiles originally identified by CHESSBOARD in the beatAML dataset. The signal

tile (samples = 32, LSVs = 1899) is outlined in red. (C) Correlation between median(∆Ψ)

in the beatAML and HTSC datasets for the representative junction in each LSVs belonging to

the tile. The median(∆Ψ) value was computed between the 2 groups discovered by CHESS-

BOARD in both datasets. Correlation is measured using Pearson’s correlation coefficient (r)

and the two-sided p-value is the probability of observing a coefficient > |r| under the exact

null distribution. (D) ENCODE based analysis of possible tile regulators. Top bar plot shows

the percentage of splice junctions (y-axis) in the tile that overlap with splice junctions in one

of three categories associated with each RBP/SF (x-axis). DS (blue) is the set of junctions

that are differentially spliced between case-control samples in ENCODE K562 cell lines. CLIP

(orange) is the set of junctions that are bound by the RBP in a 250bp region flanking the junc-

tion. The “Both” bar (green) represents junctions in the intersection of DS and CLIP sets. The

bottom barplot shows whether the overlap is significant (bonferroni corrected cutoff) based on

a one-sided fisher’s exact test for enrichment. The red circles indicate whether the matching

RBP/SF is differentially spliced (in at least one junction) and/or differentially expressed in the

tile’s samples and whether it is a component of the spliceosome or a cis/trans acting splice fac-

tor. (E) mTORC1 GSEA: Enrichment of genes ranked by log(likelihood gain) of LSVs among

the HALLMARK MTORC1 SIGNALING gene set as performed with GSEA v. 4.1.0 and vi-

sualized with the fgsea R package.
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Fig. 4: Recursive Clustering Analysis. (A) Heatmap showing CHESSBOARD clustering

results after the first recursive step. A single tile (samples = 196, LSVs = 389) was identi-

fied. The tracks above the heatmaps indicate whether a patient was positive (red) or negative

(blue) for each mutation. Missing annotations are marked by white. The p-values were com-

puted using fisher’s exact test for enrichment and corrected for multiple testing using the min-p

method to account for missing annotations. (B) Boxplots showing the likelihood ratio distribu-

tions of LSVs after each recursive step. Each boxplot represents a recursive step with 0 being

the base case. Within a boxplot, each data point (0:LSVs=2299, 1:LSVs=389, 2:LSVs=330,

3:LSVs=319) represent the log likelihood ratio of a LSV under the tile model (learned by

CHESSBOARD on the original data) and a null model (learned by CHESSBOARD on the

original data with tile structures removed by randomly permuting each row of the data matrix).

The median is denoted by a red line, the upper and lower quartiles are denoted by the box, the

whiskers denote points that lie within 1.5 IQRs of the lower and upper quartile, and observa-

tions that fall outside this range are outliers which are independently displayed.

Fig. 5: AML Drug Response Analysis. (A) Heatmap showing the tile discovered by CHESS-

BOARD in LSVs from 70 AML related genes (samples = 477, LSVs = 90). The signal (sam-

ples = 214, LSVs = 66) is outlined in red. Top “Genome Wide Clustering” track shows sample

grouping in Fig. 3a. (B) Barplot showing for each categorical variable (mutation presence or

splicing cluster assignment, left) the drug (right) with the maximum AUC variance (x-axis)

explained by the corresponding variable. (C) The proposed decision tree for administering So-

rafenib based on splicing patterns and mutations. Patients with FLT3-ITD- and signal group

splicing pattern exhibit a worse response (low AUC) compared to patients with FLT3-ITD+ and

a background group splicing pattern(high AUC). (D) Violin Plots of AUC values for patients’

response to Sorafenib when split according to the groups indicated on the x-axis. When com-
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bining both splicing and mutations information using the decision tree in Fig. 5c, the variance

explained increases to 36.8%. The bars at the top indicate the total number of samples that

fall into each category. Notably, the groups exhibiting favorable drug response (FLT3-ITD+

& Background) are enriched for abnormal splicing (55/66 patients) while the group with poor

response (FLT3-ITD- & Signal) are enriched for normal splicing (152/169). Here, abnormal

splicing is defined as constitutive expression of the canonical isoform with Ψ1 > 0.9 and Ψ2 >

0.9. (E) Differential splicing events in FLT3 and EZH2 between the subgroups. For FLT3, the

inclusion of exon 4b in LSV1 and exon 17b in LSV2 results in introduction of a frameshift or

PTC respectively. Scatterplot (bottom left) shows correlation between Ψ values for the skipping

event in FLT3 (Ψ1 for LSV1, Ψ2 for LSV2), while correlation plots (bottom middle and right)

show Pearson’s correlation between Ψ and FLT3 expression. The red line indicates the linear

regression fit and the band represents the 95% confidence interval. For EZH2, the ∆Ψ values

between the clusters for these deleterious events in EZH2 are low (< 0.2), but are part of a

change involving a higher rate of missingness in the background cluster (>0.15).

Fig. 6: Pediatric AML and B-ALL Analysis. (A) Heatmap showing the tile discovered by

CHESSBOARD when applied the joint beatAML and TARGET pediatric AML dataset (sam-

ples = 1089, LSV = 2965). Tiles are outlined in red. Track on the y-axis groups the LSVs into

groups defined as: unique to pediatric (blue), shared between diseases (red), unique to adult

(green), unique to one subtype in each disease (yellow), unique to only 1 disease disease and

subtype (purple). (B) Heatmap showing the tile discovered by CHESSBOARD when applied

the TARGET B-ALL dataset (samples = 517,LSVs = 1562). Tiles are outlined in red. The top

track indicates whether the patient is positive (blue) or negative (red) of RUNX1-ETV6 fusion.

The second track indicates where the sample is primary (blue) or relapse (red).
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Supplementary Notes
1 Data Description

Supplementary Note 1.1: Datasets

beatAML Dataset

The beatAML data used in this study includes RNA-seq data from 451 specimens from

411 patients from Tyner et al. 2018 and an additional 26 samples for a total of 477 sam-

ples1. The samples were sequenced from purified mononuclear cells collected from peripheral

blood or bone marrow. All patients were diagnosed with AML or closely related disease. We

downloaded FASTQ files from www.synapse.org to use in subsequent processing and analy-

sis. Sequencing adaptors and low quality base calls were trimmed from FASTQs using trim

galore. For expression data, we obtained TPM values using SALMON with Hg38 decoys from

the FASTQ files. For splicing data, we aligned the FASTQs using STAR and sorted the BAM

files using samtools. We mapped reads in the BAM files to splice junctions using MAJIQ using

ensembl GRCh38 v94 annotations. The build contained all the beatAML, TARGET pediatric

AML and TARGET B-ALL samples such that all 3 datasets use the same splice graph.

beatAML Drug Sensitivity Data

The drug sensitivity data was taken directly from the supplied beatAML metadata. The

IC50 values were generated using an ex vivo drug sensitivity assay described in Tyner el. al

20181. The screen applied 122 small molecule inhibitors to isolated mononuclear cells from

the AML patient samples. The IC50 value for each drug-sample pair was calculated by fitting

a sigmoid curve to 7 data points representing cell viability at varying drug concentrations and

estimating the concentration that resulted in 50% viability. Note that the drug concentrations

were measured using 3-fold serial dilution in the range of 10uM to 0.0137 uM. Many drugs-
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sample pairs had an IC50 of 10uM indicating that a wider range of concentrations were needed

to properly fit the curve. In such cases, measuring the area under the curve (AUC) provides a

better representation of drug sensitivity.

beatAML Mutation Data

All mutation annotations for beatAML samples used in this study were taken directly from

the supplied metadata. The consensus variant calls were generated from multiple genotype

callers applied to whole exome sequencing (WES) data and assigned a mutation status based on

ensembl VEP GRCh37 annotations as described in Tyner et. al 20181. FLT3-ITD, NPM1 and

CEBPA mutations for a subset of patient sample were verified using additional experimental

assays.

Penn HTSC Dataset

The Penn HTSC dataset contains 77 AML patient samples sequenced by the University

of Pennsylvania high-throughput screening core. All samples used in the sequencing were

confirmed to be at least 90% AML blasts. A subset of the samples (29) was previously published

in Rivera et al. 20212. This data can be obtained from GEO (GSE142514).

ENCODE Knockout Dataset

The ENCODE knockout dataset was taken from Van Nostrand et al. 2020 and processed

as described in Slaff et al. 20213;4. The subset of data we used in this study was limited to

knockout experiments of 106 RBPs/SFs in K562 cell lines that had matching eCLIP data. This

data was generated in 32 batches with each batch containing at least 2 replicates for controls

and knockout experiments. The batch effect was corrected across the knockout experiments

using MOCCASIN as described in Slaff et al. 20214. For differential splicing analysis, controls

across the batches were aggregated into “virtual controls” and compared against each knockout

experiment using MAJIQ.

ENCODE eCLIP Dataset
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The data was downloaded from www.encodeproject.org. We only used data for

which there was a matching RBP/SF knockout experiment (106 RBPs/SFs) in K562 cell lines.

Each RBP/SF experiment had 2 replicates. Consensus binding peak calls were obtained using ir-

reproducible discovery rate (IDR) (https://www.encodeproject.org/data-standards/

terms/#concordance).

TARGET B-ALL

The TARGET B-ALL data used in this study includes 517 RNA-seq samples from 250

unique patients with ALL diagnosis. Most patients are represented by samples taken at primary

leukemia diagnosis and samples taken after relapse with 2-3 replicates. Only samples with

annotated B-cell origin or inferred B-cell origin were considered. The inferred cell origin labels

were taken from Slaff et al. 2021 which annotated the cell origin of unannotated samples

based on the cell origin of the samples they clustered with4. Batch effects were corrected using

MOCCASIN for sequencing instrument (HiSeq 2500 vs HiSeq 2000).

TARGET Pediatric AML

The TARGET Pediatric AML data was downloaded from https://portal.gdc.cancer.gov. We

selected only samples with an age under 23. The curated dataset contained 612 samples.

Supplementary Note 1.2: Splicing Event Definitions

The input to CHESSBOARD is a data matrix Xn⇥m with n columns representing patient sam-

ples and m rows representing splicing events. The definition of what constitutes an alternative

splicing event may vary depending on the quantification tool the chosen by the user. Regardless

of the tool, a user can supply two TSV files where each row is a splicing event. The entries in

the first file represent reads mapped to the junction of interest while the entries in the second

file represent the sum of all reads not mapped to this junction of interest but are still contained

in the splicing event/normalization unit. For example, if a user chooses to quantify ’classical’
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events such as cassette exons using a method such as rMATS5, they can parse rMATS output

such that the input files reports inclusion reads vs the total exclusion reads per AS event. In

terms of CHESSBOARD’s model, the reads mapped to a cassette exon’s inclusion junction are

the successes xij and the total reads mapped to the AS event (in this example exclusion reads

plus inclusion reads) are ⌘ij .

In this study, we use MAJIQ6 which defines AS events using the concept of local splice

variations (LSVs). Briefly, Each LSV has a reference exon to which other exons (or introns,

for intron retention events) are spliced to. A source LSV contains a set of splice junctions

downstream of the reference exon while a target LSV contains a reference exon that is spliced

to other exons or introns upstream of it. MAJIQ’s LSV formulation is able to capture classic

event types such as cassette exons, but also many other splicing variations that are more complex

(involve more that two alternative junctions) as well as unannotated junctions and exons. Within

an LSV, a splice junction is quantified by percent splice in ( ) which is the ratio of reads

spanning the junction to all other reads in the LSV. However, CHESSBOARD’s binomial model

is designed to handle one junction per splicing event. Thus during the processing of MAJIQ’s

output, we select as a representative junction per LSV. This junction is determined as the one

in the LSV with the highest variance in  across all samples. We note that CHESSBOARD is

able to support any representation of splicing as input as long as it can be expressed as ratios

of reads. This includes isoform ratios although this is not recommended due to complications

with resolving isoform abundance using only short read RNA sequencing.

2 Additional Methods and Evaluation

Supplementary Note 2.1: Parametric Bootstrap Kolmogorov-Smirnov Test

Part of CHESSBOARD’s prefiltering pipeline involves removing non-informative LSVs which

only exhibit a single  modality using a parametric bootstrap Kolmogorov-Smirnov (PBKS)
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test. CHESSBOARD assumes that the  distribution of each LSV is a mixture of 2 Beta distri-

butions representing a signal and background component thus LSVs that can be modeled by a

single distribution are unlikely to contain any signal with notable effect size. The null hypoth-

esis (H0) of the PBKS test is that the data is Beta distributed. The alternate hypothesis (H1) is

that the data is not Beta distributed. Rejecting H0 would suggest that a single component Beta

is a poor fit for the data and thus multiple modalities exist. We first fit a Beta distribution to the

 values for a given LSV using MLE. We then compute the 2 sided 1 sample KS statistic D*

using the fitted Beta distribution as the reference

D⇤ = max(F̂ (x)�G(x)) (1)

F̂ is the empirical CDF and G is the CDF of the fitted Beta. Note that because, the reference

distribution was obtained from the data, D* no longer follows the Kolmogorov distribution.

Thus we used a parametric bootstrap approach to estimate the p-value. First, we sample n

datasets of equal size to the empirical data from the fitted Beta distribution where n is the number

of user defined bootstrap samples (default = 500). We then compute D* on each dataset. The

PBKS test p-value is equal to the proportion of bootstrapped D* statistics that are greater than

the observed D* statistic.

Supplementary Note 2.2: Statistical Methodology for Model Evaluations

Information Gain

Information gain (IG) can be interpreted as the amount of information gained by a random

variable given that a dependent variable is observed. The quantity is related to Kullback-Leibler

divergence (KLD) in that IG = 0 when the KLD between the joint distribution and product of

marginals = 0 (i.e. variables are independent). In a k = 2 clustering setting, IG can be interpreted

as the amount of information gained by performing/observing a split of the population into two
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groups. We compute IG as follows

1�
2X

k

�I(ĉi = k)

N
[P (ci = 2|ĉi = k)log2(P (ci = 2|ĉi = k))+

P (ci = 1|ĉi = k)log2(P (ci = 1|ĉi = k))] (2)

The population entropy in our experimental setting is 1 since the 2 classes have equal size. The

second term represents a weighted average of the clustering entropy given observation of an

inferred binary label for each sample ĉi.

Precision and Recall Based on Recovery and Relevance Score Precision ⌧pr and recall ⌧rc

metrics based on Recovery Relevancy Score are given by

⌧pr =

P
(G1,C1)2M1

max(G2,C2)
|G1\G2|+|C1\C2|

|G1|+|C1|

|M1|

⌧rc =

P
(G1,C1)2M1

max(G2,C2)
|G1\G2|+|C1\C2|

|G2|+|C2|

|M1|
(3)

Here, M1 represents a set of reference tiles and each tile is defined by a feature set G1 and

sample set C1. M2 represents the set of inferred tiles where each tile is defined by a feature set

G2 and sample set C2. For each tile in the reference set, select 1 tile in the inferred set which

best represents this tile based on the maximum precision or recall of the inferred feature and

sample sets. Compute this quantity of each reference tile and average the quantities.

Adjusted Rand Index

Adjusted Rand Index is a measure of clustering agreement. A value of 1 indicates perfect

agreement. The score is computed as
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(4)

Here, nij represents the number of samples assigned to group i in the first clustering and group

j in the second clustering. ai =
P

j nij and bj =
P

i nij .

Effective Dimensionality
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Effective dimensionality represents the strength of the concentration parameter as a func-

tion of the number of features. Intuitively, as the number of features increases, the impact of the

concentration parameter decreases since the total likelihood of a sample compounds multiplica-

tively with the number of features. Therefore a smaller concentration is needed as the feature

space increases to maintain constant effect. We define effective dimensionality as

↵d =
↵

N � 1 + ↵

d
(5)

where ↵d is the concentration parameter chosen to have the same effect as ↵ when the effective

feature set size is d and N is the number of samples. This reduces to the standard CRP prior for

opening a new cluster in a 1 dimensional setting (i.e d = 1).

Supplementary Note 2.3: Generative Synthetic Data Simulations

To generate synthetic data for testing our model, we first simulated a background matrix with

100 samples (columns) and 100 LSVs (rows). For each LSV j and sample i, we simulated the

read rate xij from the following generative process:

xij ⇠ Binomial(nj, 
BG
j )

 BG ⇠ Beta(↵BG
j , �BG

j ) (6)

nj ⇠ Poisson(�j)

We then implanted tiles with read rates simulated from the following generative process:

xij ⇠ Binomial(nj, 
S
j )

 S ⇠ Beta(↵S
j , �

S
j ) (7)

nj ⇠ Poisson(�j)

Here Beta(↵BG
j , �BG

j ) represents the background  distribution, Beta(↵S
j , �

S
j ) represents the

signal  distribution and Poisson(�j) represents the distribution over read coverage or expres-
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sion level for a LSV. Poisson modeling for gene expression has been used in several methods be-

cause read dispersion tends to increase with expression levels. The parameters of the simulation

were estimated from the beatAML dataset. To estimate ↵ and �, we fit a 2 component Beta mix-

ture to the  values of the 1000 most variable LSVs. The estimated parameters for the compo-

nent with lower variance were used for the background. To estimate �, we use the median read

rate for each LSV. We selected a random subset of 100 LSVs with |E( BG) � E( S)| > 0.2

to parameterize each LSV in the simulation.

Supplementary Note 2.4: Infinite Mixture Behavior Evaluation

CHESSBOARD is able to learn the number of tiles without a priori knowledge using an infinite

mixture modeling approach with a Chinese Restaurant Process (CRP) prior (Methods). This

can be particularly effective for analyzing cancer data where the number and size of disease

subtypes is unknown. Specifically, CHESSBOARD naturally models both common and rare

subtypes since the CRP prior expects a gradient of group sizes. However, like other unsuper-

vised methods, CHESSBOARD depends on both hyperparmeters and characteristics of the data.

Here, we show how the CRP concentration hyperparameter, which regularizes the number of

tiles, interacts with two characteristics of the data: The number of LSVs supporting a tile and

the signal strength within an LSV measured by Kullback Leibler (KL) divergence between the

signal and background distributions. In addition, we evaluate the algorithm’s ability to identify

tiles under two different scenarios: One where it must assign samples to the correct tile such

as when the clusters are initialized using k-means and another when it must overcome the con-

centration parameter to create a new tile. The results of these evaluations are summarized in

Fig. 2e. As expected, we find that as the distance between the signal and background distri-

butions increases, fewer supporting LSVs are needed to assign a sample to the tile with high

(> 0.99) probability, ranging from 1 for KL = 6.697 to 10 for KL = 0.617 (Supplementary Fig.
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1a left). We also find that learning new clusters requires far more supporting LSVs or a much

stronger signal-background discrepancy due to the penalty of opening a new cluster induced by

the concentration parameter. By setting the concentration parameter using effective dimension-

ality (Supplementary Note 2.2), we show that it takes at least 20 supporting LSVs to find a new

cluster when the KL divergence is high (Supplementary Fig. 1a right). Finally, we evaluate

whether these observations hold on more realistic synthetic data by simulating a matrix with

2 tiles where the average � between signal and background distributions is 0.2, a threshold

commonly used in the RNA field to define a significant splicing change. We then add a 3rd tile

with a varying number of supporting LSVs. We find such data requires at least 12 supporting

LSVs to find the 3rd tile (Supplementary Fig. 1b).

Supplementary Note 2.5: Runtime and Memory Evaluation

To assess the runtime and memory usage of CHESSBOARD, we ran the algorithm on synthetic

data constructed with a varying number of samples n and features m and k equal sized tiles

along the diagonal of the matrix (Supplementary Fig. 2). We only vary these variables be-

cause the runtime complexity of a single iteration of the MCMC (excluding sampling time) is

O(nmk). In each iteration, the likelihood of each sample vector is computed under each of the

k existing clusters and the likelihood of each feature vector is computed under the signal and

background models. Note that the value of k can change between iterations. To avoid fluctuat-

ing values of k significantly affecting runtime, the simulated data was constructed with a large

difference between the signal (BetaBinomial(n=100, a=90,b=10)) and background (BetaBino-

mial(n=100, a=10,b=90)) distributions and runs of the algorithm were initialized with the cor-

rect number of clusters (using k-means). We ran the algorithm for 10 iterations on each dataset

on a Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz CPU machine with 512 GB of RAM and

recorded the mean runtime per iteration.
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To assess memory usage, we used the mprof utility from the python package memory profiler.

This tool samples the memory usage of the algorithm in 1 second intervals. We report the peak

usage as the max memory (Mb) used across the sampled data points. Together, these results

indicate that the runtime and memory increase with the number of features and samples. In-

creasing sample count increases runtime at a higher rate than increasing the number of features.

Cluster count has a the largest effect on runtime and memory. For very large datasets, the run-

time and memory usage appear to increase at different rates from the established trends (e.g.

for the 2 cluster test, there was an increase in memory usage at 800 samples and 5000 LSVs

but a decrease at 1000 samples and 5000 LSVs). This occurred because the CRP was opening

singleton clusters which we hypothesize was due to increasing data complexity. However, these

singleton clusters are still ultimately removed in the posterior summary process.

3 CHESSBOARD Pipeline and Features

Supplementary Note 3.1: Standard CHESSBOARD Pipeline for Real Data
Analysis

This section details the default/standard settings and parameters used to run CHESSBOARD

on our real datasets. We used MAJIQ to estimate read rates from STAR aligned BAM files.

The median of the bootstrapped read rates for the most variable splice junction in each LSV

was used as the representative junction in the data matrix. Note that CHESSBOARD supports

non-MAJIQ processed input for any splicing quantification metric that can be interpreted as a

ratio of junction inclusion or relative isoform proportions. We applied our filtering procedure to

the data matrix using default parameters as described (Methods). We then ran CHESSBOARD

on this data matrix with a k-means initialization (on  ) of k = 5 and conc = 1e-100. We used

hyperpriors ↵0 = �0 = 0.5 (Jeffery’s prior modeling propensity for high or low junction in-

clusion) for background and ↵1 = �1 = 5 (Beta prior modeling intermediate inclusion with
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moderate variance) for the signal. For missing value priors, we estimated the values empirically

on GTEX whole blood data using beta-binomial regression (Methods). The regularization pa-

rameter by default is 50. We ran the MCMC chain for 1000 iterations with a burn in of 200

and thinning step size of 2 but noted that the algorithm essentially converged at 20 iterations

(model likelihood stopped changing after each iteration). We observed the same convergence

using chains with alternate k-means initializations. This is because we are working with very

high dimensional data. Although MCMC procedures are typically run for multiple chains where

each chain is assessed for convergence using a stationary test diagnostic such as Heidelberger

and Welch, we opt to use treat the optimization procedure using an expectation maximization

approach with multiple start conditions given that model likelihood stop changing relatively

quickly. This can be interpreted as an approximation for a variational inference approach where

the MCMC is treated like a gradient based optimization.

Supplementary Note 3.2: Convergence Diagnostics

To enable alternative approaches for users to evaluate convergence of the MCMC samples to a

stationary distribution, we implemented the Heidelberg-Welch test7. The hypotheses of the test

are

• H0: The chain is from the stationary distribution.

• H1: The chain is not from the stationary distribution.

The input for this test is the log-posterior likelihood Markov chain obtained by running the

CHESSBOARD algorithm. For a chain of length n, subchains are constructed by removing the

first z samples of the chain in increments of a specified step size up to half the chain length

(n/2). For each subchain, we compute the statistic vector Bz(t) for {t|0  t  n ^ nt 2 Z+}

where Z+ is the set of positive integers and ✓j is the jth element of the subchain.
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Tk =
kX

j=1

✓j

✓̄ =

Pn�z
j=1 ✓j

n� z
(8)

Bz(t) =
Td(n�z)te � d(n� z)te✓̄p

(n� z)S(0)

Here, S(0) is a scalar defined as the spectral density of the latter half of the full chain at

frequency zero. There are multiple approaches to computing S(0) but we use an auto-regressive

model approach by first fitting the following auto-regressive model with lag p to the chain. The

degree (lag) of the model was selected using AIC.

✓j =
pX

i=1

�i✓j�p + ✏ (9)

Then we compute S(0) using the Yule-Walker method.

S(0) =
V ar(✏)

(1�
Pp

i=1 �i)2
(10)

To compute a p-value for this test, we compute the test statistic

Z 1

0

Bz(t)
2dt (11)

We approximate the integral using a Reimann sum and compute the p-value using the CDF

for the Cramer-Von-Mises Distribution. Please note that the null distribution indicates that the

chain is stationary. Thus the first subchain that has a non-significant p-value is used since we

cannot reject the null.
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To further assess the robustness of CHESSBOARD’s posterior distribution, we applied the

algorithm to three synthetic datasets and evaluated convergence of the MCMC (Supplementary

Fig. 3). In each dataset (samples = 30, LSVs = 30), LSVs were simulated from the same Beta-

Binomial distribution to ensure that there was a consistent difference in variability between

datasets. The distribution and tile structure used in each dataset is shown in Supplementary Fig.

3. The left most dataset has the highest variability while the right most has the lowest. We

ran CHESSBOARD on each datset for 2000 MCMC iterations with ↵ = 0.1 and a k-means

initialization of k = 5. In the highest variance dataset, 5 clusters were found. Although this

does not match the ground truth cluster number from the the simulation, the result is reasonable

as shown by the pairwise clustering probability plot. The samples from both clusters are clearly

separated as there is 0 probability of them clustering together. However, within each of the

original clusters, there appear to be 2 subclusters. One is a high confidence group (higher

probability of samples clustering together/darker color in the heatmap) and the other is a low

confidence group (low probaiblty of samples clustering together/lighter color in the heatmap).

The final cluster is an outlier group with samples that are a poor fit for all of the other clusters.

The marginal probabilities of each cell in the matrix belonging to the signal distribution also

shows high variability. Note that the signal-background distribution designation does not matter

here since the clusters are equal in size. The tile structures still are correctly identified (just at

a finer resolution). The Heildelberg-Welch diagnostic indicates that the log-posterior of the

model has converged to the stationary distribution after 229 iterations (step size = 1, p = 0.695).

As the variability of the datasets increase, the variance of the posterior begins to decrease. The

second dataset converges at 114 iterations (step size = 1, p = 0.114). The third dataset converges

almost instantly (step size = 1, p = 0.320). This is due to extremely low data variability which

results in a low variance posterior with high confidence clusters. It should be noted that this

dataset is representative of our realistic simulated data (Supplementary Note 2.3) and our real
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data (Supplementary Note 1.1). Consequently, the algorithm converges very quickly to a stable

solution on these datasets. Furthermore, these datasets are very high dimensional in comparision

to the datasets used in this analysis which makes it much harder for the algorithm to explore

the full posterior. For such data, it is recommended to use the convergence evaluation criteria

described in Supplementary Note 3.1.

Supplementary Note 3.3: Using CHESSBOARD as a Predictive Model

To use CHESSBOARD as a predictive model, we want to assess the probability of a sample

being assigned to one of the clusters. This is given by

P (ci = z|xi) / [rzP (xi|↵1, �1) + (1� rz)P (xi|↵0, �0)]P (ci = z) (12)

CHESSBOARD learns the parameter values from a training dataset by using the parameters

from the sample that minimizes MSE to the posterior mean. We can then predict the likelihood

of a sample given all the learned parameters using a mixture of Beta Binomial likelihoods. We

used this approach to predict clustering assignments for the samples in the Penn HTSC dataset.

First, we ran the algorithm on the beatAML datasets to learn all of the above parameters. Since

there were 2 clusters, z 2 [1, 2]. Then we assigned 2 likelihoods to each sample in the Penn

HTSC dataset. One for z = 1 and one for z = 2. Finally, we made a hard clustering assignment

by placing the sample in the cluster for which it had the higher likelihood.

Supplementary Note 3.4: Statistical Testing in Regulation Analysis with
ENCODE Data

In this section, we detail the statistical tests used to generate Fig. 3f. To determine if a RBP/SF is

differentially expressed between the signal and background clusters, we use DeSeq2 on Salmon

transcript expression quantifications. If a gene has multiple quantified transcripts, we consider

the gene differentially expressed if at least one transcript is DE. A transcript is DE if its log2FC
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> 1 and its bonferroni corrected p-value is < 0.05. To determine if a RBP/SF is differentially

spliced, we use MAJIQ Het on MAJIQ quantifications. If a gene has multiple LSVs, we con-

sider the gene differentially spliced if at least one junction is DS. A LSV is DS if its median� 

is > 0.2 and bonferroni corrected Wilcoxon p-value is < 0.05 for a junction. To determine which

splice junctions were regulated by each RBP/SF, we performed a differential splicing analysis

using MAJIQ between RBP/SF knockdown samples and controls. For each RBP/SF, there were

2 replicates for knockdowns and 2 for controls. The RBP/SF knockdown experiments in the

ENCODE dataset were generated in 32 batches in K562 cell lines. We used MOCCASIN to

correct for batch effects. The controls were considered all together as one group. Any junction

with posterior probability of � > 0.2 was considered differentially spliced and thus regu-

lated by the RBP/SF. To determine which junctions had CLIP binding of the RBP/SF, we first

identified binding regions by assessing whether the Irreproducible Discovery Rate (https:

//www.encodeproject.org/data-standards/terms/#concordance) p-value

was < 0.05 for CLIP peaks generated from 2 replicates. Then we checked whether the region

bounded by the RBP overlapped with a 250 bp window flanking each side of the junction. A

window that overlaps with at least one binding region indicated that the junction had CLIP

binding. To compute p-values for enrichment of overlap, we used a 1 sided fisher’s exact test

for enrichment on the following 2 x 2 table. The null hypothesis for the 1 sided test is that the

odds ratio of junctions in tile to junctions not in tile is greater than 1.

Junction in Tile Junction not in Tile
Regulated/Binding/Both Junction in Tile & Regu-

lated/Binding/Both
Junction not in Tile & Regu-
lated/Binding/Both

⇠(Regulated/Binding/Both) Junction in Tile &
⇠(Regulated/Binding/Both)

Junction not in Tile &
⇠(Regulated/Binding/Both)

Regulated indicates the junction was in a LSV that was determined to be regulated in the EN-

CODE analysis. Binding indicates CLIP binding of the RBP/SF was observed in the ENCODE
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data near the junction. Both is the intersection of regulated and binding.

Supplementary Note 3.5: CHESSBOARD can Rank Tile’s Splicing Events
for Downstream Analysis

In many genomic analysis tasks such as differential splicing or gene expression researchers

are interested in a ranked list of entities (e.g. mutations, genes), which they then test for en-

richment of some biological signal (e.g. pathways). Ranking is also desirable since the tile

structure is clearly an approximation of the underlying biological signals. Specifically, some

LSV may exhibit a strong pattern that closely matches the patients subgroups thus “driving” the

tile formation while others can be considered as “passengers” with a much less clear pattern.

However, standard differential splicing analysis can not be applied in this setting as it is based

solely on observed  and ignores the missingness signal discussed above. Thus, to address the

need for splicing changes ranking we developed a LSV ranking procedure that takes advantage

of CHESSBOARD’s probabilistic framework. The ranking score is computed as

Rank(LSVj) =
NX

i

[log(P (xij|↵j1, �j1, ci, rci))� log(P (xij|↵j1, �j1, ci, r⇤ci))] (13)

The first term represents the likelihood of the LSV under the learned tile model while the second

term represents the likelihood under an inverted model. Recall that the likelihood under the tile

model is computed as the mixture of a signal and background Beta distribution where subscript

1 indicates signal and subscript 0 indicates background.

P (xij|↵j1, �j1, ci, rci) = rciP (xij|↵j1, �j1) + (1� rci)P (xij|↵j0, �j0) (14)

Under the inverted model, we compute the likelihood in the same way except r⇤ci is defined

as r⇤ci = 1 � rci. Intuitively, the ranking score is the total likelihood a LSV “gained” from

the learned model compared to the alternative. If the the signal and background distributions

are similar (i.e. KLD is low), then the data has similar likelihood under both models. This
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indicates that the LSV does not strongly drive tile structure because a sample would have ap-

proximately equal probability of being assigned to signal or background if classified using this

feature alone. Conversely, LSVs with a high score gain substantial likelihood from the learned

tile configuration and strongly contribute to the tile structure. When applied to the tiles derived

from the AML associated genes, we find a distinct exponential shape of the score distribution.

This result indicates that a few “driver genes” define the tile shape while the majority of LSV

features contribute much less to the structure (Supplementary Fig. 5a). We then confirmed that

the score is directly correlated with the amount of separation between modalities. We observed

that the highest ranking LSV has large separation while LSVs with scores in 75th, 50th and

25th percentile show decreasing separation (Supplementary Fig. 5b). The modalities in the

lowest scoring LSV were almost completely overlapping. Finally, we assessed the rankings of

the notable LSVs we analyzed in the previous section. FLT3 LSV1 and LSV2 rank near the

50th percentile while the two EZH2 LSVs ranked lower. However, we note that EZH2 was

prioritized due to its missingness pointing to the importance of our missing value model. The

top ranking LSV was U2AF1 which is expected to regulate a substantial number of the events

in the tile given the regulatory analysis described above.

4 beatAML Analysis

Supplementary Note 4.1: Recursive Clustering and Termination

The CHESSBOARD framework naturally enables recursive clustering through its tile based

clustering approach and probabilistic framework. The recursive clustering algorithm is pre-

sented below.
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Algorithm 1: Recursive Clustering
M0 = CHESSBOARD(XF0);
X̄F0 = Shuffle(XF0);
M0⇤ = CHESSBOARD(X̄F0);
LR0 = median(LL(XF0 ,M0)� LL(X̄F0 ,M0⇤));
while |LRn � LRn�1| < T do

Fn = {LSVj|8j s.t.
P

c rjc = 0};
Mn = CHESSBOARD(XFn);
X̄Fn = Shuffle(XFn);
Mn⇤ = CHESSBOARD(X̄Fn);
LRn = median(LL(XFn ,Mn)� LL(X̄Fn ,Mn⇤));

end

Let X represent a data matrix with rows representing all LSVs in the transcriptome and

columns representing all patient samples in the dataset. Define F0 as the feature set of the initial

input matrix (i.e. all features that pass the pre-filtering pipeline). We apply CHESSBOARD

to the matrix XF0 to obtain posterior model M0. M0 represents all latent posterior random

variables learned from the data. We then generate a null matrix with the same feature set

denoted as X̄F0 by shuffling the rows of XF0 . The shuffling procedure involves independently

and randomly permuting each row of the input matrix to break tile structure. Next, we obtain

the posterior model M0⇤ by running the algorithm on X̄F0 . We then use both posterior models

to evaluate the log likelihood ratio LR0 of each LSV in XF0 under model M0 to X̄F0 under

model M0⇤. To conduct the first recursive step, define feature set containing LSVs not assigned

to a tile Fn as {LSVj|8js.t.
P

c rjc = 0}. We then apply CHESSBOARD to XFn and null

matrix X̄Fn to obtain model Mn and Mn⇤ respectively as in the base case. This procedure is

repeated until the termination criteria is met. We terminate the algorithm once the median LR

stops changing from the previous iteration. We use the median LR of the LSV LR distributions

so the likelihoods are comparable between iterations. Using the likelihood of the entire matrix

for example would not be comparable since the cardinality of the feature sets decrease after

each iteration. Non-changing can be defined as either the difference between medians being
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below some threshold T or a test can be used to reject the null hypothesis that the likelihood

means are unequal.

We also present an augmented version of the recursive algorithm. In our applications, we did

not notice any major differences between the two versions of the algorithm and opted to not use

the augmented algorithm due to run-time considerations. Under this approach, feature sets F

are not confined to only LSVs in the input data matrix but include all LSVs in the transcriptome

which are correlated to the unique structures that contain the LSVs in F . Specifically, for each

unique binary vector rj , divide the samples i into groups such that rjci = 0 and rjci = 1.

Remove any LSVs from X that are differentially spliced between the groups. Once all LSVs

correlated to each unique rj have been removed, proceed to the next recursive step. Next, when

generating the null model, instead of generating a single model, we can generate a bootstrapped

empirical distribution over models through multiple permutations of X . Formally, we have

X̄1, X̄2 . . . X̄B where B is the number of bootstrapped samples. Then we can evaluate whether

the likelihood XF is significant in the context of the distribution of X̄1,2,...,B and terminate the

algorithm if the likelihood of XF is an outlier.

Supplementary Note 4.2: Multiple Testing Correction with Missing Data

To correct for the family wise error rate in multiple testing, we use a min-P procedure. Let

C = {ci|8i 2 [N ]} be the set of cluster labels for all N samples. For each mutation m out of

M total mutations, we compute an observed p-value pm using a two-sided fisher’s exact test on

the following 2 x 2 matrix.

ci = 0 ci = 1
Mutation+ Mutation+ & ci = 0 Mutation+ & ci = 1
Mutation- Mutation- & ci = 0 Mutation- & ci = 1

Missing mutation annotations are ignored. We then generate a bootstrapped null p-value dis-

tribution. For each of B bootstrapped samples, we randomly permute C such that each ci
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takes on the value of a random ci 2 C without replacement. Then given these new cluster-

ing assignments, we compute fisher’s exact test again for each mutation to obtain p⇤bm. For

each bootstrapped sample, we record the minimum p-value across all mutations minPb =

min(p⇤b1, p⇤b2, . . . , p⇤bM). To compute the corrected p-value for a mutation m, we count the

number of times the observed p-value
P

b I(pm > minPb) and divide by B.

5 Drug Response Analysis

Supplementary Note 5.1: Drug Response Correlation

Drug response in the BeatAML dataset was quantified using two measurements: IC50 and AUC.

IC50 is the concentration (µM in the beatAML study) at which a drug inhibits a target biolog-

ical process by 50%. In the beatAML study, inhibition was measured as the normalized cell

viability which is a quantity derived from the optical density of surviving tumor cells in a plate

after treatment with the drug. The IC50 value for each drug was obtained (by the beatAML

study) by fitting a sigmoid curve to 7 data points defined as the tuple (concentration, inhibi-

tion) and selecting the concentration at which inhibition is 50% of its maximum value. Each

of the 7 concentrations represents a 3 fold dilution starting at 10µM and ending at 0.0137µM .

When we compare IC50 changes in this study, we use a log3 transform since each unit change

of IC50 in log3 space is 1 fold change unit given the 3 fold dilution. AUC is the area under

the IC50 curve which is an unbounded positive quantity and a larger value indicates poor drug

response. We chose to use AUC over raw IC50 because concentration ranges used in the beat-

AML experiments limited fitting of sensitivity curves. However, we note that the median AUC

and IC50 changes between the groups in beatAML were highly correlated (r = 0.727) indicating

that quantitative comparisons in AUC space translated to IC50 space (Supplementary Fig. 6a).

Interestingly, most outliers in this figure (i.e cases when there is low agreement between IC50

and AUC changes) had median IC50 values of 10 in both clusters (�IC50 = 0) and were likely

23



the most affected by the concentration range. This can occur when there is no sigmoid curve

but rather a horizontal line due to the fact no concentration in the chosen range produced any

noticeable effect. In this case, relative AUC quantities can still be compared but IC50 cannot.

A change in AUC quantity should thus be used to assess whether there is difference in response

between groups. However, the difference itself does not have a clear interpretation. Instead,

given a significant difference in AUC, one can then look for a large fold change in IC50 to de-

termine if the change is biological meaningful. The patient groups differ most significantly by

their sensitivity to JQ1 (p = 7.21e-05, �median(AUC) = 25.76) (Supplementary Data 4) based

on a Kruskal-Wallis test. The tile group had a higher median IC50 compared to the background

group corresponding to a Log3 fold change of 0.773 indicating a higher drug sensitivity in the

background (Supplementary Data 4). The drugs Tramatenib (p = 5.77e-03, median(�AUC) =

42.50, Log3FC = 2.65) and Venetoclax (p = 1.56e-02,�median(AUC) = 38.08, Log3FC = 2.34)

were the two highest ranking drugs in terms of AUC and IC50 change and are common drugs

administered to AML patients. In contrast, drugs with poor correlation are associated with other

conditions. For example, Vemurafenib (p = 0.831,�median(AUC) = 1.39) is a Melanoma drug

and Lovastatin (p = 0.962, �median(AUC) = 8.80) is intended to reduce cholesterol levels. To

assess potential functional significance, we first looked for differential splicing of specific gene

targets of these drugs. Specifically, we observed differential splicing at multiple junctions in

BRAF (JQ1 target), MAP2K1 (Tramateib target) and BCL2 (Venetoclax target).

Supplementary Note 5.2: Variance Explained

V ar(IC50) = E[V ar(IC50|FLT3 � ITD+)] + V ar[E(IC50|FLT3 � ITD+)]

V arianceExplained(FLT3 � ITD+) =
V ar[E(IC50|FLT3 � ITD+)]

V ar(IC50)
(15)

24



Supplementary Note 5.3: Decision Tree Permutation Test

To compute whether AUC gained from including splicing profiles in the decision tree was sig-

nificant, we used a permutation test. To construct the decision tree for a specific drug and

mutation pair, we first split samples based on Mi = + or Mi = � and then conduct a second

split based on splicing profiles (i.e. cluster identity). We use variance explained by the deci-

sion tree as the test statistic. The null hypothesis for this test is that combining the mutation

and splicing classification does not improve drug response prediction compared to using mu-

tation status alone. The alternate hypothesis is that the combined classification improves drug

response prediction compared to using mutation status alone. For the observed test statistic, we

use the variance explained of our decision tree in Fig. 5c. We then compute 1000 bootstrapped

trees where we randomly permute clustering assignments into equal sized groups for the second

split. To compute a p-value, we use I(V arExpboot > V arExpobs)/1000.
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6 Model Details

Supplementary Note 6.1: Variable Table

Variable Definitions
Variable Description Distribution
n The total number of samples or number of matrix columns.

Samples indices are denote as i 2 {1, 2, . . . , n}
NA

m The total number of LSVs or number of matrix rows. LSV
indices are denote as j 2 {1, 2, . . . ,m}

NA

xij The number of reads mapped to the representative splice
junction of LSV j in sample i.

Binomial

⌘ij The total number of reads mapped to LSV j in sample i. NA
!ij An indicator variable which denotes whether LSV j in sam-

ple i is missing/unquantifiable.

!ij =

(
1 if observation is missing
0 otherwise

Bernoulli

ci Denotes assignment of sample i to cluster k if ci = k. CRP
rjk Denote assignment of LSV j for all samples such that ci =

k to either the background (rjk = 0) or signal (rjk = 1)
distributions.

Bernoulli

 ij Percent splice in of LSV j in sample i Beta
✓js Missingness rate of LSV j for the signal distribution s = 1

or background distribution s = 0
Beta

µjs Mean of  of LSV j for the signal distribution s = 1 or
background distribution s = 0

Beta

js Concentration/inverse variance of of LSV j for the signal
distribution s = 1 or background distribution s = 0

Prior

↵js, �js The priors for the Beta distribution modeling µjs Hyperprior
ajs, bjs The priors for the Beta distribution modeling missingness

rate ✓js

Prior

P
k rjk Regularization term. Exponential

� Regularization hyperparmeter. Hyperparameter
↵o CRP concentration parameter Hyperparameter
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7 Survival Analysis

Supplementary Note 7.1: Survival Analaysis

We performed a survival analysis on the beatAML samples. Patients were divided into two

groups based on whether they were assigned the signal or background cluster (Fig 3a). Out of

the 217 samples in the signal cluster, 132 had survival data (60.83%). Out of 260 samples in the

background cluster, 184 had had survival data (70.77%). There were no censored observation in

which patients dropped out of the study for reasons other than the event of interest (death). We

generated the survival curves for the background and signal groups denoted as S0(t) and S1(t)

respectively for all available time points t using the Kaplan-Meier method (Supplementary Fig.

7). To assess whether the survival distributions were significantly different, we used the log

rank test which is the standard in the field. The hypotheses of the test are

• H0 : S0 = S1

• H0 : S0 6= S1

The log-rank p-value was 0.6265. Although this is not significant, it is likely due to the

fact that the log rank test is under-powered to detect differences in non-diverging survival dis-

tributions8. The log rank test is a multi group extension of a chi-squared test which assesses

whether the observed cumulative deaths (after accounting for censored data) in each group

different significantly from the expected cumulative deaths in the dataset (i.e. groups are com-

bined). Thus the test is under-powered when the survival curves converge resulting in similar

cumulative death totals. In such scenarios, any divergence or omnibus test would be more ap-

propriate. Since we do not have censored data, we can also assess significance using a 2 sample

Kolmogorov-Smirnov test. The KS test statistic is D = 0.158 and the KS p-value is 0.054.

The test statistic can be interpreted as the largest difference in survival probability between the
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groups which is 15.8%. Specifically, The survival of the first seven months after diagnosis is

similar and the ultimate survival after several years is also the same. Only in between these two

time points some difference could be observed. While this represents a statistically significant

difference in survival rate and we report it here for completeness, the biological significance of

this difference is unclear and also difficult to explain.

Supplementary Figures

Supplementary Fig. 1: Additional Model Evaluation.
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(A) Probability of cluster discovery based on evidence in data. LEFT: Probability of the

CHESSBOARD model assigning a sample to the tile/signal distribution of equal size (i.e. k

= 2 initialization) as a function of increasing KL divergence (red low, blue high) w.r.t to a

background Beta distribution of Beta(10,1). and number of supporting LSVs in the tile. RIGHT:

Probability of assignment when discovering new tiles with the concentration parameter set using

an effective dimensionality (Supplementary Note 2.2) of 50. (B) Number of supporting LSVs

required to identify tile in realistic synthetic data. Left heatmap shows the clustering result on

data with 3 tiles where one of the tiles only has 11 supporting LSVs. The algorithm is however

only able to find the 2 main tiles. Right heatmaps shows the clustering result when the 3rd tile

has 12 supporting LSVs. The algorithm is able to successfully find all 3 tiles.
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Supplementary Fig. 8: Plate Diagram.

A plate model showing the relationship between latent variables in a model. An arrow

indicates the child node is dependent on the parent. Observed variables are shown in grey.

Latent variables are white. See variable table in Supplementary Note 6.1.
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Supplementary Data
The Supplementary Data include the human readable output of CHESSBOARD on each of our

datasets. These are formatted as excel files where each tile k is defined by the contents under 3

tabs: Sample k, Cluste k and Background k. Sample denotes the sample IDs in the tile. Cluster

defines the LSVs that belong to the signal group in the tile. Background defines the LSVs the

belong to the background group in the tile. There are 2 additional tables in each file: Consensus

Background and Probability Missing Signal. Consensus Background defines all LSVs that don’t

belong to a signal in any tile. Probability Missing Signal defines the p-values that the signal

group for a given LSV is enriched for missing values based on fisher’s exact test. All files can

be found in the Zenodo repository at https://zenodo.org/record/7245323#.Y1apPFLMKQc.

Supplementary Data 1: beatAML

Format defined above for the beatAML dataset.

Supplementary Data 2: beatAML Recursive Step 1

Format defined above for the first recursive step applied to the beatAML dataset.

Supplementary Data 3: beatAML AML Genes

Format defined above for the beatAML dataset using only AML related genes.

Supplementary Data 4: Drug p-values

Kruskal-Wallis p-values for differential drug response (measured as AUC) between the clus-

ters discovered in the beatAML dataset using AML genes.

Supplementary Data 5: TARGET AML

Format defined above for the joined dataset of beatAML and TARGET pediatric AML datat-

sets.

Supplementary Data 6: TARGET B-ALL

Format defined above for the TARGET B-ALL dataset.
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