DiffusionBlend: Learning 3D Image Prior through Position-aware Diffusion
Score Blending for 3D Computed Tomography Reconstruction

Bowen Song“! Jason Hu“! Zhaoxu Luo' Jeff Fessler' Liyue Shen'

Abstract

Diffusion models face significant challenges when
employed for real world large-scale medical im-
age reconstruction problems such as 3D Com-
puted Tomography (CT) due to the demanding
memory, time, and data requirements. Exist-
ing works utilizing diffusion priors on single 2D
image slice with hand-crafted cross-slice regu-
larization would sacrifice the z-axis consistency,
which results in severe artifacts along the z-axis.
In this work, we propose a novel framework
that enables learning the 3D image prior through
position-aware 3D-patch diffusion score blend-
ing for reconstructing large-scale 3D medical
images. To the best of our knowledge, we are
the first to utilize a 3D-patch diffusion prior for
3D medical image reconstruction. Extensive
experiments on sparse view and limited angle
CT reconstruction show that our DiffusionBlend
method significantly outperforms previous meth-
ods and achieves state-of-the-art performance on
real-world CT reconstruction problems with high-
dimensional 3D image (i.e., 256 x 256 x 500).

1. Introduction

Diffusion models learn the prior of an underlying data dis-
tribution, which enables sampling from the distribution to
generate new images (Song & Ermon, 2019; Song et al.,
2021; Ho et al., 2020). By starting with a clean image
and gradually adding noise of different scales, diffusion
sampler eventually obtains an image that is indistinguish-
able from pure noise. Let z; be the image sequence where
t = 0 represents the clean image and ¢ = 7T is pure noise.
The score function of the image distribution, denoted as
s(zt) = Vlogp(x:), can be learned by a neural network

“Equal contribution 'Department of Electrical and Computer
Engineering, University of Michigan. Correspondence to: Bowen
Song <bowenbw @umich.edu>, Jason Hu <jashu@umich.edu>,
Zhaoxu Luo <luozhx@umich.edu>, Jeffrey A.Fessler
<fessler@umich.edu>, Liyue Shen <liyues @umich.edu>.

parametrization, which takes z; as input and then approx-
imates V logp(z:). The reverse process then starts with
pure noise and uses the learned score function to iteratively
remove noise, ending with a clean image sampled from the
target distribution p(x).

Leveraging the learned score function as a prior, it is ef-
ficient to solve the inverse problems based on diffusion
priors. Previous works have proposed to use diffusion in-
verse solvers for deblurring, super-resolution, and medical
image reconstruction such as in magnetic resonance imag-
ing (MRI) and computed tomography (CT), and many other
applications (Chung et al., 2023a; Kawar et al., 2022; Wang
et al., 2022; Kawar et al., 2021; Chung et al., 2022d;b; Song
et al., 2022; Jalal et al., 2021; Xia et al., 2024; Chung et al.,
2022a; Lee et al., 2023; Chung et al., 2024; Xia et al., 2022).

Computed tomography (CT) reconstruction is an important
inverse problem that aims at reconstructing the volumet-
ric image xfrom the measurements ¥y, which is acquired
from the projections at different view angles (Feldkamp
et al., 1984). To reduce the radiation dose delivered to the
patient, sparse-view CT uses a smaller fraction of X-rays
compared to the full-view CT (Sidky et al., 2006). Addition-
ally, limited-angle CT is useful in cases where patients may
have mobility issues and cannot use full-angle CT scans
(Buzug, 2011). Although previous works have discussed
and proposed diffusion-based methods for solving the 2D
CT image reconstruction problem to demonstrate the proof-
of-concept (Chung et al., 2022b; Song et al., 2022), there
is very limited work focusing on solving inverse problems
for 3D images due to the practical difficulty in capturing 3D
image prior. Learning efficient 2D image priors using dif-
fusion models is already computationally expensive, which
requires large-scale of training data, training time, and GPU
memory. For example, previous works (Song et al., 2021;
Ho et al., 2020) require training for several days to weeks
on over a million training images in the ImageNet (Rus-
sakovsky et al., 2015) and LSUN (Yu et al., 2016) datasets
to generate high-quality 2D natural images of size 256 x 256.
Hence, directly learning a 3D diffusion prior on the entire
CT volume would be practically infeasible or prohibitively
expensive due to the demanding requirements of training
data and computational cost. In addition, real clinical CT

Submission and Formatting Instructions for ICML 2024

data is usually limited and scarce and often has a resolution
larger than 256 x 256 x 400, which makes directly training
the data prior very challenging. The problem of tackling
3D image inverse problems, especially for medical imaging
remains a challenging open research question.

A few recent works (Chung et al., 2022a; Lee et al., 2023;
Chung et al., 2024) have discussed and proposed to solve
3D image reconstruction problems either through employ-
ing some hand-crafted regularization to enforce consistency
between 2D slices when reconstructing 3D volumetric im-
ages (Chung et al., 2024; 2022a), or through training several
diffusion models for 2D images on each plane (axial, coro-
nal, and sagittal), and performing reverse sampling with
each model alternatively (Lee et al., 2023). However, all of
these works only learn the distribution of a single 2D slice
via the diffusion model, while having not yet explored the
dependency between slices that is required to better model
the real 3D image prior.

To overcome these limitations, we propose a novel method,
called DiffusionBlend, that enables learning the distribution
of 3D image patches (a batch of nearby 2D slices), and
blends the scores of patches to model the entire 3D volume
distribution for image reconstruction. Specifically, we firstly
propose to train a diffusion model that models the joint
distribution of 3D image patches (nearby 2D slices) in the
axial plane conditioning on the slice thickness. Then, we
introduce a random blending algorithm that approximates
the score function of the entire 3D volume by using the
trained 3D-patch score function. Moreover, we can either
directly use the trained model to predict the noise of a single
2D slice by taking its corresponding 3D patch as input, or
applying a random blending algorithm that firstly randomly
partitions the volume into different 3D patches at each time
step and then computes the score of each 3D patch during
reverse sampling. Through either way, we can output the
predicted noise of the entire 3D volume. In this way, our
proposed method is able to enforce cross-slice consistency
without any hand-crafted regularizer. Our method has the
advantage of being fully data-driven and can enforce slice
consistency without the TV regularizer. Through exhaustive
experiments of ultra-sparse-view and limited-angle 3D CT
reconstruction on different datasets, we validate that our
proposed method achieves superior reconstruction results
for 3D volumetric imaging, outperforming previous state-of-
the-art (SOTA) methods. Furthermore, our method achieves
better or comparable inference time than SOTA methods,
and requires minimum hyperparameter tuning for different
tasks and settings.

In summary, our main contributions are as follows:
* We propose DiffusionBlend(++): a novel method for

3D medical image reconstruction through 3D diffusion
priors. To the best of our knowledge, our method is the

first diffusion-based method that learns the 3D-patch
image prior incorporating the cross-slice dependency,
so as to enforce the consistency for the entire 3D vol-
ume without any external regularization.

 Specifically, instead of independently training a diffu-
sion model only on separated 2D slices, we propose
a novel method that first trains a diffusion model on
3D image patches (a batch of nearby 2D slices) with
positional encoding, and at inference time, employs
a new approach of random partitioning and diffusion
score blending to generate an isotropically smooth 3D
volume.

» Extensive experiments validate our proposed method
achieves state-of-the-art reconstruction results for 3D
volumetric imaging for the task of ultra-sparse-view
and limited-angle 3D CT reconstruction on different
datasets, with improved inference time efficiency and
minimal hyperparameter tuning.

2. Background and Related Work

Diffusion models. Diffusion models consists of a forward
process that gradually adds noise to a clean image, and a
reverse process that denoises the noisy images (Song & Er-
mon, 2019; Ho et al., 2020). The forward model is given by
Ty = Tp_1 — ﬂtQAtxt_l + /B Atw where w € N(0,1) and
B(t) is the noise schedule of the process. The distribution of
x(0) is the data distribution and the distribution of =(T') is
approximately a standard Gaussian. When we set At — 0,
the forward model becomes dw;, = —3 Byzdt + +/Brdwy,
which is a stochastic differential equation. The solution of
this SDE is given by

= B(t)Va, 1ngt(xt)) dt + +/B(t)dw.
(H

Thus, by training a neural network to learn the score function
V., log p+(x+), one can start with noise and run the reverse
SDE to obtain samples from the data distribution.

Although diffusion models have achieved impressive suc-
cess for image generation, a bottleneck of large-scale com-
putational requirements including demanding training time,
data, and memory prevents training a diffusion model di-
rectly on high-dimensional high-resolution images. Many
recent works have been studying how to improve the effi-
ciency of diffusion models to extend them to large-scale
data problem. For example, to reduce the computational
burden, latent diffusion models (Rombach et al., 2022) have
been proposed, aiming to perform the diffusion process in
a much smaller latent space, allowing for faster training
and sampling. However, solving inverse problems with la-
tent diffusion models is still a challenging task and may
have sub-par computational efficiency (Song et al., 2023).

Submission and Formatting Instructions for ICML 2024

Very recently, various methods have been proposed to per-
form video generation using diffusion models, generally
by leveraging attention mechanisms across the temporal di-
mension (Blattmann et al., 2023; Han et al., 2024; Yu et al.,
2023; Oshima et al., 2024). However, these methods only
focus on video synthesis. Utilizing these complicated priors
for posterior sampling is still a challenge because if these
methods were applied to physical 3D volumes, continuity
would only be maintained across slices in the XY plane and
not the other two planes. Finally, work has been done to
perform sampling faster (Song et al., 2020; Karras et al.,
2022; Lu et al., 2022), which is unrelated to the training
process and network architecture. However, although these
methods effectively promote the efficiency of training a dif-
fusion model, current works are not yet able to tackle the
large-scale 3D image reconstruction problem in real world
settings.

3D CT reconstruction Computed tomography (CT) is a
medical imaging technique that allows a 3D object to be im-
aged by shooting X-rays through it (Feldkamp et al., 1984).
The measurements consist of a set of 2D projection views
obtained from setting up the source and detector at different
angles around the object. By definition, yis the (known) set
of projection views, A is the (in most cases assumed to be)
linear forward model of the CT measurement system, and
xis the unknown image. The CT reconstruction problem
then consists of reconstructing xgiven y. Traditional meth-
ods for solving this include regularization-based methods
that enforce a previously held belief on xand likelihood
based methods (Feldkamp et al., 1984; Thibault et al., 2007;
Xu & Tsui, 2012; Cho & Fessler, 2015).

Data-driven methods have shown tremendous success in sig-
nal and image processing in recent years (Liu et al., 2018;
Liet al., 2023; Hu et al., 2023; Xu et al., 2022; 2020a). In
particular, for solving inverse problems, when large amounts
of training data is available, a learned prior can be much
stronger than the hand-crafted priors used in traditional
methods (Xu et al., 2020b; Liu et al., 2022). For past few
years, many deep learning-based method have been pro-
posed for solving the 3D CT reconstruction problem (Jin
et al., 2017; Lahiri et al., 2023; Sonogashira et al., 2020;
Whang et al., 2023). These methods train a convolutional
neural network, such as a U-Net (Jin et al., 2017), that maps
the partial-view filtered backprojection (FBP) reconstructed
image to the ground truth image, that is, full-view CT re-
construction. However, these methods often generate blurry
images and generalizes poorly for out-of-distribution data
(Antun et al., 2020).

3D CT reconstruction with diffusion models. Diffusion
models serve as a very strong prior as they can generate
entire images from pure noise. Most methods that use dif-

fusion models to solve inverse problems formulate the task
as a conditional generation problem (Delbracio & Milanfar,
2024; Liu et al., 2023; Chung et al., 2023b) or as a posterior
sampling problem (Chung et al., 2022b; 2023a; Cardoso
et al., 2023; Wang et al., 2022; Kawar et al., 2022). In the
former case, the network requires the measurement y(or
an appropriate resized transformation of y) during training
time. Thus, at reconstruction time, that trained network
can only be used for solving the specific inverse problem
with poor generalizability. In contrast, for the posterior
sampling framework, the network learns an unconditional
image prior for zthat can help solve various inverse problem
related to zwithout retraining. Although these diffusion-
based methods have shown great performance for solving
inverse problems for 2D images in different domains, there
are seldom methods that are able to tackle inverse problems
for 3D images because of the infeasible computational and
data requirements as aforementioned. Specifically, for 3D
CT reconstruction, DiffusionMBIR (Chung et al., 2022a)
trains a diffusion model on the axial slices of volumes; at re-
construction time, it uses the total variation (TV) regularizer
with a posterior sampling approach to encourage consis-
tency between adjacent slices. Similarly, DDS (Chung et al.,
2024) builds on this work by using accelerated methods
of sampling and data consistency to greatly reduce the re-
construction time. However, although the TV regularizer
has shown some success in maintaining smoothness across
slices, it is not a data-driven method and does not properly
learn the 3D prior. TPDM (Lee et al., 2023) addresses this
problem by training a separate prior on the coronal slices of
volumes with a conditional sampling approach, which serves
as a data-driven method of maintaining slice consistency at
reconstruction time, but requires that all the volumes have
the same cubic shape. In exchange, this method sacrifices
the speed gains made by DDS, requiring alternating up-
dates between the two separate priors, and is also twice as
computationally expensive at training time. To overcome
these limitations, we aim to propose a more flexible and
robust approach that can learn the 3D data prior properly
for CT reconstruction, maintaining slice consistency while
not sacrificing inference time.

3. Methods

Instead of modeling the 2D slices of the 3D volume as inde-
pendent data samples during training time, and then apply-
ing regularization between slices at reconstruction time, we
propose incorporating information from neighboring slices
at training time to enforce consistency between slices. More
precisely, our first approach models the data distribution of

Submission and Formatting Instructions for ICML 2024

fe3))
—
=

t-1

!

Denoising
t

Denoising
U-Net

U-Net
f

Sinogram

B

Denoising step

B

Positional Encoder

input to diffusion model

Figure 1. Overview of slice blending process during reconstruction for DiffusionBlend++. At each iteration, we partition the slices of the
volume in a different way; slices of the same color are inputted into the network independently. Positional encoding (PE) is also inputted

to the network as information about the separation between the slices.

a 3D volume with H slices in the z dimension as follows:

(z)

H

Hizlp(x[:,:,i} |z[:, i —g:0—1],
i+ 1lii44])/2

~

@

where j is a positive integer indicating the number of neigh-
boring slices above and below the target slice that are being
used as conditions to predict the target slice, and Z is a
normalizing constant. To deal with boundary conditions
where the third index may exceed the bounds of the original
volume, we apply repetition padding above and below the
main volume. For training, we simply concatenate each of
the conditioned slices with the target slice along the channel
dimension to serve as an input to the neural network. Then
we apply denoising score matching to predict the noise of
the target slice as the loss function of the neural network:

Eii0,1)Exmp@)Eyn (@02 Eicp, o)

S : 2|12
I(Do(yl:s i = j i+l 00) — x50 foills - (3)
At reconstruction time, the score function of the entire vol-
ume decomposes as a sum of score functions of each of the
slices:

H
Viegp(z) =) Vlegp(al:]|

xlyni—g =1,z 50+ 104+ 4]) 4)

In this way, we have rewritten the score of the 3D volume
as sums of the scores of the 2D slices learned by the net-
work. This means that we can now apply any algorithm that

uses diffusion models to solve inverse problems to solve the
3D CT reconstruction problem. Furthermore, this method
of blending together information from different slices al-
lows us to learn a prior for the entire volume that combines
information from different slices. We call this method Dif-
fusionBlend.

To learn an even better 3D image prior, instead of learning
the conditional distribution of individual target slices, we
can learn the joint distribution of several neighboring slices
at once. We call it a 3D patch. Letting k be the number of
slices in each patch, we can partition the volume into 3D
patches and approximate the distribution of the volume as

p(x) =[]

where Z is a normalizing constant. Comparing this with
(2), the main difference is instead of conditioning on neigh-
boring slices, we are now incorporating the neighboring
slices as a joint distribution. This allows for much faster
reconstruction, as k slices are updated simultaneously ac-
cording to their score function. However, this method faces
similar slice consistency issues as in (Chung et al., 2022a),
since certain pairs of adjacent slices (namely, pairs whose
slice indices are congruent to 0 and 1 modulo k) are never
updated simultaneously by the network.

H/k

plafs,: (0= 1k +1:4k])/Z (5)

i=1

To deal with this issue, we propose two additional changes.
Firstly, instead of using the same partition (updating the
same k slices) at once for each iteration, we can use a
different partition so that the previous border slices can be
included in another partition. For example, we can randomly
sample the end index of the first 3D patch for adjacency

Submission and Formatting Instructions for ICML 2024

slices. Let m be uniformly sampled from 1, 2, ..., k, we can
use the partition

S={1,2,....H}={1,....m}u{m+1,...
om+14+k}U...U{H—-k+1,....,H} (6)

instead of S = {1,2,....H} = {1,...,k} U {k +
1,...,2k}U...U{H —k+1,...,H}, where m is the
offset index number in the new partition. We can then com-
pute the score on the new partition. More generally, we
can choose an arbitrary partition of S into H/k sets, each
containing k elements for each iteration, updating each slice
in the small set simultaneously for that iteration.

Secondly, to better capture information between nonadja-
cent slices, we apply relative positional encoding as an
input to the network. More precisely, if a 3D patch has
a slice thickness (the distance between two slices) of p,
then we let p be input of the positional encoding for that
3D patch. The positional encoding block consists of a si-
nusoidal encoding module and several dense connection
modules, which has the same architecture as the timestamp
embedding module of the same diffusion model. In this
manner, the network is able to learn how to incorporate in-
formation from nonadjacent slices and captures more global
information about the entire volume. Recall that for 3D
patches of adjacent slices, the border between patches may
have inconsistencies. To address this, we can concatenate
each border as a new 3D patch, and then compute the score
from it. If there are k slices in an adjacency-slice 3D patch,
then the new 3D patch has the relative positional encoding
of k, and also has a size of k. For instance, if the previ-
ous partition is (1,2,3),(4,5,6),(7,8,9), the new partition is
(1,4,7),(2,5,8),(3,6,9). Here we are forming a new partition
with jumping slices. In practice, since we need a pretrained
natural image checkpoint due to scarcity of medical image
data, we set k = 3 for facilitating fine tuning from natural
image checkpoints.

We call the partitioning by 3D patch with adjacent slices
as Adjacency Partition, and the partitioning by 3D patch
with jumping slices as Cross Partition. Letting r = H/k
be the number of 3D patches, with a random partition, this
method is stochastically averaging the different estimations
of the V log p(z) by different parititions. Specifically, the
estimation of score by a single partition S7U. . .US,. is given
by >0, Vlegp(z[:,:,S;]). Ideally, we want to compute

|S|_1 Zs:&u...usr 22:1 Vliogp(zl:,:,Si]). (D)

As a similar approach in (Chung et al., 2022a; 2023a; Lee
et al., 2023), we can share the summation in (7) across differ-
ent diffusion steps since the difference between two adjacent
iterations x; and x;; is minimal. In summary, we have
shown how the score function of the entire volume can be
written in terms of scores of the slices of the volume. Hence,

similar to DiffusionBlend, this method can be coupled with
any inverse problem solving algorithm. The scores of the
slices can be approximated using a neural network. Train-
ing this network consists of randomly selecting k slices
from a volume and concatenating them along the channel
dimension to get the input to the network (along with the
positional encoding of the slices), and then using denoising
score matching as in (3) as the loss function; Section A.1
provides a theoretical justification for this procedure.

Sampling and reconstruction. With Eq. 7, each recon-
struction step would require computing the score functions
corresponding to each of the partitions of S, and then sum-
ming them to get the score function s(x). We propose the
variable sharing technique for this method, and only need
to compute the score of one partition per time step. Hence,
each iteration, we instead randomly choose one of the parti-
tions of S and update the volume of intermediate samples
by the score function. Finally, we use repetition padding if
H is not a multiple of k. This method incorporates a similar
slice blending strategy as DiffusionBlend, but allows for
significant acceleration at reconstruction time as k slices are
updated at once. Furthermore, it allows the network to learn
joint information between slices that are farther apart with-
out requiring the increase in computational cost associated
with increasing k. We call this method DiffusionBlend++.
The pseudocode of the algorithm can be found in Alg. 1,
and the flowchart of the algorithm can be found at Fig. 1

In practice, we choose not to select from all possible parti-
tions, but instead select from those where the indices in each
S; are not too far apart, as the joint information between
slices that are very far apart is hard to capture. Table 7 sum-
marizes the different 3D image prior models. The appendix
provides more details about the partition selection scheme.

Krylov subspace methods. Following the work
of (Chung et al., 2024), we apply Krylov subspace methods
to enforce data consistency with the measurement. At
each timestep ¢, by using Tweedie’s formula (Efron, 2011),
we compute &; = E[zg|z;], and then apply the conjugate
gradient method

) = CG(A* A, A*y, &y, M), 8)

where in practice, the CG operator involves running M CG
steps for the normal equation A*y = A* Az. We combine
this method with the DDIM sampling algorithm (Song et al.,
2020) to decrease reconstruction time. To summarize, we
provide the algorithm for DiffusionBlend++ below. The
Appendix provides the training algorithms for our proposed
method as well as the reconstruction algorithm for Diffu-
sionBlend.

Submission and Formatting Instructions for ICML 2024

FBP-UNet

DDS

DDS 2D Ours Ground Truth

Figure 2. Results of CT reconstruction with 4 views on AAPM dataset, axial view.

Table 1. Comprehensive comparison of quantitative results on Sparse-View CT Reconstruction on Coronal View for AAPM and LIDC

datasets. Best results are in bold.

Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
Method 8 views 6 views 4 views 8 Views 6 Views 4 Views
PSNRT SSIMT|PSNRT SSIM{T |PSNR?T SSIM7|PSNRT SSIM?T|[PSNR{ SSIM? |PSNRT SSIMT

FBP 14.64 0.325 [13.18 0.268 [11.16 0.236 [14.78 0206 |[14.10 0.181 [13.10 0.165
FBP-UNet 27.34 0.878 [25.12 0.827 |24.10 0.810 |28.87 0.858 |26.59 0.793 (2537 0.744
DiffusionMBIR 29.86 0908 [28.12 0.875 [25.68 0.843 [3329 0922 |31.69 0.903 [29.21 0.868
TPDM - - - - - - 28.12 0.833 [25.78 0.804 |2229 0.735
DDS 2D 33.64 0.950 (3233 0939 |30.25 0916 |31.60 0.898 |29.99 0.871 [28.03 0.830
DDS 3397 0.934 [3295 0.879 [30.890 0932 |32.51 0.920 |30.83 0.898 [27.61 0.828
DiffusionBlend (Ours) [36.45 0.958 [35.23 0.952 |33.98 0.944 |34.47 0.934 (3148 0.908 |28.24 0.859
DiffusionBlend++ (Ours) [37.87 0.968 |36.66 0.963 |34.27 0.955 |35.66 0.947 [33.97 0935 |31.38 0.913

Table 2. Comprehensive comparison of quantitative results on Limited-Angle CT Reconstruction on All Views for AAPM and LIDC

datasets. Best results are in bold.

AAPM Dataset LIDC Dataset
Method Axial Sagittal Coronal Axial Sagittal Coronal
PSNR1 SSIM? |PSNRT SSIM{T|PSNR?T SSIMT|PSNRT SSIM? |PSNRT SSIM? |PSNRT SSIMT

FBP 16.36 0.643 [16.36 0.524 [15.62 0.531 [18.79 0.672 [19.84 0.675 [20.01 0.676
FBP-UNet 27.38 0910 |27.81 0918 |28.44 00930 (2942 0.885 [29.50 0.884 |29.54 0.887
DiffusionMBIR 2598 0.872 |27.14 0.877 |27.74 0903 [30.52 0.906 |30.57 0.906 |30.68 0.907
TPDM - - - - - - 1444 0.141 |14.06 0.141 |14.54 0313
DDS 2D 28.05 0916 [27.99 0916 [28.82 0.922 |27.92 0843 |27.89 0.835 [27.96 0.842
DDS 2820 0918 |28.17 0.926 |29.03 0.934 |28.12 0.865 [28.06 0.869 |28.13 0.879
DiffusionBlend (Ours) {3538 0.971 [35.85 0.972 |37.62 0972 (3043 0917 [31.24 0.920 [31.02 0.924
DiffusionBlend++ (Ours) |35.86 0.975 |36.03 0.976 |37.45 0.976 |34.33 0.957 |34.48 0.957 [34.64 0.956

4. Experiments

Experimental setup. We used the public CT dataset from
the AAPM 2016 CT challenge (McCollough et al., 2017)
that consists of 10 volumes. We rescaled the images in the
XY-plane to have size 256 x 256 without altering the data in
the Z-direction and used 9 of the volumes for training data
and the tenth volume as test data. The training data consisted
of approximately 5000 2D slices and the test volume had

500 slices. We also performed experiments on the LIDC-
IDRI dataset (Armato et al., 2011). For this dataset, we first
applied data preprocessing by setting the entire background
of the volumes to zero. We rescaled the images in the X Y-
plane to have size 256 x 256, and, to compare with the
TPDM method, only took the volumes with at least 256
slices in the Z-direction, truncating the Z-direction to have
exactly 256 slices. This resulted in 357 volumes which we

Submission and Formatting Instructions for ICML 2024

Algorithm 1 DiffusionBlend++
Input: Forward model A, sinogram y, hyperparameter k
Initialize z7 ~ N(0,02.1)
fort=T:1do
Randomly select a partition S = S; U... US, (if ¢
mod k = 0, then use cross partition, otherwise use
random adjacency partitions)
Compute the relative positional encoding PE}
For each i compute €g(x4[:, :, S;], PEy)
Compute s = V log p(z;) using (7)
Compute Z; = E[xg|x¢] using Tweedie’s formula
Set &, = CG(A* A, A*y, &)
Sample x;_ using &} and s via DDIM sampling
end for

Return x.

used for training and one volume used for testing.

We performed experiments for sparse view CT (SVCT) and
limited angle CT (LACT). The detector size was set to 512
pixels for all cases. For SVCT, we ran experiments on 4,
6, and 8 views. For LACT, we used the full set of views
but only spaced around a 90 degree angle. In all cases,
implementations of the forward and back projectors can be
found in (Chung et al., 2022a).

For a fair comparison between DiffusionBlend and Diffu-
sionBlend++, we selected 7 = 1 for DiffusionBlend and
each S; to contain 3 elements for DiffusionBlend++. In this
manner, both methods involve learning a prior that involves
products of joint distributions on 3 slices. To train the score
function for DiffusionBlend, we started from scratch using
the LIDC dataset. Since this dataset consisted of over 90000
slices, the network was able to properly learn this prior. We
then fine tuned this network on the much smaller AAPM
dataset. For DiffusionBlend++, the input and output im-
ages both had 3 channels from stacking the slices, so we
fine-tuned the existing checkpoint from (Ho et al., 2020).
All networks were trained on PyTorch using the Adam op-
timizer with A40 GPUs. For reconstruction, we used 200
neural function evaluations (NFEs) for all the results. The
appendix provides the full experiment hyperparameters.

Comparison methods. We compared our proposed
method with baseline methods for CT reconstruction and
state of the art 3D diffusion model methods. We used the
filtered back projection implementation found in (Chung
et al., 2022a). For the other baseline, we used FBP-UNet
(Jin et al., 2017) which is a supervised method that involves
training a network for each specific task mapping the FBP
reconstruction to the clean image. Since this is a 2D method,
we learned a mapping between 2D slices and then stacked
the 2D slices to get the final 3D volume. For DiffusionM-
BIR (Chung et al., 2022c¢), we fine-tuned the score function

Table 3. TV values of different reconstruction algorithms on the
AAPM test set

Algorithm TV value | Difference with gt
DDS 2D 0.0104 0.0044
DDS 0.0031 -0.0034
DiffusionBlend++ (Ours)| 0.0043 -0.0022
Ground Truth 0.0065 -

checkpoints on our data and used the same hyperparameters
as the original work. We did the same for TPDM (Lee et al.,
2023); however, we ran TPDM only on the LIDC dataset
because TPDM requires cubic volumes. Finally, we ran two
variants of DDS (Chung et al., 2024): one in which all the
hyperparameters were left unchanged (DDS), and another
in which no TV regularizer between slices was enforced
(DDS 2D). Both of these methods were run with 100 NFEs.
The appendix provides the experiment parameters.

Sparse-view CT. The results for different numbers of
views and across different slices are shown in Tables 8, 10,
and 1. DiffusionBlend++ exhibits much better performance
over all the previous baseline methods (usually by a few dB)
and outperforms DiffusionBlend. The second best method
for each experiment is underlined and was, in most cases,
DiffusionBlend. The exceptions are when the second best
method is DiffusionMBIR, but this method was run with
2000 NFEs and took about 20 hours to run compared to
1-2 hours for both of our methods. The two DDS methods
required similar runtime as our methods but in all cases
exhibited inferior reconstruction results. Furthermore, DDS
2D generally performed worse than DDS. Thus, DDS failed
to properly learn a 3D volume prior and still relied on the
TV regularizer. Additionally, although TPDM should learn
a 3D prior, the results were very poor compared to the other
baselines. Our proposed method learned a fully 3D prior and
achieved the best results in the sagittal and coronal views.

Limited-angle CT. Table 2 shows all results for limited
angle CT reconstruction for both the AAPM and LIDC
datasets. Our DiffusionBlend++ method obtains superior
performance over all the baseline methods and Diffusion-
Blend obtains the second best results. Similar to the SVCT
experiments, DiffusionMBIR performed the best out of the
baseline methods, but took approximately 40 hours to run.
FBP-UNet performed reasonably well, but is a supervised
method where the network must be retrained for each spe-
cific task. DDS is the most directly comparable to our
method in runtime and methodology, but performed much
worse quantitatively.

Inter-slice smoothness We demonstrate that Diffu-
sionBlend++ learns the 3D prior internally, and achieves
consistency and smoothness between 2D axial-plane slices
without any external regularizations. In Table 3, we present

Submission and Formatting Instructions for ICML 2024

Table 4. Effectiveness of Blending Modules, Sagittal view perfor-
mance on AAPM

Adjacency Cross|PSNR T SSIM 1
3485 0.954

v 36.02 0.965

v v | 3648 0.968

the total variation (TV) value of the reconstructed images of
different reconstruction algorithms on the test set of AAPM
dataset, given by =77 |/D=(2)||1, where is the image,
D, is the total variation operator in z direction, and C', W,
H are number of channels, width, and height. We find that
both DiffusionBlend++ and DDS have TV less than the
ground truth image, which implies that the reconstructed
images are smooth in the z direction. However, we observe
that DDS over-smooths the images as demonstrated in
Fig. 7, which is represented by a much lower TV value than
the ground truth. On the other hand, DiffusionBlend++
has smoothness level close to the ground truth without
sacrificing sharpness of images.

Ablation Studies We run the following ablation studies
to examine each of the individual components of our Diffu-
sionBlend++ method. Firstly, we examine the performance
gain of adding adjacency slice blending (DiffusionBlend+)
and adding cross-slice blending. Next, we examine the ef-
fect of including the positional encoding as an input to the
network. Then we look at the quantitative metrics of the
reconstructed images when applying different numbers of
NFEs for the comparison methods. Finally, we examine the
effect of choosing different slices for each partition.

Effectiveness of adjacency-slice blending and cross-slice
blending We demonstrate that both the adjacency-slice
blending and the cross-slice blending module are instrumen-
tal to a better reconstruction quality. Table 4 demonstrates
the effectiveness of adding blending modules to the reverse
sampling. Given the pretrained diffusion prior over slice
patches, we observe that adding the adjacency-slice blend-
ing module improves the PSNR over a fixed partition by
1.17dB, and adding an additional cross-slice blending mod-
ule further improves the PSNR by 1.63dB. Fig. 7 demon-
strates that adding the cross-slice blending module removes
artifacts and recovers sharper edges.

Robust performance with low NFEs. Since DDS and
DiffusionBlend++ both use the DDIM sampler for accelera-
tion, we performed experiments with both of these methods
using different NFEs. Table 5 shows the quantitative results.
DDS is very sensitive to the number of NFEs used and there
is a sharp dropoff in PSNR if too few or too many NFEs are
used. On the other hand, DiffusionBlend++ performs the

Table 5. Axial PSNR for 8 view SVCT recon for different NFEs
Method 50 100 200 334

DDS 30.8 32.2 33.2 32.7
DiffusionBlend++ 34.5 35.0 35.7 35.9

best for the highest number of NFEs due to the slice blending
strategy while still obtaining superior results for 50 NFEs.
Also, this method is much more robust to varying NFEs,
displaying only 1.4dB of variance in the shown results com-
pared to 2.4dB of variance for DDS. For fair comparisons,
we use 200 NFEs for all the main experiments.

Frequency of applying slice jumps. To demonstrate the
use of jump slice partitions at reconstruction time, we per-
formed experiments varying the frequency of applying these
jump slices. For instance, for a frequency of 8, the recon-
struction algorithm consisted of updating the volume using
jump slices for iteration numbers that are a multiple of 8
and updating using adjacent slices for all other iterations.
The quantitative results are presented in Table 6. The best
results are obtained when the frequency is 2, corresponding
to alternating updates with adjacent slices and jump slices,
and the PSNR decreases monotonically as the frequency
increases. This indicates that the jump slices capture more
non-local information across a volume and help to improve
the image quality.

Table 6. Axial PSNR for 8 view SVCT recon for different slice
jump frequencies

Skip Step 2 4 8 12 16 32
PSNR 35.69 35.62 35.50 35.45 35.37 35.28

5. Conclusion

In this work, we proposed two methods of using score-based
diffusion models to learn priors of three-dimensional vol-
umes and used them to perform CT reconstruction. In both
cases, we learn the distributions of multiple slices of a vol-
ume at once and blend the distributions together at inference
time. Extensive experiments showed that our method sub-
stantially outperformed existing methods for 3D CT recon-
struction both quantitatively and qualitatively in the sparse
view and limited angle settings. In the future, more work
could be done on 3D inverse problems and acceleration
through latent diffusion models. Image reconstruction meth-
ods like those proposed in this paper have the potential to
benefit society by reducing X-ray dose in CT scans.

Submission and Formatting Instructions for ICML 2024

References

Antun, V., Renna, F., Poon, C., Adcock, B., and Hansen, A. C. On instabilities of deep learning in image reconstruction and
the potential costs of ai. Proceedings of the National Academy of Sciences, 117(48):30088-30095, 2020.

Armato, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., and Meyer, C. R. The lung image database consortium
(lidc) and image database resource initiative (idri): A completed reference database of lung nodules on ct scans. Medical
Physics, 38:915-931, 2011.

Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian, M., Lorenz, D., Levi, Y., English, Z., Voleti, V., Letts,
A., Jampani, V., and Rombach, R. Stable video diffusion: Scaling latent video diffusion models to large datasets. arXiv
2311.15127,2023.

Buzug, T. M. Computed tomography. In Springer handbook of medical technology, pp. 311-342. Springer, 2011.

Cardoso, G., Idrissi, Y. J. E., Corff, S. L., and Moulines, E. Monte carlo guided diffusion for bayesian linear inverse
problems. arXiv 2308.07983, 2023.

Cho, J. H. and Fessler, J. A. Regularization designs for uniform spatial resolution and noise properties in statistical image
reconstruction for 3d x-ray ct. IEEE Trans. Med. Imag., 34(2):678—689, February 2015.

Chung, H., Ryu, D., McCann, M. T., Klasky, M. L., and Ye, J. C. Solving 3d inverse problems using pre-trained 2d diffusion
models. arXiv 2211.10655, 2022a.

Chung, H., Sim, B., Ryu, D., and Ye, J. C. Improving diffusion models for inverse problems using manifold constraints.
arXiv 2206.00941, 2022b.

Chung, H., Sim, B., Ryu, D., and Ye, J. C. Improving diffusion models for inverse problems us-
ing manifold constraints. In Advances in Neural Information Processing Systems, volume 35, pp.
25683-25696, 2022c. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
a48e5877c7bf86a513950ab23b360498-Paper—-Conference.pdf.

Chung, H., Sim, B, and Ye, J. C. Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse problems
through stochastic contraction. arXiv 2112.05146, 2022d.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. Diffusion posterior sampling for general noisy
inverse problems. In The Eleventh International Conference on Learning Representations, 2023a. URL https:
//openreview.net/forum?id=0nD9zGAGTOKk.

Chung, H., Kim, J., and Ye, J. C. Direct diffusion bridge using data consistency for inverse problems. arXiv 2305.19809,
2023b.

Chung, H., Lee, S., and Ye, J. C. Decomposed diffusion sampler for accelerating large-scale inverse problems. arXiv
2303.05754, 2024.

Delbracio, M. and Milanfar, P. Inversion by direct iteration: An alternative to denoising diffusion for image restoration.
arXiv 2303.11435, 2024.

Efron, B. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106(496):1602-1614,
2011.

Feldkamp, L. A., Davis, L. C., and Kress, J. W. Practical cone beam algorithm. J. Opt. Soc. Am. A, 1(6):612—-619, June 1984.

Han, J., Kokkinos, F., and Torr, P. Vfusion3d: Learning scalable 3d generative models from video diffusion models. arXiv
2403.12034, 2024.

Han, Y. and Ye, J. C. Framing u-net via deep convolutional framelets: Application to sparse-view ct. IEEFE transactions on
medical imaging, 37(6):1418-1429, 2018.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. 33:6840-6851,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
4cbbcfec8584af0d967£f1abl0179cad4b-Paper.pdf.

9

https://proceedings.neurips.cc/paper_files/paper/2022/file/a48e5877c7bf86a513950ab23b360498-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a48e5877c7bf86a513950ab23b360498-Paper-Conference.pdf
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

Submission and Formatting Instructions for ICML 2024

Hu, J., Lin, B. T.-W., Vega, J. H., and Tsiang, N. R.-L. Predictive models of driver deceleration and acceleration
responses to lead vehicle cutting in and out. Transportation Research Record, 2677(5):92-102, 2023. doi: 10.1177/
03611981221128277. URL https://doi.org/10.1177/03611981221128277.

Jalal, A., Arvinte, M., Daras, G., Price, E., Dimakis, A. G., and Tamir, J. Robust compressed sensing mri with deep
generative priors. Advances in Neural Information Processing Systems, 34:14938-14954, 2021.

Jin, K. H., McCann, M. T., Froustey, E., and Unser, M. Deep convolutional neural network for inverse problems in imaging.
IEEE Transactions on Image Processing, 26(9):4509-4522, 2017.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating the design space of diffusion-based generative models. arXiv
2206.00364, 2022.

Kawar, B., Vaksman, G., and Elad, M. Snips: Solving noisy inverse problems stochastically. arXiv 2105.14951, 2021.
Kawar, B., Elad, M., Ermon, S., and Song, J. Denoising diffusion restoration models. arXiv 2201.11793, 2022.

Lahiri, A., Maliakal, G., Klasky, M. L., Fessler, J. A., and Ravishankar, S. Sparse-view cone beam ct reconstruction using
data-consistent supervised and adversarial learning from scarce training data. IEEE Transactions on Computational
Imaging, 9:13-28, 2023.

Lee, S., Chung, H., Park, M., Park, J., Ryu, W.-S., and Ye, J. C. Improving 3d imaging with pre-trained perpendicular 2d
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10710-10720,
2023.

Li, Z., Xu, X., Hu, J., Fessler, J., and Dewaraja, Y. Reducing spect acquisition time by predicting missing projections with
single-scan self-supervised coordinate-based learning. arXiv https://jnm.snmjournals.org/content, 64(supplement 1):
P1014-P1014, 2023. URL https://jnm.snmjournals.org/content/64/supplement_1/P1014.

Liu, G.-H., Vahdat, A., Huang, D.-A., Theodorou, E. A., Nie, W., and Anandkumar, A. I2sb: Image-to-image schrodinger
bridge. arXiv 2302.05872, 2023.

Liu, J., Sun, Y., Xu, X., and Kamilov, U. S. Image restoration using total variation regularized deep image prior. arXiv
1810.12864, 2018.

Liu, J., Xu, X., Gan, W., Shoushtari, S., and Kamilov, U. Online deep equilibrium learning for regularization by denoising.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=4RC_vI0OgIS.

Lu, C., Zhou, Y., Bao, F,, Chen, J., Li, C., and Zhu, J. Dpm-solver: A fast ode solver for diffusion probabilistic model
sampling in around 10 steps. arXiv preprint arXiv:2206.00927, 2022.

McCollough, C. H., Bartley, A., Carter, R., Chen, B., Drees, T., Edwards, P., Holmes, D., Huang, A., Khan, F,, Leng, S.,
McMillan, K., Michalak, G., Nunez, K., Yu, L., and Fletcher, J. Results of the 2016 low dose ct grand challenge. Medical
physics, 44(10):e339—e352, October 2017. ISSN 0094-2405. doi: 10.1002/mp.12345.

Oshima, Y., Taniguchi, S., Suzuki, M., and Matsuo, Y. Ssm meets video diffusion models: Efficient video generation with
structured state spaces. arXiv 2403.07711, 2024.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis with latent diffusion
models. arXiv 2112.10752, 2022.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L. Imagenet large scale visual recognition challenge. arXiv 1409.0575, 2015.

Sidky, E. Y., Kao, C.-M., and Pan, X. Accurate image reconstruction from few-views and limited-angle data in divergent-
beam ct. Journal of X-Ray Science and Technology, 14(2):119-139, 2006. URL http://iospress.metapress.
com/content/1jduvlcl13£f9e2br/.

Song, B., Kwon, S. M., Zhang, Z., Hu, X., Qu, Q., and Shen, L. Solving inverse problems with latent diffusion models via
hard data consistency. arXiv 2307.08123, 2023.

10

https://doi.org/10.1177/03611981221128277
https://jnm.snmjournals.org/content/64/supplement_1/P1014
https://openreview.net/forum?id=4RC_vI0OgIS
http://iospress.metapress.com/content/1jduv1cll3f9e2br/
http://iospress.metapress.com/content/1jduv1cll3f9e2br/

Submission and Formatting Instructions for ICML 2024

Song, J., Meng, C., and Ermon, S. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502, 2020.

Song, Y. and Ermon, S. Generative modeling by estimating gradients of the data distribution. In Advances in Neural
Information Processing Systems, volume 32, 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/3001ef257407d5a371a96dcd947¢c7d93-Paper.pdf.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based generative modeling through
stochastic differential equations. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

Song, Y., Shen, L., Xing, L., and Ermon, S. Solving inverse problems in medical imaging with score-based generative models.
In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
vaRCHVjOuGI.

Sonogashira, M., Shonai, M., and liyama, M. High-resolution bathymetry by deep-learning-based image superresolution.
PloS One, 15(7):¢0235487-e0235487, 2020. doi: 10.1371/journal.pone.0235487.

Thibault, J.-B., Sauer, K., Bouman, C., and Hsieh, J. A three-dimensional statistical approach to improved image quality for
multi-slice helical ct. Med. Phys., 34(11):4526-4544, November 2007.

Wang, Y., Yu, J., and Zhang, J. Zero-shot image restoration using denoising diffusion null-space model. arXiv 2212.00490,
2022.

Whang, E., McAllister, D., Reddy, A., Kohli, A., and Waller, L. Seidelnet: An aberration-informed deep learning model for
spatially varying deblurring. In SPIE, volume 12438, pp. 124380Y-124380Y-6, 2023. doi: 10.1117/12.2650416.

Xia, W., Cong, W., and Wang, G. Patch-based denoising diffusion probabilistic model for sparse-view ct reconstruction.
arXiv 2211.10388, 2022.

Xia, W., Tseng, H. W., Niu, C., Cong, W., Zhang, X., Liu, S., Ning, R., Vedantham, S., and Wang, G. Parallel diffusion
model-based sparse-view cone-beam breast ct. arXiv 2303.12861, 2024.

Xu, J. and Tsui, B. M. W. Interior and sparse-view image reconstruction using a mixed region and voxel-based ml-em
algorithm. /EEE Trans. Nuc. Sci., 59(5):1997-2007, October 2012.

Xu, X., Liu, J., Sun, Y., Wohlberg, B., and Kamilov, U. S. Boosting the performance of plug-and-play priors via
denoiser scaling. In 54th Asilomar Conf. on Signals, Systems, and Computers, pp. 1305-1312, 2020a. doi: 10.1109/
IEEECONF51394.2020.9443410.

Xu, X., Sun, Y., Liu, J., Wohlberg, B., and Kamilov, U. S. Provable convergence of plug-and-play priors with mmse
denoisers. IEEE Signal Processing Letters, 27:1280-1284, 2020b. ISSN 1558-2361. doi: 10.1109/1sp.2020.3006390.
URL http://dx.doi.org/10.1109/LSP.2020.3006390.

Xu, X., Gan, W., Kothapalli, S. V. V. N., Yablonskiy, D. A., and Kamilov, U. S. Correct: A deep unfolding framework for
motion-corrected quantitative r2* mapping. arXiv 2210.06330, 2022.

Yu, F, Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. Lsun: Construction of a large-scale image dataset using
deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2016.

Yu, S., Sohn, K., Kim, S., and Shin, J. Video probabilistic diffusion models in projected latent space. arXiv 2302.07685,
2023.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=vaRCHVj0uGI
https://openreview.net/forum?id=vaRCHVj0uGI
http://dx.doi.org/10.1109/LSP.2020.3006390

Submission and Formatting Instructions for ICML 2024

Table 7. 3D prior modeling methods

Method Distribution Model

DiffusionMBIR (Chung et al., 2022a) [[, p(z[;,:,i])/Z

[5,:
TPDM (Lee et al., 2023) (HL qo ([, 1))) (Hj»vzl q0([5; 5, :])5) /%
DiffusionBlend HZH:1 p(l’[) ,’LH.’E[y 4l _j ti— 1],.%[27 :7i +1: Z+]])/Z
DiffusionBlend++ Hz:1 p(z[:,:, 8i))/Z

A. Appendix / supplemental material
A.1. Score matching derivations for DiffusionBlend++

We show how the score matching method described in (Song & Ermon, 2019) can be simplified in the case of assumptions
such as the ones described in Table 7.

Product of distributions. Suppose first that the distribution of interest can be expressed as p(z) = q(z)%r(x)?/Z for
density functions g and r, constant positive scalars ¢ and b, and a scaling factor Z. Following (Song & Ermon, 2019), to
learn the score function, we can minimize the loss function

y—x
Et~M(O,T)Ew~p(r)Ey~N(L o? 1)||89(y,0t) Ut2 ”37 ©

where sg represents a neural network. Denoting the score functions of p,q, and r by s, s,, and s,, we have s(z) =
asq(z) + bs,(x). Hence, if we instead use neural networks to learn s,, and s,, we could minimize the loss function

y—JJ
t

L, = EtNM(O,T)EINp(z)EyrwN(x o21) ||a8q 9(y7 Ut) + bsy. 0(y7 Ut) ||§ (10)

However, this loss function is computationally expensive to work with, as backpropagation through both networks is
necessary. Thus, it would be ideal to derive a simpler form of this loss function.

. .. _ a y—x _ b y—x
Toward these ends, for simplicity we define X = as,¢(y, 0¢) — a5 o = bsr.0(y,01) — b o7
images have been vectorized. Now

IX = Y3 = [XI5+ [Y]3 - 2(X,Y) > 0. (11)
Thus, rearranging the inequality and adding || X ||3 + ||Y||3 to both sides yields | X + Y||3 < 2||X |3 + 2||Y]|3.
Returning to the original loss function, we have
Ly = B4 (0,1 Bamp@) Eyon @02 I X + Y3 (12)

By applying the inequality proven above, we get

Lt < 20,1 Bt By ooz 10 00 s00) = g 5 (13)
+ 2Bt 20(0,7) Exmp(a) By (@02 1) 1+ Sr0(y, 00) — aLH) : ya—?azH% (14)
For the special case of a = b = %, this inequality is rewritten as
L4 < Brnat0.0) Byt Byt 5o 0, 00) = 5= 3 (15)
+ Evns0.0) Bampo By (e, 13m0 (0, 00) = L5713 (16)

t

12

Submission and Formatting Instructions for ICML 2024

Note that each of the two individual terms in the sum precisely represents the score matching equation for learning the
score functions s, and s,. Hence, to train the networks s, ¢ and s, 9 by minimizing L, we may instead minimize the upper
bound of L; by separately training these two networks.

In practice, we may opt to use the same network for s, ¢ and s,. ¢ but with an additional input specifying which distribution
between ¢ and 7 to use. In this case, at each training iteration, we randomly choose from one of the two distributions and
perform backpropagation using this distribution. More precisely, we redefine our network sy (x, oy, v) with v being either 0
or 1. When v = 0, s¢(z, 0¢,v) = sq,0(2,04) and when v = 1, s¢(z, 04, v) = s, 9(, 0¢). Thus the loss bound becomes

Yy xr
L1 < Eiri(0,1)Bamp(@)Eyan(z,020 Bvefo,1y [0(y, 01, v) — > 13- (17
t

Finally, this derivation easily extends to the more general case where the distribution of interest can be expressed as

k
p(z) = Hpi(x)l/k/Z. (18)

In this case, the similarly defined score matching loss function L; can be upper bounded by an expression similar to (17),
but with v being randomly selected from & possible values.

In summary, we have shown that for the case of a decomposable distribution p(z), the score function of p(z) can be learned
simply through the score function of the individual components p; (). In the special case when each of the components
have equal weight, it suffices to randomly choose one of the components and backpropagate through the score-matching
loss function according to that component.

Separable distributions. Next, we show how the score matching method is simplified for distributions of the form
p(z) = [1i_; p(z[:,:,Si])/Z, where the same notation as Table 7 is used and S = S&; U ... U S, denotes an arbitrary

partition of {1,2, ..., H}. The score function of p(z) can be written as
H H
S(I‘) :ZVlng(x[vvle :ZSi(x[:a:aSi])’ (19)
i=1 i=1

where s; represents the score function of the slices of « corresponding to S;. Then (9) becomes
2

H
y—x
L= Etwu(O,T)]Emwp(ac)EyNN(z,afI) Z Sﬂ,i(x[:a 5 Sz]) - o2 (20)
i=1 ol
Since each of the S;’s are disjoint, this can be broken up and rewritten as
H 2
y:a:asi —:E:,:,Si

L= B0 Eanp@)Eyrworn) |[50.:(x]:, 5 Sil) — |]02 5 21

t 2

i=1
Thus, after replacing the outer sum with an expectation over ¢, this is equivalent to randomly choosing one of the partitions
S; and performing denoising score matching on only z[:, :, S;].

A very similar derivation holds for the general case where the 3D volume z can be partitioned into an arbitrary number
of smaller volumes of any shape x = 23 Uza U ... Uxy and p(z) = Hfil p(x;)/Z. For this case, training consists of
randomly selecting one of the partitions at each iteration and performing score matching on that partition. For example,
when z; = x[:, :, 4], it is common to select 2D slices from the training volumes and learn a two dimensional diffusion model
on those slices (Chung et al., 2022a; Lee et al., 2023).

Applying to DiffusionBlend++. When p(x) follows the distribution in DiffusionBlend++ we can combine the results
of the previous two sections to show how to perform score matching. In the first part of this section, we showed how to

perform score matching for a distribution expressed as a product of “simpler” distributions by performing score matching on
the individual distributions. DiffusionBlend++ follows this assumption where

pie) = | [[ol S5 | /2 (22)
j=1

13

Submission and Formatting Instructions for ICML 2024

Here, ¢ represents an index that can iterate through the ways of partitioning S = &1 U ... U S,.. The input v to the network
specifying which of the simpler distributions is used is embedded as the relative position encoding for each of the partitions
as described in Section 3. Finally, to learn the score function of p;(x), we can use the loss function in (21).

A.2. Additional Algorithms

The reconstruction algorithm for DiffusionBlend is provided below.

Algorithm 2 DiffusionBlend

Input: A, M, (; > 0,5,y

Initialize z7 ~ N(0,0%1)

fort=T:1do
For each i compute €g(x4[:, :, 4] |5y 50 — j i — 1), @e]s, 0+ 100+ 7))
Compute s = V log p(x;) using (4)
Compute &; = E[zo|z;] using Tweedie’s formula
Set &, = CG(A*A, A*y, &)
Sample x;_ using &} and s via DDIM sampling

end for

Return z.

The training algorithms for DiffusionBlend and DiffusionBlend++ are provided below.

Algorithm 3 DiffusionBlend training
repeat
Select z~ p(x)
Select ¢ ~ Uniform|[1, T']
Sety ~ N (z,02I)
Select ¢ ~ Uniform|[1, H|
Take gradient descent step on Vg ||(Do(y[:,:,7 — 7 : i + 7], 0¢) — 2], :,4]) /0?3
until Converged
Return Dy

Algorithm 4 DiffusionBlend++ training
repeat
Select z~ p(x)
Select t ~ Uniform[1, 7]
Sety ~ N (z,071)
Select a partition S = S1 U ... US,
Select ¢ ~ Uniform[1, r]
Take gradient descent step on Vg ||(Da(y[:, 3, Sil, 00) — 2,2, Si]) /o2 |3
until converged Return Dy

A.3. Additional Results

We present additional results on the axial and sagittal planes for sparse-view CT reconstructions and additional figures here.
Error Bars We demonstrate the standard deviation of the results with sparse-view CT reconstruction on AAPM and LIDC
dataset here to demonstrate that the result is statistically sigificant.

Fig. 3 shows the visual results for SVCT reconstruction with 8 views on the LIDC dataset.

Fig. 4 shows the visual results for SVCT reconstruction with 6 views on the LIDC dataset.

Fig. 5 shows the visual results for SVCT reconstruction with 4 views on the LIDC dataset.

14

Submission and Formatting Instructions for ICML 2024

FBP-UNet DiffusionMBIR TPDM DDs DiffusionBlend DiffusionBlend++ Ground truth

Figure 3. Results of 3D CT reconstruction with 8 views on LIDC dataset. Top row is axial view, middle row is sagittal view, bottom row is
coronal view.

FBP-UNet DiffusionMBIR TPDM DDS DiffusionBlend DiffusionBlend++ Ground truth

Figure 4. Results of 3D CT reconstruction with 6 views on LIDC dataset. Top row is axial view, middle row is sagittal view, bottom row is
coronal view.

15

Submission and Formatting Instructions for ICML 2024

Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
Method 8 views 6 views 4 views 8 Views 6 Views 4 Views
PSNR7T SSIM1|PSNR?T SSIM?T |PSNRT SSIM1T|PSNR?T SSIM7|PSNRT SSIM? |PSNRT SSIMT

FBP 1466 0359 [13.65 0.293 [11.94 0222 (1479 0217 [14.11 0.191 [13.18 0.169
FBP-UNet 26.00 0.849 |24.15 0.782 |23.37 0.761 |28.58 0.848 |26.48 0.781 |25.19 0.731
DiffusionMBIR 2630 0.863 [24.99 0.827 [23.66 0.789 |32.67 0922 |31.18 0.901 [29.02 0.863
TPDM - - - - - - 27.51 0.816 [25.60 0.776 |21.99 0.695
DDS 2D 3289 0946 |31.40 0.934 |28.77 0906 |[30.82 0.897 [29.38 0.867 |27.54 0.826
DDS 33.19 0945 |31.94 0.942 |29.22 0916 |31.65 0915 [30.12 0.888 |27.20 0.808
DiffusionBlend (Ours) {34.29 0.955 (3326 0949 [31.84 0.944 [33.34 0.933 [30.94 0.905 [27.96 0.849
DiffusionBlend++ (Ours) | 35.69 0.966 |34.68 0.960 [32.93 0.952 [34.46 0.947 [33.03 0.932 [30.98 0.912

Table 8. Comprehensive comparison of quantitative results on Sparse-View CT Reconstruction on Axial View for AAPM and LIDC
datasets. Best results are in bold.

Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
Method 8 views 6 views 4 views 8 Views 6 Views 4 Views
PSNRT SSIM? |PSNR1 SSIM?|PSNR1 SSIM1|PSNR?T SSIM1|PSNR?T SSIM? |PSNRT SSIM?T

FBP 1230 0.345 [10.14 0.277 |6.78 0204 |14.88 0.234 [14.30 0.207 |13.43 0.187
FBP-UNet 26.13 0.860 [24.14 0.798 |23.47 0.779 |28.56 0.848 |26.52 0.783 (2529 0.732
DiffusionMBIR 26.64 0.869 [25.08 0.834 |23.71 0.789 |32.79 0.922 |31.30 0.900 [28.98 0.862
TPDM - - - - - - 27.66 0.819 [25.57 0.784 |21.87 0.708
DDS 2D 3322 0949 [31.69 0.937 (2939 0.909 [30.98 0.894 [29.40 0.862 [27.54 0.819
DDS 3343 0.945 [32.18 0.947 |29.86 0924 |31.80 0915 |30.13 0.889 [27.26 0.818
DiffusionBlend (Ours) [35.09 0.958 [33.97 0.952 |[32.38 0.943 [33.73 0.934 [31.16 0.907 [27.93 0.855
DiffusionBlend++ (Ours) | 36.48 0.968 [35.38 0.963 |33.22 0.954 |34.86 0.946 [33.20 0.932 |30.97 0.913

Table 9. Comprehensive comparison of quantitative results on Sparse-View CT Reconstruction on Sagittal View for AAPM and LIDC
datasets. Best results are in bold.

Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
Method 8 views 6 views 4 views 8 Views 6 Views 4 Views
PSNR1 SSIM? |PSNRT SSIM1T|PSNR?T SSIM7|PSNRT SSIM?|PSNR1T SSIM? |PSNRT SSIM?T

FBP 2.64 0.16 [2.88 026 291 020 [2.57 0.17 [2.78 0.21 2.84 0.16
FBP-UNet 3.46 030 |3.34 0.28 |3.04 031 |3.42 031 |3.23 029 |3.14 0.27
DiffusionMBIR 1.93 0.08 |1.48 0.13 1.28 0.11 1.89 0.09 1.56 0.12 |1.31 0.14
TPDM - - - - - - 2.32 0.14 |2.02 0.16 |2.52 0.19
DDS 2D 1.76 0.07 2.04 0.10 2.73 0.11 1.85 0.09 2.13 0.13 267 0.18
DDS 2D 1.76 0.07 |2.04 0.10 |2.73 0.11 1.85 0.09 |2.13 0.13 |2.67 0.18
DDS 2D 1.68 0.06 |1.96 0.09 |2.65 0.11 1.84 0.09 |2.10 0.12 |2.64 0.18
DiffusionBlend (Ours) |1.67 0.06 |[1.78 0.08 1.98 0.09 1.70 0.07 [2.03 0.11 2.54 0.16
DiffusionBlend++ (Ours) | 1.50 0.06 |1.65 0.08 1.71 0.10 | 1.60 0.09 1.68 0.10 |1.82 0.11

Table 10. Standard Deviation of Performance on Sparse-View CT Reconstruction on Sagittal View for AAPM and LIDC datasets. Best
results are in bold.

Fig. 6 shows the visual results for LACT reconstruction on the LIDC dataset.

A.4. Experiment parameters

Since axial slices belonging to the same volume that are far apart have limited correlation, DiffusionBlend++ selects only
partitions of S for training where slices belonging to the same partition are fairly close to one another. Then the same range
of possible partition schemes are used during reconstruction time. More precisely, we take the size of each S; to be 3 and
first repetition pad the volume so that the number of axial slices is a multiple of 9. Then we consider the following partitions:

o 81 =1{1,2,3},S: = {4,5,6}, S3 = {7, 8,9}. Furthermore, for all integers k > 1, Sy, = S35 P 9| (k—1)/3], where
@ represents adding the same number to each element of the set. For example, Sq = {10,11, 12}, S5 = {13, 14,15},
Sg = {16, 17,18}.

o« 81 ={1,4,7}, 52 = {2,5,8}, S3 = {3, 6, 9}. Furthermore, for all integers k > 1, Sy = Sk,—3 P 9| (k — 1)/3].

A.5. Comparison experiment details

FBP-UNet. We used the same neural network architecture as the original paper (Han & Ye, 2018). Individual networks
were trained for each of the 8 view, 6 view, 4 view, and LACT experiments for each of the datasets. Each of the networks
were trained from scratch with a batch size of 32 for 150 epochs.

16

Submission and Formatting Instructions for ICML 2024

FEP-UNet DiffusionMBIR TPDM bDs DiffusionBlend DiffusionBlend++ Ground truth

Figure 5. Results of 3D CT reconstruction with 4 views on LIDC dataset. Top row is axial view, middle row is sagittal view, bottom row is
coronal view.

FBP-UNet DiffusionMBIR TPDM DDS DiffusionBlend DiffusionBlend++ Ground truth

Figure 6. Results of limited angle 3D CT reconstruction on LIDC dataset. Top row is axial view, middle row is sagittal view, bottom row
is coronal view.

17

Submission and Formatting Instructions for ICML 2024

FBP DDS DiffusionPatch DiffusionBlend+ DiffusionBlend++ Ground Truth

Figure 7. Results of CT reconstruction with 8 views on AAPM dataset, coronal view. DiffusionPatch refers to Algorithm 1 with the same
partition for every timestsep, and DiffusionBlend+ refers to Algorithm 1 only with partitions of adjacency slices.

DiffusionMBIR. We separately trained networks for the AAPM and LIDC datasets by fine-tuning the original checkpoint
provided in (Chung et al., 2022a) for 100 and 10 epochs, respectively. The batch size was set to 4. For reconstruction, we
used the same set of hyperparameters for all of the experiments: A = 0.04, p = 10, and r = 0.16 for the sampling algorithm.
2000 NFEs were used for the diffusion process.

TPDM. We fine-tuned the axial and sagittal checkpoints provided in (Lee et al., 2023) on the LIDC dataset for 10 epochs.
For reconstruction, we used 2000 NFEs and alternated between updating the volume using the axial checkpoint and sagittal
checkpoint, with each checkpoint being used equally frequently. The DPS step size parameter was set to ¢ = 0.5.

DDS. We separately trained networks for the AAPM and LIDC datasets by fine-tuning the original checkpoint provided
in (Chung et al., 2024) for 100 and 10 epochs, respectively. We used 100 NFEs at reconstruction as this was observed to
give the best performance. The reconstruction parameters were set to n = 0.85, A = 0.4, and p = 10. Five iterations of
conjugate gradient descent were run per diffusion step. For DDS 2D, the parameters were left unchanged with the exception
of using p = 0 to avoid enforcing the TV regularizer between slices.

A.6. Limitations

One limitation of our work is that we use noiseless simulated measurements for all our experiments. The robustness of
our method to noise added to the measurements should be explored further. Likewise, future work should evaluate the
accuracy of our method when applied to real measurement data, which will contain measurement noise and mismatches
between the true system model and used forward model. Another limitation of our work is a lack of other types of 3D image
reconstruction applications shown. Although the proposed method is unsupervised and the reconstruction algorithm can be
readily be applied to other 3D linear inverse problems, future work should explore other applications of DiffusionBlend.

18

