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Abstract

We study the embedding dimension of distance comparison data in two settings:
contrastive learning and k-nearest neighbors (k-NN). Our goal is to find the small-
est dimension d of an ℓp-space in which a given dataset can be represented. We
show that the arboricity of the associated graphs plays a key role in designing
embeddings. For the most popular ℓ2-space, we get tight bounds in both settings.
In contrastive learning, we are given m labeled samples (xi, y

+
i , z

−
i ) representing

the fact that the positive example yi is closer to the anchor xi than the negative
example zi (we also give results for t negatives). For representing such dataset in:

• ℓ2: d = Θ(
√
m) is necessary and sufficient, consistent with our experiments.

• ℓp for p ≥ 1: d = O(m) is sufficient and d = Ω̃(
√
m) is necessary.

• ℓ∞: d = O(m2/3) is sufficient and d = Ω̃(
√
m) is necessary.

In k-NN, for each of the n data points we are given an ordered set of the closest k
points. We show that for preserving the ordering of the k-NN for every point in:

• ℓ2: d = Θ(k) is necessary and sufficient.
• ℓp for p ≥ 1: d = Õ(k2) is sufficient and d = Ω̃(k) is necessary.
• ℓ∞ : d = Ω̃(k) is necessary.

Furthermore, if the goal is to not just preserve the ordering of the k-NN but also
keep them as the nearest neighbors, then d = Õ(poly(k)) suffices in ℓp for p ≥ 1.

1 Introduction

Embedding vectors play an important role in machine learning, with the embedding dimension being
a key parameter of interest when choosing a deep learning architecture. In this paper, we ask the
following question: given a dataset labeled with distance relationships between its points, what is
the smallest embedding dimension required to represent it? We answer this question for two types
of distance comparison data: contrastive labels and k-NN.

Contrastive Learning Contrastive learning [GH10] has recently become a popular technique
for learning representations, see e.g. [SE05, MCCD13, DSRB14, SKP15a, WG15, WXYL18,
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LL18, HFL+19, HFW+20, TKI20, CKNH20, CH21, GYC21, CLL21]. Recent interest in the-
oretical foundations of contrastive learning has resulted in extensive research focusing on gen-
eralization [AAE+24], design of specific loss functions [HWGM21], transfer learning [SPA+19,
CRL+20], multi-view redundancy [TKH21], inductive biases [SAG+22, HM23], the role of neg-
ative samples [AGKM22, ADK22], mutual information [vdOLV18, HFL+19, BHB19, TDR+20],
and other topics [WI20, TWSM21, ZSS+21, vKSG+21, MMW+21, WL21].

In on of the most common forms of contrastive learning, we are given m labeled data points
{(xi, y

+
i , z

−
i )}mi=1 (or more generally, {(xi, y

+
i , z

−
i,1, z

−
i,2, . . . , z

−
i,t)}mi=1) over a dataset of size n.

Each point represents the fact that the distance between the anchor xi and the positive example yi
is smaller than the distance between xi and the negative example zi (or, more generally, t negative
examples zi,1, . . . , zi,t). We study the problem of embedding such data into ℓp-spaces, i.e., con-
structing an embedding F : V → Rd such that ∥F (xi) − F (yi)∥p < ∥F (xi) − F (zi)∥p for all i
(more generally, ∥F (xi) − F (yi)∥p < ∥F (xi) − F (zi,j)∥p for all i, j). In particular, we focus on
the embedding dimension:

Given a collection of m triplet comparisons of the form “xi is closer to yi than to zi”, what is the
smallest dimension d of an ℓp-space in which the relative order of distances can be preserved?

k-NNs We also study a similar question for k-Nearest Neighbor (k-NN) data, which has major
applications in machine learning since the seminal work of [CH67]. In this setting, we are given a
set of n items and the information about the k-NN of each item {(xi, π1(xi), . . . , πk(xi))}ni=1 where
π1(xi), . . . , πk(xi) are the k-NN of xi ordered by their distance from xi. Since k-NN classifiers are
extremely popular in deep learning pipelines, understanding the embedding dimension required for
preserving k-NN is a question of fundamental importance. In particular:

Given n items and their k-NN, what is the smallest dimension d of an ℓp-space in which the
ordering of the k-NN can be preserved? What if the k-NN have to remain k-NN in the ℓp-space?

1.1 Our Results and Techniques

Let V be the set of n points. Our goal is to construct an embedding F : V → Rd. For an integer
n, we let [n] = {1, 2, . . . , n}. For a vector v ∈ Rd, let v[i] be the ith coordinate of v. For vectors
v1, v2, we denote their concatenation as (v1, v2). In a graph, denote by N(x) the neighbors of vertex
x. For standard definitions (e.g. metric and norm) and basic facts see Appendix B.

Contrastive Learning For a set of samples Q = {(x1, y
+
1 , z

−
1 ), . . . , (xm, y+m, z−m)}, we call an

embedding F consistent with Q if ∥F (xi)−F (yi)∥p < ∥F (xi)−F (zi)∥p for all i. W.l.o.g., we can
assume1 that m ≤ n2. We call a set of samples non-contradictory if one can’t derive a contradiction
from the inequalities between the distances. In particular, this implies the existence of a metric ρ
which is consistent with Q (Fact 25).

We prove the following theorems in Section 2, Appendix D.2, and Appendix D respectively.
Theorem 1 (Embedding in ℓ2). Let Q be a set of m non-contradictory triplet samples on a set V .
There is an embedding of V into ℓ2-space RO(m1/2) which is consistent with Q.
Theorem 2 (Embedding in ℓ∞). Let Q be a set of m non-contradictory triplet samples on a set V .
There is an embedding of V into ℓ∞-space RO(m2/3) which is consistent with Q.
Theorem 3 (Embedding in ℓp). Let Q be a set of m non-contradictory triplet samples on a set V .
For any integer p ≥ 1, there is an embedding of V into ℓp-space RO(m) which is consistent with Q.

The lower bounds are shown in Appendix E and experimental results are in Section 4. Our results for
the more general version of the problem with t negatives and the lower bounds are given in Table 1.

In Appendix F we give additional results, including an extension to t-negatives, NP-hardness of
fining an embeddding in the minimum dimension needed to satisfy a set of contrastive constraints,
and results for an approximate setting in which we only need to satisfy a fraction of the constraints.

1This is since n2 triplet samples are enough to describe all comparisons – for each anchor, it suffices to
know the order of other points w.r.t. their distance to the anchor. Hence, for any embeddable set of samples Q,
there exists a set of at most n2 samples which is also embeddable and at least as restrictive as Q.
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Table 1: Our results for contrastive learning
Setting Upper bound Lower bound
ℓ2 O(

√
m), Theorem 1 Ω(

√
m), Theorem 43

ℓ2 with t negatives O(
√
mt), Theorem 44 Ω(

√
m), Theorem 43

ℓ2 with t-ordering O(
√
mt), Theorem 44 Ω(

√
mt), Theorem 43

ℓ∞ O(m2/3), Theorem 2 Ω̃(
√
m) Theorem 43

ℓp, integer p ≥ 1 O(m), Theorem 3 Even p: Ω(
√
m), odd p: Ω̃(

√
m), Theorem 43

Table 2: Our results for k-NN
Setting Upper bound Lower bound

ℓp (k-NN and ordering) Õ(k10), Theorem 5
even p: Ω(k), odd p: Ω̃(k), Theorem 43

ℓp (ordering of k-NN) Õ(k2), Theorem 10
ℓ2 (ordering of k-NN) O(k) Theorem 6 Ω(k)[CI24]
ℓ∞ (ordering of k-NN) − Ω̃(k), Theorem 43

k-NN In the k-NN setting, we are given the following information for each data point.
Definition 4 (k-NN). For a distance function δ : V × V → R≥0, let π1(x), . . . , πn−1(x) be an
ordering of V \ {x} such that δ(x, π1(x)) < δ(x, π2(x)) < · · · < δ(x, πn−1(x)). We define
k-NNδ(x) = (π1(x), . . . , πk(x)) as the ordered set of k closest points to x.

For a function F : V → Rd, we denote by k-NNF the k-nearest neighbors in the ℓp-space corre-
sponding to the image of F . We prove the following theorem in Section 3.
Theorem 5. Let δ : V × V → R≥0 be a distance function, and let p ≥ 1 be a constant. There
exists an embedding F : V → Rd of V into an ℓp-space of dimension d = O(k10 log10 n) such that
k-NNδ(x) = k-NNF (x), i.e. the embedding F preserves the ordered set of k-nearest neighbors of
any point x ∈ V under the distance function δ.2

We note that the above result is very surprising: k-NN graph in fact corresponds to n(n− 1) triplet
constraints – for each anchor, k− 1 comparisons between its k-NN and n− k comparisons between
the k’th nearest neighbor and the rest of the points – and Theorem 1 provides only an O(n) up-
per bound on dimension for the ℓ2 case. Nevertheless, we are able to exploit the structure of the
contrastive constraints to avoid polynomial dependence on n.

The following theorem addresses the setting when only the ordering of the k-NN has to be preserved.
This, as well as other results for k-NN, are presented in Table 2.

Theorem 6. There is an embedding of V into ℓ2-space RO(k) that preserves the k-NN ordering.

Our Techniques The key tool in our results is the notion of graph arboricity [NW61, NW64] ap-
plied to the associated constraint graph. Arboricity of an undirected graph is the minimum number
of forests in which its edges can be partitioned. More intuitively, arboricity measures the “den-
sity” of the graph: sparse graphs have low arboricity, while graphs with dense subgraphs – such as
cliques – have high arboricity.
Fact 7 (Folklore; see e.g. [BE13, DHS91] and Appendix B.2). The arboricity r of a graph G with
m edges is at most ⌈

√
m/2⌉. Moreover, if graph G has arboricity r, then the following hold.

(a) There is an ordering x1, . . . , xn of V such that |N−(xi)| ≤ 2r − 1 for each 1 ≤ i ≤ n, where
N−(xi) = {xj ∈ N(xi) | j < i} is the set of neighbors of xi in G preceding xi in the ordering.

(b) G is 2r-vertex colorable.
Definition 8 (Constraint graph). In contrastive learning, for a set Q of samples on V , we define
the constraint graph G = (V,E) as follows: for each sample (xi, y

+
i , z

−
i ) ∈ Q, we add two edges

{xi, yj} and {xi, zi} to E, unless they already exist. In the k-NN setting, for each x and its nearest
neighbors π1(x), . . . , πk(x), we add edges {x, πi(x)} for 1 ≤ i ≤ k.

2In subsequent versions of our paper, we have improved the analysis to show a dimension bound of Õ(k3).
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Note that by Fact 7 the arboricity of the constraint graph resulting from m samples is at most
√
m.

The arboricity of the k-NN constraint graph is at most k + 1 (See Lemma 27). We show bounds on
the embedding dimension in terms of arboricity, e.g. for ℓ2 we prove the following in Section 2.

Theorem 9. Given a set of non-contradictory inequalities among pairwise distances in V whose
constraint graph has arboricity r, there exists an embedding of V into ℓ2-space R4r which satisfies
all these inequalities.

Theorem 1 follows from Theorem 9 by using r ≤ ⌈
√
m/2⌉ (Fact 7). Moreover, since the arboricity

of the constraint graph for k-NN at most k + 1 (Lemma 27), Theorem 9 shows that preserving the
ordering of the k-NN in ℓ2 requires O(k) dimension. Furthermore, the following theorem, proven
in Section 3.1, implies that Õ(k2) dimension suffices to preserve orderings of the k-NNs in ℓp.

Theorem 10. Given a set of non-contradictory inequalities among pairwise distances in V whose
constraint graph has arboricity r, for any real p ≥ 1, there exists an embedding of V into ℓp-space
RO(r2 log3 n) which satisfies all these inequalities.

While the above constructions suffice for the contrastive learning case and for preserving the order-
ing of the k-NN, the set of the nearest neighbors can change under the embeddings above. Hence, in
order to preserve the k-NN, we increase the dimension to separate neighbors from non-neighbors.
In particular, we construct the extended part of the embedding randomly, using a sampling scheme
which is guaranteed to embed neighbors much closer than non-neighbors. See Section 3.2 for more
details and a proof of Theorem 5.

For ℓ∞, instead of arboricity, we use a related fact: by removing a set Vhigh of O(m2/3) high-degree
vertices, we reduce the maximum degree of the remaining graph (i.e. Vlow = V \ Vhigh) to at most
O(m1/3). We handle each set differently (points in Vlow using graph colorings, and points in Vhigh

using a Frechét-like embedding). See Appendix D.2 for the details and the proof of Theorem 2.

1.2 Previous Work

Understanding the underlying geometry of a given set of n points based only on comparisons be-
tween pairs of distances is a basic question studied in the literature of non-metric embeddings
(also known as ordinal embeddings or monotone maps). In a wide range of applications such
as ranking, crowdsourcing, nearest-neighbor search, ad placement, recommendation systems, etc.,
the exact distances are not as important as their relative order. In fact, some of the early results
in the field were motivated by applications in mathematical psychology [Tor52, She62, She74,
CS74, Kru64a, Kru64b], and since then ordinal information and embeddings have been used in
ranking [OG08, Ail12, WJJ13], metric learning [CHX+19], clustering [VD16, GPvL19, KVH16],
crowdsourcing [TLB+11, JN11a, JN11b] and modeling human perception [ML09]. Note that the
goal in ordinal embeddings is quite different from the vast literature on metric embeddings (e.g.,
see [Mat13, IMS17]) where the goal is to approximately preserve the numerical values of distances.

We study the question of finding the smallest dimension d required to represent a given set of n
points such that a given set of m distance comparisons are preserved. Related questions have been
studied under statistical assumptions and it is known [KL14, TL14, GCY19] that for the large n
regime, upon knowledge of the ordinal relationships, the set of points can be approximately recov-
ered (up to certain transformations). This serves as further motivation for studying ordinal informa-
tion as it highlights its power in recovering the underlying geometry of the data points.

However, determining the exact relationships between the dimension d, the number of points
n and the number of given constraints m has been elusive. Most papers assume that all
Θ(n4) distance comparisons δ(xi, xj) ≶ δ(xk, xl) among the pairwise distances are known.
In [BL05, ABD+08, BDH+08], for example, lower bounds are given for the dimension needed
to preserve these comparisons. However, having access to such a large number of comparisons is
prohibitive in practice. We only assume access to a set of m distance comparisons and hence these
lower bounds do not apply.

Contrastive learning has been studied for d = 1 (embedding on the line) by [FIM+20] for dense in-
stances, i.e. m = Θ(n3). For higher dimensions, [CI24] gives an Ω (n) lower bound on the smallest
dimension (only for ℓ2) that preserves all Θ(n3) triplet comparisons. Our Theorem 1 improves this
bound for the general case when m triplet samples are given, without density assumptions. Then,
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x̂ x̊

x̂ sets inner products according to edge ranks x̊ makes norms of all vectors equal

Figure 1: x̂ is chosen so that if w(x, y) > w(x′, y′), then ⟨x̂, ŷ⟩ < ⟨x̂′, ŷ′⟩. x̊ ensures that all vectors
have the same norm, i.e. ∥x̊∥22 = W for all x ∈ V .

x1 x2 x3 x4 x5 x6

⟨x̂1, x̂4⟩ = w(x̂1, x̂4)
⟨x̂2, x̂4⟩ = w(x̂2, x̂4)
⟨x̂3, x̂4⟩ = w(x̂3, x̂4)

Figure 2: Example construction of x̂. The embedding x̂4 is computed based on the embeddings of
its already processed neighbors x̂1, x̂2, x̂3. We find the solution x̂4 to the linear system so that, for
each edge to a preceding neighbor, the inner product equals the rank of the edge.

our Theorems 2 and 3 go beyond ℓ2 other ℓp-norms. Our results can also be seen as the reverse
direction of the recent work by [AAE+24]. In [AAE+24], the central question is quantifying the
amount of data required for generalization in contrastive learning, assuming that the data can be em-
bedded into an ℓp-space of fixed dimension. Here we assume that the data is fixed instead and study
the embedding dimension. Combined with [AAE+24], this completes the picture of the relationship
between the size of data, its embedding dimension and generalization.

Our second setting (k-NNs) was also studied in [CI24] who showed a lower bound of d = Ω(k) for
preserving the ordering of the neighbors (again in ℓ2). To the best of our knowledge, prior to our
work, there was no known upper bound for the smallest dimension and here we provide a matching
upper bound. Furthermore, we provide new results for k-NNs embeddings (both upper and lower
bounds) under various ℓp metrics and results for the stronger setting when not just the ordering of
the neighbors but also their status as k-NN has to be preserved.

2 Contrastive Learning in ℓ2 Norm

In this section, we prove Theorem 9 – that contrastive queries with the constraint graph G = (V,E)
(Definition 8) of arboricity r are preserved when the points are embedded into ℓ2 space of dimension
4r – from which Theorem 1 and Theorem 6 follow. Fix a distance function δ : V × V → R≥0 that
satisfies the given set of inequalities (such a function exists by Fact 25). We order all pairs of
neighboring vertices by the distance function δ in descending order, and let w(x, y) = i if {x, y} is
the i-th pair in the ranking. Recall that ∥F (x)− F (y)∥2 = ∥F (x)∥2 + ∥F (y)∥2 − 2 ⟨F (x), F (y)⟩ .
In our construction, all embeddings have the same norm, and hence the distances depend only on
the inner products between the embeddings.

We split the embedding F : V → R4r into two parts, i.e. for a point x let F (x) = (x̂, x̊), where
x̂ ∈ R2r and x̊ ∈ R2r. For neighboring points x and y, our choices of x̂ and ŷ ensure that ⟨x̂, ŷ⟩ ≈
w(x, y). We embed the points one by one into Rh in the arboricity ordering x1, . . . , xn, which by
Fact 7 ensures that for every vertex, the number of neighbors with smaller indices is at most h. When
embedding xi, we make sure that for any neighbor xj ∈ N−(xi) (i.e. a neighbor xj of xi such that
j < i) it holds that ⟨x̂i, x̂j⟩ ≈ w(xi, xj). This requires solving a linear system over x̂i with at most
h equations, and hence with h variables, with slight perturbations, the solution always exists.

The choices of x̊i ensure that all vectors have the same norm while preserving the inner products.
This is done by coloring the vertices of the constraint graph in h colors using Fact 7 and assigning
each color to a unique basis vector, which is scaled to equalize the norms. Since these basis vectors
are orthogonal, the inner product between any two neighboring points xi and xj is ⟨x̂i, x̂j⟩.
Construction of x̂i Assume x̂1, . . . , x̂i−1 have already been chosen. Let N−(xi) = {xj ∈ N(xi) |
j < i} be the set of preceding neighbors of xi in G. For each xj ∈ N−(xi), let a linear equation
P (i, j) be ⟨x̂i, x̂j⟩ = w(xi, xj), where we consider the coordinates of x̂i as variables (recall that x̂j

is already set for all xj ∈ N−(xi)). In Appendix C we show the following.
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Lemma 11. The set of vectors {x̂j | xj ∈ N−(xi)} is linearly independent.

By Lemma 11, the system of linear equations Pi = {P (i, j) | xj ∈ N−(xi)} has a solution
v ∈ R2r. Let B(v) be a ball centered at v with sufficiently small radius such that for any v′ ∈ B(v)
it holds that | ⟨v′, x̂j⟩ − w(xi, xj)| < 1/3 for all xj ∈ N−(xi). Choose a point v′ uniformly at
random from B(v), and set x̂i = v′: this random perturbation guarantees that, with probability 1,
Lemma 11 holds in future iterations. By construction, the following property holds.
Proposition 12. For any x and any y ∈ N−(x), we have | ⟨x̂, ŷ⟩ − w(x, y)| < 1/3.

Construction of x̊i Let W = 2maxx∈V ∥x̂∥22. By Fact 7, there exists vertex coloring C : V → [h]
of G, such that C(x) ̸= C(y) for any pair {x, y} ∈ E. Set x̊ = αxeC(x), where eC(x) is the standard
basis vector in the C(x)-th coordinate, and αx is chosen so that ∥F (x)∥22 = ∥x̂∥22 + ∥x̊∥22 = W
(note that αx exists because ∥x̂∥22 ≤ W ). By construction, the following property holds.
Proposition 13. For any edge {x, y} ∈ E, we have ⟨̊x, ẙ⟩ = 0.

Proof of Theorem 9 (sufficient dimension for ℓ2 embeddings). For any edge {u, v} ∈ E it holds that

∥F (u)− F (v)∥22 = ∥F (u)∥22 + ∥F (v)∥22 − 2 ⟨û, v̂⟩ − 2 ⟨̊u, v̊⟩ .
By the choice of ů and v̊, we have ∥F (u)∥22 = ∥F (v)∥22 = W . By Proposition 13, ⟨̊u, v̊⟩ = 0, and
hence the distance depends only on ⟨û, v̂⟩. For any (x, y+, z−) ∈ Q, we have ∥F (x) − F (y)∥22 <
∥F (x) − F (z)∥22 iff ⟨x̂, ŷ⟩ > ⟨x̂, ẑ⟩. By Proposition 12, for any edge {x, y} in G it holds that
| ⟨x̂, ŷ⟩ − w(x, y)| < 1/3. Since the function w assigns only integer values, it holds that ⟨x̂, ŷ⟩ >
⟨x̂, ẑ⟩ if and only if w(x, y) < w(x, z), hence preserving the ranking of the edges.

3 Preserving k Nearest Neighbors

In this section, we focus on k nearest neighbors, and namely we prove Theorems 5 and 10. Let
G = (V,E) be the constraint graph (Definition 8) for given k-NN input. In Section 3.1, we show
how to preserve the order between the neighbors in this graph, and in Section 3.2 we show how to
separate neighbors from non-neighbors. Combined, these results fully preserve the k-NNs.

To simplify the presentation, we focus on the case p = 1 – the construction for other p is identical,
with the change being that each embedding coordinate value c should be replaced with c1/p. In
this section, let δ(u, v) = δℓ1(u, v). For a non-contradictory set of samples Q, by Fact 25 there
exists a metric δ′ consistent with Q. We order all pairs of neighboring vertices by the value of δ′ in
descending order, and let w(x, y) = t if (x, y) is the t-th pair in the ranking. Given an embedding
F , let αF be a re-scaling of the embedding by a factor of α, i.e. multiplying each coordinate by α.

3.1 Preserving the Ordering of the k-NN

In this section, we show Theorem 10. This embedding is also used as a part of Theorem 5, shown
in Section 3.2. Our embedding uses a new coloring scheme we call Neighbor-Collection Coloring.
Let x1, . . . , xn be the arboricity ordering (Fact 7) and N−(xi) = {xj | {xi, xj} ∈ E, j < i} be the
set of neighbors of xi preceding xi in the ordering.
Definition 14 (NCC Scheme). A neighbor-collection coloring scheme is a set of K = Θ(r log n)

vertex colorings C(1), . . . , C(K), where C
(j)
x ∈ [r] for any x ∈ V and j ∈ [K], such that for any

x ∈ V the following holds:

• (Collection) for any y ∈ N−(x), there exists a coloring j ∈ [K] such that C(j)
x = C

(j)
y , and

C
(j)
z ̸= C

(j)
x for any z ∈ N−(x) \ {y}.

• (Load) for any j ∈ [K], the number of prior neighbors with j-th color being the same as Cj)
x is

small: |{y ∈ N−(x) | C(j)
x = C

(j)
y }| = O(log n).

Intuitively, each coloring corresponds to a part of the embedding. When the colors C
(j)
x , C

(j)
y are

different, the j’th part of the embedding always contributes 2 to the distance between x and y.
Otherwise, we can select the j’th part so that it contributes either 2 or 0, and the collection property
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guarantees that for any y ∈ N−(x) such a part exists. The load property guarantees that for each
part we always have enough choices to get distance 2. Finally, we represent w(x, y) in binary format
for all x, y, and, using an NCC scheme, we recover w(x, y) bit-by-bit.

Lemma 15. There exists an NCC scheme for the constraint graph G.

Proof. For each x ∈ V and j ∈ [K], we choose C(j)
x i.i.d. uniformly at random from [r]. First, note

that the load property holds: for any j ∈ [K] and y ∈ N−(x), we have P
[
C

(j)
x = C

(j)
y

]
= 1/r.

By Fact 7, we have |N−(x)| ≤ 2r, and by the Chernoff bound, color C(j)
x occurs no more than

O(log n) times in N−(x) w.h.p. By the union bound, the load property holds w.h.p. for all j.

Next, for any fixed x ∈ V , y ∈ N−(x), and j ∈ [K], let A(j)(x, y) be the event that y is the only
point in N−(x) such that C(j)

x = C
(j)
y . Since the colorings are selected uniformly at random, we

have P
[
A(j)(x, y)

]
= Ω(1/r). Since K = O(r log n), by Chernoff, w.h.p. there exists j ∈ [K]

such that A(j)(x, y) occurs. By the union bound, the collection property holds w.h.p.

Definition 16 (NCC-Embedding). Given a graph G and an NCC scheme, an NCC-embedding is
an embedding of dimension O(r2 log2 n) of the following form. Associate each color i ∈ [r] with
M = O(log n) unique basis vectors B(i) = {e(i−1)M+1, e(i−1)M+2, . . . , eiM}. The embedding of

point x is comprised of K parts x̊(1), . . . , x̊(K), where each part is a basis vector x̊(j) ∈ B(C(j)
x ),

i.e. x̊(j) is one of the basis vectors associated with color C(j)
x .

Lemma 17. Let D : E → {0, 1} be a mapping of each edge, with 1 meaning “close” and 0 meaning
“far”. For each x ∈ V there exists embedding x̊ into O(r2 log2 n) dimensions such that for any
{x, y} ∈ E, it holds that δ(̊x, ẙ) = K −D(x, y).

Proof. Let (C(1), . . . , C(K)) be an NCC scheme of G. We embed the points one by one according to
the arboricity ordering x1, . . . , xn as in Fact 7. We assume by induction that all nodes x1, . . . , xi−1

are embedded using an NCC-embedding. For each y ∈ N−(x), fix one index j(y) such that under
C(j(y)) the points x, y have the same color, which is different from colors of other points from
N−(x) (such j(y) exists by the collection property). Let J = {j(y) | y ∈ N−(x)}, and, since for
any two points in N−(x) the chosen index is distinct, |J | = |N−(x)|.

For each part j ∈ [K]\[J ], we choose x(j) to be a basis vector from B(C(j)
x ) that is different from all

basis vectors {ẙ(j) | y ∈ N−(x)}. This can be done, since, on the one hand, for each C
(j)
x ̸= C

(j)
y ,

all basis vectors of B(C(j)
x ) are different from ẙ(j), and, on the other hand, by the load property

there are less than O(log n) points y ∈ N−(x) such that C(j)
x = C

(j)
y . Therefore, we can choose a

basis vector that is different from any taken by these O(log n) points.

For each part j(y) ∈ [J ], we select the basis vector based on D. If D(x, y) = 1, then we take
x̊(j(y)) = ẙ(j(y)). Otherwise, we pick a basis vector x̊(j(y)) ∈ B(C(j(y))

x ) such that x̊(j(y)) ̸= ẙ(j(y)).

We now show that distance between embeddings is 2(K − 1) if the points are close, and is 2K
otherwise. The result follows by scaling the embedding. Let {x, y} ∈ E such that y ∈ N−(x).
Let I(j)(x, y) = 1 if x̊(j) ̸= ẙ(j), and I(j)(x, y) = 0 otherwise. Since each part is a basis vector,
δ(̊x, ẙ) = 2

∑
j∈[K] I

(j)(x, y). By construction, for any j ∈ [J ]\{j(y)} it holds that I(j)(x, y) = 1.
For j(y) we have I(j(y))(x, y) = 1 − D(x, y), i.e. δ(̊x, ẙ) = 2(K − D(x, y)). Rescaling the
embedding vectors by a factor of 1/2 completes the proof.

Corollary 18. Let a′ be a power of 2 such that for all {x, y} ∈ E we have ax,y ∈ {0, . . . , a′}. Then
there exists an embedding F of V into O(r2 log2 n log a′) dimensions such that for any {x, y} ∈ E,
we have δ(F (x), F (y)) = K(a′ − 1)− ax,y .

Proof. Let Bin(i)(x, y) be the i’th bit of the binary encoding of ax,y using a string of size log2 a
′

bits. Let F1, . . . , Flog2 a′ be embeddings as in Lemma 17, where for each Fi we choose Di =
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Bin(i)(x, y). For embedding F (x) = (F1(x), 2F2(x), . . . , 2
iFi(x), . . . , (a

′/2)Flog2 a′(x)) we have

δ(F (x), F (y)) =

log2 a′∑
i=1

(
K − Bin(i)(x, y)

)
· 2i−1

= K

log2 a′∑
i=1

2i−1 −
log2 a′∑
i=1

Bin(i)(x, y) · 2i−1 = K(a′ − 1)− ax,y.

Theorem 10 follows immediately from Corollary 18 by taking ax,y = w(x, y) and a′ ≥ m′.

3.2 Fully Preserving k-NN

In this section, we prove Theorem 5, which states the existence of an embedding with dimension
d = O(k10 log10 n) that preserves the k-NN. Our approach can be summarized as follows: for each
x ∈ V , the final embedding is F (x) = (2mx̂, x̊) (Figure 3). The goal of x̂ is to have all non-
neighbors {x′, y′} /∈ E be at a larger distance than any neighbors {x, y} ∈ E, i.e. for some large
W it holds that δ(x̂, ŷ)+W < δ(x̂′, ŷ′). The goal of x̊ is to order the distances of neighboring pairs
{x, y} ∈ E according to their rank, while still keeping non-neighbors further away than neighbors.

We choose x̂(j) via a random process, so that for any two neighbors {x, y} ∈ E we have x̂(j) = ŷ(j)

with some probability p1 (and otherwise they have substantial distance), while for non-neighbors
{x, y} /∈ E, we have x̂(j) = ŷ(j) with much smaller probability p2 ≪ p1. Repeating this process,
we get a separation in distances between neighbors and non-neighbors.

x̂ x̊

x̂ guarantees that non-neighbors in G are far x̊ preserves the order between the edges

Figure 3: Structure of embedding for fully preserving k-NN. x̂ guarantees that non-edges have very
large distance, i.e. if {x, y} ∈ E and {x′, y′} /∈ E, then δ(x̂, ŷ) ≪ δ(x̂′, ŷ′). x̊ orders the edges.

Choosing x̂: The embedding x̂ is comprised of L = Θ(r4 log4 n) parts, i.e. x̂ = (x̂(1), . . . , x̂(L)).
We take each part x̂(j) to be a vector from a design [DKS12] – a large family of vectors which are
approximately equidistant.
Definition 19 ((α,R)-design). For integer R and value 0 < α < 1, an (α,R)-design is a family of
sets T , such that (a) for each Si ∈ T , Si ⊆ [R2], (b) for each Si ∈ T , |Si| = R, and (c) for each
two distinct sets Si, Sj ∈ T , |Si ∩ Sj | ≤ αR.
Lemma 20 (Lemma 1, [DKS12]). For any sufficiently large integer R and any value 0 < α < 1,
there exists an (α,R)-design T of size at least 2αR log2 R.

Let T be a (α,R)-design for R = Θ(r3 log3 n) and α = Θ(log n/R), where r is arboricity of
the constraint graph (constants specified below). We associate S ∈ T with a binary vector I(S) ∈
{0, 1}R2

as an indicator vector of the set S, i.e. for i ∈ [R2] we have I(S)[i] = 1 iff i ∈ S. For each
x ∈ V , we choose unique sets Sx, S

′
x ∈ T and denote Ix = I(Sx), I

′
x = I(S′

x). By Lemma 20, the
number of sets is 2αR log2 R = 2Ω(logn), exceeding 2n for appropriate choices of constants.

We choose each part x̂(j) independently of the rest as follows. For p = O(1/(r log n)), with
probability 1 − p, we choose x̂(j) = Ix, and otherwise choose a uniformly random i ∈ [2r]. If
i ≤ |N−(x)|, set x̂(j) = Iy , where y ∈ N−(x) is the i’th point in N−(x) according to some
ordering, and set x̂(j) = I ′x otherwise. Let γ = (1−p)p

2r be the probability that x and y choose Iy .

Importantly, in this construction, neighbors are significantly more likely to sample the same vector
compared with non-neighbors. Moreover, sampling the same vector contributes 0 to the distance be-
tween embedding, while sampling different vectors contributes at least (2−α)R to the distance. For
K is defined as in Definition 14, let c = max( r logn

100K , 1
100 ) be a constant, and set α ≤ cγ

8r log2 n and
R = ⌈log2 n/α⌉. In Appendix C.1 we justify these choices of parameters and show the following.
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Lemma 21. With high probability, the following bounds hold.

• If {x, y} /∈ E, then |δ(x̂, ŷ)− 2RL| ≤ c
r log2 nγRL

• If {x, y} ∈ E, then |δ(x̂, ŷ)− 2(1− γ)RL| ≤ c
r log2 nγRL.

That is, according to the embedding, the gap between neighbors’ distances and non-neighbor’ dis-
tances is larger than the maximum difference between neighbors’ distances.

The final dimension is O(r10 log10 n): L = Θ(r4 log4 n) parts of dimension R2 = Θ(r6 log6 n).
Since r = O(k) (Lemma 27), it follows that the dimension is bounded by O(k10 log10 n).

Final Embedding Let x̊1, . . . , x̊n be the embeddings from Corollary 18 with a′ being the
closest power of two from above of the expression 5mcγ

r lognRL. These embeddings have di-
mension at most O(r2 log2 n log a′) = O(r2 log3 n). For {x, y} ∈ E, let ∆(x, y) =⌈
2m
(
δ(x̂, ŷ)− 2

(
1− γ − γ

100

)
RL
)⌉

. Set ax,y = ∆(x, y)+w(x, y), where w(x, y) is the ranking
of edge {x, y} if the edges are sorted by the decreasing order of distances. By Lemma 21, we have
0 ≤ ∆(x, y) ≤ 4mcγ

r lognRL w.h.p., and hence ax,y ≤ 4mcγ
r lognRL+m ≤ a′. Finally, F (x) = (2mx̂, x̊).

Proof of Theorem 5. For each x ∈ V , let F (x) = (2mx̂, x̊). It suffices to show the following.

(a) For any {x, y} ∈ E and {x′, y′} ∈ E, it holds that w(x, y) < w(x′, y′) if and only if
δ(F (x), F (y)) > δ(F (x′), F (y′)).

(b) For any {x, y} ∈ E and {x′, y′} /∈ E, it holds that δ(F (x), F (y)) < δ(F (x′), F (y′)).

By Corollary 18, for any {x, y} ∈ E:

δ(F (x), F (y)) = K(a′ − 1)−
⌈
2m
(
δ(x̂, ŷ)− 2

(
1− γ − γ

100

)
RL
)⌉

− w(x, y) + 2mδ(x̂, ŷ)

= K(a′ − 1) + 4m
(
1− γ − γ

100

)
RL− w(x, y)− εx,y, (1)

where εx,y ∈ [0, 1) is the rounding error. Hence, property (a) holds: if w(x, y) < w(x′, y′) then
δ(F (x), F (y)) > δ(F (x′), F (y′)), and vice versa, since the comparison is defined by ranking. The
property (b) holds since for any {x′, y′} /∈ E and {x, y} ∈ E:

δ(F (x′), F (y′)) ≥ δ(2mx̂′, 2mŷ′) ≥ 4m
(
1− γ

100

)
RL

≥ K(a′ − 1) + 4m
(
1− γ − γ

100

)
RL > δ(F (x), F (y)),

where the second inequality follows from Lemma 21, and the third inequality follows from K(a′ −
1) ≤ 4γmRL, which holds: since a′−1 ≤ 10c

r lognγmRL, it suffices to have K ≤ 4
10cr log n, which

indeed holds for our choice of c = max( r logn
100K , 1

100 ).

4 Experiments

We perform experiments on CIFAR-10 and CIFAR-100 image datasets [KH09] (we show additional
experiments in Appendix A). We define the ground-truth distance between points as the distance
between their embedding vectors produced by a pretrained ResNet-18 neural network. Let Q be
contrastive triplets sampled uniformly at random from all possible triplets of images, labeled based
on the ground-truth distance. Then, we train a different ResNet-18 model from scratch, where we
control the embedding dimension by replacing the last fully-connected layer with a fully-connected
layer with the chosen output dimension. We train the model for 50 epochs on a single NVIDIA A100
GPU using triplet loss [SKP15b]: LF (x, y

+, z−) = ∥F (x)− F (y)∥2−∥F (x)− F (z)∥2+1. Since
our goal is to find an embedding of this set of queries, we evaluate the accuracy as the fraction of
satisfied contrastive samples.

We present our results in Figure 4. In experiments, we vary the number of samples (Figures 4a
and 4b) and the dimension (Figures 4c and 4d). Figures 4a and 4b show that, while d ≥

√
m,

9



(a) CIFAR-10: the fraction of unsatisfied samples for
various choices of the number of samples m. The
embedding dimension is d = 128.

(b) CIFAR-100: the fraction of unsatisfied samples
for various choices of the number of samples m. The
embedding dimension is d = 128.

(c) CIFAR-10: the fraction of unsatisfied samples for
various choices of the embedding dimension d. The
number of samples m = 105.

(d) CIFAR-100: the fraction of unsatisfied samples
for various choices of the embedding dimension d.
The number of samples m = 105.

Figure 4: Experiments on CIFAR-10 (left) and CIFAR-100 (right). The data points show the average
over 5 runs, and the shaded area shows the minimum and the maximum values over the runs

the resulting embedding is consistent with almost all (≥ 99%) triplets. On the other hand, for
m ∈ {105, 106}, d is substantially less than

√
m, and the number of satisfied samples sharply drops

from 99% to 93%. This is consistent with our theoretical results in Theorem 1.

Not surprisingly, Figures 4c and 4d show that, when the embedding dimension increases, so does the
accuracy, i.e. the number of satisfied triplets. But the accuracy stops increasing when the dimension
reaches approximately

√
m ≈ 316 – while there is a 2% accuracy increase when the dimension

changes from 64 to 256, there is no accuracy increase when the dimension changes from 256 to
1024. This again conforms with our result from Theorem 1.

5 Conclusion

In this paper, we provide bounds on the necessary and sufficient dimension to represent a collection
of contrastive constraints of the form “distance from x to y is smaller than distance from x to z”. This
is a fundamental question in machine learning theory, since it educates the choice of deep learning
architectures by providing guidance for the size of the embedding layer. Our experiments illustrate
the predictive power of our theoretical findings in the context of deep learning. We also believe
that it gives rise to many interesting directions for future work depending on the exact desiderata:
approximate versions, different choices of normed spaces, bi-criteria algorithms, agnostic settings.

While the considered distance comparison settings play a central role in contrastive learning and
nearest neighbor search, so far there has been no theoretical studies of their embedding dimension.
Our work is the first to present a series of such upper and lower bounds in a variety of settings via a
novel connection to the notion of arboricity from graph theory. As a follow-up, one can consider an
improved embedding construction for k-NN: in the upped bound from Section 3, the dependence on
both log n and k can likely can be improved. Another interesting direction is tighter data-dependent
bounds on dimension: while we provide fine-grained bounds in terms of arboricity – which are
potentially much stronger than bounds in terms of the number of edges – they don’t necessary
capture properties of dataset which can lead to sharper bounds.
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[Fré10] M. Fréchet. Les dimensions d’un ensemble abstrait. Mathematische Annalen, 68:145–
168, 1910.

[GCY19] Nikhil Ghosh, Yuxin Chen, and Yisong Yue. Landmark ordinal embedding. Advances
in Neural Information Processing Systems, 32, 2019.

12



[GH10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models. In Yee Whye Teh and D. Mike
Titterington, editors, Proceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy,
May 13-15, 2010, volume 9 of JMLR Proceedings, pages 297–304. JMLR.org, 2010.

[Goe06] Michel Goemans. Topics in tcs: Embeddings of finite metric spaces, lecture 1, 2006.
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A Additional experiments

m = 102 m = 103 m = 104 m = 105 m = 106 m = 107

n = 128 6, 8 32, 34 162, 169 256 256 256
n = 256 6 19, 20 135, 139 452, 464 512 512
n = 512 4, 6 12 80, 82 502, 508 1024 1024
n = 1024 4, 6 8 43, 44 363, 366 1453, 1473 2048
n = 2048 4, 6 6 24, 25 202, 204 1479, 1488 3931, 3971

Table 3: Embedding dimension based on construction from Section 2. For each pair of n and m, we
show the minimum and the maximum dimensions obtained over 10 runs (we show a single number
when the minimum and the maximum are equal).

Figure 5: CIFAR-100: the fraction of unsatisfied samples for various choices of the number of
samples m. The embedding dimension is d = 128.

In this section, we present additional experiments.

Contrastive Samples In Table 3, for various values of n and m, we show the dimensions of the
embeddings constructed according to Section 2. We sample m random triplets from the CIFAR-
100 dataset, and label the triplets based on a ground-truth embedding generated using a pretrained
ResNet18 network. Note that the embedding dimension is always at most 2n, which corresponds
to the case when the constraint graph is a clique. Moreover, in agreement with our theory, when
m < n2, increasing n decreases the required dimension: the constraint graph becomes more sparse,
which decreases the arboricity.

In Figure 5, similarly to Figure 4b, we show training accuracy on CIFAR-100 dataset for various
values of m. In this figure, we focus on the setting when m is close to d2 = 16384. While for m ≤
d2/2 the accuracy is close to perfect (99%), the accuracy decreases starting from this point. This
supports our theoretical result that d = Θ(

√
m) dimensions are required to preserve the contrastive

samples.

k-NN In Table 4, we present results for k-NN settings for d = 128 and for various choices of n and
k. We sample n points from the CIFAR-10 dataset, and generate k-NN based on a ground-truth em-
bedding generated using a pretrained ResNet18 network. For each element x, let π∗

1(x), ..., π
∗
n−1(x)

be the ordering of other elements according to the ground-truth embedding. For each and i ∈ [k] and
each j > i, we generate contrastive samples (x, π∗

i (x)
+, π∗

j (x)
−), and we train the neural network

on this set of samples similarly to Section 4.

For each n and k, we report the loss function measuring the quality of preserving the k-NNs, defined
as follows. For each vertex x and each i ∈ [k], we compute the change of rank of the i’th nearest
neighbor of x in the new embeddings. Formally, we find j such that the i’th nearest neighbor of
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k = 1 k = 2 k = 4 k = 8 k = 16 k = 32 k = 64
n = 10 0.0, 1.8 0.05, 0.8 0.15, 0.8 0.22, 0.78
n = 100 0.01, 0.07 0.21, 0.32 0.58, 0.7 1, 1.27 1.6, 1.8 2.16, 2.46 2.5, 2.9
n = 1000 0.04, 0.07 0.34, 0.4 0.81, 0.93 1.47, 1.54 2.3, 2.4 3.36, 3.44 4.7, 4.9

Table 4: Training loss for preserving k-NNs for various values of n and k. For each pair of n and
k, we show the minimum and the maximum dimensions obtained over 10 runs (we show a single
number when the minimum and the maximum are equal).

x according to the ground-truth embedding is the j’th nearest neighbor according to the trained
embedding, contributing |i− j| to the loss. Finally, we define the final loss as the average loss over
all x ∈ V and i ∈ [k].

Table 4 shows that the loss increases with both k and n. However, dependence on n is much lower
than dependence on k, supporting our theoretical result which shows polynomial dependence on k
and only polylogarithmic dependence on n.

B Preliminaries

Definition 22 (Metric, semimetric). An metric space is an ordered pair (X, δX) consisting of a set
X and a map δX : X ×X → [0,∞] such that δX satisfies:

1. δX(x, y) = 0 ⇐⇒ x = y;

2. δX(x, y) = δX(y, x), for all x, y ∈ X;

3. δX(x, y) + δX(y, z) ≤ δX(x, z), for all x, y, z ∈ X .

If δX satisfies the last two properties but only δX(x, x) = 0 for all x ∈ X instead of the first one
then it is called a semimetric.

We note that the triangle inequality doesn’t affect our results. Intuitively, our goal is to preserve
the ranking of distances, and adding a sufficiently large constant to distances preserves the ranking
while also satisfying the triangle inequality.
Definition 23 (ℓp norm, ℓpp distance function, ℓ∞ norm). Given vectors v, v′ ∈ Rd and p ≥ 1, the
distance between v and v′ under the ℓp norm is

δℓp(v, v
′) =

(
d∑

i=1

∣∣v[i]− v′[i]
∣∣p)1/p

,

where v[i] is the i’th coordinate of vector v. The distance between v and v′ under ℓpp is

δℓpp(v, v
′) =

d∑
i=1

∣∣v[i]− v′[i]
∣∣p.

The distance between v and v′ under the ℓ∞ norm is

δℓ∞(v, v′) = max
i∈[d]

∣∣v[i]− v′[i]
∣∣.

For p ≥ 1 or p = ∞, the norm of v is defined as ∥v∥p = δℓp(v, v).

Fact 24 (Chernoff bound). Let X1, . . . , Xr ∈ {0, 1} be mutually independent random variables.
Denote by µ = E [

∑r
i=1 Xi], the expectation of the sum of variables. Then for any 0 < γ < 1 it

holds that

P

[∣∣ r∑
i=1

Xi − µ
∣∣ ≥ γµ

]
≤ 2 exp

(
−γ2µ

3

)
.

Additionally, for any γ > 0 it holds that

P

[
r∑

i=1

Xi ≥ (1 + γ)µ

]
≤ exp

(
− γ2µ

2 + γ

)
.
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B.1 Ordinal Embeddings

Fact 25 ([BL05]). Given a set of non-contradictory inequalities among pairwise distances on V ,
there exists a metric δ : V × V → R≥0 which satisfies all the inequalities.

Proof. Consider a graph whose vertices are V ×V and create a directed edge between two vertices if
they participate in some inequality. Since the inequalities are non-contradictory, there are no cycles
in this graph. Consider any topological ordering of this graph and define wij to be the index of each
pair in the topological ordering. Let δ = W+wij where W = |V |2. Note that δ satisfies the triangle
inequality.

B.2 Arboricity

In this subsection, we present basic facts about arboricity, and analyze the arboricity of the constraint
graph in our various settings.

For a directed graph, we say that the out-degree of a vertex x is R, for some integer R, if x has R
incident edges oriented towards x.

Fact 26 ([AMR92], Lemma 2.2). If the edges of G can be oriented such that each vertex has in-
degree at most R for some integer R, then r ≤ R+ 1.

Lemma 27. The constraint graph in the k-NN setting has arboricity at most k + 1.

Proof. In the constraint graph of a k-NN instance, we have an edge for each pair (x, πi(x)) for
1 ≤ i ≤ k, x ∈ V , where πi is the i’th nearest neighbor of x. If for each such pair, we orient the
edge inwards to x, we obtain a directed graph with in-degree at most k. Therefore, by Fact 26, the
constraint graph G has arboricity at most k + 1.

Finally, the following fact relates the number of edges m and the arboricity of the graph.

Lemma 28 ([DHS91] Theorem 2). Any graph G with m edges has arboricity r ≤ ⌈
√
m/2⌉.

C Missing Proofs From Sections 2 and 3

Proof of Lemma 11. Since |N−(x)| ≤ h for all x, it suffices to show that with probability 1, any
subset A ⊆ {x̂1, . . . , x̂n} of size |A| ≤ h is linearly independent. We prove it by induction on |A|,
and the base case |A| = 0 trivially holds.

For the induction step, let x̂ be the last point in A. By the induction hypothesis, A \ {x̂} are linearly
independent. Let H = Span(A\{x̂}), and let B the ball where x̂ is sampled from. Since Vol(H) =
0, and Vol(B) > 0, we have P [x̂ ∈ H] = 0, meaning that A are linearly independent.

C.1 Proof of Lemma 21

In this section, δ(x, y) = ∥x − y∥1. For other ℓp for p ∈ [1,+∞), the construction is the same by
replacing each coordinate value c with c1/p.

Agreement sets Before proving Lemma 21, we define the following sets:

Agr(x, y) = {j ∈ [L] | x̂(j) = ŷ(j)},
AgrD(x, y) = {j | x̂(j) = ŷ(j) = Ix or x̂(j) = ŷ(j) = Iy},
AgrN(x, y) = {j | ∃z ∈ N−(x) ∩N−(y) such that x̂(j) = ŷ(j) = Iz}.

The idea is to measure on which indices the points agree and to differentiate sources of agreements.

• Agr(x, y) is the set of indices on which x and y agree, i.e. choose the same vector.

• AgrD(x, y) is the set of indices where x and y choose the same vector by a direct connection: x
chooses its own set Ix and y chooses x’s set Ix (or reverse).
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• AgrN(x, y) is the set of indices where x and y choose the same vector by an indirect connection:
x and y share a common neighbor z, and both choose z’s set Iz .

Note that Agr = AgrD ∪ AgrN. When x and y are neighbors and x′ and y are not, we will show
that |Agr(x, y)| ≈ |AgrD(x, y)| ≫ |Agr(x′, y′)|.

Choice of parameters We next remind the choice of parameters.
Graph arboricity r ≤ 2k

The size of the design R = Θ(r3 log3 n)
Probability that an element doesn’t choose its own design vector p = O(1/(r log n))

Probability that neighbors choose the same design vector γ = p(1−p)
2r = Θ( 1

r2 logn )

Fraction of intersecting elements between sets in the design α = Θ( 1
r3 log2 n

)

The number of blocks corresponding to designs L = Θ(r4 log4 n)

We next justify the choice of the parameters.

• In the proof of Theorem 5, to counter the K = O(r log n) term from Section 3.1, for {x, y} ∈ E

we need to bound the spread of |Agr| for neighbors as |Agr|
r logn . To achieve that, we need to bound

the spread of both |AgrN| and |AgrD|.

• First, we need to guarantee that |AgrN| = O
(

|AgrD|
r logn

)
. In Proposition 30, we require that

2r
(

p
2r

)2 ≤ cγ
4r logn . This is since 2r

(
p
2r

)2
bounds the probability that two points select the same

common neighbor (which counts towards AgrN), while γ is the probability that x will choose Iy
for y ∈ N−(x) (which counts towards AgrD). Since γ = p(1−p)

2r , this bounds p = O(1/(r log n))

and γ = O(1/(r2 log n)).

• To bound the spread of |AgrD|, note that E [|AgrD| = γL]. To bound the spread as |AgrD|
r logn , by

Chernoff we must have γL = r2 log3 n, meaning L = r4 log4 n.
• Different sets from the design (Definition 19) intersect by at most αR elements. When two points

sample different sets, the distance between their embeddings increases by the number of elements
outside of their intersection, which is at least 2R− αR. Note that the distance between neighbors
will be approximately

(2R− αR)(L− |AgrD|) ≈ 2RL(1− α

2
− γ(2− α))

Similarly to the above, we want to bound the deviation due to the α/2 term, and by the same logic
we choose α = O(γ/(r log n)) = O(1/(r3 log2 n)).

• We need to choose 2n sets from the design. Since by Lemma 20 the design has 2αR logR sets,
to guarantee that this value is at least 2n, we take α and R so that αR = Ω(log n), meaning
R = Θ(r3 log3 n).

Proofs The next statement shows concentration of AgrD for neighbors and non-neighbors.
Proposition 29. For any x, y ∈ V , if {x, y} /∈ E then |AgrD(x, y)| = 0, and if {x, y} ∈ E, then∣∣|AgrD(x, y)| − γL

∣∣ ≤ cγL
4r logn w.h.p.

Proof of Proposition 29. If {x, y} /∈ E, then x /∈ N−(y) and y /∈ N−(x), i.e. for every j ∈ [L],
we have x̂(j) ̸= Iy and ŷ(j) ̸= Ix and hence |AgrD(x, y)| = 0.

If {x, y} ∈ E, assume w.l.o.g. that y ∈ N−(x). Therefore, j ∈ AgrD(x, y) if and only if we set
ŷ(j) = Iy and x̂(j) = Iy . Recall that P

[
ŷ(j) = Iy

]
= 1− p and P

[
x̂(j) = Iy

]
= p/(2r).

Therefore,

P [j ∈ AgrD(x, y)] =
p(1− p)

2r
= γ,

i.e. E [|AgrD(x, y)|] = γL. Since γL = Ω(r2 log3 n), by Chernoff, w.h.p. we have∣∣|AgrD(x, y)| − γL
∣∣ ≤ cγL

4r log n
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We next show concentration for AgrN. Note that AgrD for neighbors is much larger than AgrN for
both neighbors and non-neighbors.

Proposition 30. For any x, y ∈ V , we have 0 ≤ |AgrN(x, y)| ≤ cγL
4r logn w.h.p.

Proof. We bound the expectation of |AgrN(x, y)|. Recall that j ∈ AgrN(x, y) if and only if there
exists a point z ∈ N−(x) ∩ N−(y) such that x̂(j) = Iz and ŷ(j) = Iz . Moreover, the events
x̂(j) = Iz and ŷ(j) = Iz are independent, each occurring with probability p/2r.

Since |N−(x) ∩N−(y)| ≤ |N−(x)| ≤ 2r, we have

E [|AgrN(x, y)|] ≤ |N−(x)| · L
( p

2r

)2
=

Lp2

2r
.

Finally, we note that Lp2

2r = Ω(log n), and by Chernoff, w.h.p.:

|AgrN(x, y)| ≤
4

3
E [|AgrN(x, y)|] =

4

3
· Lp

2

2r
≤ cγL

4r log n

Proof of Lemma 21. Recall that δ(x̂, ŷ) =
∑L

j=1 δ(x̂
(j), ŷ(j)). For each j ∈ Agr(x, y), we have

δ(x̂(j), ŷ(j)) = 0, and for j /∈ Agr(x, y), due to the property of the (α,R)-design, we have

|δ(x̂(j), ŷ(j))− 2R| ≤ 2αR.

Summing over all j /∈ Agr(x, y), we get∣∣∣δ(x̂, ŷ)− 2(L− |Agr(x, y)|)R
∣∣∣ ≤ 2αRL ≤ cγ

4r log n
RL, (2)

where we used α ≤ cγ
8r logn .

Non-neighbors If {x, y} /∈ E, then by Propositions 29 and 30 we have 0 ≤ |Agr(x, y)| ≤ cγL
4r logn .

By Equation (2) we have∣∣∣δ(x̂, ŷ)− 2

(
1− cγ

4r log n

)
RL
∣∣∣ ≤ cγ

4r log n
RL =⇒ |δ(x̂, ŷ)− 2RL| ≤ cγRL

r log n

Neighbors If {x, y} ∈ E, then by Propositions 29 and 30,

||Agr(x, y)| − γL| ≤ 2cγL

4r log n

and by Equation (2) it follows that

|δ(x̂, ŷ)− 2 (1− γ)RL| ≤ 2

(
2cγ

4r log n

)
RL ≤ cγRL

r log n
.

D Contrastive Queries in ℓp Norm

In this section, we show upper bounds for dimensions for embedding into space with ℓp-norms or
ℓ∞-norm.

D.1 Contrastive Queries for Finite p

In this section, we prove Theorem 3, which provides an upper bound of m + 1 on the embedding
dimension in ℓp for integer p ≥ 1.

We say that a set S ⊆ V × V is symmetric if (x, y) ∈ S ⇔ (y, x) ∈ S.

Due to the symmetry, with a slight abuse of notation, we define the cardinality |S| for symmetric
sets to be equal to the number of distinct unordered pairs in S.
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Definition 31 (Partial semimetric). An ordered triple (V, S, δS) consisting of a set V , a symmetric
set S ⊆ V ×V and a map δS : S → [0,∞) is a partial semimetric space if δS satisfies the following:

1. For all x ∈ V , if (x, x) ∈ S then δS(x, x) = 0.

2. δS(x, y) = δS(y, x) for all (x, y) ∈ S,

3. δS(x, y) + δS(y, z) ≤ δS(x, z) for all (x, y), (x, z), (y, z) ∈ S.
Definition 32 (Partial embedding). We say that a partial semimetric (V, S, δS) partially embeds into
a metric space (Y, δY ) if there exists a map F : V → Y such that δS(x, y) = δY (F (x), F (y)) for
all (x, y) ∈ S.

The following lemma is an extension of the standard embedding result into ℓp (see e.g. [DL97]).
Lemma 33. Let S = (V, S, δS) be a partial semimetric on V and let m = |S|. If S partially embeds
into an ℓpp-space with finite dimension, then it embeds into (ℓpp)

m+1.

Proof. Let {{xi, yi}}mi=1 be the unordered pairs of S. We assign every partial semimetric (V, S, δ)
on S an m-dimensional vector vδ , where vδ[i] = δ(xi, yi). We call vδ the representation vector of
(V, S, δ). Define NORS to be the set of representations of all partial semimetrics on S which can
be partially embedded into ℓpp, i.e.

NORS = {vδ | There exists d ∈ N such that (V, S, δ) partially embeds into (Rd, ℓpp)}.

Note that NORS is a cone:

1. If vδ ∈ NORS then αvδ ∈ NORS for all α ≥ 0.

2. If vδ, vδ′ ∈ NORS then vδ + vδ′ ∈ NORS .

An extreme ray is a point vδ ∈ NORS such that if vδ = vδ1 + vδ2 for vδ1 , vδ2 ∈ NORS then it has
to be that vδ1 = αvδ and vδ2 = (1− α)vδ for some α ∈ [0, 1].

Next, we show that any extreme ray of NORS has a partial embedding into the one-dimensional
space (R, ℓpp). Indeed, let vδ be an extreme ray, and let d be the minimum dimension for which
(V, S, δ) partially embeds to (Rd, ℓpp). If d = 1, then we are done; otherwise, assume by contra-
diction that d > 1. Let F : V → Rd such that δ(x, y) = δpp(F (x), F (y)) for all (x, y) ∈ S. Let
F1 : V → R, F2 : V → Rd−1 such that

F1(x) = F (x)[1] and F2(x) = (F (x)[2], . . . , F (x)[d]),

i.e. F1 is the embedding F restricted to the first dimension, and F2 is F restricted to the remain-
ing d − 1 dimensions. We notice that for each (x, y) ∈ V × V , δpp(F (x, y)) = δpp(F1(x, y)) +
δpp(F2(x, y)).

Define ρ1, ρ2 : S → R such that ρ1(x, y) = δpp(F1(x), F1(y)), and ρ2(x, y) = δpp(F2(x), F2(y)).
Therefore, vδ = vρ1 + vρ2 . Since vδ is an extreme ray, then there exists α ∈ [0, 1] such that
vδ = αvρ1 . In particular, δ can be partially embedded into one dimension, by taking the embedding
αF1(x), contradicting minimality of d. We conclude that d = 1.

Finally, let vS be the representation vector of S. By Caratheodory’s theorem, since vS ∈ NORS ,
there exists m+1 extreme rays vδ1 , . . . , vδm+1

∈ NORS such that vS =
∑m+1

i=1 vδi . We have shown
that for each i ∈ [m + 1], the partial semi-metric (X,S, δi) has a partial embedding F (i) : V → R
into the one dimensional space (R, ℓpp). It follows that the embedding F = (F (1), . . . , F (m+1)) is a
partial embedding of S into (Rm+1, ℓpp), and the claim follows.

Proof of Theorem 3. If Q is a set of non-contradictory constraints, then we can embed it into ℓ2 using
Theorem 1. We can then embed it isometrically into ℓp (see Chapter 1.5 from [Mat13] and Theorem
5 from [Goe06]). By using the same points, the relationships between distances are also preserved
in ℓpp. Let S be the set of all edges in the constraint graph G. Then we have a partial semimetric
(V, S, δS) which is partially embedded into ℓpp. By Lemma 33 it partially embeds isometrically into
(ℓpp)

|S|+1. For the same embedding, the relationships between distances are also preserved in ℓp.
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D.2 Contrastive Queries in ℓ∞ Norm

In this section, we prove Theorem 2, which states that dimension O(m2/3) suffices to satisfy any set
of m non-contradictory contrastive queries Q in the ℓ∞ norm.

Let G = (V,E) be the constraint graph, where E is the edge set. We arbitrarily assign a unique
identifier id(x) ∈ [n] for each x ∈ V . Let Vhigh ⊆ V be the set of points with degree with at least
m1/3 in G. Let Vlow = V \ Vhigh.

Our embedding is a concatenation of two embeddings F1 and F2, which intuitively “handle” Vlow

and Vhigh respectively. In the sub-embedding F1, we use the fact that the graph induced by Vlow

has low degree to argue that it has a proper distance-2-edge coloring with O(m2/3) colors, i.e. we
can color the edges of the graph such that no two edges at distance at most 2 share the same color.
We use this coloring to obtain an embedding F1 : Vlow → RO(m2/3) which satisfies certain distance
properties between any pair of neighbors in Vlow. We then extend F1 to an embedding F : V →
RO(m2/3) which is consistent with Q. This extension draws inspiration from the seminal Fréchet
embedding [Fré10]: for each point in xi ∈ Vhigh we add a single distinct dimension i, in which we
intuitively set this coordinate for each point x ∈ V as distance from xi in F ′. In actuality, we set
these coordinates slightly differently, in order to combine correctly with the sub-embedding F1, and
obtain an embedding which is consistent with Q. By Lemma 34, the size |Vhigh| = O(m2/3), which
implies that together the dimension of F is O(m2/3).

Lemma 34. Let Q be the set of m contrastive queries. Let Vhigh be the set of points with degree at
least m1/3 in the constraint graph. Then |Vhigh| = O(m2/3).

Proof. Recall that each query (x, y+, z−) ∈ Q is associated with two edges, {x, y}, {x, z} ∈ E.
Hence, the total number of edges in G is at most 2|Q| = 2m. This implies

m1/3|Vhigh| ≤
∑

x∈Vhigh

deg(x) ≤
∑
x∈V

deg(x) = 2|E| = 4m.

By rearrangement, we obtain that |Vhigh| ≤ 4m2/3.

Since Q is non-contradictory, by Fact 25 there exists a metric δ consistent with Q. Using the Frechét
embedding [Fré10], any metric on n points may be isometrically embedded into Rn−1 under the ℓ∞
norm.

Definition 35 (Scaled Frechét embedding F ′). Let F ′ : V → Rn−1 be an embedding of δ into the
cube [0, 1/2]n−1 under the ℓ∞ norm, obtained by scaling and shifting (i.e. multiplying or adding
some value to all coordinates, respectively) the Frechét embedding of δ.

We note that scaling and shifting do not affect whether a contrastive query is satisfied, therefore F ′

is consistent with Q as well.

Lemma 36. There is an embedding F1 of Vlow into RO(m2/3) such that the following hold:

(a) for each x ∈ Vlow and i ∈ N, it holds that F1(x)[i] ∈ [0, 1];

(b) for each x, y ∈ Vlow such that {x, y} ∈ E, it holds that ∥F1(x)−F1(y)∥∞ = 1/2+ ∥F ′(x)−
F ′(y)∥∞.

Proof. By definition, each x ∈ Vlow has degree at most ∆ = O(m1/3). Therefore, there is an edge
coloring C : E → [∆2 + 2] of G = (V,E), in which (a) every vertex has at most one incident
edge of any color, and (b) any two adjacent vertices x, y share exactly one edge color – the one of
their shared edge C(x, y). We remark that this coloring is called in the literature distance-2-edge
coloring. Such a coloring can be found using a greedy approach, where we color the edges one by
one, where for each edge {x, y} we choose a color that is not taken by previous edges of x, y or by
edges of any neighbor z ∈ N(x) ∪N(y). In other words, let K(x, y) be the set of colors taken by
any edge incident to any vertex in {x, y} ∪N(x) ∪N(y). Since |K(x, y)| ≤ 2∆2 + 1, then we can
always choose from {x, y} a color different from all colors of K(x, y).
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We define the embedding F1 as follows: assume the color of the edge of {x, y} is C(x, y) ∈ [∆2+2].
Let c = C(x, y) and assume w.l.o.g. that id(x) < id(y). We define F1(x)[c] = 0 and F1(y)[c] =
1/2 + ∥F ′(x) − F ′(y)∥∞. For any x ∈ V , if a coordinate i is not set in this process, we set
F1(x)[i] = 1/2. We note this is well-defined since the edge coloring is proper (i.e. no vertex has
two edges of the same color), so no coordinate is set twice. This concludes the description of the
embedding.

Next, we show that properties (a) and (b) hold. Recall that we consider distances over ℓ∞, hence
for each pair x, y ∈ Vlow there is a coordinate i(x, y) ∈ N for which ∥F ′(x) − F ′(y)∥∞ =
∥F ′(x)[i(x, y)]− F ′(y)[i(x, y)]∥.

For property (a), we note that every coordinate i is either set to F (y)[i] = 0, or to F (y)[i] =
1/2 + ∥F ′(x) − F ′(y)∥∞ for some x ∈ V . Since ∥F ′(x) − F ′(y)∥∞ ∈ [0, 1/2], and hence
∥F (x)− F (y)∥∞ = 1/2 + ∥F ′(x)− F ′(y)∥∞ ∈ [0, 1], property (a) follows.

Next, we show that property (b) holds. Denoting c = C(x, y), for each edge {x, y} ∈ E such that
id(x) < id(y), it holds that F ′(x)[c] = 0 and F ′(y)[c] = 1/2+∥F (x)−F (y)∥∞. Second, since x, y
share only one edge color, in each other coordinate j ̸= c, either F1(x)[j] = 1/2 or F1(y)[j] = 1/2,
meaning that c is the coordinate with the maximum difference, i.e. ∥F1(x) − F1(y)∥∞ = 1/2 +
∥F ′(x)− F ′(y)∥∞.

The Overall Embedding:

Lemma 37. Let F1 : Vlow → RO(m2/3) be the embedding described in Lemma 36. Then there exists
an embedding F : V → RO(m2/3) such that for any {x, z} ∈ E it holds that ∥F (x) − F (z)∥∞ =
1/2 + ∥F ′(x)− F ′(z)∥∞.

Proof. Let d = O(m2/3) be the dimension of F1 (i.e. F1 : Vlow → Rd), and r = |Vhigh| =

O(m2/3). Let Vhigh = {y1, . . . , yr}. We define F (x) as follows: for yi ∈ Vhigh, we set all
coordinates for 1 ≤ j ≤ (d+ i−1) to F (yi)[j] = 1/2, the (d+ i)’th coordinate as F (yi)[d+ i] = 0,
and set any coordinate d + i + 1 ≤ j ≤ d + r to F (yi)[j] = 1/2 + ∥F ′(yi) − F ′(yj−d)∥∞.
For x ∈ Vlow, we set the first d coordinates to be as in F1(x). The remaining r coordinates, i.e.
d + 1 ≤ j ≤ d + r, we define as F (x)[j] = 1/2 + ∥F ′(x) − F ′(yj)∥∞. This concludes the
description of the embedding.

First, we show that for any x, z ∈ Vlow such that {x, z} ∈ E, it holds that ∥F (x) − F (z)∥∞ =
1/2 + ∥F ′(x) − F ′(z)∥∞. This indeed holds by Lemma 36, and by the fact that in all the r last
coordinates are set to a value in [1/2, 1], i.e. the difference on any of these coordinates is at most
1/2.

Next, we show that for any x ∈ Vlow and yi ∈ Vhigh such that {x, yi} ∈ E, it holds that ∥F (x) −
F (yi)∥∞ = 1/2+ ∥F ′(x)−F ′(yi)∥∞. Indeed, in any coordinate j ̸= (d+ i), F (yi)[j] ≥ 1/2, and
hence |F (yi)[j]− F (x)[j]| ≤ 1/2. On the other hand, in the (d+ i)’th coordinate |F (yi)[d+ i]−
F (x)[d+ i]| = 1/2 + ∥F ′(x)− F ′(yi)∥∞ > 1/2.

Finally, we consider the case where yi, yj ∈ Vhigh such that {yi, yj} ∈ E and i < j. For the first d
coordinates, both vectors are set to 1/2, in all coordinates between d + 1, . . . , d + j − 1 the vector
yj is set to 1/2, and therefore they differ by at most 1/2 in these coordinates. For the (d + j)’th
coordinate, yj is set to zero, and yi is set to 1/2+∥F ′(yi)−F ′(yj)∥∞. For higher coordinates, both
yi, yj are set to values at least 1/2. Therefore, ∥F (yi)−F (yj)∥∞ = 1/2+∥F ′(yi)−F ′(yj)∥∞.

Finally, we show that F is consistent with Q.

Lemma 38. The embedding F : V → RO(m2/3) is consistent with Q.

Proof. For any (x, y+, z−) ∈ Q, it holds that ∥F ′(x) − F ′(y)∥∞ < ∥F ′(x) − F ′(z)∥∞, and
therefore

∥F (x)− F (z)∥∞ = 1/2 + ∥F ′(x)− F ′(z)∥∞ > 1/2 + ∥F ′(x)− F ′(y)∥∞ = ∥F (x)− F (y)∥∞.

And since ∥F (x)− F (y)∥∞ < ∥F (x)− F (z)∥∞, the query (x, y+, z−) is satisfied.

Theorem 2 follows directly from Lemma 38.
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E Lower Bounds

In this section, we prove lower bounds for all our settings. Before presenting the main theorem of
this section, we formally introduce the notion of ordinally embedding a metric δ into ℓp space.

Recall that for x ∈ V , we denote π1(x), . . . , πn−1(x) to be the points in V \ {x} ordered by their
distance from x.

Definition 39 (Ordinal Embedding). Given a metric δ, the full ordinal sample set Q(δ) is the fol-
lowing set of samples: Q(δ) = {(x, π+

i (x), π
−
i+1(x)) | x ∈ V, i ∈ [n − 2]}. We say that δ can

be ordinally embedded in ℓp space in dimension d if its full ordinal sample set Q is consistent with
some embedding in ℓp space with dimension d.

Next, we present the main theorem of this section, from which we can obtain lower bounds for all
our settings:

Theorem 40. For p ∈ N ∪ {∞}, there exists a metric δ on n points which can only be ordinally
embedded in ℓp-space using d = Ω(n) dimensions if p is a constant even integer p ≥ 2, or d =
Ω(n/ log n) if p is a constant odd integer p ≥ 1 or p = ∞.

We remark that the special case of p = 2 was previously proven in [CI24]. To prove Theorem 40,
we need several propositions.

For a set of unlabeled triplets C, we say that a set of samples Q is a labeling of C if Q has exactly
one labeling for each unlabeled triplet of C (and no other sample). We next show that there exists a
set of Θ(n2) triplets so that any its labeling is valid.

Lemma 41 ([AAE+24]). For V = {x1, . . . , xn}, let C = {(xi, xj , xj+1)}1≤i<j<n be the set of
unlabeled triplets, whose labeling compares distances between (xi, xj) and (xi, xj+1). Then for
any labeling Q of C, there is a metric δQ consistent with Q.

Proof. Let Q be a labeling of C. Fix anchor xi and consider a graph where we create a directed
edge xj → xj+1 when (xi, x

+
j , x

−
j+1) ∈ Q, and an edge xj+1 → xj when (xi, x

+
j+1, x

−
j ) ∈ Q.

Note that for any Q this graph is acyclic (since the corresponding undirected edges form a path), and
hence there exists a topological sort pi on xi+1, . . . , xn. We define a metric δ so that δ(xi, xj) =
δ(xj , xi) = n+ pi(xj) for i < j and δ(xi, xi) = 0 for all i.

Note that δ is a metric: by construction, δ is symmetric and δ(x, x) = 0 for all x, and the triangle
inequality is satisfied since all distances are between n and 2n. Finally, note that δ satisfies all
samples from Q.

Next, we use a claim proven in [AAE+24], showing that any sufficiently large set of unlabeled
triplets has an labeling which does not have a d-dimensional ℓp space embedding consistent with it
(where the size of the unlabeled set is at least some function of n, d, p).

Fact 42 ([AAE+24], Reformulated). Let d be an integer, V be a set of n points, and p ∈ {1, 2, . . .}∪
{∞} be constant. Then there exists a constant cp > 0 such that for any sufficiently large n the
following hold.

• If p is odd or p = ∞, then for any set of triplets C of size at least cpnd log n on V , there exists a
labeling of C which is not consistent with any d-dimensional ℓp space.

• If p is even, then for any set of triplets C of size at least cpnd on V , there exists a labeling which
is not consistent with any d-dimensional ℓp space.

Proof of Theorem 40. We consider the case of even p – cases of odd and infinite p are analogous. By
Lemma 41, for some constant c > 0 there exists a set of triplets C of cardinality at least cn2 so that
any labeling of C is realizable by some metric. On the other hand, by Fact 42, when |C| > cpnd,
there exists a labeling Q of C which is not consistent with any d-dimensional ℓp space metric.
Solving for d, unless d > nc/cp, there exists a labeling which is not realizable in the d-dimensional
ℓp space. Hence, d = Ω(n) for even p.
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Next, we show lower bounds for our settings, namely for contrastive learning and k-NN, and for the
extended settings of t-negatives and t-orderings. All lower bounds follow as immediate corollaries
of Theorem 40.
Theorem 43. Let p be a positive even integer.

1. (Contrastive triplets) There exists a set of non-contradictory triplet samples Q of size |Q| = m
for which any embedding in ℓp space consistent with Q must have d = Ω(

√
m).

2. (t-negatives) There exists a set of non-contradictory t-negatives samples Q of size |Q| = m such
that any embedding in ℓp space in d dimensions requires d = Ω(

√
m).

3. (t-orderings) There exists a set of non-contradictory t-ordering samples Q of size |Q| = m such
that any embedding in ℓp space in d dimensions requires d = Ω(

√
mt).

4. (k-NN) There exists a metric δ on n points such that any embedding in ℓp space which preserves
the k-NN ordering of δ must have d = Ω(k) dimensions.

When p is a positive odd integer or when p = ∞, the lower bounds decrease by a logarithmic
factor, that is the lower bounds are respectively Ω(

√
m/ logm), Ω(k/ log k), Ω(

√
m/ logm), and

Ω(
√
mt/ log(mt)).

Note that in the above statements, V can be arbitrarily large: in the proofs below, we can choose
subsets of required size inducing all the samples.

Proof. We consider the case of positive even p. The cases of positive odd or infinite p are analogous.

1. Choose an arbitrary set V of size
√
m. By Theorem 40, there exists a non-contradictory sample

set Q of size Θ(m) on point set V such that any embedding into ℓp space which is consistent
with Q must have dimension Ω(

√
m).

2. Let V be an arbitrary set of size
√
m + (t − 1), and V ′ be an arbitrary subset of V of size√

m. By the previous item, there exists a non-contradictory sample set Q′ of size Θ(m) on a
set V ′ that requires dimension Ω(

√
m) dimensions. Let V \ V ′ = {v1, . . . , vt−1}. For each

s′ = (x, y+, z−) ∈ Q′, define s to be the (t + 1)-tuple sample s = (x, y+, z−, v−1 , . . . , v
−
t−1).

Let Q be the set of all such (t+ 1)-tuple samples.

Next, we prove that Q is non-contradictory. Since Q′ is non-contradictory, there is a metric δ′

on V ′ which is consistent with Q. Consider the following metric δ on V : for x, y ∈ V ′, we set
δ(x, y) = δ′(x, y), and otherwise δ(x, y) = D, where D = 2maxx,y∈V ′ δ(x, y). It is easy to see
δ satisfies triangle inequality, and is consistent with Q. Since every constraint in Q′ is implied
by some constraint in Q, embedding preserving Q must also preserve Q′, requiring Ω(

√
m)

dimension.

3. Choose an arbitrary set V of size
√
mt. By the first item, there exists a non-contradictory sample

set Q′ of size O(mt) on a set V that requires dimension Ω(
√
mt). It suffices to show that there

is a set of non-contradictory Q of size O(m) of (t+ 1)-tuple samples that imply all inequalities
of Q′.

Consider a metric δ on V consistent with Q′. Denoting the j’th nearest neighbor of x according
to δ as πj(x), let

Q = ∪x∈V {(x, π1(x), . . . , πt(x)), (x, πt(x), . . . , π2t−1(x)), . . .},
where the adjacent samples share one item. We note that Q is consistent with δ, hence is non-
contradictory. Finally, every inequality in Q′ is implied by the inequalities of Q: this is due to
the fact that δ is consistent with Q′, and Q implies all ordinal constraints of δ (as it implies the
order of distances between each point and all its neighbors).

4. Choose an arbitrary set V of size k+1. By Theorem 40, there exists a non-contradictory sample
set Q on point set V such that any embedding into ℓp space consistent with Q must have dimen-
sion Ω(k). Consider a metric δ on V consistent with Q. Since |V | = k + 1, k-NNs preserve all
triplet comparisons of δ, and therefore, any embedding of V preserving the k-NN ordering has
to be consistent with Q, hence requiring dimension Ω(k).
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F Other Results

In this section, we first extend our results to contrastive queries with more than two candidates.
Then, we show that the problem of actually constructing the embedding consistent with given con-
trastive samples is NP-hard. Finally, we consider an approximate setting for contrastive learning, in
which we only need to satisfy an α-fraction of the constraints. We show that there exists an instance
for which satisfying α ≈ 0.77 fraction of the constraints requires roughly the same number of di-
mensions as satisfying all constraints. On the other hand, we show that for α ≤ 1/2, one dimension
always suffices.

F.1 Upper Bound for t-Negatives and t-Ordering Samples in ℓ2-norm

In this section, we consider two additional settings, in which each sample contains ordinal informa-
tion about the distance between an anchor point and multiple (i.e. more than two other) points.

In the first setting (t-negatives), we are given a set Q of m samples, where each sample s is a
(t + 2)-tuple s = (x, y+, z−1 , . . . , z−t ). We say sample s is satisfied by distance function δ if
δ(x, y) > δ(x, zi) for all 1 ≤ i ≤ t.

In the second setting (t-ordering), we are given a set Q of m samples, where each sample s is a
t-tuple s = (x, y1, . . . , yt), and we say sample s is satisfied by distance function δ if δ(x, y1) <
δ(x, y2) < · · · < δ(x, yt) for all 1 ≤ i ≤ t.

Theorem 44 (t-orderings, t-negatives). Let Q be a set of m non-contradictory t-ordering samples
(resp. t-negative samples) on a set V . There is an embedding of V into ℓ2-space RO(

√
mt) which is

consistent with Q.

Proof. For a set of (t + 2)-tuple samples Q on V of size m, we define the constraint graph G =
(V,E) as follows: for each sample (x1, . . . , xt+2) ∈ Q, we add t+1 edges {x1, x2}, . . . , {x1, xt+2}
to E (if they don’t already exist).

First, we note that the constraint graph of t-orderings and t-negatives has arboricity O(
√
mt). In-

deed, we add for each sample at most O(t) edges to G, hence the total number of edges is at most
O(mt). By Fact 7, the arboricity of G is r = O(

√
mt). By Theorem 9 there exists an embedding

into ℓ2-space with dimension r = O(
√
mt) that satisfies the corresponding inequalities.

F.2 NP-Hardness for d = 1

In this section, we show that, empirical risk minimization for embedding into an ℓp space is NP-
hard. Even in the realizable case and even for d = 1, finding an embedding satisfying constraints is
NP-hard, by the reduction from the betweenness problem.

Definition 45 (Betweenness). You are given a set of items X of cardinality n and a set of triplets
{(a1, b1, c1), . . . , (am, bm, cm)}, such that ai, bi, ci ∈ X for all i. The goal of the betweenness
problem is to find an order of items on X so that for each i, bi is located between ai and ci. That is,
the goal is to find a bijection r : X → {1, . . . , n} so that for each i either r(ai) < r(bi) < r(ci) or
r(ci) < r(bi) < r(ai) hold.

[Opa79] shows that the decision version of the betweenness problem – i.e. checking whether such
an ordering exists – is NP-hard.

Theorem 46. Unless P = NP , there is no polynomial algorithm for finding an embedding into ℓ2
space for d = 1 in the realizable case.

Proof. Let A be an algorithm for finding an ℓ2 embedding for d = 1, which accepts the set of
contrastive queries as an input. For contradiction, assume that in the realizable case the algorithm
finds an embedding in time at most T (n) = poly(n), where n is the number of points.

Let A′ be the algorithm which executes A for at most T (n) = poly(n) iterations. This way, A′ runs
on all inputs in time at most T (n) and outputs an embedding satisfying the input constraints iff such
an embedding exists.
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We complete the proof by reduction from the betweenness problem. Let
{(a1, b1, c1), . . . , (am, bm, cm)} be the input for the betweenness problem. Then, we can
represent constraint “bi is between ai and ci” using two contrastive constraints (ai, b

+
i , c

−
i ) and

(ci, b
+
i , a

−
i ). For example, if r(bi) < r(ai) < r(ci), then the constraint (ci, b+i , a

−
i ) is violated;

other cases are similar.

We execute A′ on this set of contrastive constraints. Since the algorithm finds a satisfying embedding
iff such an embedding exists, we can check whether the contrastive constraints – and hence the
original betweenness constraints – are satisfiable by checking the output of the algorithm. Hence,
we can verify whether the set of betweenness constraints is satisfiable in the polynomial time, which
contradicts NP-hardness of the problem and assumption that P ̸= NP .

F.3 Satisfying a Fraction of Constraints

In this section, we consider the settings when the embedding doesn’t have to satisfy all the con-
straints. Instead, for some constant α, we want to satisfy at least an α-fraction constraints. We show
the following separation in the ℓp case for any integer p.
Theorem 47. For the embedding into ℓp space for p ∈ {1, 2, 3, . . .}, the following hold.

• For any α ≤ 1/2, for any set of m constraints, for any d ≥ 1 there exists an embedding with
dimension d satisfying at least αm constraints.

• Let α∗ ≈ 0.77 be the root of equation H(x) = x, where H is the binary entropy function. Then
for any α > α∗, there exists a set of m non-contradictory constraints so that satisfying at least
αm constraints requires dimension at least Ω(

√
m) for even p and at least Ω(

√
m/ logm) for

odd p.

Notes The theorem shows that for α ≤ 1/2, the problem trivializes, while for α > α∗, the problem
is asymptotically as hard as in the case when we have to satisfy all constraints (up to logm factor
for odd p). There is a gap between 1/2 and α∗ ≈ 0.77, and we hypothesize that α∗ bound is the
most likely one to be improved, due to the union bound used in the proof below.

Proof. The case α ≤ 1/2 follows by the probabilistic argument, using the observation that a random
one-dimensional embedding satisfies half of the constraints in the expectation. It remains to handle
the case α > α∗. For that, we construct a set of m triplets, and, for a random labeling of m triplets,
we look at the induced labeling of each subset of αm triplets. For each individual subset, we will
show the probability that its induced labeling is achievable is less than 1/

(
m
αm

)
. By the union bound,

the probability that any of the induced labelings is achievable is less than 1, implying that for at least
one labeling, none of the induced labelings is achievable

ℓ2 distance We first consider the ℓ2-case, and below we describe how to handle ℓp distance for
other integer p. By Lemma 41, there for any set V of items, there exists a set C of m =

(
n−1
2

)
unlabeled triplets such that any its labeling is realizable. For a sufficiently large n, assume that
d < cn for some constant c (depending on α and to be specified later). We will show that for
α > α∗, there exists no subset of C of size αm so that every its labeling is realizable by some
embedding into a d-dimensional space. For that, we will use the following fact.

Fact 48 ([War68]). Let m ≥ t ≥ 2 be integers, and let P1, . . . , Pm be real polynomials on t
variables of degree at most s. Let

U(P1, . . . , Pm) =
{
x ∈ Rt | Pi(x) ̸= 0 for all i ∈ [m]

}
be the set of points x ∈ Rt which are non-zero in all polynomials. Then the number of connected
components in U(P1, . . . , Pm) is at most (4esm/t)t.

Similarly to [AAE+24], we apply this fact to the following polynomials: for each triplet (x, y, z),
for a fixed embedding function F , we define a polynomial

Pxyz = ∥F (x)− F (y)∥22 − ∥F (x)− F (z)∥22 =

d∑
i=1

(Fi(x)− Fi(y))
2 −

d∑
i=1

(Fi(x)− Fi(z))
2
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Denoting V = {x1, . . . , xn}, all Pxyz for (x, y, z) ∈ C are polynomials over nd variables
F1(x1), . . . , Fd(x1), . . . , F1(xn), . . . , Fd(xn).

Importantly, when (x, y+, z−) is satisfied by F , the polynomial is negative, while, when (x, z+, y−)
is satisfied by F , the polynomial is negative. Hence, different choices of labels of C must corre-
spond to the different sign combinations of polynomials. Fact 48 shows that the number of sign
combinations of the polynomials – and hence the amount of possible labelings – is bounded by
(8em/nd)nd ≤ (4en/d)nd, where we used m =

(
n−1
2

)
< n2

2 .

For any subset of αm constraints, there are 2αm possible induced labelings. On the other hand, as
shown above, only (4en/d)nd of the labelings are achievable. Taking the ratio of these values, we
get that the probability that an induced labeling is realizable is at most

(4en/d)nd

2αm
= 2nd log2(4en/d)−αm

As outlined above, since there are at most
(

m
αm

)
subset of αm constraints, we want this ratio to be at

most 1/
(

m
αm

)
. By a well-known fact [TJ06],

(
m
αm

)
≤ 2H(α)m, where H is a binary entropy function.

Hence, the probability that any subset of αm induced constraints is satisfiable is at most

(4en/d)nd
(

m
αm

)
2α(n−1)2/2

≤ 2nd log2(4en/d)−αm+H(α)m = 2m(H(α)−α+(nd/m) log2(4en/d))

Since m ≥ (n − 1)2/2, for a sufficiently large n we have nd/m < 3d/n. Consider the case when
d < cn for some constant c. When c < 4, the last term (3d/n) log2(4en/d) monotonically increases
in d, and hence we have

H(α)− α+ (nd/m) log2(4en/d) < H(α)− α+ 3c log2(4e/c)

When α > α∗, where α∗ ≈ 0.77 satisfies α∗ = H(α∗), we have 0 > H(α) − α. Since f(c) =
3c log2(4e/c) is continuous and strictly monotone for c ∈ [0, 4] and f(0) = 0, there exists c′ > 0
such that H(α) − α + 3c′ log2(4e/c

′) < 0. Hence, when d < c′n, there exists a labeling of m
triplets, so that no subset of αm triplets is satisfiable.

ℓp distances for positive integer p When p is even, the above argument doesn’t change. When p
is odd, we encounter the issue that

∥F (x)− F (y)∥pp − ∥F (x)− F (z)∥pp =

d∑
i=1

|Fi(x)− Fi(y)|p −
d∑

i=1

|Fi(x)− Fi(z)|p

is not a polynomial. We address this issue similarly to [AAE+24]: for each coordinate i, we guess
the order of points with respect to this coordinate. This introduces an additional factor of (n!)d =
2O(nd logn) in the number of possible sign combinations. The derivation is similar to the above, but
we instead want the following inequality:

H(α)− α+ (nd/m) log2(4en/d) +O((nd/m) log n) < 0,

which holds when d < cn/ log n for some constant c.
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• Depending on the contribution, reproducibility can be accomplished in various ways. For
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reproducing or verifying the results.

5. Open access to data and code
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Answer: [Yes] .
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