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ABSTRACT

Communication is a key bottleneck in federated learning where a large number
of edge devices collaboratively learn a model under the orchestration of a central
server without sharing their own training data. While local SGD has been pro-
posed to reduce the number of FL rounds and become the algorithm of choice
for FL, its total communication cost is still prohibitive when each device needs to
communicate with the remote server repeatedly for many times over bandwidth-
limited networks. In light of both device-to-device (D2D) and device-to-server
(D2S) cooperation opportunities in modern communication networks, this paper
proposes a new federated optimization algorithm dubbed hybrid local SGD (HL-
SGD) in FL settings where devices are grouped into a set of disjoint clusters with
high D2D communication bandwidth. HL-SGD subsumes previous proposed al-
gorithms such as local SGD and gossip SGD and enables us to strike the best
balance between model accuracy and runtime. We analyze the convergence of
HL-SGD in the presence of heterogeneous data for general nonconvex settings.
We also perform extensive experiments and show that the use of hybrid model
aggregation via D2D and D2S communications in HL-SGD can largely speed up
the training time of federated learning.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning paradigm in which multiple edge devices
or clients cooperate to learn a machine learning model under the orchestration of a central server,
and enables a wide range of applications such as autonomous driving, extended reality, and smart
manufacturing (Kairouz et al., 2021). Communication is a critical bottleneck in FL as the clients are
typically connected to the central server over bandwidth-limited networks. Standard optimization
methods such as distributed SGD are often not suitable in FL and can cause high communication
costs due to the frequent exchange of large-size model parameters or gradients. To tackle this issue,
local SGD, in which clients update their models by running multiple SGD iterations on their local
datasets before communicating with the server, has emerged as the de facto optimization method in
FL and can largely reduce the number of communication rounds required to train a model (McMahan
et al., 2017; Stich, 2019).

However, the communication benefit of local SGD is highly sensitive to non-iid data distribution as
observed in prior work (Rothchild et al., 2020; Karimireddy et al., 2020). Intuitively, taking many
local iterations of SGD on local dataset that is not representative of the overall data distribution will
lead to local over-fitting, which will hinder convergence. In particular, it is shown in (Zhao et al.,
2018) that the convergence of local SGD on non-iid data could slow down as much as proportionally
to the number of local iteration steps taken. Therefore, local SGD with a large aggregation period
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can converge very slow on non-iid data distribution, and this may nullify its communication benefit
(Rothchild et al., 2020).

Local SGD assumes a star network topology where each device connects to the central server for
model aggregation. In modern communication networks, rather than only communicating with the
server over slow communication links, devices are increasingly connected to others over fast com-
munication links. For instance, in 5G-and-beyond mobile networks, mobile devices can directly
communicate with their nearby devices via device-to-device links of high data rate (Asadi et al.,
2014; Yu et al., 2020). Also, edge devices within the same local-area network (LAN) domain can
communicate with each other rapidly without traversing through slow wide-area network (WAN)
(Yuan et al., 2020). This gives the potential to accelerate the FL convergence under non-iid data
distribution by leveraging fast D2D cooperation so that the total training time can be reduced in FL
over bandwidth-limited networks.

Motivated by the above observation, this paper proposes hybrid local SGD (HL-SGD), a new dis-
tributed learning algorithm for FL with heterogeneous communications, to speed up the learning
process and reduce the training time. HL-SGD extends local SGD with fast gossip-style D2D com-
munication after local iterations to mitigate the local over-fitting issue under non-iid data distribution
and accelerate convergence. A hybrid model aggregation scheme is designed in HL-SGD to inte-
grate both fast device-to-device (D2D) and slow device-to-server (D2S) cooperations. We analyze
the convergence of HL-SGD in the presence of heterogeneous data for general nonconvex settings,
and characterize the relationship between the optimality error bound and algorithm parameters. Our
algorithm and analysis are general enough and subsume previously proposed SGD variations such
as distributed SGD, local SGD and gossip SGD.

Specifically, we consider the FL setting in which all devices are partitioned into disjoint clusters,
each of which includes a group of connected devices capable of communicating with each other
using fast D2D links. The clustering can be a natural result of devices belonging to different LAN
domains so that those devices connected to the same LAN domain are considered as one cluster. In
another example, clustering is based on the geographic locations of mobile devices so that devices
in a cluster are connected to each other through D2D communication links.

In summary, the paper makes the following main contributions:

•We propose a novel distributed learning algorithm for FL called HL-SGD to address the commu-
nication challenge of FL over bandwidth-limited networks by leveraging the availability of fast D2D
links to accelerate convergence under non-iid data distribution and reduce training time.

•We provide the convergence analysis of HL-SGD under general assumptions about the loss func-
tion, data distribution, and network topology, generalizing previous results on distributed SGD, local
SGD, and gossip SGD.

•We conduct extensive empirical experiments on two common benchmarks under realistic network
settings to validate the established theoretical results of HL-SGD. Our experimental results show
that HL-SGD can largely accelerate the learning process and speed up the runtime.

2 BACKGROUND AND RELATED WORK

Large-scale machine learning based on distributed SGD has been well studied in the past decade, but
often suffers from large network delays and bandwidth limits (Bottou et al., 2018). Considering that
communication is a major bottleneck in federated settings, local SGD has been proposed recently to
reduce the communication frequency by running SGD independently in parallel on different devices
and averaging the sequences only once in a while (Stich, 2019; Lin et al., 2019; Haddadpour et al.,
2019; Yu et al., 2019; Wang et al., 2021). However, they all assume the client-server architecture and
do not leverage the fast D2D communication capability in modern communication networks. Some
studies (Liu et al., 2020; Abad et al., 2020; Castiglia et al., 2021) develop hierarchical FL algorithms
that first aggregate client models at local edge servers before aggregating them at the cloud server or
with neighboring edge servers, but they still rely on D2S communication links only and suffer from
the scalability and fault-tolerance issues of centralized setting. On the other hand, while existing
works on decentralized or gossip SGD consider D2D communications (Tsitsiklis, 1984; Boyd et al.,
2006), they assume a connected cluster with homogeneous communication links and will converge
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very slow on the large and sparse network topology that is typically found in FL settings. Unlike
previous works, HL-SGD leverages both D2S and D2D communications in the system.

Some recent studies aim to encapsulate variants of SGD under a unified framework. Specifically,
a cooperative SGD framework is introduced in (Wang & Joshi, 2021) that includes communica-
tion reduction through local SGD steps and decentralized mixing between clients under iid data
distribution. A general framework for topology-changing gossip SGD under both iid and non-iid
data distributions is proposed in (Koloskova et al., 2020). Note that all of the above works assume
undirected network topology for communications in every iteration. In comparison, our proposed
HL-SGD is different: the D2S communication is asymmetric due to the use of device sampling
and model broadcasting in each global aggregation round and cannot be modeled in an undirected
graph. Therefore, the convergence analysis of HL-SGD does not fit into the prior frameworks and
is much more challenging. Moreover, our major focus is on the runtime of the algorithm rather than
its convergence speed in iterations.

3 SYSTEM MODEL

In this section, we introduce the FL system model, problem formulation, and assumptions we made.

Notation. All vectors in this paper are column vectors by default. For convenience, we use 1 to
denote the all-ones vector of appropriate dimension, 0 to denote the all-zeros vector of appropriate
dimension, and [n] to denote the set of integers {1, 2, . . . , n} with any positive integer n. Let ‖·‖
denote the `2 vector norm and Frobenius matrix norm and ‖·‖2 denote the spectral norm of a matrix.

We consider a FL system consisting of a central server and K disjoint clusters of edge devices.
Devices in each cluster k ∈ [K] can communicate with others across an undirected and connected
graph Gk = (V, Ek), where Vk denotes the set of edge devices in the cluster, and edge (i, j) ∈ Ek
denotes that the pair of devices i, j ∈ Vk can communicate directly using D2D as determined by the
communication range of D2D links. Besides, each device can directly communicate with the central
server using D2S links. Denote the set of all devices in the system as V :=

⋃
k∈[K] Vk, the number

of devices in each cluster k ∈ [K] as n := |Vk|, and the total number of devices in the system as
N :=

∑
k∈[K] n

1.

The FL goal of the system is to solve an optimization problem of the form:

min
x∈Rd

f(x) :=
1

N

∑
i∈V

fi(x) :=
1

K

∑
k∈[K]

f̄k(x), (1)

where fi(x) := Ez∼Di [`i(x; z)] is the local objective function of device i, f̄k(x) :=
(1/n)

∑
i∈Vk fi(x) is the local objective function of cluster k, and Di is the data distribution of

device i. Here `i is the (non-convex) loss function defined by the learning model and z represents a
data sample from data distribution Di.
When applying local SGD to (1) in FL with heterogeneous communications, the communications
between the server and devices in FL are all through D2S links that are bandwidth-limited, particu-
larly for the uplink transmissions. Therefore, the incurred communication delay is high. Due to the
existing of high-bandwidth D2D links that are much more efficient than low-bandwidth D2S links,
it would be highly beneficial if we can leverage D2D links to reduce the usage of D2S links such
that the total training time can be reduced. This motivates us to design a new learning algorithm for
FL with heterogeneous communications.

4 HYBRID LOCAL SGD

In this section, we present our HL-SGD algorithm suitable for the FL setting with heterogeneous
communications. Algorithm 1 provides pseudo-code for our algorithm.

At the beginning of r-th global communication round, the server broadcasts the current global model
xr to all devices in the system via cellular links (Line 4). Note that in typical FL systems, the down-

1For presentation simplicity, we assume each cluster contains the same number of devices here. The results
of this paper can be extended to the case of clusters with different device numbers as well.
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Algorithm 1 HL-SGD: Hybrid Local SGD
Input: initial global model x0, learning rate η, communication graph Gk and mixing matrix Wk for
all clusters k ∈ [K], and fraction of sampled devices in each cluster p.
Output: final global model xR

1: for each round r = 0, . . . , R− 1 do
2: for each cluster k ∈ [K] in parallel do
3: for each device i ∈ Vk in parallel do
4: xr,0i = xr

5: for s = 0, . . . , τ − 1 do
6: Compute a stochastic gradient gi over a mini-batch ξi sampled from Di
7: x

r,s+ 1
2

i = xr,si − ηgi(x
r,s
i ) . local update

8: xr,s+1
i =

∑
j∈Nki

(Wk)i,jx
r,s+ 1

2
j . gossip averaging

9: end for
10: end for
11: end for
12: for each cluster k ∈ [K] do
13: m← max(p · n, 1)
14: Srk ← (random set of m clients in Vk) . device sampling
15: end for
16: xr+1 = 1

K

∑
k∈[K]

1
m

∑
i∈Srk

xr,τi . global aggregation
17: end for
18: return xR

link communication is much more efficient than uplink communication due to the larger bandwidth
allocation and higher data rate. Therefore, devices only consume a smaller amount of energy when
receiving data from the server compared with transmitting data to the server.

After that, devices in each cluster initialize their local models to be the received global model and
run τ iterations of gossip-based SGD via D2D links to update their local models in parallel (lines 5–
9). Let xr,si denote the local model of device i at the r-th local iteration of s-th round. Here
each gossip-based SGD iteration consists of two steps: (i) SGD update, performed locally on each
device (lines 6–7), followed by a (ii) gossip averaging, where devices average their models with
their neighbors (line 8). In the gossip averaging protocol, N k

i denotes the neighbors of device i,
including itself, on the D2D communication graph Gk of cluster k, and Wk ∈ [0, 1]n×n denotes
the mixing matrix of cluster k with each element (Wk)i,j being the weight assigned by device i to
device j. Note that (Wk)i,j > 0 only if devices i and j are directly connected via D2D links.

Next, a set Srk of m devices are sampled uniformly at random (u.a.r.) with probability p without
replacement from each cluster k ∈ [K] by the server (lines 13–14), and their final updated local
models {xr,τi ,∀i ∈ Srk} are sent to the server via D2S links. After that, the server updates the global
model xr+1 by averaging the received local models from all sampled devices (line 16). Note that
only m devices per cluster will upload their models to the server in each round to save the usage of
expensive D2S uplink transmissions. The intuition is that after multiple iterations of gossip-based
SGD, devices have already reached approximate consensus within each cluster, and the sampled
average can well represent the true average. By trading D2D local aggregation for D2S global
aggregation, the total communication cost can be reduced. We will empirically validate such benefits
later in the experiments.

It is worth noting that HL-SGD inherits the privacy benefits of classic FL schemes by keeping the
raw data on device and sharing only model parameters. Moreover, HL-SGD is compatible with
existing privacy-preserving techniques in FL such as secure aggregation (Bonawitz et al., 2017; Guo
& Gong, 2018), differential privacy (McMahan et al., 2018; Hu et al., 2020; 2021), and shuffling
(Girgis et al., 2021) since only the sum rather than individual values is needed for the local and
global model aggregation steps.

Runtime analysis of HL-SGD. We now present a runtime analysis of HL-SGD. Here we ignore
the communication time of downloading models from the server by each device since the download
bandwidth is often much larger than upload bandwidth for the D2S communication in practice (?).
In each round of HL-SGD, we denote the average time taken by a device to compute a local update,
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perform one round of D2D communication and one round of D2S communication as ccp, cd2d and
cd2s, respectively. Assume the uplink bandwidth between the server and devices is fixed and evenly
shared among the sampled devices in each round, then cd2s is linearly proportional to the sampling
ratio p. Similarly, ccp depends on the D2D network topology Gk and typically increases with the
maximum node degree ∆(Gk). The total runtime of HL-SGD after R communication rounds is

R× [τ × (ccp + cd2d) + cd2s] . (2)

The specific values of ccp, cd2d and cd2s depend on the system configurations and applications. In
comparison, the total runtime of local SGD after R communication rounds is R× [τ × ccp + cd2s].

Previous algorithms as special cases. When devices do not communicate with each other, i.e.,
Wk = I, ∀k ∈ [K], and sampling ratio p = 1, HL-SGD reduces to distributed SGD (when τ = 1)
or local SGD (when τ > 1) where each device only directly communicates with the server with D2S
links. Also, when τ →∞, HL-SGD reduces to gossip SGD where devices only cooperate with their
neighboring devices through a gossip-based communication protocol with D2D links to update their
models without relying on the server. Therefore, HL-SGD subsumes existing algorithms and enables
us to strike the best balance between runtime and model accuracy by tuning τ , Wk, and p. However,
due to the generality of HL-SGD, there exist significantly new challenges in its convergence analysis,
which constitutes one of the main contributions of this paper as elaborated in the following section.

5 CONVERGENCE ANALYSIS OF HL-SGD

In this section, we analyze the convergence of HL-SGD with respect to the gradient norm of the
objective function f(·), specifically highlighting the effects of τ and p. Before stating our results,
we make the following assumptions:

Assumption 1 (Smoothness). Each local objective function fi : Rd → R is L-smooth for all i ∈ V ,
i.e., for all x, y ∈ Rd,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀i ∈ V.

Assumption 2 (Unbiased Gradient and Bounded Variance). The local mini-batch stochastic gra-
dient in Algorithm 1 is unbiased, i.e., Eξi [gi(x)] = ∇fi(x), and has bounded variance, i.e.,
Eξi‖gi(x) − ∇fi(x)‖2 ≤ σ2,∀x ∈ Rd, i ∈ V , where the expectation is over all the local mini-
batches.

Assumption 3 (Mixing Matrix). For any cluster k ∈ [K], the D2D network is strongly connected
and the mixing matrix Wk ∈ [0, 1]n×n satisfies Wk1 = 1, 1>Wk = 1>, null(I −Wk) = span(1).
We also assume ||Wk − (1/n)11>||2 ≤ ρk for some ρk ∈ [0, 1).

Assumption 4 (Bounded Intra-Cluster Dissimilarity). There exists a constant εk ≥ 0 such that
(1/n)

∑
i∈Vk ‖∇fi(x) − ∇f̄k(x)‖2 ≤ ε2k for any x ∈ Rd and k ∈ [K]. If local functions are

identical to each other within a cluster, then we have εk = 0.

Assumption 5 (Bounded Inter-Cluster Dissimilarity). There exist constants α ≥ 1, ε ≥ 0 such that
(1/K)

∑
k∈[K] ‖∇f̄k(x)‖2 ≤ α2 ‖∇f(x)‖2 + ε2g for any x ∈ Rd. If local functions are identical to

each other across all clusters, then we have α = 1, εg = 0.

Assumptions 1–3 are standard in the analysis of SGD and decentralized optimization (Bottou et al.,
2018; Koloskova et al., 2019). Assumptions 4–5 are commonly used in the federated optimization
literature to capture the dissimilarities of local objectives (Koloskova et al., 2020; Wang et al., 2020).

5.1 MAIN RESULTS

We now provide the main theoretical results of the paper in Theorem 1 and Theorem 2. The detailed
proofs are provided in the appendices. Define the following constants:

ρmax = max
k∈[K]

ρk, Dτ,ρ = min

{
1

1− ρmax
, τ

}
, ε̄2L =

1

K

K∑
k=1

ε2k (3)
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and let

r0 = 8(f(x0)− f(x?)), r1 = 16L

(
σ2

N

)
,

r2 = 16C1L
2τ2ε2g + 16C1L

2

(
τρ2

maxDτ,ρε̄
2
L + τσ2

(
1

n
+ ρ2

max

))
.

(4)

Theorem 1 (Full device participation). Let Assumptions 1–5 hold, and let L, σ, ε̄L, εg , Dτ,ρ, ρmax,
r0, r1, and r2 be as defined therein. If the learning rate η satisfies

η = min

{
1

4C1α
· 1

τL
,

(
r0

r1τR

) 1
2

,

(
r0

r2τR

) 1
3

}
, (5)

then for any R > 0, the iterates of Algorithm 1 with full device participation for HL-SGD satisfy

min
r,s

E‖∇f(x̄r,s)‖2 = O

 σ√
NτR

+

(
τ2ε2g + τρ2maxDτ,ρε̄

2
L + τ

(
1
n

+ ρ2max

)
σ2
) 1

3

(τR)
2
3

+
1

R

 , (6)

where x̄r,s = 1
N

∑N
i=1 x

r,s
i .

In the following, we analyze the iteration complexity of HL-SGD and compare it with those of
some classic and state-of-the-art algorithms relevant to our setting in Table 1. First, we consider
two extreme cases of HL-SGD where ρmax = 0 and ρk = 1,∀k ∈ [K], and show that our analysis
recovers the best known rate of local SGD.

Fully Connected D2D networks. In this case, ρmax = 0, and each cluster can be viewed as a single
device, and thus HL-SGD reduces to local SGD with K devices. Substuting ρmax = 0 into (6),
the iteration complexity of HL-SGD reduces to O(σ/

√
NτR+

(
τ2ε2g + τ · (σ2/n)

)1/3
/(τR)2/3 +

1/R). This coincides with the complexity of local SGD provided in Table 1 with device number K
and stochastic gradient variance σ2/n thanks to the fully intra-cluster averaging.

Disconnected D2D networks. In this case, HL-SGD reduces to local SGD with N devices.
Substituting ρmax = 1 into (6), the iteration complexity of HL-SGD becomes O(σ/

√
NτR +(

τ2(ε2g + ε̄2L) + τσ2
)1/3

/(τR)2/3 + 1/R). This coincides with the complexity of local SGD with
N devices, stochastic gradient variance σ2, and gradient heterogeneity of order ε2g + ε̄2L.

Table 1: Comparison of Iteration Complexity. 2

Local SGD O

(
σ√
NτR

+
(τ2ε2+τσ2)

1
3

(τR)
2
3

+ τ
τR

)
Gossip SGD O

(
σ√
NτR

+ ρ
2
3 ε

2
3

(τR)
2
3 (1−ρ)

2
3

+ ρ
2
3 σ

2
3

(τR)
2
3 (1−ρ)

1
3

+ ρ
(1−ρ)τR

)
Gossip PGA (Chen et al., 2021) O

(
σ√
NτR

+
C

1
3
τ,ρD

1
3
τ,ρ′ρ

2
3 ε

2
3

(τR)
2
3

+
C

1
3
τ,ρρ

2
3 σ

2
3

(τR)
2
3

+
ρDτ,ρ′

τR

)
HL-SGD (this work) O

(
σ√
NτR

+
(τ2ε2g+τρ2maxDτ,ρε̄

2
L)

1
3

(τR)
2
3

+
(τ( 1

n+ρ2max)σ
2)

1
3

(τR)
2
3

+ τ
τR

)
Next, we compare the complexities of HL-SGD, local SGD, gossip SGD and gossip PGA.

Comparison to Local SGD. Comparing (6) and the complexity of local SGD, we can see the intra-
cluster D2D communication provably improves the iteration complexity by reducing the transient
iterations. This is reflected in the smaller coefficient associated with the O((τR)−2/3) term. In par-
ticular, improving D2D communication connectivity will lead to a smaller ρmax and consequently,
mitigate the impact of both local data heterogeneity and stochastic noise on the convergence rate.

1The convergence rates for gossip SGD and local SGD are from (Koloskova et al. (2020)). The parameters
in the table are given by the following: σ2: stochastic gradient variance; ρ: network connectivity; ε2: data
heterogeneity of order ε2g + ε̄2L; Cτ,ρ ,

∑τ−1
k=0 ρ

k, Dτ,ρ′ = min{1/(1− ρ), τ}. Note that Dτ,ρ 6= Dτ,ρ′ .
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Comparison to Gossip SGD. Under the condition that ρ = ρmax, i.e., the connectivity of D2D
network in gossip SGD is the same as that of HL-SGD, Table 1 shows HL-SGD outperforms gossip
SGD when τ/n ≤ ρ2/(1−ρ). In other words, HL-SGD is beneficial for weakly connected networks,
which is the case in FL settings where a large number of devices are often loosely connected or
disconnected into several disjoint clusters via D2D communications only.

Comparison to Gossip PGA. Gossip PGA improves local SGD by integrating gossiping among all
devices in one round using a connected network. Compared to gossip SGD, gossip PGA has one
extra full averaging step with period τ . The complexity of gossip PGA improves both by reduc-
ing the transient iterations. HL-SGD (full participation) differs from gossip PGA in the sense that
gossiping is performed within multiple clusters instead of a single one. The benefit comes from the
fact that for many commonly used D2D network topologies, the spectral gap 1− ρ decreases as the
network size decreases, see Table 2. Therefore, when employing the same D2D network topology,
HL-SGD enjoys a smaller connectivity number ρmax than ρ. Considering the scenario where τ and
n are fixed while the cluster number K grows, the total device number N = nK grows and hence
ρ → 1 for gossip PGA. In the case when τ = Dτ,ρ′ ≈ Cτ,ρ, the fastest decaying O(1/τR) terms
are comparable for both algorithms. However, the O((τR)−2/3) term of gossip GPA can be larger
than that of HL-SGD since ρ increases with N . This observation shows for large-scale networks,
it is advantageous to use HL-SGD with multiple connected clusters instead of gossip GPA with a
single cluster under the D2D network topology.

Our next result shows the iteration complexity of HL-SGD with partial device participation. We
assume the devices participate in synchronizing their models at the end of each FL round following
the sampling rule given by Assumption 6.
Assumption 6 (Sampling strategy). Each Srk contains a subset ofm indices uniformly sampled from
{1, . . . , n} without replacement. Furthermore, Srk is independent of Sr

′

k′ for all (k, r) 6= (k′, r′).
Theorem 2 (Partial device participation). Let Assumptions 1–6 hold, and let L, σ, ε̄L, εg , Dτ,ρ,
ρmax, r0, r1, and r2 be as defined therein. If the network connectivity satisfies

ρmax ≤ 1− 1/τ, (7)
then for suitably chosen learning rate η, the iterates of Algorithm 1 with partial device participation
for HL-SGD satisfy

min
r,s

E‖∇f(x̄r,s)‖2

=O

σ + E(εg, ε̄L, σ, ρmax)√
NτR

+

(
τ2ε2g + τρ2maxDτ,ρε̄

2
L+τ

(
1
n

+ ρ2max

)
σ2
) 1

3

(τR)
2
3

+
max{1, GpDτ,ρρmax}

R

 ,

(8)
where x̄r,s = 1

N

∑N
i=1 x

r,s
i ,

E2(εg, ε̄L, σ, ρmax) = (ε2gDτ,ρ + ρmaxDτ,ρε̄
2
L + σ2) ·G′pDτ,ρρmaxN +

n

m
· 1

τ
ρ2

maxσ
2. (9)

and

Gp =
n−m
m(n− 1)

, G′p = Gp +
1

τ2
. (10)

Compared to Theorem 1, Theorem 2 shows partial device participation deteriorates the rate
by O(E(εg, ε̄L, σ, ρmax)/

√
NτR). From the expression of E , we observe that as ρmax → 0,

E(εg, ε̄L, σ, ρmax) vanishes, which indicates that the loss caused by device sampling can be com-
pensated by increasing network connectivity uniformly for all clusters.

The next corollary finds the critial ρmax so that E2 = O(1), and the order of convergence rate of
partial device participation matches that of the full participation case.
Corollary 1. Under the same assumptions as Theorem 2, if the network connectivity satisfies

ρmax ≤
1

4N
min{m, τ − 1}. (11)

then

min
r,s

E‖∇f(x̄r,s)‖2 = O

σ + εg + ε̄L√
NτR

+

(
τ2ε2g + τρ2maxDτ,ρε̄

2
L + τ

(
1
n

+ ρ2max

)
σ2
) 1

3

(τR)
2
3

+
1

R

 . (12)
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Corollary 1 reveals the tradeoff between sampling intensity and network connectivity. More con-
nected D2D networks result in smaller ρmax, and thus (11) can be satisfied by a smaller m. This
means we can sample fewer devices at the end of each round and reduce the D2S communication
delay when the D2D network is more connected.

6 EXPERIMENTAL EVALUATION

6.1 EXPERIMENTAL SETTINGS

We use two common datasets in FL literature (McMahan et al., 2017; Reddi et al., 2021; Wang et al.,
2020): Federated Extended MNIST (Caldas et al., 2019) (FEMNIST) and CIFAR-10 (Krizhevsky
et al., 2009). The 62-class FEMNIST is built by partitioning the data in Extended MNIST (Cohen
et al., 2017) based on the writer of the digit/character and has a naturally-arising device partition-
ing. CIFAR-10 is partitioned across all devices using a Dirichlet distribution Dir(0.1) as done in
(Hsu et al., 2019; Yurochkin et al., 2019; Reddi et al., 2021; Wang et al., 2020). We evaluate our
algorithms by training CNNs on both datasets, and the CNN models for FEMNIST and CIFAR-10
were taken from (Caldas et al., 2019) and (McMahan et al., 2017) with around 6.5 and 1 million
parameters, respectively. For each dataset, the original testing set (without partitioning) is used to
evaluate the generalization performances of the trained global model.

We consider a FL system consisting of a central server and 32 devices. The devices are evenly
divided into four clusters, and each cluster has a ring topology by default, which provides a con-
servative estimation for the cluster connectivity and convergence speed. In our experiments, the
mixing matrix of each cluster Wk is set according to the Metropolis-Hastings weights (Nedić et al.,
2018). According to the real-world measurements in (Yuan et al., 2020; Yang et al., 2021), we set
the average time for a device to perform a local update, a round of D2D communication under ring
topology, and a round of D2S communication with one device sampled per cluster to be ccp = 0.01h,
cd2d(∆ = 2) = 0.005h and cd2s(p = 1/8) = 0.05h, respectively, in the runtime model (2). For ar-
bitrary device sampling ratio and D2D network topology, we consider a linear-scaling rule (Wang
et al., 2019) and let cd2d(∆) = (∆/2)× 0.005h and cd2s(p) = 8p× 0.05h.

We compare HL-SGD with local SGD in the experiments. For local SGD, devices will only com-
municate with the central server periodically. In all experiments, we let the local iteration period
τ to be the same for both local SGD and HL-SGD to have a fair comparison. On the FEMNIST
dataset, we fix the batch size as 30 and tune the learning rate η from {0.005, 0.01, 0.02, 0.05, 0.08}
for each algorithm separately. On the CIFAR-10 dataset, we fix the batch size as 50 and tune η from
{0.01, 0.02, 0.05, 0.08, 0.1} for each algorithm separately. We run each experiment with 3 random
seeds and report the average. All experiments in this paper are conducted on a Linux server with 4
NVIDIA RTX 8000 GPUs. The algorithms are implemented by PyTorch. More details are provided
in Appendix F.

6.2 EXPERIMENTAL RESULTS

(a) FEMNIST (b) FEMNIST (c) CIFAR-10 (d) CIFAR-10

Figure 1: Convergence rate and runtime comparisons of HL-SGD and local SGD under ring topology when
τ = 50 and p = 1 for FEMNIST and CIFAR-10 datasets. (a) and (c) show how the accuracy changes over
communication round; (b) and (d) show how the accuracy changes over runtime.

We first compare the convergence speed and runtime of HL-SGD and local SGD while fixing τ = 50
and p = 1. We measure the best test accuracy of the global model on the server in every FL round.
Figure 1 shows the convergence process. From the figure, we can observe that HL-SGD can largely
accelerate the model convergence while improving model accuracy in FL. On FEMNIST, the best
accuracy of HL-SGD achieved over 100 rounds is 4.78% higher than that of local SGD (i.e., 83.76%
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vs. 79.94%), and its runtime necessary to achieve a target test accuracy of 75% is only 17.64% of
that of the baseline (i.e., 5.67× speedup). On CIFAR-10, the best accuracy of HL-SGD achieved
over 100 rounds is 9.32% higher than that of local SGD (i.e., 68.71% vs. 63.68%), and its runtime
necessary to achieve a target test accuracy of 60% is 15.67% less than that of local SGD (i.e., 1.186×
speedup).

Figure 2: Convergence rate (left) and runtime (right) comparisons of HL-SGD and local SGD on CIFAR-10
under different τ and ring topology when p = 1.

Next, to give a more comprehensive analysis on the runtime benefits of HL-SGD, we vary τ from
{5, 10, 20, 50} and compare the performances of HL-SGD and local SGD on CIFAR-10 in Figure 2.
From the figure, we can observe that HL-SGD can consistently outperform local SGD across a wide
range of τ . In particular, on CIFAR-10, the best accuracy of HL-SGD achieved over 100 rounds is
2.49%, 3.99%, 4.05%, and 7% higher than that of local SGD, respectively, as τ increases from 5 to
50. At the same time, the runtime of HL-SGD needed to achieve a target test accuracy of 60% is
9.66%, 19.76%, 33.46%, and 45.88% less than that of local SGD, respectively.

(a) FEMNIST (b) FEMNIST (c) CIFAR-10 (d) CIFAR-10

Figure 3: Effect of sampling ratio p on the convergence rate and runtime of HL-SGD under ring topology when
τ = 50 for FEMNIST and CIFAR-10 datasets. (a) and (c) show how the accuracy changes over communication
round in HL-SGD; (b) and (d) show how the accuracy changes over runtime.

Finally, we investigate how the sampling ratio p affects the performance of HL-SGD. We select
p from {0.125, 0.25, 0.5, 1}, corresponding to sampling {1, 2, 4, 8} devices from each cluster to
upload models to the server. Figure 3 depicts the best value of test accuracy achieved over all prior
rounds. As can be observed from the figures, sampling one device per cluster only results in slightly
lower model accuracy, e.g., neligible and 1.92% drop compared to full participation on FEMNIST
and CIFAR-10, respectively. This matches the theoretical result in Corollary 1 that device sampling
does not affect the order of convergence rate under certain conditions. However, decreasing p can
lead to faster training speed due to its shorter D2S communication delay as observed in Figures 3b
and 3d. In practice, the optimal value of p needs to be tuned to strike a good balance between model
accuracy and runtime.

7 CONCLUSION

In this paper, we have proposed a new optimization algorithm called HL-SGD for FL with heteroge-
neous communications. Our algorithm leverages the D2D communication capabilities among edge
device to accelerate the model convergence while improving model accuracy in FL. We have pro-
vided the theoretical convergence analysis of HL-SGD and conducted experiments to demonstrate
the benefits of HL-SGD. In the future, we plan to extend HL-SGD to handle straggler issues under
device heterogeneity and provide rigorous privacy protection for HL-SGD.
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A PRELIMINARIES

Intra-cluster dynamics. To facilitate the analysis, we introduce matrices Xk ∈ Rn×d and Gk ∈
Rn×d constructed by stacking respectively xi and gi for i ∈ Vk row-wise. Similarly, we define
the pseudo-gradient ∇Fk(Xk) ∈ Rn×d associated to cluster k by stacking ∇fi(xi) for i ∈ Vk
row-wise. In addition, define the following intra-cluster averages for each cluster k:

x̄k ,
1

n

∑
i∈Vk

xi and ḡk ,
1

n

∑
i∈Vk

gi. (13)

The update within each cluster then can be written compactly in matrix form as

Xr,s+1
k = Wk(Xr,s

k − ηG
r,s
k ), ∀k = 1, . . . ,K. (14)

Since each Wk is bi-stochastic, we obtain the following update of the intra-cluster average

x̄r,s+1
k = x̄r,sk − η · ḡ

r,s
k . (15)

We proceed to derive the update of the intra-cluster consensus error. Define the averaging matrix

J =
1

n
1 · 1> with 1 = [1, . . . , 1︸ ︷︷ ︸

n

]. (16)

Multiplying both sides of (14) from the left by (I−J) leads to the following update of the consensus
error:

(I − J)Xr,s+1
k︸ ︷︷ ︸

Xr,s+1
k,⊥

= (I − J)Wk(Xr,s
k − ηG

r,s
k )

= (Wk − J)(Xr,s
k − ηG

r,s
k )

= (Wk − J)(Xr,s
k,⊥ − ηG

r,s
k ).

(17)

Global average dynamics. Define the global average among all xi’s as

x̄ ,
1

N

N∑
i=1

xi. (18)
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Then accordingly to (15) we have the following update of x̄ for all s = 0, . . . , τ − 1:

x̄r,s+1 =
1

N

K∑
k=1

nx̄r,s+1
k =

1

N

K∑
k=1

n (x̄r,sk − ηḡ
r,s
k )

=
1

N

N∑
i=1

(xr,si − ηg
r,s
i ) = x̄r,s − η 1

N

N∑
i=1

gr,si .

(19)

Filtration. Let G = [G1; . . . ;GK ] ∈ RN×d be the matrix constructed by stacking all the stochastic
gradients. We introduce the following filtration

Fr,s = σ
(
G0,0, . . . , G0,τ−1, S0, G

1,0, . . . , G1,τ−1, . . . , Sr−1, G
r,0, . . . , Gr,s

)
Fr = σ

(
G0,0, . . . , G0,τ−1, S0, G

1,0, . . . , G1,τ−1, . . . , Sr−1

)
.

(20)

Therefore we have xr,0i = xr ∈ Fr for r ≥ 1, and xr,si ∈ Fr,s−1 for 1 ≤ s ≤ τ . For simplicity
the conditional expectation E( · |Fr,s) is denoted as Er,s, and we define the noise in the stochastic
gradient as

ξr,si , gr,si −∇fi(x
r,s
i ). (21)

Since at the end of round r all nodes are picked with equal probability, the sampling procedure
preserves average in expectation:

Er,τ−2x
r+1 = E(E(xr+1|Fr,τ−1)|Fr,τ−2)

= E

E

 1

K

K∑
k=1

1

m

∑
i∈Srk

xr,τi |Fr,τ−1

 |Fr,τ−2


= E

(
E

(
1

K

K∑
k=1

1

m

∑
i∈Vk

I(i ∈ Srk)xr,τi |Fr,τ−1

)
|Fr,τ−2

)
= Er,τ−2(x̄r,τ )

(22)

where the last equality holds since P
(
i ∈ Srk|i ∈ Vk

)
= m

n .

B CONVERGENCE ANALYSIS

To prove the convergence we first establish in Sec. B.1 that the objective value Ef(xr) is descending
at each round r, up to some consensus error terms. Subsequently, bounds on the error terms are
provided in Sec. B.2-B.4. Based on these results, the proof of convergence of Algorithm 1 with full
and partial device participation are given in Sec. B.5 and B.6, respectively. The proofs of the main
propositions are given in Sec. C and that of the supporting lemmas are deferred to Sec. D.
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B.1 OBJECTIVE DESCENT

Lemma 1. Let {xr,si } be the sequence generated by Algorithm 1 under Assumptions 1-6. If η > 0,
then the following inequality holds for all r ∈ N+:

Ef(xr+1)

≤ Ef(xr)− η

4

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 − η

4

τ−1∑
s=0

E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

− η

4

τ−1∑
s=0

E
∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

+
η

4

τ−1∑
s=0

E
∥∥∥∇f(x̄r,s)− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

+
η

4

τ−1∑
s=0

E
∥∥∥∇f(x̄r,s)− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

+
η

4

τ−1∑
s=0

E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

+

τ−2∑
s=0

E
(
L

2
‖x̄r,s+1 − x̄r,s‖2

)
+ E

(
L

2
‖xr+1 − x̄r,τ−1‖2

)
.

(23)

Proof. The proof is a standard application of the descent lemma and the sampling rule applied at
iteration τ to obtain xr+1. See Appendix D.1.

Lemma 1 shows the objective value f(xr) is descending in expectation up to the following error
terms:

T1 = E
∥∥∥∇f(x̄r,s)− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

, T2 = E
∥∥∥∇f(x̄r,s)− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

T3 = E
∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,sk )− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

T4 = E‖x̄r,s+1 − x̄r,s‖2, T5 = E‖xr+1 − x̄r,τ−1‖2.

(24)

In the sequel, we will show these quantities can be bounded by the optimality gap measured in terms
of the gradient norms ‖∇f(x̄r,s)‖2, ‖(1/K)

∑K
k=1∇f̄k(x̄r,sk )‖2, and ‖(1/N)

∑N
i=1∇fi(x

r,s
i )‖2.

B.2 BOUNDING T1, T2 AND T3 .

Define

ρmax = max
k=1,...,K

ρk. (25)

Therefore it holds 0 ≤ ρmax ≤ 1 by Assumption 3.
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Since each fi is L-smooth by Assumption 1, we have f̄k and f are also L-smooth. Using this fact
and the convexity of ‖ · ‖2 we can bound T1, T2 and T3 as

T1 = E
∥∥∥∇f(x̄r,s)± 1

K

K∑
k=1

∇f̄k(x̄r,sk )− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

≤ 2
1

K

K∑
k=1

L2E‖x̄r,s − x̄r,sk ‖
2 + 2

K∑
k=1

1

N

∑
i∈Vk

L2E‖x̄r,sk − x
r,s
i ‖

2,

T2 = E
∥∥∥∇f(x̄r,s)− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

≤ 1

K

K∑
k=1

L2E
∥∥∥x̄r,s − x̄r,sk ∥∥∥2

,

T3 = E
∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,sk )− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

≤
K∑
k=1

1

N

∑
i∈Vk

L2E‖x̄r,sk − x
r,s
i ‖

2.

(26)

Clearly, in order to bound T1,2,3 we first need to bound the inter-cluster consensus error ‖x̄r,s−x̄r,sk ‖
and the intra-cluster consensus error ‖x̄r,sk − x

r,s
i ‖.

Lemma 2 (Inter-Cluster Consensus Error Bound). Let {xr,si } be the sequence generated by Algo-
rithm 1 under Assumptions 1, 2, 3, and 5. If the learning rate η > 0 satisfies

η2 ≤ 1

24τ(4τ − 1)L2
, (27)

then for all s = 0, . . . , τ − 1 it holds

1

K

K∑
k=1

E‖x̄r,s+1 − x̄r,s+1
k ‖2 ≤ Cτ

1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2

+ 12τη2L2

(
1

N

K∑
K=1

E
∥∥∥Xr,s

k,⊥

∥∥∥2
)

+ 12τη2
(
α2E‖∇f(x̄r,s)‖2 + ε2g

)
+ η2K − 1

N
σ2 (28)

where

Cτ , 1 +
3

2
· 1

4τ − 1
. (29)

Proof. See Appendix D.2.

Lemma 3 (Intra-Cluster Consensus Error Bound). Let {xr,si } be the sequence generated by Algo-
rithm 1 under Assumptions 1-5. If η > 0, then for all s = 0, . . . , τ − 1 it holds

1

N

K∑
k=1

E‖Xr,s+1
k,⊥ ‖

2 ≤
(

max
k∈[K]

ρ2
k(1 + ζ−1

k ) + η2ρL · 4L2

)
1

N

K∑
k=1

E‖Xr,s
k,⊥‖

2

+ 4η2ρLL
2 1

K

K∑
k=1

E‖x̄r,sk − x̄
r,s‖2 + 4η2ρL(α2E‖∇f(x̄r,s)‖2 + ε2g) + 4η2ρLε̄

2
L + η2σ2ρ2

max,

(30)

where ρmax is defined in (25) and

ρL , max
k=1,...,K

{
ρ2
k(1 + ζk)

}
, ε̄2L ,

1

K

K∑
k=1

ε2k (31)

with ζk > 0 being a free parameter to be chosen properly for all k = 1, . . . ,K.

Proof. See Appendix D.3.
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Combining Lemma 2 and 3 we can obtain the following bound on the sum of intra- and inter-
consensus errors using gradient ‖∇f(x̄r,s)‖2.
Proposition 1. Let {xr,si } be the sequence generated by Algorithm 1 under Assumptions 1-5. If the
learning rate η > 0 satisfies

η2 ≤ 1

24τ(4τ − 1)L2
, (32)

then for all s = 0, . . . , τ − 1 it holds

1

K

K∑
k=1

E‖x̄r,s+1 − x̄r,s+1
k ‖2 +

K∑
k=1

1

N
‖Xr,s+1

k,⊥ ‖
2

≤
s∑
`=0

C1η
2
(
τ + ρ2

maxDτ,ρ

)
(α2E‖∇f(x̄r,`)‖2 + ε2g) + C1η

2τρ2
maxDτ,ρε̄

2
L

+ C1τη
2ρ2

maxσ
2 + C1(τ +D2

τ,ρτ
−1ρ2

max)η2 1

n
σ2

(33)

where

Dτ,ρ , min

{
τ,

1

1− ρmax

}
(34)

and C1 > 0 is some universal constant.

Proof. See Appendix C.1.

Notice that according to (26) the gradient difference terms in Lemma 1 can be bounded as

η

4
E
∥∥∥∇f(x̄r,s)− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

+
η

4
E
∥∥∥∇f(x̄r,s)− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

+
η

4
E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

≤η
4

(
2

K

K∑
k=1

L2E‖x̄r,s − x̄r,sk ‖
2 +

K∑
k=1

2

N

∑
i∈Vk

L2E‖x̄r,sk − x
r,s
i ‖

2

)

+
η

4

(
1

K

K∑
k=1

L2E
∥∥∥x̄r,s − x̄r,sk ∥∥∥2

+

K∑
k=1

1

N

∑
i∈Vk

L2E‖x̄r,sk − x
r,s
i ‖

2

)

≤ηL2

(
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 +

K∑
k=1

1

N
‖Xr,s

k,⊥‖
2

)

(35)

for all s = 1, . . . , τ . Therefore Proposition 1 immediately leads to the following result.
Corollary 2. Under the same setting as Proposition 1, it holds

τ∑
s=0

η

4
E
∥∥∥∇f(x̄r,s)− 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

+

τ∑
s=0

η

4
E
∥∥∥∇f(x̄r,s)− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

+

τ∑
s=0

η

4

τ−1∑
s=0

E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )− 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

≤
τ−1∑
s=0

C1L
2η3

(
τ2 + τρ2

maxDτ,ρ

)
(α2E‖∇f(x̄r,s)‖2 + ε2g) + C1L

2η3τ2ρ2
maxDτ,ρε̄

2
L

+ C1τ
2L2η3ρ2

maxσ
2 + C1L

2(τ2 +D2
τ,ρρ

2
max)η3σ

2

n
.

(36)
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We conclude this section by providing a separate bound on the consensus error
1
N

∑K
k=1 Er‖X

r,τ−1
k,⊥ ‖2 that will be useful in bounding T5.

Proposition 2. Under the same setting as Proposition 1, if ρmax ≤ 1− 1
τ , then we have

1

N
E

K∑
k=1

‖Xr,τ−1
k,⊥ ‖2 ≤ 2C2

τ−2∑
s=0

D2
τ,ρρ

2
maxη

2(α2‖∇f(x̄r,s)‖2 + ε2g)

+ C2D
2
τ,ρτρ

2
maxη

2ε̄2L + C2

(
1

n

Dτ,ρ

τ
+ 1

)
ρ2

maxτDτ,ρη
2σ2. (37)

for some universal constant C2 > 0.

Proof. See Appendix C.2.

Proposition 2 shows that the average intra-cluster consensus error 1
N

∑K
k=1 ‖X

r,τ−1
k,⊥ ‖2 decreases as

the network connectivity improves, and vanishes if ρmax goes to zero.

B.3 BOUNDING T4

Proposition 3. Under the same setting as Lemma 1, we have

E‖x̄r,s+1 − x̄r,s‖2 = η2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )

∥∥∥∥∥
2

+ η2σ
2

N
(38)

for s = 0, . . . , τ − 1 and r ∈ N+.

Proof. Recall the algorithmic update at iteration s for all s = 0, . . . , τ − 1:

Xr,s+1
k = WkX

r,s
k − ηWkG

r,s
k

x̄r,s+1
k = x̄r,sk − ηḡ

r,s
k .

(39)

Therefore, it holds under Assumption 2 that

E‖x̄r,s+1 − x̄r,s‖2

=E

∥∥∥∥∥ ηN
N∑
i=1

(gr,si ±∇fi(x
r,s
i )

∥∥∥∥∥
2

= E

∥∥∥∥∥ ηN
N∑
i=1

∇fi(xr,si )

∥∥∥∥∥
2

+ η2σ
2

N
.

(40)

B.4 BOUNDING T5

We provide the bound on T5 separately for the full device participation and partial participation
cases.

Full participation.

When the sampling probability p = 1, we have

xr+1 =
1

N

N∑
i=1

xr,τi = x̄r,τ .

In this case, it follows from Proposition 3 that

E‖xr+1 − x̄r,τ−1‖2 = η2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,τ−1
i )

∥∥∥∥∥
2

+ η2σ
2

N
. (41)

Partial participation.
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We proceed to bound T5 for

1 ≤ m ≤ n− 1. (42)

Define p = m/n. Recall the algorithmic update at iteration τ − 1:

Xr,τ
k = WkX

r,τ−1
k − ηWkG

r,τ−1
k (43)

and

xr+1 =
1

K

K∑
k=1

1

m

∑
i∈Srk

xr,τi =
1

Np

K∑
k=1

∑
i∈Srk

xr,τi . (44)

Therefore, with (Wk)i,j being the ij-th element of matrix Wk we have under Assumption 2:

E‖xr+1 − x̄r,τ−1‖2

=E


∥∥∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Srk

xr,τi − x̄
r,τ−1

∥∥∥∥∥∥
2


=E

∥∥∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Srk

( ∑
j∈Vk

(Wk)i,j(x
r,τ−1
j − ηgr,τ−1

j )
)
− x̄r,τ−1

∥∥∥∥∥∥
2

=E

∥∥∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Srk)
( ∑
j∈Vk

(Wk)i,j(x
r,τ−1
j − η∇fj(xr,τ−1

j )
)
− x̄r,τ−1

∥∥∥∥∥∥
2

︸ ︷︷ ︸
A2,1

+ η2 E

∥∥∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Srk)
( ∑
j∈Vk

(Wk)i,j(∇fj(xr,τ−1
j )− gr,τ−1

j )
)∥∥∥∥∥∥

2

︸ ︷︷ ︸
A2,2

.

(45)

Proposition 4. Let {xr,si } be the sequence generated by Algorithm 1 under Assumptions 1-6. If the
learning rate η > 0 satisfies

η2 ≤ 1

24τ(4τ − 1)L2
, (46)

then we have the following bounds on A2,1:

A2,1 ≤2η2E

∥∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+ 8

(
Gp +

1

τ2

)(
1

N

K∑
k=1

E‖Xr,τ−1
k,⊥ ‖2

)
; (47)

where

Gp ,
n−m
m(n− 1)

. (48)

Proof. See Appendix C.3.

Proposition 5. Under the same setting as Proposition 4, A2,2 can be bounded as

A2,2 ≤
σ2

N

(
2 +

n

m
· ρ2

max

)
. (49)

Proof. See Appendix C.4
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B.5 PROOF OF THEOREM 1 (FULL PARTICIPATION)

We first prove the descent of the objective value under suitable choice of η.
Proposition 6. If the learning rate satisfies

η ≤ 1

4C1α
· 1

τL
, (50)

then we have

Ef(xr+1) ≤ Ef(xr)− η

8

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 +Rfull(η), (51)

where

Rfull(η) =C1L
2η3τ2

(
τ + ρ2

maxDτ,ρ

)
ε2g + 2C1L

2η3

(
τ2ρ2

maxDτ,ρε̄
2
L + τ2σ2

(
1

n
+ ρ2

max

))
+ η2Lτ

σ2

N
.

(52)

C1 > 0 is some universal constant.

Proof. See Appendix C.5.

To attain the expression of the convergence rate, we sum (51) over r = 0, . . . , R:

min
r∈[R]

min
s=0,...,τ−1

E‖∇f(x̄r,s)‖2

≤8(f(x0)− f(x?))

ητ(R+ 1)
+

8Rfull(η)

ητ

=
8(f(x0)− f(x?))

ητ(R+ 1)
+ 16ηL

σ2

N︸ ︷︷ ︸
centralized SGD

+ 16C1L
2τ2η2ε2g + 16C1L

2η2

(
τρ2

maxDτ,ρε̄
2
L + τσ2

(
1

n
+ ρ2

max

))
︸ ︷︷ ︸

network effect

.

(53)

The first two terms of (53) corresponds to the impact of stochastic noise and is of the same order
as the centralized SGD algorithm. The last term is of order η2 and corresponds to the deterioration
of convergence rate due to the fact that we are not computing the average gradients of all devices at
each iteration.

Denote

r0 = 8(f(x0)− f(x?)), r1 = 16L

(
σ2

N

)
,

r2 = 16C1L
2τ2ε2g + 16C1L

2

(
τρ2

maxDτ,ρε̄
2
L + τσ2

(
1

n
+ ρ2

max

))
.

(54)

The rest of the proof follows the same argument as (?, Appendix B.5) and thus we omit the details.

B.6 PROOF OF THEOREM 2 AND COROLLARY 1 (PARTIAL PARTICIPATION)

Proposition 7. Let {xr,si } be the sequence generated by Algorithm 1 under Assumption 1-5. If the
learning rate η and the network connectivity satisfies

η ≤ 1

C3ατL
·min

{
1,

1

αGpDτ,ρ ρmax

}
and ρmax ≤ 1− 1

τ
, (55)
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then

Ef(xr+1) ≤ Ef(xr)− η

8

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 +R(1)
part(η) +R(2)

part(η) (56)

with

R(1)
part(η) =C1L

2η3τ2
(
τ + ρ2

maxDτ,ρ

)
ε2g + 2C1L

2η3

(
τ2ρ2

maxDτ,ρε̄
2
L + τ2σ2

(
1

n
+ ρ2

max

))
+ Lτη2σ

2

N
,

(57)

R(2)
part(η) =

(
8C2G

′
pLD

2
τ,ρτρ

2
max

)
η2ε2g

+ 4C2LG
′
pη

2

(
D2
τ,ρτρ

2
maxε̄

2
L +

(
1

n

Dτ,ρ

τ
+ 1

)
ρ2

maxτDτ,ρσ
2

)
+
L

2

( n
m
ρ2

max

)
η2σ

2

N
.

C1, C3 > 0 are some universal constants, and

G′p = Gp +
1

τ2
, with Gp =

n−m
m(n− 1)

. (58)

Proof. See Appendix C.6

Comparing (56) to (51) we can see thatR(1)
part(η) is of the same order asR(1)

full(η), whileR(2)
part(η) is

an extra loss term introduced by sampling.

Following the same steps as the proof of Theorem 1 gives

min
r∈[R]

min
s=0,...,τ−1

E‖∇f(x̄r,s)‖2

=O

(
σ + E(εg, ε̄L, σ, ρmax)√

NτR
+

(
τ2ε2g + τρ2

maxDτ,ρε̄
2
L + τ

(
1
n + ρ2

max

)
σ2
) 1

3

(τR)
2
3

+
1

R
max{1, GpDτ,ρρmax}

)
,

(59)

where

E2(εg, ε̄L, σ, ρmax) = (ε2gDτ,ρ +Dτ,ρε̄
2
L + σ2) ·G′pDτ,ρρ

2
maxN +

n

m
· 1

τ
ρ2

maxσ
2. (60)

Our last step simplifies the overall conditions on ρmax so that E2(εg, ε̄L, σ, ρmax) = O(1):

ρmax ≤ 1− 1

τ
, G′pD

2
τ,ρρ

2
max ≤

1

N
, ρmax ≤

m

n
· τ. (61)

We claim to fulfill (61) it suffices to require

ρmax ≤
1

4N
min{m, τ − 1}. (62)

When τ = 1, the condition trivially requires ρmax = 0. We then consider the case for τ ≥ 2. By
definition, it can be verified that

G′p ≤
1

m
+

1

τ2
. (63)

First notice that
m

4N
≤ 1

4
≤ 1− 1

τ
and

τ

4N
≤ m

n
· τ. (64)

Therefore, it remains to prove (62) implies

G′pD
2
τ,ρρ

2
max ≤

1

N
. (65)
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Using the fact that under (62) ρmax ≤ 1/4 we have

G′pD
2
τ,ρρmax = G′pρmax ·

1

(1− ρmax)2

≤16

9
ρmax

(
1

m
+

1

τ2

)
≤ 16

9

(
1

m
+

1

τ2

)
1

4N
min{m, τ} ≤ 1

N
.

(66)

This proves the claim.

C PROOF OF MAIN PROPOSITIONS

C.1 PROOF OF PROPOSITION 1

Denote for short

Mr,s ,


1

N

K∑
k=1

E‖Xr,s
k,⊥‖

2

1

K

K∑
k=1

E‖x̄r,sk − x̄
r,s‖2

 . (67)

Invoking Lemma 2 and Lemma 3 we obtain that under the condition that the learning rate η > 0
satisfies

η2 ≤ 1

24τ(4τ − 1)L2
, (68)

the following inequality is satisfied for all s = 0, . . . , τ − 1:

Mr,s+1 ≤ G ·Mr,s +Br,s, (69)

where

G =

(
maxk∈[K] ρ

2
k(1 + ζ−1

k ) + η2ρL · 4L2 η2ρL · 4L2

12τη2L2 Cτ

)
(70)

Br,s =

(
4ρLη

2(α2E‖∇f(x̄r,s)‖2 + ε2g) + 4η2ρLε̄
2
L + η2ρ2

maxσ
2

12τη2(α2E‖∇f(x̄r,s)‖2 + ε2g) + η2 σ2

n .

)
(71)

The inequality in (69) is defined elementwise.

Unrolling (69) yields

Mr,s+1 ≤
s∑
`=0

G`Br,s−`, (72)

where we have used the fact that Mr,0 = 0 due to full synchronization of the xi’s at the beginning
of each round r.

We first provide a bound on the sum of the two elements of G`Br,s−`. For simplicity we omit the
round index r in the superscript for the rest of this section.

Lemma 4. Let bs−`1 and bs−`2 be the first and second element of Bs−`, respectively. Suppose the
learning rate η > 0 then

(1, 1)G`Bs−` ≤ λ`2(bs−`1 + bs−`2 ) +
λ`2 − λ`1
λ2 − λ1

η2 ·
(
12τL2bs−`1 + 4ρLL

2bs−`2

)
(73)

where λ1 ≤ λ2 are the eigenvalues of G; and ρL is defined in (31).

Proof. See Appendix D.4.
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From Lemma 4 we immediately get
s∑
`=0

(1, 1) ·G`Bs−`

≤
s∑
`=0

(
λ`2(bs−`1 + bs−`2 ) +

λ`2 − λ`1
λ2 − λ1

η2 ·
(
12τL2bs−`1 + 4ρLL

2bs−`2

))
.

(74)

Since λ2 ≥ Cτ > 1, we have

λ`2 − λ`1
λ2 − λ1

= λ`−1
2

`−1∑
s=0

(
λ1

λ2

)s
≤ λ`−1

2 min

{
λ2

λ2 − λ1
, `

}
≤ λ`2 min

{
1

λ2 − λ1
, `

}
(75)

and thus
s∑
`=0

(1, 1) ·G`Bs−`

≤
s∑
`=0

λ`2(bs−`1 + bs−`2 ) +

s∑
`=0

(
λ`2 min

{
1

λ2 − λ1
, `

})
η2 ·

(
12τL2bs−`1 + 4ρLL

2bs−`2

)
.

(76)

Recall the definition of ρL given by (31):

ρL = max
k=1,...,K

ρ2
k(1 + ζk). (77)

By the Gershgorin’s theorem, since η > 0, we can upperbound λ2 as

λ2 ≤ max

{
max
k∈[K]

ρ2
k(1 + ζ−1

k ) + η2ρL · 8L2, Cτ + 12τη2L2

}
≤ max

{
max
k∈[K]

ρ2
k(1 + ζ−1

k ) +
ρL

(4τ − 1)3τ
, 1 +

2

4τ − 1

}
,

(78)

where the last inequality is due to the bound on η:

η2 ≤ 1

24τ(4τ − 1)L2
. (79)

Define constant

Dτ,ρ = min

{
τ,

1

1− ρmax

}
. (80)

We consider two cases.

• Case 1:

ρmax ≤ 1− 1

τ
⇒ 1

1− ρmax
≤ τ. (81)

Thus Dτ,ρ = 1/(1− ρmax). We let ζk = ρk/(1− ρk) and it gives

max
k∈[K]

ρ2
k(1 + ζ−1

k ) = ρmax, ρL = max
k=1,...,K

{
ρ2
k

1− ρk

}
=

ρ2
max

1− ρmax
= ρ2

maxDτ,ρ. (82)

Substituting into the bound of λ2 [cf. (78)] gives

λ2 ≤ max

{
ρmax +

ρ2
max

(1− ρmax)3τ(4τ − 1)
, 1 +

2

4τ − 1

}

≤ max

1− 1

τ
+

(
1− 1

τ

)2

3(4τ − 1)
, 1 +

2

4τ − 1

 < 1 +
3

4τ − 1
,

(83)
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where in the second inequality we used the condition (81).

Since s ≤ τ and λ2 ≥ 1, we obtain the following bound

s∑
`=0

λ`2b
s−`
1 ≤

((
1 +

3

4τ − 1

)τ)
·

(
s∑
`=0

b`1

)
≤ 3 ·

(
s∑
`=0

b`1

)
. (84)

Moreover, since

ρmax + η2ρL · 4L2 ≤ ρmax +
ρ2

max

(1− ρmax)(4τ − 1)6τ

(81)

≤ 1− 1

τ
+

(
1− 1

τ

)2

6(4τ − 1)
≤ Cτ , (85)

we can bound λ2 − λ1 as

λ2 − λ1 ≥ Cτ − ρmax − η2ρL · 4L2

≥ Cτ −
(
ρmax +

ρ2
max

(1− ρmax)(4τ − 1)6τ

)
(81)

≥ Cτ −
(
ρmax + ρmax ·

1− 1
τ

6(4τ − 1)

)
≥ 1 +

1

4τ − 1
−
(
ρmax + ρmax ·

1

4τ − 1

)
= (1− ρmax)

(
1 +

1

4τ − 1

)
≥ 1− ρmax.

(86)

Collecting (84) and (86) we can bound (76) as

s∑
`=0

(1, 1) ·G`Bs−`

≤
s∑
`=0

(b`1 + b`2) · 3 +

s∑
`=0

η2 ·
(
12τL2b`1 + 4ρLL

2b`2
)
· 3
(

min

{
1

λ2 − λ1
, τ

})

≤
s∑
`=0

(b`1 + b`2) · 3 +

s∑
`=0

η2 ·
(
12τL2b`1 +Dτ,ρρ

2
max4L2b`2

)
· 3Dτ,ρ

(79)

≤
s∑
`=0

(b`1 + b`2) · 3 +

s∑
`=0

(
12τb`1 +Dτ,ρρ

2
max4b`2

)
· 3Dτ,ρ

1

(4τ − 1)24τ

≤
s∑
`=0

(b`1 + b`2) · 3 +

s∑
`=0

(
12τb`1 +Dτ,ρρ

2
max4b`2

)
· 1

8

Dτ,ρ

τ2

=

s∑
`=0

(b`1 + b`2) · 3 +

s∑
`=0

(
12τb`1 +Dτ,ρρ

2
max4b`2

)
· 1

8

Dτ,ρ

τ2
.

(87)
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Substituting the expression of b`1 and b`2 gives
s∑
`=0

(1, 1) ·G`Bs−` ≤
s∑
`=0

(b`1 + b`2) · 5 +

s∑
`=0

D2
τ,ρ

τ2
· ρ2

maxb
`
2

=

s∑
`=0

5

(
4η2(ρL + 3τ)(α2E‖∇f(x̄r,`)‖2 + ε2g) + 4η2ρLε̄

2
L + η2ρ2

maxσ
2 + η2 1

n
σ2

)

+

s∑
`=0

D2
τ,ρ

τ2
· ρ2

max

(
12τη2(α2E‖∇f(x̄r,`)‖2 + ε2g) + η2 1

n
σ2

)

≤
s∑
`=0

C1

2
η2(ρL + τ + ρ2

maxD
2
τ,ρτ

−1)(α2E‖∇f(x̄r,`)‖2 + ε2g) +
C1

2
η2τρLε̄

2
L

+
C1

2
τη2ρ2

maxσ
2 +

C1

2
(τ +D2

τ,ρτ
−1ρ2

max)η2 1

n
σ2

≤
s∑
`=0

C1η
2
(
τ + ρ2

maxDτ,ρ

)
(α2E‖∇f(x̄r,`)‖2 + ε2g) + C1η

2τρ2
maxDτ,ρε̄

2
L

+ C1τη
2ρ2

maxσ
2 + C1(τ +D2

τ,ρτ
−1ρ2

max)η2 1

n
σ2

(88)

where C1 is some universal constant. The last inequality holds since ρL = ρ2
maxDτ,ρ and Dτ,ρ ≤ τ .

• Case 2:

ρmax > 1− 1

τ
⇒ Dτ,ρ = τ. (89)

In such a case, we let ζk = (4τ − 1) and thus

max
k∈[K]

ρ2
k(1 + ζ−1

k ) = ρ2
max(1 + (4τ − 1)−1), ρL = 4τρ2

max = 4ρ2
maxDτ,ρ. (90)

Substituting into the bound of λ2 given in (78), applying again the learning rate condition (79) and
using the fact that Dτ,ρ = τ :

λ2 ≤ max

{
ρ2

max(1 + (4τ − 1)−1) +
4ρ2

max

3(4τ − 1)
, 1 +

2

(4τ − 1)

}
≤ 1 +

3

4τ − 1
.

(91)

Therefore by (76), (79), (84), and the fact that

min

{
1

λ2 − λ1
, `

}
≤ τ = Dτ,ρ (92)

we obtain
s∑
`=0

(1, 1) ·G`Bs−`

≤
s∑
s=0

(b`1 + b`2) · 3 +

s∑
`=0

η2 ·
(
12τL2b`1 + 16ρ2

maxDτ,ρL
2b`2
)
· 3Dτ,ρ

≤
s∑
`=0

(b`1 + b`2) · 3 +

s∑
`=0

(
12τb`1 + 16ρ2

maxDτ,ρb
`
2

) 1

8

Dτ,ρ

τ2

≤
s∑
`=0

(b`1 + b`2) · 5 +

s∑
`=0

2
D2
τ,ρ

τ2
ρ2

maxb
`
2.

(93)

Substituting the expression of b1 and b2 and using the fact that

ρL = 4τρ2
max = 4ρ2

maxDτ,ρ

we arrive at the same bound as in Case 1, possibly with a different constant C1.
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C.2 PROOF OF PROPOSITION 2

We are in Case 1 described in the proof of Proposition 1. By letting ζk = ρk/(1− ρk) we have

G =

(
ρmax +

ρ2max

1−ρmax
· η2 · 4L2 ρ2max

1−ρmax
· η2 · 4L2

12τη2L2 Cτ

)
(94)

and the following bound on the difference of the eigenvalues of G:

λ2 − λ1 ≥ 1− ρmax. (95)

Notice that according to (72) and (148)

1

N

K∑
k=1

‖Xr,τ−1
k,⊥ ‖2 =

1

det(T )

τ−2∑
`=0

tτ−2−`
1 .

Therefore

1

N

K∑
k=1

‖Xr,τ−1
k,⊥ ‖2

=
1

12τη2L2(λ2 − λ1)

τ−2∑
`=0

(
(Cτ − λ1)

(
λ`112τη2L2bτ−2−`

1 − λ`1(λ2 − Cτ )bτ−2−`
2

))
+

1

12τη2L2(λ2 − λ1)

τ−2∑
`=0

(
(λ2 − Cτ )

(
λ`212τη2L2bτ−2−`

1 + λ`2(Cτ − λ1)bτ−2−`
2

))
≤ 1

12η2L2τ(1− ρmax)

τ−2∑
`=0

(
(Cτ − λ1)λ`1

(
12τη2L2bτ−2−`

1 − (λ2 − Cτ )bτ−2−`
2

))
+

1

12η2L2τ(1− ρmax)

τ−2∑
`=0

(
(λ2 − Cτ )λ`2

(
12τη2L2bτ−2−`

1 + (Cτ − λ1)bτ−2−`
2

))
.

(96)

In the following, we bound λ1 and λ2 − Cτ as a function of ρmax. For notation simplicity we omit
the subscript of ρmax in the rest of the proof. Further, we introduce the following shorthand notation
for the elements of G :

f(ρ) = ρ+
ρ2

1− ρ
· η2 · 4L2, g(ρ) =

ρ2

1− ρ
· η2 · 4L2, and h(τ) = 12τη2L2. (97)

Applying the Gershgorin’s theorem we obtain

λ1 ≥ min
{
ρ, Cτ − 12τη2L2

}
≥ ρ ≥ 0, (98)

and

λ2 ≤ max{f(ρ) + h(ρ), g(ρ) + Cτ}. (99)

Under the learning rate condition (79) we can show

g(ρ) + Cτ − (f(ρ) + h(ρ))

=
ρ2

1− ρ
· η2 · 4L2 + Cτ − ρ−

ρ2

1− ρ
· η2 · 4L2 − 12τη2L2

=1 +
3

2
· 1

4τ − 1
− ρ− 12τη2L2 ≥ 0.

(100)

Therefore,
λ2 − Cτ ≤ g(ρ).
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Substituting the bounds into (96) gives

1

N

K∑
k=1

‖Xr,τ−1
k,⊥ ‖2

≤ 1

12η2L2τ(1− ρ)

τ−2∑
`=0

(
Cτλ

`
1

(
12τη2L2bτ−2−`

1 − (λ2 − Cτ )bτ−2−`
2

))
+

1

12η2L2τ(1− ρ)

τ−2∑
`=0

(
(λ2 − Cτ )λ`2

(
12τη2L2bτ−2−`

1 + Cτ b
τ−2−`
2

))
≤ 1

12η2L2τ(1− ρ)

τ−2∑
`=0

(
Cτf(ρ)`

(
12τη2L2bτ−2−`

1

))
+

1

12η2L2τ(1− ρ)

τ−2∑
`=0

(
g(ρ)λ`2

(
12τη2L2bτ−2−`

1 + Cτ b
τ−2−`
2

))
≤ 1

1− ρ
Cτ

(
τ−2∑
`=0

b`1

)
+

1

1− ρ
g(ρ)λτ2

(
τ−2∑
`=0

b`1

)

+
Cτ

12η2L2τ(1− ρ)
g(ρ)λτ2

(
τ−2∑
`=0

b`2

)

≤Dτ,ρCτ

(
τ−2∑
`=0

b`1

)
+ 12D2

τ,ρη
2L2ρ2

(
τ−2∑
`=0

b`1

)
+
Cτ
τ
ρ2D2

τ,ρ

(
τ−2∑
`=0

b`2

)
.

(101)

where we have used the bound λ1 ≤ f(ρ) < 1, λ2 > 1 and λτ2 < 3.

Plug in the expression of b1 and b2 and using the fact that Cτ < 2, ρL = ρ2Dτ,ρ gives

1

N

K∑
k=1

‖Xr,τ−1
k,⊥ ‖2

≤
(
2Dτ,ρ + 12D2

τ,ρη
2L2ρ2

)
ρ2

τ−2∑
s=0

(
4η2Dτ,ρ(α

2‖∇f(x̄r,s)‖2 + ε2g) + 4η2Dτ,ρε̄
2
L + η2σ2

)
+
D2
τ,ρCτ

τ
ρ2

τ−2∑
s=0

(12τη2(α2‖∇f(x̄r,s)‖2 + ε2g) + η2σ
2

n
)

≤
(
2Dτ,ρ +

D2
τ,ρ

τ2
ρ2
) τ−2∑
s=0

ρ2
(
4η2Dτ,ρ(α

2‖∇f(x̄r,s)‖2 + ε2g) + 4η2Dτ,ρε̄
2
L + η2σ2

)
+ 2

D2
τ,ρ

τ
ρ2

τ−2∑
s=0

(12τη2(α2‖∇f(x̄r,s)‖2 + ε2g) + η2 1

n
σ2)

≤3Dτ,ρρ
2
τ−2∑
s=0

(
4η2Dτ,ρ(α

2‖∇f(x̄r,s)‖2 + ε2g) + 4η2Dτ,ρε̄
2
L + η2σ2

)
+ 2D2

τ,ρρ
2τ−1

τ−2∑
s=0

(12τη2(α2‖∇f(x̄r,s)‖2 + ε2g) + η2 1

n
σ2).

(102)
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Tidy up the expression gives

1

N

K∑
k=1

‖Xr,τ−1
k,⊥ ‖2 ≤

τ−2∑
s=0

3Dτ,ρρ
2
(
4η2Dτ,ρ(α

2‖∇f(x̄r,s)‖2 + ε2g) + 4η2Dτ,ρε̄
2
L + η2σ2

)
+

τ−2∑
s=0

2D2
τ,ρρ

2τ−1(12τη2(α2‖∇f(x̄r,s)‖2 + ε2g) + η2 1

n
σ2)

≤ C2

τ−2∑
s=0

(
D2
τ,ρρ

2
)
η2(α2‖∇f(x̄r,s)‖2 + ε2g)

+ C2(Dτ,ρ)
2τρ2η2ε̄2L + C2τDτ,ρρ

2η2σ2 + C2(Dτ,ρ)
2ρ2η2 1

n
σ2

≤ 2C2

τ−2∑
s=0

D2
τ,ρρ

2η2(α2‖∇f(x̄r,s)‖2 + ε2g) + C2(Dτ,ρ)
2τρ2η2ε̄2L

+ C2

(
1

n

Dτ,ρ

τ
+ 1

)
ρ2τDτ,ρη

2σ2

(103)

for some C2 > 0.

C.3 PROOF OF PROPOSITION 4

We prove (47) by splitting the terms A2,1 follows:

A2,1
(a)
=E

∥∥∥∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Srk)
( ∑
j∈Vk

(Wk)i,j(x
r,τ−1
j − η∇fj(xr,τ−1

j )− x̄r,τ−1
k

)∥∥∥∥∥∥
2

≤2E

∥∥∥∥∥ 1

Np

K∑
k=1

p · nη∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+ 2E
∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Srk)rik

∥∥∥2

,

(104)

where

rik ,
∑
j∈Vk

(Wk)i,j(x
r,τ−1
j − x̄r,τ−1

k − η(∇fj(xr,τ−1
j )−∇f̄k(x̄r,τ−1

k )). (105)

Equality (a) holds since
K∑
k=1

∑
i∈Srk

∑
j∈Vk

(Wk)i,j x̄
r,τ−1
k =

K∑
k=1

∑
i∈Srk

x̄r,τ−1
k =

K∑
k=1

m · x̄r,τ−1
k

=

K∑
k=1

p
∑
i∈Vk

xr,τ−1
i = Npx̄r,τ−1,

(106)

and similarly, ∑
i∈Srk

∑
j∈Vk

(Wk)i,j∇f̄k(x̄r,τ−1
k ) = np∇f̄k(x̄r,τ−1

k ). (107)

Since samples are taken according to the rule specified by Assumption 6, the following probabilities
hold:

P
(
i ∈ Srk | i ∈ Vk

)
= p, P(i, j ∈ Srk |, i, j ∈ Vk) = p · np− 1

n− 1
, (108)

P(i ∈ Srk, j ∈ Sr` | i ∈ Vk, j ∈ V`, k 6= `) = p2. (109)

Consequently, we can evaluate the second term in (104) and obtain

A2,1 =2E

∥∥∥∥∥ 1

K

K∑
k=1

η∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2
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+
2

(Np)2
E

p K∑
k=1

∑
i∈Vk

‖rik‖2 + p · np− 1

n− 1

K∑
k=1

∑
i,j∈Vk

r>ikrjk


+

2

(Np)2
· p2

∑
k 6=`

∑
i∈Vk

∑
j∈V`

E(r>ikrj`)

=2E

∥∥∥∥∥ 1

K

K∑
k=1

η∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
2

(Np)2
E

(
p · np− 1

n− 1

∥∥∥ K∑
k=1

∑
i∈Vk

rik

∥∥∥2

+
p(1− p)n
n− 1

K∑
k=1

∑
i∈Vk

‖rik‖2
)

+
2

(Np)2

p(1− p)
n− 1

E

∑
k 6=`

∑
i∈Vk

∑
j∈V`

r>ikrj`


≤2E

∥∥∥∥∥ 1

K

K∑
k=1

η∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
2

(Np)2
E

(
p · np− 1

n− 1

∥∥∥ K∑
k=1

∑
i∈Vk

rik

∥∥∥2

+
p(1− p)n
n− 1

K∑
k=1

∑
i∈Vk

‖rik‖2
)

+
2

(Np)2

p(1− p)
n− 1

E

∑
k 6=`

∑
i∈Vk

∑
j∈V`

1

2
‖rik‖2 +

1

2
‖rj`‖2


≤2E

∥∥∥∥∥ 1

K

K∑
k=1

η∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
2

(Np)2
E

(
p · np− 1

n− 1

∥∥∥ K∑
k=1

∑
i∈Vk

rik

∥∥∥2

+
p(1− p)n
n− 1

K∑
k=1

∑
i∈Vk

‖rik‖2
)

+
2

(Np)2

p(1− p)
n− 1

(K − 1)n

K∑
k=1

∑
i∈Vk

E‖rik‖2. (110)

By substituting the expression of rik we can bound terms ‖
∑K
k=1

∑
i∈Vk rik‖

2 and∑K
k=1

∑
i∈Vk ‖rik‖

2 as∥∥∥ K∑
k=1

∑
i∈Vk

rik

∥∥∥2

=
∥∥∥ K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j(x
r,τ−1
j − x̄r,τ−1

k − η(∇fj(xr,τ−1
j )−∇f̄k(x̄r,τ−1

k ))
∥∥∥2

= η2

∥∥∥∥∥∥
K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j(∇fj(xr,τ−1
j )−∇f̄k(x̄r,τ−1

k ))

∥∥∥∥∥∥
2

= η2

∥∥∥∥∥∥
K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j(∇fj(xr,τ−1
j )−∇fj(x̄r,τ−1

k ))

∥∥∥∥∥∥
2

≤ η2N

K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,jL
2‖xr,τ−1

j − x̄r,τ−1
k ‖2

≤ η2N

K∑
k=1

∑
i∈Vk

L2‖xr,τ−1
i − x̄r,τ−1

k ‖2 = η2 ·NL2
K∑
k=1

‖Xr,τ−1
k,⊥ ‖2

(111)
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and

K∑
k=1

∑
i∈Vk

‖rik‖2

=

K∑
k=1

∑
i∈Vk

∥∥∥∥∥∥
∑
j∈Vk

(Wk)i,j(x
r,τ−1
j − x̄r,τ−1

k − η(∇fj(xr,τ−1
j )−∇f̄k(x̄r,τ−1

k ))

∥∥∥∥∥∥
2

≤
K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j

∥∥∥xr,τ−1
j − x̄r,τ−1

k − η(∇fj(xr,τ−1
j )−∇fj(x̄r,τ−1

k ))
∥∥∥2

≤
K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,j

(
2
∥∥∥xr,τ−1

j − x̄r,τ−1
k

∥∥∥2

+ 2η2
∥∥∥∇fj(xr,τ−1

j )−∇fj(x̄r,τ−1
k )

∥∥∥2
)

≤
K∑
k=1

∑
i∈Vk

2
∥∥∥xr,τ−1

i − x̄r,τ−1
k

∥∥∥2

+ 2η2L2
K∑
k=1

∑
i∈Vk

‖xr,τ−1
i − x̄r,τ−1

k ‖2

=

K∑
k=1

2(1 + η2L2)‖Xr,τ−1
k,⊥ ‖2. (112)

Tidy up the expression leads to the following bound of A2,1:

A2,1 ≤2E

∥∥∥∥∥ 1

K

K∑
k=1

η∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
2

(Np)2

(
p · np− 1

n− 1
E
∥∥∥ K∑
k=1

∑
i∈Vk

rik

∥∥∥2
)

+
2

(Np)2
p(1− p) N

n− 1

K∑
k=1

∑
i∈Vk

E‖rik‖2

≤2E

∥∥∥∥∥ 1

K

K∑
k=1

η∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
2

(Np)2

(
p · np− 1

n− 1
η2 ·NL2

K∑
k=1

E‖Xr,τ−1
k,⊥ ‖2

)

+
2

(Np)2
p(1− p) N

n− 1

(
K∑
k=1

2(1 + η2L2)E‖Xr,τ−1
k,⊥ ‖2

)

≤2η2E

∥∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
2

N
η2L2

K∑
k=1

E‖Xr,τ−1
k,⊥ ‖2

+
4

N

1− p
p(n− 1)

(
K∑
k=1

(1 + η2L2)E‖Xr,τ−1
k,⊥ ‖2

)

≤2η2E

∥∥∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,τ−1
k )

∥∥∥∥∥
2

+
8

N

(
1− p

p(n− 1)
+

1

τ2

)( K∑
k=1

E‖Xr,τ−1
k,⊥ ‖2

)
, (113)

where the last inequality holds under the learning rate condition

η2 ≤ 1

24τ(4τ − 1)L2
. (114)

This completes the proof of (47).
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C.4 PROOF OF PROPOSITION 5

We bound A2,2 in following the same rationale as Proposition 4.

A2,2 =E
∥∥∥ 1

Np

K∑
k=1

∑
i∈Vk

I(i ∈ Srk)
( ∑
j∈Vk

(Wk)i,j(∇fj(xr,sj )− gr,sj )
)

︸ ︷︷ ︸
eik

∥∥∥2

=
1

(Np)2

(
p · np− 1

n− 1
E
∥∥∥ K∑
k=1

∑
i∈Vk

eik

∥∥∥2

+ p(1− p) n

n− 1

K∑
k=1

∑
i∈Vk

E‖eik‖2
)

+
2

(Np)2

p(1− p)
n− 1

E

∑
k 6=`

∑
i∈Vk

∑
j∈V`

e>ikej`


=

1

(Np)2

(
p · np− 1

n− 1
E
∥∥∥ K∑
k=1

∑
i∈Vk

eik

∥∥∥2

+ p(1− p) n

n− 1

K∑
k=1

∑
i∈Vk

E‖eik‖2
)
,

(115)

where the last equality is due to fact that the inter-cluster stochastic noise is zero mean and indepen-
dent.

Recall the definition ξr,si , gr,si −∇fi(x
r,s
i ). Using again the independence of the ξi’s we get

E
∥∥∥ K∑
k=1

∑
i∈Vk

eik

∥∥∥2

= E
∥∥∥ K∑
k=1

∑
i∈Vk

∑
j∈Vk

(Wk)i,jξ
r,s
j

∥∥∥2

= E
∥∥∥ N∑
i=1

ξr,si

∥∥∥2

= Nσ2, (116)

and

K∑
k=1

∑
i∈Vk

E‖eik‖2 =

K∑
k=1

∑
i∈Vk

E
∥∥∥ ∑
j∈Vk

(Wk)i,jξ
r,s
j

∥∥∥2

=

K∑
k=1

‖Wk‖2σ2

=

K∑
k=1

σ2
n∑
j=1

d2
j

≤
K∑
k=1

σ2
(

1 +
(
n− 1

)
ρ2
k

)
≤ Kσ2 + (n− 1)Kρ2

maxσ
2

=
(
1 + (n− 1) ρ2

max

)
Kσ2.

(117)

where d1 ≤ d2 ≤ · · · ≤ dn = 1 are the singular values of Wk. Therefore,

A2,2 ≤
1

(Np)2

(
p · np− 1

n− 1
·Nσ2 + p(1− p) n

n− 1

(
1 + (n− 1) ρ2

max

)
Kσ2

)
=

1

Np

(
np− 1

n− 1
σ2

)
+

1

Np

(
1− p
n− 1

(
1 + (n− 1) ρ2

max

)
σ2

)
≤ σ2

N
+
σ2

N

p−1 − 1

n− 1

(
1 + (n− 1) ρ2

max

)
≤ σ2

N

(
2 + p−1ρ2

max

)
.

(118)

The last inequality is due to p ≥ 1/n.
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C.5 PROOF OF PROPOSITION 6

Invoking the descent inequality Lemma 1 and the error bound for T1-T5 given by Corollary 2,
Proposition 3 and Eq. (41):

Ef(xr+1)

≤Ef(xr)− η

4

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 − η

4

τ−1∑
s=0

E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

− η

4

τ−1∑
s=0

E
∥∥∥ 1

K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

+ C1L
2η3τ

(
τ + ρ2

maxDτ,ρ

) τ−1∑
s=0

(α2‖∇f(x̄r,s)‖2 + ε2g) + C1L
2η3τ2ρ2

maxDτ,ρε̄
2
L

+ C1τ
2L2η3ρ2

maxσ
2 + C1L

2(τ2 +D2
τ,ρρ

2
max)η3σ

2

n

+
η2L

2

τ−1∑
s=0

E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )

∥∥∥∥∥
2

+
η2L

2
τ
σ2

N

≤Ef(xr)− η

4

τ−1∑
s=0

E‖∇f(x̄r,s)‖2

+ C1L
2η3τ

(
τ + ρ2

maxDτ,ρ

) τ−1∑
s=0

(α2E‖∇f(x̄r,s)‖2 + ε2g) + C1L
2η3τ2ρ2

maxDτ,ρε̄
2
L

+ C1τ
2L2η3ρ2

maxσ
2 + C1L

2(τ2 +D2
τ,ρρ

2
max)η3σ

2

n
+ η2Lτ

σ2

N
.

(119)

The last inequality holds under the condition that

η ≤ 1

2L
. (120)

If we further enforce

C1L
2η3τ

(
τ + ρ2

maxDτ,ρ

)
α2 ≤ η

8
⇔ η2 ≤ 1

8C1L2τ (τ + ρ2
maxDτ,ρ)α2

, (121)

then
Ef(xr+1)

≤Ef(xr)− η

8

τ−1∑
s=0

E‖∇f(x̄r,s)‖2

+ C1L
2η3τ2

(
τ + ρ2

maxDτ,ρ

)
ε2g + C1L

2η3τ2ρ2
maxDτ,ρε̄

2
L

+ C1τ
2L2η3ρ2

maxσ
2 + C1L

2(τ2 +D2
τ,ρρ

2
max)η3σ

2

n
+ η2Lτ

σ2

N

=Ef(xr)− η

8

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 + C1L
2η3τ2

(
τ + ρ2

maxDτ,ρ

)
ε2g

+ C1L
2η3

(
τ2ρ2

max(Dτ,ρε̄
2
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τ,ρρ
2
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σ2

n

)
+ η2Lτ

σ2

N

≤Ef(xr)− η

8
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E‖∇f(x̄r,s)‖2 + η2Lτ
σ2

N

+ C1L
2η3τ2

(
τ + ρ2

maxDτ,ρ

)
ε2g + 2C1L

2η3

(
τ2ρ2

maxDτ,ρε̄
2
L + τ2σ2

(
1

n
+ ρ2

max

))
,

(122)

the last inequality is due to Dτ,ρ ≤ τ and ρmax ≤ 1.

31



Published as a conference paper at ICLR 2022

C.6 PROOF OF PROPOSITION 7

Invoking the descent inequality Lemma 1 and the error bound for T1-T5 given by Corollary 2,
Proposition 3, and 4:

Ef(xr+1)

≤ Ef(xr)− η

4

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 − η

4

τ−1∑
s=0

E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2

− η

4
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E
∥∥∥ 1

K
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+
η

4

τ−1∑
s=0

E
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E
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K
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E
(
L

2
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)
+ E

(
L

2
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)

≤Ef(xr)− η
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K
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2η3τ2ρ2
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L
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2L2η3ρ2
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2
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∥∥∥∥∥ 1

K
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L
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8
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η2σ

2
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2 +
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m
ρ2
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)
. (123)

Denote for short

G′p , Gp +
1

τ2
. (124)

Further applying the bounds on the consensus error derived in Proposition 2:

Ef(xr+1)

≤Ef(xr)− η

4

τ−1∑
s=0

E‖∇f(x̄r,s)‖2 − η

4

τ−1∑
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E
∥∥∥ 1

N
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∇fi(xr,si )
∥∥∥2

− η
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E
∥∥∥ 1

K
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∇f̄k(x̄r,sk )
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+ C1L
2η3τ

(
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L
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+ C1τ
2L2η3ρ2

maxσ
2 + C1L

2(τ2 +D2
τ,ρρ

2
max)η3σ
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+
L

2
η2
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∥∥∥∥∥ 1

N

N∑
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∇fi(xr,si )

∥∥∥∥∥
2

+
L

2
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N
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K
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D2
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)

+ 4LG′p

(
C2D
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1
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τ
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η2σ

2
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n
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(125)

Rearranging terms and tidy up the expression we have

Ef(xr+1)

≤Ef(xr)− η

4

τ−1∑
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E‖∇f(x̄r,s)‖2 − η

4
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E
∥∥∥ 1

N

N∑
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∇fi(xr,si )
∥∥∥2

− η

4
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E
∥∥∥ 1

K

K∑
k=1
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+
L
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s=0

E

∥∥∥∥∥ 1

N
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∇fi(xr,si )
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2

+ Lη2E

∥∥∥∥∥ 1

K
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2
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maxDτ,ρ
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+ 8C2G
′
pLD

2
τ,ρρ

2
maxη

2

(
τ−2∑
s=0

(α2‖∇f(x̄r,s)‖2 + ε2g)

)

+ C1L
2η3

(
τ2Dτ,ρρ

2
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+
L
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2

N
+
L

2
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n

m
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)
η2σ

2

N

+ 4C2LG
′
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2
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τ,ρτρ

2
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2
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(
1

n

Dτ,ρ

τ
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)
ρ2

maxτDτ,ρσ
2

)
.

Notice that if the following conditions on the learning rate are satisfied

η

4
≥ η2L,

η

8
≥ C1L

2η3τ
(
τ + ρ2

maxDτ,ρ

)
α2 + 8C2G

′
pLD

2
τ,ρρ

2
maxη

2α2,
(127)
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then the terms associated to the gradients will be negative and

Ef(xr+1)

≤Ef(xr)− η

8

τ−1∑
s=0

E‖∇f(x̄r,s)‖2

+ C1L
2η3τ2
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τ + ρ2

maxDτ,ρ

)
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1

n
+ ρ2
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))
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2

N
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2
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1

n
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τ
+ 1

)
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maxτDτ,ρσ
2

)
+
L

2

( n
m
ρ2
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)
η2σ

2

N
.

In the last step we clean the condition on the learning rate η. Collecting all the conditions on η:

η2 ≤ 1

24L2τ(4τ − 1)
, (128)

η

4
≥ η2L, (129)

η

8
≥ C1L

2η3τ
(
τ + ρ2

maxDτ,ρ

)
α2 + 8C2G

′
pLD

2
τ,ρρ

2
maxη

2α2. (130)

Clearly, (128) implies (129). To ensure (130) it suffices to require

η

16
≥ C1L

2η3τ
(
τ + ρ2

maxDτ,ρ

)
α2

η

16
≥ 8C2G

′
pLD

2
τ,ρρ

2
maxη

2α2.
(131)

Recall the definition of G′p:

G′p = Gp +
1

τ2
, and Gp =

n−m
m(n− 1)

. (132)

It can be verified that if

η ≤ 1

C ′3α
2τL

. (133)

for some C ′3 > 0 large enough, then

η

16
≥ C1L

2η3τ
(
τ + ρ2

maxDτ,ρ

)
α2

η

32
≥ 8C2

(
1

τ2

)
LD2

τ,ρρ
2
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It remains to guarantee

η
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≥ 8C2GpLD

2
τ,ρρ

2
maxη

2α2. (134)

Rearranging terms gives the condition

η ≤ 1

256C2GpD2
τ,ρ ρ

2
maxα

2L
. (135)

Combining with (133) and using the fact that Dτ,ρρmax ≤ τ provides the final condition on η as

η ≤ 1

C3ατL
·min

{
1,

1

αGpDτ,ρ ρmax
.

}
(136)
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D SUPPORTING LEMMAS

D.1 PROOF OF LEMMA 1

Since the global average of the local copies follows the update [cf. (19)]:

x̄r,s+1 = x̄r,s − η 1

N

N∑
i=1

gr,si , ∀s = 0, . . . , τ − 1. (137)

Under Assumption 1, we can apply the descent lemma at points x̄r,s+1 and x̄r,s for s = 0, . . . , τ−2,
conditioned on Fr,s−1:

Er,s−1f(x̄r,s+1) ≤ f(x̄r,s) +∇f(x̄r,s)>Er,s−1
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L
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N
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∇fi(xr,si )
)
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( 1

N

N∑
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N
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K
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L

2
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)

− η

2

(
1

2
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1

2
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K

K∑
k=1

∇f̄k(x̄r,sk )
∥∥∥2

− 1

2
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K
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∥∥∥2
)

+
η

2
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N

N∑
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K

K∑
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∇f̄k(x̄r,sk )
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(
L

2
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L

2
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)
,

where (a) is due to Assumption 2, (b) is due to 2ab = ‖a‖2 + ‖b‖2 − ‖a − b‖2 and ab ≤ ‖a‖‖b‖,
and (c) is due to ‖a‖‖b‖ ≤ 1

2‖a‖
2 + 1

2‖b‖
2. Notation a ± b stands for adding and subtracting, i.e.,

a± b = a+ b− b.
For the pair (x̄r,τ−1, xr+1) we have according to (19) and (22):

Er,τ−2x
r+1 = Er,τ−2(x̄r,τ ) = Er,τ−2

(
x̄r,τ−1 − η 1

N

N∑
i=1

gr,τ−1
i

)
.

Applying the descent lemma in the same way as before yields

Er,τ−2f(xr+1)

≤f(x̄r,τ−1) +∇f(x̄r,τ−1)>Er,τ−2(xr+1 − x̄r,τ−1) +
L

2
Er,τ−2‖xr+1 − x̄r,τ−1‖2
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≤f(x̄r,τ−1)− η

4
‖∇f(x̄r,τ−1)‖2 − η

4
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N
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− η
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∥∥∥ 1

K

K∑
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η

4
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N
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i )
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η

4
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K

K∑
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∥∥∥2

+
η

4

∥∥∥ 1

N

N∑
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i )− 1

K
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(
L

2
‖xr+1 − x̄r,τ−1‖2

)
.

Taking expectation, summing over the iterations in round r over s = 0, . . . , τ − 1 and using the fact
that xr = x̄r,0 completes the proof.

D.2 PROOF OF LEMMA 2

Recall the average update of the k-th cluster and that of the global average given by (15) and (19),
respectively, for s = 0, . . . , τ − 1:

x̄r,s+1
k = x̄r,sk − η · ḡ

r,s
k (138)

x̄r,s+1 = x̄r,s − η · 1

N

N∑
i=1

gr,si . (139)

Taking the difference gives

E‖x̄r,s+1 − x̄r,s+1
k ‖2

=E

∥∥∥∥∥(x̄r,s − x̄r,sk )− η

(
1

n

∑
i∈Vk

∇fi(xr,si )− 1

N

N∑
i=1

∇fi(xr,si )

)∥∥∥∥∥
2

+ η2E

∥∥∥∥∥ 1

n

∑
i∈Vk

ξr,si −
1

N

N∑
i=1

ξr,si

∥∥∥∥∥
2

≤(1 + ε)E‖x̄r,s − x̄r,sk ‖
2 + (1 + ε−1)η2E

∥∥∥∥∥ 1

n

∑
i∈Vk

∇fi(xr,si )− 1

N

N∑
i=1

∇fi(xr,si )

∥∥∥∥∥
2

+ η2E

∥∥∥∥∥ 1

n

∑
i∈Vk

ξr,si −
1

N

N∑
i=1

ξr,si

∥∥∥∥∥
2

,

(140)

where ε > 0 is some constant to be chosen.

Averaging over k = 1, . . . ,K:

1

K

K∑
k=1

E‖x̄r,s+1 − x̄r,s+1
k ‖2

≤(1 + ε)
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + (1 + ε−1)η2 1

K

K∑
k=1

E

∥∥∥∥∥ 1

n

∑
i∈Vk

∇fi(xr,si )− 1

N

N∑
i=1

∇fi(xr,si )

∥∥∥∥∥
2

+ η2 1

K

K∑
k=1

E

∥∥∥∥∥ 1

n

∑
i∈Vk

ξr,si −
1

N

N∑
i=1

ξr,si

∥∥∥∥∥
2

(a)
= (1 + ε)

1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2

+ (1 + ε−1)η2

(
1

K

K∑
k=1

E
∥∥∥ 1

n

∑
i∈Vk

∇fi(xr,si )
∥∥∥2

− E
∥∥∥ 1

N

N∑
i=1

∇fi(xr,si )
∥∥∥2
)
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+ η2

(
1

K

K∑
k=1

E
∥∥∥ 1

n

∑
i∈Vk

ξr,si

∥∥∥2

− E
∥∥∥ 1

N

N∑
i=1

ξr,si

∥∥∥2
)

≤(1 + ε)
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + (1 + ε−1)η2

(
1

K

K∑
k=1

E
∥∥∥ 1

n

∑
i∈Vk

∇fi(xr,si )
∥∥∥2
)

+ η2K − 1

N
σ2

=(1 + ε)
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2

+ (1 + ε−1)η2

(
1

K

K∑
k=1

E
∥∥∥ 1

n

∑
i∈Vk

(
∇fi(xr,si )±∇f̄k(x̄r,sk )±∇f̄k(x̄r,s)

)∥∥∥2
)

+ η2K − 1

N
σ2

≤(1 + ε)
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + (1 + ε−1)η2

(
3

K

K∑
k=1

E
∥∥∥ 1

n

∑
i∈Vk

(
∇fi(xr,si )−∇f̄k(x̄r,sk )

)∥∥∥2
)

+ (1 + ε−1)η2 3

K

K∑
k=1

E
∥∥∥∇f̄k(x̄r,sk )−∇f̄k(x̄r,s)

∥∥∥2

+ (1 + ε−1)η2 3

K

K∑
k=1

E‖∇f̄k(x̄r,s)‖2

+ η2K − 1

N
σ2

(b)

≤(1 + ε)
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + (1 + ε−1)η2

(
3

N

K∑
k=1

L2E
∥∥∥Xr,s

k,⊥

∥∥∥2
)

+ (1 + ε−1)η2 3

K

K∑
k=1

L2E
∥∥∥x̄r,sk − x̄r,s∥∥∥2

+ (1 + ε−1)η2 3

K

K∑
k=1

E
∥∥∥∇f̄k(x̄r,s)

∥∥∥2

+ η2K − 1

N
σ2

=
(
1 + ε+ 3L2η2(1 + ε−1)

) 1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + (1 + ε−1)η2

(
3

N

K∑
k=1

L2E
∥∥∥Xr,s

k,⊥

∥∥∥2
)

+ (1 + ε−1)η2 3

K

K∑
k=1

E
∥∥∥∇f̄k(x̄r,s)

∥∥∥2

+ η2K − 1

N
σ2. (141)

In (a) we used the fact that

1

K

K∑
k=1

1

n

∑
i∈Vk

∇fi(xr,si ) =
1

N

N∑
i=1

∇fi(xr,si ),
1

K

K∑
k=1

1

n

∑
i∈Vk

ξr,si =
1

N

N∑
i=1

ξr,si . (142)

and
K∑
i=1

‖xi − x̄‖2 =

K∑
i=1

‖xi‖2 −K‖x̄‖2 with x̄ =
1

K

K∑
k=1

xi. (143)

In (b) we applied the L-smoothness of fi and f̄k.

Choosing ε = 1
4τ−1 and using the condition that

η2 ≤ 1

24τ(4τ − 1)L2

we have

1

K

K∑
k=1

E‖x̄r,s+1 − x̄r,s+1
k ‖2

≤
(

1 +
1

4τ − 1
+

1

2(4τ − 1)

)
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + 12τη2L2

(
1

N

K∑
k=1

E
∥∥∥Xr,s

k,⊥

∥∥∥2
)
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+ 12τη2 1

K

K∑
k=1

E
∥∥∥∇f̄k(x̄r,s)

∥∥∥2

+ η2K − 1

N
σ2

≤Cτ
1

K

K∑
k=1

E‖x̄r,s − x̄r,sk ‖
2 + 12τη2L2

(
1

N

K∑
k=1

E
∥∥∥Xr,s

k,⊥

∥∥∥2
)

+ 12τη2
(
α2E‖∇f(x̄r,s)‖2 + ε2g

)
+ η2K − 1

N
σ2.

In the last inequality we applied Assumption 5 on the inter-cluster heterogeneity.

D.3 PROOF OF LEMMA 3

We follow the perturbed average consensus analysis. Recall the update equation of the consensus
error given in (17):

Xr,s+1
k,⊥ = (Wk − J)(Xr,s

k,⊥ − ηG
r,s
k ). (144)

Squaring both sides and conditioning:

E‖Xr,s+1
k,⊥ ‖

2 = E
(
E
(
‖(Wk − J)(Xr,s

k,⊥ ± η∇Fk(Xr,s
k )− ηGr,sk )‖2|Fr,s−1

))
≤ E‖(Wk − J)(Xr,s

k,⊥ − η∇Fk(Xr,s
k ))‖2 + η2ρ2

knσ
2

≤ ρ2
k(1 + ζ−1

k ) · E‖Xr,s
k,⊥‖

2 + ρ2
k(1 + ζk)η2E‖∇Fk(Xr,s

k )‖2 + η2ρ2
knσ

2,

where ζk > 0 is some free parameter to be properly chosen. Next, we bound the norm of the
pseudo-gradient ∇Fk(Xr,s

k ).

‖∇Fk(Xr,s
k )‖2 =

∑
i∈Vk

‖∇fi(xr,si )‖2

=
∑
i∈Vk

‖∇fi(xr,si )±∇fi(x̄r,sk )±∇f̄k(x̄r,sk )±∇f̄k(x̄r,s)‖2

≤
∑
i∈Vk

(4‖∇fi(xr,si )−∇fi(x̄r,sk )‖2 + 4‖∇fi(x̄r,sk )−∇f̄k(x̄r,sk )‖2 + 4‖∇f̄k(x̄r,sk )−∇f̄k(x̄r,s)‖2)

+
∑
i∈Vk

4‖∇f̄k(x̄r,s)‖2 (145)

≤
∑
i∈Vk

(
4‖∇fi(x̄r,sk )−∇f̄k(x̄r,sk )‖2 + 4L2‖xr,si − x̄

r,s
k ‖

2 + 4L2‖x̄r,sk − x̄
r,s‖2 + 4‖∇f̄k(x̄r,s)‖2

)
≤ 4L2‖Xr,s

k,⊥‖
2 + 4L2n‖x̄r,sk − x̄

r,s‖2 + 4n‖∇f̄k(x̄r,s)‖2 + 4nε2k.

The last inequality is due to Assumption 4 on the intra-cluster heterogeneity.

Averaging over k = 1, . . . ,K clusters:

1

N

K∑
k=1

E‖Xr,s+1
k,⊥ ‖

2

≤ 1

N

K∑
k=1

ρ2
k(1 + ζ−1
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1

N
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k=1

ρ2
k(1 + ζk)η2E‖∇Fk(Xr,s
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(
1

K

K∑
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ρ2
k

)
σ2

≤ 1

N
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N
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K
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K

K∑
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K
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k(1 + ζk)4ε2k + η2ρ2

maxσ
2 (146)
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≤
(

max
k∈[K]

ρ2
k(1 + ζ−1

k ) + η2 · 4L2 max
k∈[K]

{
ρ2
k(1 + ζk)

}
︸ ︷︷ ︸

ρL

) 1

N
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{
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k(1 + ζk)
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· 4L2 1

K
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k=1

E‖x̄r,sk − x̄
r,s‖2
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k∈[K]

{
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k(1 + ζk)

}
· 4(α2E‖∇f(x̄r,s)‖2 + ε2g) + η2 1

K
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ρ2
k(1 + ζk)4ε2k + η2ρ2

maxσ
2.

D.4 PROOF OF LEMMA 4

To simplify the notation we omit the superscript in Br,s−` in this section.

Let Λ = diag(λ1, λ2) and the eigendecomposition of G = TΛT−1, we can obtain the closed form
expression of T as

T =

(
λ1 − Cτ λ2 − Cτ
12τη2L2 12τη2L2

)
and

T−1 =
1

det(T )

(
12τη2L2 −λ2 + Cτ
−12τη2L2 λ1 − Cτ

)
,

where

det(T ) = 12τη2L2(λ1 − λ2). (147)

Consequently

det(T ) ·G`B = det(T ) · TΛ`T−1B

=

(
λ1 − Cτ λ2 − Cτ
12τη2L2 12τη2L2

)(
λ`1 0
0 λ`2

)(
12τη2L2 −λ2 + Cτ
−12τη2L2 λ1 − Cτ

)(
b1
b2

)
=

(
λ1 − Cτ λ2 − Cτ
12τη2L2 12τη2L2

)(
λ`1 0
0 λ`2

)(
12τη2L2b1 + (−λ2 + Cτ )b2
−12τη2L2b1 + (λ1 − Cτ )b2

)
=

(
λ1 − Cτ λ2 − Cτ
12τη2L2 12τη2L2

)(
λ`112τη2L2b1 + λ`1(−λ2 + Cτ )b2
−λ`212τη2L2b1 + λ`2(λ1 − Cτ )b2

)
=

(
t1
t2

)
(148)

with
t1 = (λ1 − Cτ )

(
λ`112τη2L2b1 + λ`1(−λ2 + Cτ )b2

)
+ (λ2 − Cτ )

(
−λ`212τη2L2b1 + λ`2(λ1 − Cτ )b2

)
,

(149)

t2 = 12τη2L2
(
λ`112τη2L2b1 + λ`1(−λ2 + Cτ )b2

)
+ 12τη2L2

(
−λ`212τη2L2b1 + λ`2(λ1 − Cτ )b2

)
.

(150)

Therefore
det(T )(1, 1)TΛ`T−1B = t1 + t2

= (λ1 − Cτ )
(
λ`1L

212τη2b1 + λ`1(−λ2 + Cτ )b2
)

+ (λ2 − Cτ )
(
−λ`2L212τη2b1 + λ`2(λ1 − Cτ )b2

)
+ L212τη2

(
λ`1L

212τη2b1 + λ`1(−λ2 + Cτ )b2
)

+ L212τη2
(
−λ`2L212τη2b1 + λ`2(λ1 − Cτ )b2

)
.

(151)

Substituting the expression of det(T ) and dividing both sides of the equality by 12τη2(λ1−λ2) we
have

L2(1, 1)TΛ`T−1B
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=
1

12τη2(λ1 − λ2)
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where in the last inequality we used the fact that λ1 ≤ Cτ ≤ λ2.

Note that

(λ2 − Cτ )(Cτ − λ1)

=− C2
τ − λ1λ2 + (λ1 + λ2)Cτ

=− C2
τ − det(G) + Tr(G)Cτ

=− C2
τ −

(
Cτ ( max

k∈[K]
ρ2
k(1 + ζ−1

k ) + η2ρL · 4L2)− 48ρLτη
4L4
)

+ Cτ ( max
k∈[K]

ρ2
k(1 + ζ−1

k ) + η2ρL · 4L2 + Cτ )

= 48ρLτη
4L4.

(153)

Therefore, we further obtain

L2(1, 1)TΛ`T−1B

≤λ`2L2(b1 + b2) +
λ`2 − λ`1
λ2 − λ1

η2 ·
(
12τL4b1 + 4ρLL

4b2
) (154)

Dividing both sides by L2 completes the proof.

E NETWORK CONNECTIVITY CONDITIONS IN THEOREMS AND COROLLARY

Both Theorem 2 and Corollary 1 impose some sufficient conditions on the network connectivity
ρmax for convergence. This can be satisfied in practice as follows. For Theorem 2, as long as
ρmax < 1, we can choose τ large enough so that (7) is fulfilled. Corollary 1 strengthens the result of
Theorem 2 by requiring no loss in the order of convergence rate compared to full device participa-
tion. This naturally leads to a more stringent condition on ρmax given by (11). For any given D2D
network topology, this can be satisfied by running multiple D2D gossip averaging steps per SGD
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update in Algorithm 1. Since the right hand side of (11) depends only on the algorithmic parame-
ters, we can choose the suitable gossip averaging steps to fulfill this condition before launching the
algorithm.

F MORE EXPERIMENTAL DETAILS

In this section, we provide additional experimental results on CIFAR-10 dataset. We follow the
same CNN model and non-iid data partition strategy as before and run each experiments for 3 times
with different random seeds to report the mean values of best test accuracy. Instead of using a
constant learning rate, we decay the local learning rate η by half after finishing 50% and 75% of the
communication rounds and tune the initial learning rate from {0.01, 0.02, 0.05, 0.08, 0.1} for each
algorithm.

(a) (b)

Figure 4: Convergence rate and runtime comparisons of HL-SGD and local SGD on CIFAR-10 under ER
random D2D network topology. The device sampling ratio p = 1/8 and local iteration period τ = 50.

(a) (b)

Figure 5: Convergence rate and runtime comparisons of HL-SGD and local SGD on CIFAR-10 under ring
topology and multiple SGD updates before gossip averaging. The device sampling ratio p = 1, and the local
iteration period τ = 50.

First, we evaluate the convergence processes of HL-SGD and local SGD under varying D2D network
topologies in Figure 4. We generate random network topologies by Erdős-Rényi model with edge
probability from {0.2, 0, 5, 0.8, 1} and use Metropolis-Hastings weights to setWk, corresponding to
spectral norm ρmax = {0.9394, 0.844, 0.5357, 0}. As observed in Figure 4a, a more connected D2D
network topology (i.e., a smaller value of ρmax) generally accelerates the convergence and leads to
a higher model accuracy achieved over 100 communication rounds in HL-SGD. However, in terms
of runtime, a more connected D2D network topology corresponds to a larger D2D communication
delay cd2d per round, and hence the total runtime is larger as well, which can be clearly observed
in Figure 4b. Therefore, to achieve a target level of model accuracy within the shortest time in HL-
SGD, a sparse D2D network topology could work better than the fully connected one in practice.
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Second, we consider an extension of HL-SGD by allowing each device to perform multiple SGD
updates before the gossip averaging step in Algorithm 1 and empirically evaluate its performance.
Specifically, each device performs l = {1, 5, 10} steps of SGD update before aggregating models
with their neighbors in the same cluster. Note that l = 1 corresponds to the original version of HL-
SGD in Algorithm 1. As observed in Figure 5a, when communicating and aggregating models with
neighbors more frequently, HL-SGD with l = 1 has the best convergence speed and will converge
to the highest level of test accuracy. In terms of runtime, choosing a value of l > 1 might be
favorable in some cases due to the reduced D2D communication delay per round. For instance, to
achieve a target level of 60% test accuracy, HL-SGD with l = 5 needs 5.22% less amount of time
than l = 1. It is an interesting direction to rigorously analyze the convergence properties of HL-
SGD with arbitrary l and find the best hyperparameter tuning method for minimizing the runtime to
achieve a target level of model accuracy in the future.

G RELATIONSHIP BETWEEN SPECTRAL GAP AND NETWORK TOPOLOGY

ring/path 2D-grid 2-D torus Erdős-Rényi exponential
1− ρ O(1/n2) O(1/(n log n)) O(1/n) O(1) O(1/ log(n))

Table 2: Spectral gap of some commonly used graphs, where n denotes the number of nodes. Results are taken
from (Nedić et al. (2018); Ying et al. (2021)).
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