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ABSTRACT

Advances in generative modeling and adversarial learning have given rise to re-
newed interest in smooth games. However, the absence of symmetry in the ma-
trix of second derivatives poses challenges that are not present in the classical
minimization framework. While a rich theory of average-case analysis has been
developed for minimization problems, little is known in the context of smooth
games. In this work we take a first step towards closing this gap by develop-
ing average-case optimal first-order methods for a subset of smooth games. We
make the following three main contributions. First, we show that for zero-sum
bilinear games the average-case optimal method is the optimal method for the
minimization of the Hamiltonian. Second, we provide an explicit expression for
the optimal method corresponding to normal matrices, potentially non-symmetric.
Finally, we specialize it to matrices with eigenvalues located in a disk and show a
provable speed-up compared to worst-case optimal algorithms. We illustrate our
findings through numerical simulations with a varying degree of mismatch with
our assumptions.

1 INTRODUCTION

The traditional analysis of optimization algorithms is a worst-case analysis (Nemirovski, 1995; Nes-
terov, 2004). This type of analysis provides a complexity bound for any input from a function class,
no matter how unlikely. However, since hard-to-solve inputs might rarely occur in practice, the
worst-case complexity bounds might not be representative of the observed running time.

A more representative analysis is given by the average-case complexity, averaging the algorithm’s
complexity over all possible inputs. This analysis is standard for analyzing, e.g., sorting (Knuth,
1997) and cryptography algorithms (Katz & Lindell, 2014). Recently, a line of work (Berthier et al.,
2020; Pedregosa & Scieur, 2020; Lacotte & Pilanci, 2020; Paquette et al., 2020) focused on optimal
methods for the optimization of quadratics, specified by a symmetric matrix. While worst-case
analysis uses bounds on the matrix eigenvalues to yield upper and lower bounds on convergence,
average-case analysis relies on the expected distribution of eigenvalues and provides algorithms
with sharp optimal convergence rates. While the algorithms developed in this context have been
shown to be efficient for minimization problems, these have not been extended to smooth games.

A different line of work considers algorithms for smooth games but studies worst-case optimal
methods (Azizian et al., 2020). In this work, we combine average-case analysis with smooth games,
and develop novel average-case optimal algorithms for finding the root of a linear system determined
by a (potentially non-symmetric) normal matrix. We make the following main contributions:
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1. Inspired by the problem of finding equilibria in smooth games, we develop average-case opti-
mal algorithms for finding the root of a non-symmetric affine operator, both under a normality
assumption (Thm. 4.1), and under the extra assumption that eigenvalues of the operator are sup-
ported in a disk (Thm. 4.2). The proposed method shows a polynomial speedup compared to the
worst-case optimal method, verified by numerical simulations.

2. We make a novel connection between average-case optimal methods for optimization, and
average-case optimal methods for bilinear games. In particular, we show that solving the Hamil-
tonian using an average-case optimal method is optimal (Theorem 3.1) for bilinear games. This
result complements (Azizian et al., 2020), who proved that Polyak Heavy Ball algorithm on the
Hamiltonian is asymptotically worst-case optimal for bilinear games.

2 AVERAGE-CASE ANALYSIS FOR NORMAL MATRICES

In this paper we consider the following class of problems.
Definition 1. Let A ∈ Rd×d be a real matrix and x? ∈ Rd a vector. The non-symmetric (affine)
operator (NSO) problem is defined as:

Find x : F (x)
def
= A(x−x?) = 0 . (NSO)

This problem generalizes that of minimization of a convex quadratic function f , since we can cast the
latter in this framework by setting the operator F = ∇f . The set of solutions is an affine subspace
that we will denote X ?. We will find convenient to consider the distance to this set, defined as

dist(x, X ?) def
= min
v∈X?

‖x− v‖2, with X ? = {x ∈ Rd |A(x− x?) = 0} . (1)

In this paper we will develop average-case optimal methods. For this, we consider A and x? to
be random vectors, and a random initialization x0. This induces a probability distribution over
NSO problems, and we seek to find methods that have an optimal expected suboptimality w.r.t.
this distribution. Denoting E(A,x?,x0) the expectation over these random problems, we have that
average-case optimal methods they verify the following property at each iteration t

min
xt

E(A,x?,x0) dist(xt, X ?) s.t. xi ∈ x0 + span({F (xj)}i−1
j=0), ∀i ∈ [1 : t]. (2)

The last condition on xt stems from restricting the class of algorithms to first-order methods. The
class of first-order methods encompasses many known schemes such as gradient descent with mo-
mentum, or full-matrix AdaGrad. However, methods such as Adam (Kingma & Ba, 2015) or diag-
onal AdaGrad (Duchi et al., 2011) are not in this class, as the diagonal re-scaling creates iterates xt
outside the span of previous gradients. Although we will focus on the distance to the solution, the
results can be extended to other convergence criteria such as ‖F (xt)‖2.

Finally, note that the expectations in this paper are on the problem instance and not on the random-
ness of the algorithm.

2.1 ORTHOGONAL RESIDUAL POLYNOMIALS AND FIRST-ORDER METHODS

The analysis of first-order methods simplifies through the use of polynomials. This section provides
the tools required to leverage this connection.
Definition 2. A residual polynomial is a polynomial P that satisfies P (0) = 1.

Proposition 2.1. (Hestenes et al., 1952) If the sequence (xt)t∈Z+
is generated by a first-order

method, then there exist residual polynomials Pt, each one of degree at most t, verifying

xt − x? = Pt(A)(x0 − x?). (3)

As we will see, optimal average-case method are strongly related to orthogonal polynomials. We
first define the inner product between polynomials, where we use z∗ for the complex conjugate of
z ∈ C.
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Definition 3. For P,Q ∈ R[X], we define the inner product 〈·, ·〉µ for a measure µ over C as

〈P,Q〉µ
def
=

∫
C
P (λ)Q(λ)∗ dµ(λ) . (4)

Definition 4. A sequence of polynomials {Pi} is orthogonal (resp. orthonormal) w.r.t. 〈·, ·〉µ if

〈Pi, Pi〉µ > 0 (resp. = 1); 〈Pi, Pj〉µ = 0 if i 6= j.

2.2 EXPECTED SPECTRAL DISTRIBUTION

Following (Pedregosa & Scieur, 2020), we make the following assumption on the problem family.

Assumption 1. x0 − x? is independent ofA, and E(x0,x?)[(x0 − x?)(x0 − x?)>] = R2

d Id.

We will also require the following definitions to characterize difficulty of a problem class. Let
{λ1, . . . , λd} be the eigenvalues of a matrix A ∈ Rd×d. We define the empirical spectral distri-
bution ofA as the probability measure

µ̂A(λ)
def
= 1

d

∑d
i=1δλi(λ) , (5)

where δλi is the Dirac delta, a distribution equal to zero everywhere except at λi and whose integral
over the entire real line is equal to one. Note that with this definition,

∫
D dµ̂A(λ) corresponds to the

proportion of eigenvalues in D.

WhenA is a matrix-valued random variable, µA is a measure-valued random variable. As such, we
can define its expected spectral distribution

µA
def
= EA[µ̂A] , (6)

which by the Riesz representation theorem is the measure that verifies
∫
f dµ = EA[

∫
f dµA] for

all measureable f . Surprisingly, the expected spectral distribution is the only required characteristic
to design optimal algorithms in the average-case.

2.3 EXPECTED ERROR OF FIRST-ORDER METHODS

In this section we provide an expression for the expected convergence in terms of the residual poly-
nomial and the expected spectral distribution introduced in the previous section. To go further in the
analysis, we have to assume thatA is a normal matrix.

Assumption 2. The (real) random matrixA is normal, that is, it verifiesAA> = A>A.

Normality is equivalent to A having the spectral decomposition A = UΛU∗, where U is unitary,
i.e., U∗U = UU∗ = I. We now have everything to write the expected error of a first-order
algorithm applied to (NSO).

Theorem 2.1. Consider the application of a first-order method associated to the sequence
of polynomials {Pt} (Proposition 2.1) on the problem (NSO). Let µ be the expected spectral
distribution ofA. Under Assumptions 1 and 2, we have

E[dist(xt,X ?)] = R2

∫
C\{0}

|Pt|2 dµ , (7)

Before designing optimal algorithms for certain specific distributions, we compare our setting with
the average-case accelerating for minimization problems of Pedregosa & Scieur (2020), who pro-
posed optimal optimization algorithms in the average-case.

2.4 DIFFICULTIES OF FIRST-ORDER METHODS ON GAMES AND RELATED WORK

This section compares our contribution with the existing framework of average-case optimal meth-
ods for quadratic minimization problems.
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Definition 5. Let H ∈ Rd×d be a random symmetric positive-definite matrix and x? ∈ Rd a
random vector. These elements determine the following random quadratic minimization problem

minx∈Rd
{
f(x)

def
=

1

2
(x−x?)>H(x−x?)

}
. (OPT)

As in our paper, Pedregosa & Scieur (2020) find deterministic optimal first-order algorithms in ex-
pectation w.r.t. the matrix H , the solution x?, and the initialization x0. Since they work with
problem (OPT), their problem is equivalent to (NSO) with the matrix A = H . However, they have
the stronger assumption that the matrix is symmetric, which implies being normal. The normality
assumption is restrictive in the case of game theory, as they do not always naturally fit such applica-
tions. However, this set is expressive enough to consider interesting cases, such as bilinear games,
and our experiments show that our findings are also consistent with non-normal matrices.

Using orthogonal residual polynomials and spectral distributions, they derive the explicit formula
of the expected error. Their result is similar to Theorem 2.1, but the major difference is the domain
of the integral, a real positive line in convex optimization, but a shape in the complex plane in our
case. This shape plays a crucial role in the rate of converge of first-order algorithms, as depicted in
the work of Azizian et al. (2020); Bollapragada et al. (2018).

In the case of optimization methods, they show that optimal schemes in the average-case follow a
simple three-term recurrence arising from the three-term recurrence for residual orthogonal poly-
nomials for the measure λµ(λ). Indeed, by Theorem 2.1 the optimal method corresponds to the
residual polynomials minimizing 〈P, P 〉µ, and the following result holds:

Theorem 2.2. (Fischer, 1996, §2.4) When µ is supported in the real line, the residual polynomial of
degree t minimizing 〈P, P 〉µ is given by the degree t residual orthogonal polynomial w.r.t. λµ(λ).

However, the analogous result does not hold for general measures in C, and hence our arguments
will make use of the following Theorem 2.3 instead, which links the residual polynomial of degree
at most t that minimizes 〈P, P 〉µ to the sequence of orthonormal polynomials for µ.

Theorem 2.3. [Theorem 1.4 of Assche (1997)] Let µ be a positive Borel measure in the complex
plane. The minimum of the integral

∫
C |P (λ)|2 dµ(λ) over residual polynomials P of degree lower

or equal than t is uniquely attained by the polynomial

P ?(λ) =

∑t
k=0 φk(λ)φk(0)∗∑t
k=0 |φk(0)|2

, with optimal value
∫
C
|P ?(λ)|2 dµ(λ) =

1∑t
k=0 |φk(0)|2

, (8)

where (φk)k is the orthonormal sequence of polynomials with respect to the inner product 〈·, ·〉µ.

In the next sections we consider cases where the optimal scheme is identifiable.

3 AVERAGE-CASE OPTIMAL METHODS FOR BILINEAR GAMES

We consider the problem of finding a Nash equilibrium of the zero-sum minimax game given by

min
θ1

max
θ2

`(θ1, θ2)
def
= (θ1 − θ?1)>M(θ2 − θ?2) . (9)

Let θ1,θ
?
1 ∈ Rd1 ,θ2,θ

?
2 ∈ Rd2 ,M ∈ Rd1×d2 and d def

= d1 + d2. The vector field of the game
(Balduzzi et al., 2018) is defined as F (x) = A(x− x?), where

F (θ1, θ2) =

[
∇θ1`(θ1, θ2)
−∇θ2`(θ1, θ2)

]
=

[
0 M

−M> 0

]
︸ ︷︷ ︸

=A

([
θ1

θ2

]
︸︷︷︸

=x

−
[
θ?1
θ?2

]
︸ ︷︷ ︸
=x?

)
= A(x− x?) . (10)

As before, X ? denotes the set of points x such that F (x) = 0, which is equivalent to the set of
Nash equilibrium. If M is sampled independently from x0,x

? and x0 − x? has covariance R2

d Id,
Assumption 1 is fulfilled. Since A is skew-symmetric, it is in particular normal and Assumption 2
is also satisfied.
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We now show that the optimal average-case algorithm to solve bilinear problems is Hamiltonian
gradient descent with momentum, described below in its general form. Contrary to the methods in
Azizian et al. (2020), the method we propose is anytime (and not only asymptotically) average-case
optimal.

Optimal average-case algorithm for bilinear games.

Initialization. x−1 = x0 =
(
θ1,0, θ2,0

)
, sequence {ht,mt} given by Theorem 3.1.

Main loop. For t ≥ 0,

gt = F (xt − F (xt))− F (xt)
(
= 1

2∇‖F (xt)‖2 by (12)
)

xt+1 = xt − ht+1gt +mt+1(xt−1 − xt)
(11)

The quantity 1
2‖F (x)‖2 is commonly known as the Hamiltonian of the game (Balduzzi et al., 2018),

hence the name Hamiltonian gradient descent. Indeed, gt = ∇
(

1
2‖F (x)‖2

)
when F is affine:

F (x− F (x))− F (x) = A(x−A(x− x?)− x?)−A(x− x?) = −A(A(x− x?))

= A>(A(x− x?)) = ∇
(

1

2
‖A(x− x?)‖2

)
= ∇

(
1

2
‖F (x)‖2

)
.

(12)

The following theorem shows that (11) is indeeed the optimal average-case method associated to the
minimization problem minx

(
1
2‖F (x)‖2

)
, as the following theorem shows.

Theorem 3.1. Suppose that Assumption 1 holds and that the expected spectral distribution of
MM> is absolutely continuous with respect to the Lebesgue measure. Then, the method (11)
is average-case optimal for bilinear games when ht, mt are chosen to be the coefficients of the
average-case optimal minimization of 1

2‖F (x)‖2.

How to find optimal coefficients? Since 1
2‖F (x)‖2 is a quadratic problem, the coefficients

{ht, mt} can be found using the average-case framework for quadratic minimization problems of
(Pedregosa & Scieur, 2020, Theorem 3.1).

Proof sketch. When computing the optimal polynomial xt = Pt(A)(x0 − x?), we have that the
residual orthogonal polynomial Pt behaves differently if t is even or odd.

• Case 1: t is even. In this case, we observe that the polynomial Pt(A) can be expressed as
Qt/2(−A2), where (Qt)t≥0 is the sequence of orthogonal polynomials w.r.t. the expected spectral
density of −A2, whose eigenvalues are real and positive. This gives the recursion in (11).

• Case 2: t is odd. There is no residual orthogonal polynomial of degree t for t odd. Instead, odd
iterations do correspond to the intermediate computation of gt in (11), but not to an actual iterate.

3.1 PARTICULAR CASE: M WITH I.I.D. COMPONENTS

We now show the optimal method when the entries of M are i.i.d. sampled. For simplicity, we
order the players such that d1 ≤ d2.

Assumption 3. Assume that each component ofM is sampled iid from a distribution of mean 0 and
variance σ2, and we take d1, d2 →∞ with d1

d2
→ r < 1.

In such case, the spectral distribution of 1
d2
MM> tends to the Marchenko-Pastur law, supported in

[`, L] and with density:

ρMP (λ)
def
=

√
(L− λ)(λ− `)

2πσ2rλ
, where L def

= σ2(1 +
√
r)2, `

def
= σ2(1−

√
r)2. (13)
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Proposition 3.1. WhenM satisfies Assumption 3, the optimal parameter of scheme (11) are

ht = − δt
σ2
√
r
, mt = 1 + ρδt, where ρ = 1+r√

r
, δt = (−ρ− δt−1)−1, δ0 = 0. (14)

Proof. By Theorem 3.1, the problem reduces to finding the optimal average-case algorithm for the
problem minx

1
2‖F (x)‖2. Since the expected spectral distribution of 1

d2
MM> is the Marchenko-

Pastur law, we can use the optimal algorithm from (Pedregosa & Scieur, 2020, Section 5).

4 GENERAL AVERAGE-CASE OPTIMAL METHOD FOR NORMAL OPERATORS

In this section we derive general average-case optimal first-order methods for normal operators.
First, we need to assume the existence of a three-term recurrence for residual orthogonal polynomials
(Assumption 4). As mentioned in subsection 2.4, for general measures in the complex plane, the
existence of a three-term recurrence of orthogonal polynomials is not ensured. In Proposition B.3 in
Appendix B we give a sufficient condition for its existence, and in the next subsection we will show
specific examples where the residual orthogonal polynomials satisfy the three-term recurrence.
Assumption 4 (Simplifying assumption). The sequence of residual polynomials {ψt}t≥0 orthogo-
nal w.r.t. the measure µ, defined on the complex plane, admits the three-term recurrence

ψ−1 = 0, ψ0 = 1, ψt(λ) = (at + btλ)ψt−1(λ) + (1− at)ψt−2(λ). (15)

Under Assumption 4, Theorem 4.1 shows that the optimal algorithm can also be written as an aver-
age of iterates following a simple three-terms recurrence.

Theorem 4.1. Under Assumption 4 and the assumptions of Theorem 2.1, the following algo-
rithm is optimal in the average case, with y−1 = y0 = x0:

yt = atyt−1 + (1− at)yt−2 + btF (yt−1)

xt =
Bt

Bt + βt
xt−1 +

βt
Bt + βt

yt , βt = φ2
t (0), Bt = Bt−1 + βt−1, B0 = 0 . (16)

where (φk(0))k≥0 can be computed using the three-term recurrence (upon normalization).
Moreover, E (A,x?,x0) dist(xt,X ?) converges to zero at rate 1/Bt.

Remark. Notice that it is not immediate that (16) fulfills the definition of first-order algorithms
stated in (2), as yt is clearly a first-order method but xt is an average of the iterates yt. Using that
F is an affine function we see that xt indeed fulfills (2).

Remark. Assumption 4 is needed for the sequence (yt)t≥0 to be computable using a three-term
recurrence. However, for some distribution, the associated sequence of orthogonal polynomials may
admit another recurrence that may not satisfy Assumption 4.

4.1 CIRCULAR SPECTRAL DISTRIBUTIONS

In random matrix theory, the circular law states that ifA is an n×nmatrix with i.i.d. entries of mean
C and variance R2/n, as n → ∞ the spectral distribution of A tends to the uniform distribution
on DC,R. In this subsection we apply Theorem 4.1 to a class of spectral distributions specified by
Assumption 5, which includes the uniform distribution on DC,R. Even though the random matrices
with i.i.d entries are not normal, we will see in section 6 that the empirical results for such matrices
are consistent with our theoretical results under the normality assumption.
Assumption 5. Assume that the expected spectral distribution µA is supported in the complex plane
on the disk DC,R of center C ∈ R, C > 0 and radius R < C. Moreover, assume that the spectral
density is circularly symmetric, i.e. there exists a probability measure µR supported on [0, R] such
for all f measurable and r ∈ [0, R], dµA(C + reiθ) = 1

2π dθ dµR(r).

Proposition 4.1. If µ satisfies Assumption 5, the sequence of orthonormal polynomials is (φt)t≥0,

φt(λ) =
(λ− C)t

Kt,R
, where Kt,R =

√∫ R
0
r2t dµR(r) . (17)
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Example. The uniform distribution in DC,R is to dµR = 2r
R2 dr, and Kt,R = Rt/

√
t+ 1.

From Proposition 4.1, the sequence of residual polynomials is given by φt(λ)/φt(0) =
(
1− λ

C

)t
,

which implies that Assumption 4 is fulfilled with at = 1, bt = − 1
C . Thus, by Theorem 4.1 we have

Theorem 4.2. Given an initialization x0(y0 = x0), if Assumption 5 is fulfilled with R < C
and the assumptions of Theorem 2.1 hold, then the average-case optimal first-order method is

yt = yt−1 − 1
CF (yt−1), βt = C2t/K2

t,R, Bt = Bt−1 + βt−1,

xt =
Bt

Bt + βt
xt−1 +

βt
Bt + βt

yt.
(18)

Moreover, E (A,x?,x0) dist(xt,X ?) converges to zero at rate 1/Bt.

We now compare Theorem 4.2 with worst-case methods studied in Azizian et al. (2020). They give
a worst-case convergence lower bound of (R/C)2t on the quantity dist(zt,X ?) for first-order meth-
ods (zt)t≥0 on matrices with eigenvalues in the disk DC,R. By the classical analysis of first-order
methods, this rate is achievable by gradient descent with stepsize 1/C, i.e. the iterates yt defined in
(18). However, by equation (79) in Proposition D.3 we have that under slight additional assumptions
(those of Proposition 5.2), limt→∞ E [dist(xt,X ?)]/E [dist(yt,X ?)] = 1− R2

C2 holds. That is, the
average-case optimal algorithm outperforms gradient descent by a constant factor depending on the
conditioning R/C.

5 ASYMPTOTIC BEHAVIOR

The recurrence coefficients of the average-case optimal method typically converges to limiting val-
ues when t → ∞, which gives an ”average-case asymptotically optimal first-order method” with
constant coefficients. For the case of symmetric operators with spectrum in [`, L], Scieur & Pe-
dregosa (2020) show that under mild conditions, the asymptotically optimal algorithm is the Polyak
momentum method with coefficients depending only on ` and L. For bilinear games, since the
average-case optimal algorithm is the average-case optimal algorithm of an optimization algorithm,
we can make use of their framework to obtain the asymptotic algorithm (see Theorem 3 of Scieur &
Pedregosa (2020)).
Proposition 5.1. Assume that the expected spectral density µMM> ofMM> is supported in [`, L]
for 0 < ` < L, and strictly positive in this interval. Then, the asymptotically optimal algorithm for
bilinear games is the following version of Polyak momentum:

gt = F (xt − F (xt))− F (xt)

xt+1 = xt +
(√

L−
√
`√

L+
√
`

)2

(xt−1 − xt)−
(

2√
L+
√
`

)2

gt
(19)

Notice that the algorithm in (19) is the worst-case optimal algorithm from Proposition 4 of Azizian
et al. (2020). For the case of circularly symmetric spectral densities with support on disks, we can
also compute the asymptotically optimal algorithm.
Proposition 5.2. Suppose that the assumptions of Theorem 4.2 hold with µR ∈ P([0, R]) fulfilling
µR([r,R]) = Ω((R − r)κ) for r in [r0, R] for some r0 ∈ [0, R) and for some κ ∈ Z. Then, the
average-case asymptotically optimal algorithm is, with y0 = x0:

yt = yt−1 − 1
CF (yt−1),

xt =
(
R
C

)2
xt−1 +

(
1−

(
R
C

)2)
yt.

(20)

Moreover, the convergence rate for this algorithm is asymptotically the same one as for the optimal
algorithm in Theorem 4.2. Namely, limt→∞ E [dist(xt,X ?)]Bt = 1.

The condition on µR simply rules out cases in which the spectral density has exponentially small
mass around 1. It is remarkable that in algorithm (20) the averaging coefficients can be expressed so
simply in terms of the quantity R/C. Notice also that while the convergence rate of the algorithm
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is slower than the convergence rate for the optimal algorithm by definition, both rates match in the
limit, meaning that the asymptotically optimal algorithm also outperforms gradient descent by a
constant factor 1− R2

C2 in the limit t→∞.

6 EXPERIMENTS

We compare some of the proposed methods on settings with varying degrees of mismatch with our
assumptions.

Bilinear Games. We consider min-max bilinear problems of the form (10), where the entries of
M are generated i.i.d. from a standard Gaussian distribution. We vary the ratio r = d/n parameter
for d = 1000 and compare the average-case optimal method of Theorems 3.1 and 5.1, the asymp-
totic worst-case optimal method of (Azizian et al., 2020) and extragradient (Korpelevich, 1976). In
all cases, we use the convergence-rate optimal step-size assuming knowledge of the edges of the
spectral distribution.

The spectral density for these problems is displayed in the first row of Figure 1 and the benchmark
results on the second row. Average-case optimal methods always outperform other methods, and the
largest gain is in the ill-conditioned regime (r ≈ 1).

Circular Distribution. For our second experiment we choose A as a matrix with iid Gaussian
random entries, therefore the support of the distribution of its eigenvalue is a disk. Note that A
does not satisfy the normality assumption of Assumption 2. Figure 1 (third row) compares the
average-case optimal methods from Theorems 4.2 and 5.2 on two datasets with different levels of
conditioning. Note that the methods converge despite the violation of Assumption 2, suggesting a
broader applicability than the one proven in this paper. We leave this investigation for future work.

7 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we presented a general framework for the design of optimal algorithms in the average-
case for affine operators F , whose underlying matrix is possibly non-symmetric. However, our
approach presents some limitations, the major one being the restriction to normal matrices. Fortu-
nately, the numerical experiments above suggests that this assumption can be relaxed. Developing a
theory without that assumption is left for future work. Another avenue for future work is to analyze
the nonlinear-case in which the non-symmetric operatorA is non-linear, as well as the case in which
it is accessed through a stochastic estimator (as done by (Loizou et al., 2020) for the worst-case anal-
ysis).
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Figure 1: Benchmarks and spectral density for different games. Top row: spectral density asso-
ciated with bilinear games for varying values of the ratio parameter r = n/d (the x-axis represents
the imaginary line). Second row: Benchmarks. Average-case optimal methods always outperform
other methods, and the largest gain is in the ill-conditioned regime (r ≈ 1). Third row. Bench-
marks (columns 1 and 3) and eigenvalue distribution of a design matrix generated with iid entries
for two different degrees of conditioning. Depite the normality assumption not being satisfied, we
still observe an improvement of average-case optimal methods vs worst-case optimal ones.
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A PROOF OF THEOREM 2.1

A.1 PRELIMINARIES

Before proving Theorem 2.1, we quickly analyze the distance function (1), recalled below,

dist(x, X ?) def
= min
v∈X?

‖x− v‖2.

The definition of the distance function is not practical for the theoretical analysis. Fortunately, it
is possible to find a simple expression that uses the orthogonal projection matrix Π to the kernel
Ker(A). Since Π is an orthogonal projection matrix to the kernel of a linear transformation, it
satisfies

Π = ΠT , Π2 = Π, and AΠ = 0. (21)
The normality assumption onA implies also that

ΠA = 0. (22)

Indeed, the spectral decomposition ofA is

A = [U1|U2]

[
Λ 0
0 0

]
[U1|U2]∗,

and then Π = U2U
∗
2 . The next proposition uses Π to derive the explicit solution of the (1).

Proposition A.1. We have that

dist(y, X ?) = ‖(I −Π)(y − x?)‖2 ∀x? ∈ X ?.

Proof. We first parametrize the set of solution X ?. By definition we have

X ? = {x : A(x− x?) = 0}.

Which can be written in terms of the kernel ofA as

X ? = {x? + Πw : w ∈ Rd}.

From this, we can rewrite the distance function (1) as

dist(y, X ?) = min
w∈Rd

‖y − (x? + Πw)‖2.

The minimum can be attained at different points, but in particular atw = −(y−x?), which proves
the statement.

We now simplifies further the result of the previous proposition in the case where xt is generated by
a first order method.
Proposition A.2. For every iterate xt of a first-order methods, i.e., xt satisfies

xt − x? = Pt(A)(x0 − x?), deg(Pt) ≤ t, P (0) = I,

we have that

dist(xt, X ?) = ‖xt − x?‖2 − ‖Π(x0 − x?)‖2.

Proof. We start with the result of Proposition A.1,

dist(xt, X ?) = ‖(I −Π)(xt − x?)‖2.

The norm can be split into

‖(I −Π)(xt − x?)‖2 = ‖xt − x?‖2 + ‖ Π2︸︷︷︸
=Π by (21)

(xt − x?)‖2 − 2‖Π(xt − x?)‖2

= ‖xt − x?‖2 − ‖Π(xt − x?)‖2.

Since xt is generated by a first order method, we have

xt − x? = Pt(A)(x0 − x?), Pt(0) = 1.

11
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Since P (0) = 1, the polynomial can be factorized as P (A) = I + AQt−1(A), Qt−1 being a
polynomial of degree t− 1. Therefore, ‖Π(xt − x?)‖2 reads

‖Π(xt − x?)‖2 = ‖Π (I +AQt−1(A)) (x0 − x?)‖2

= ‖Π(x0 − x?) + ΠA︸︷︷︸
=0 by (22)

Qt−1(A)(x0 − x?)‖2

= ‖Π(x0 − x?)‖2 ,

which prove the statement.

A.2 PROOF OF THE THEOREM

We are now ready to prove the main result.

Theorem 2.1. Consider the application of a first-order method associated to the sequence of poly-
nomials {Pt} (Proposition 2.1) on the problem (NSO). Let µ be the expected spectral distribution of
A. Under Assumptions 1 and 2, we have

E[dist(xt,X ?)] = R2

∫
C\{0}

|Pt|2 dµ , (7)

Proof. We start with the result of Proposition A.2,

dist(xt, X ?) = ‖xt − x?‖2 − ‖Π(x0 − x?)‖2.

We now write the expectation of the distance function,

E[dist(xt, X ?)] = E
[
‖xt − x?‖2 − ‖Π(x0 − x?)‖2

]
= E

[
‖Pt(A)(x0 − x?)‖2 − ‖Π(x0 − x?)‖2

]
= E

[
trPt(A)Pt(A)T (x0 − x?) (x0 − x?)T − tr Π2(x0 − x?)(x0 − x?)T

]
= EA

[
trPt(A)Pt(A)TE

[
(x0 − x?) (x0 − x?)T |A

]
− tr ΠE

[
(x0 − x?)(x0 − x?)T |A

]]
= REA

[
trPt(A)Pt(A)T − tr Π

]
= RE

[
d∑
i=1

|P (λi)|2 − tr Π

]

= RE

[∫
C\{0}

|P (λ)|2δλi(λ) + |P (0)|2 · [# zero eigenvalues]− tr Π

]

However, |P (0)|2 = 1 and tr Π corresponds to the number of zero eigenvalues ofA, therefore,

E[dist(xt, X ?)] = RE

[∫
C\{0}

|P (λ)|2δλi(λ)

]
= R

∫
C\{0}

P (λ)µ(λ).

B PROOFS OF THEOREM 3.1 AND PROPOSITION 3.1

Proposition B.1. [Block determinant formula] If A,B,C,D are (not necessarily square) matrices,

det
[
A B
C D

]
= det(D)det(A−BD−1C), (23)

if D is invertible.

12



Published as a conference paper at ICLR 2021

Definition 6 (Pushforward of a measure). Recall that the pushforward f∗µ of a measure µ by a
function f is defined as the measure such that for all measurable g,∫

g(λ) d(f∗µ)(λ) =

∫
g(f(λ)) dµ(λ). (24)

Equivalently, if X is a random variable with distribution µ, then f(X) has distribution f∗µ.

Proposition B.2. Assume that the dimensions of M ∈ Rdx×dy fulfill dx ≤ dy and let r = dx/dy .
Let µMM> be the expected spectral distribution of the random matrix MM> ∈ Rdx×dx , and
assume that it is absolutely continuous with respect to the Lebesgue measure. The expected spectral
distribution ofA is contained in the imaginary line and is given by

µA(iλ) =

(
1− 2

1 + 1
r

)
δ0(λ) +

2|λ|
1 + 1

r

µMM>(λ2) . (25)

for λ ∈ R. If dx ≥ dy , then (25) holds with µM>M in place of µMM> and 1/r in place of r.

Proof. By the block determinant formula, we have that for s 6= 0,

det (sId1+d2 −A) =

∣∣∣∣sId1 −M
M> sId2

∣∣∣∣ = det(sId2)det(sId1 +Ms−1Id2M
>)

= sd2−d1det(s2Id1 +MM>)

(26)

Thus, for every eigenvalue −λ ≤ 0 of −MM>, both i
√
λ and −i

√
λ are eigenvalues of A. Since

rank(MM>) = rank(M), we have rank(A) = 2rank(M). Thus, the rest of the eigenvalues of A
are 0 and there is a total of d− 2d1 = d2 − d1 of them. Notice that

d1

d1 + d2
=

1
d1+d2
d1

=
1

1 + 1
r

(27)

Let f+(λ) = i
√
λ, f−(λ) = −i

√
λ, and let (f+)∗µMM> (resp., (f−)∗µMM> ) be the pushforward

measure of µMM> by the function f+ (resp., f−). Thus, by the definition of the pushforward
measure (Definition 6),

µA(iλ) =

(
1− 2

1 + 1
r

)
δ0(λ) +

1

1 + 1
r

(f+)∗µMM>(λ) +
1

1 + 1
r

(f−)∗µMM>(λ) (28)

We compute the pushforwards (f+)∗µMM> , (f−)∗µMM> performing the change of variables y =

±i
√
λ under the assumption that µMM>(λ) = ρMM>(λ)dλ:∫

R≥0

g
(
±i
√
λ
)

dµMM>(λ) =

∫
R≥0

g
(
±i
√
λ
)
ρMM>(λ)dλ =

∫
±iR≥0

g (y) ρMM>(|y|2)2|y|d|y|,

(29)

which means that the density of (f+)∗µMM> at y ∈ iR≥0 is 2|y|ρMM>(|y|2) and the density of
(f−)∗µMM> at y ∈ −iR≥0 is also 2|y|ρMM>(|y|2).

Proposition B.3. The condition

∀P,Q polynomials 〈P (λ), λQ(λ)〉 = 0 =⇒ 〈λP (λ), Q(λ)〉 = 0 (30)

is sufficient for any sequence (Pk)k≥0 of orthogonal polynomials of increasing degrees to satisfy a
three-term recurrence of the form

γkPk(λ) = (λ− αk)Pk−1(λ)− βkPk−2(λ), (31)

where

γk =
〈λPk−1(λ), Pk(λ)〉
〈Pk(λ), Pk(λ)〉

, αk =
〈λPk−1(λ), Pk−1(λ)〉
〈Pk−1(λ), Pk−1(λ)〉

, βk =
〈λPk−1(λ), Pk−2(λ)〉
〈Pk−2(λ), Pk−2(λ)〉

(32)

13
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Proof. Since λPk−1(λ) is a polynomial of degree k, and (Pj)0≤j≤k is a basis of the polynomials of
degree up to k, we can write

λPk−1(λ) =

k∑
j=0

〈λPk−1, Pj〉
〈Pj , Pj〉

Pj(λ) (33)

Now, remark that for all j < k − 2, 〈Pk−1, λPj〉 = 0 because the inner product of Pk−1 with
a polynomial of degree at most k − 2. If we make use of the condition (30), this implies that
〈λPk−1, Pj〉 = 0 for all j < k − 2. Plugging this into (33), we obtain (31).

Proposition B.4. Let ΠR
t be the set of polynomials with real coefficients and degree at most t. For

t ≥ 0 even, the minimum of the problem

min
Pt∈ΠR

t ,Pt(0)=1

∫
iR\{0}

|Pt(λ)|2|λ|ρMM>(|λ|2) d|λ| (34)

is attained by an even polynomial with real coefficients.

Proof. Since dµ(iλ)
def
= |λ|ρMM>(|λ|2) d|λ| is supported in the imaginary axis and is symmetric

with respect to 0, for all polynomials P,Q,

〈λP (λ), Q(λ)〉 =

∫
iR
λP (λ)Q(λ)∗dµ(λ) = −

∫
iR
P (λ)λ∗Q(λ)∗dµ(λ) = −〈P (λ), λQ(λ)〉.

(35)

Hence, 〈P (λ), λQ(λ)〉 = 0 implies 〈λP (λ), Q(λ)〉 = 0. By Proposition B.3, a three-term recur-
rence (31) and (32) for the orthonormal sequence (φt)t≥0 of polynomials holds.

By Proposition B.5, the orthonormal polynomials (φt)t≥0 of even (resp. odd) degree are even (resp.
odd) and have real coefficients. Hence, for all t ≥ 0 even∑t

k=0 φk(λ)φk(0)∗∑t
k=0 |φk(0)|2

=

∑t/2
k=0 φ2k(λ)φ2k(0)∗∑t/2

k=0 |φ2k(0)|2
(36)

is an even polynomial with real coefficients. By Theorem 2.3, this polynomial attains the minimum
of the problem

min
Pt∈ΠC

t ,Pt(0)=1

∫
iR\{0}

|Pt(λ)|2|λ|ρMM>(|λ|2) d|λ| (37)

and, a fortiori, the minimum of the problem in (34), in which the minimization is restricted polyno-
mials with real coefficients instead of complex coefficients.

Proposition B.5. The polynomials (φt)t≥0 of the orthonormal sequence corresponding to the mea-
sure µ(iλ) = |λ|ρMM>(|λ|2)d|λ| have real coefficients and are even (resp. odd) for even (resp.
odd) k.

Proof. The proof is by induction. The base case follows from the choice φ0 = 1. Assuming that
φk−1 ∈ R[X] by the induction hypothesis, we show that αk = 0 (where αk is the coefficient from
(31) and (32)):

〈λφk−1(λ), φk−1(λ)〉 =

∫
iR
λ|φk−1(λ)|2|λ|ρMM>(|λ|2)d|λ|

=

∫
R≥0

iλ(|φk−1(iλ)|2 − |φk−1(−iλ)|2)λρMM>(λ2)dλ = 0
(38)

The last equality follows from |φk−1(iλ)|2 = |φk−1(−iλ)|2, which holds because φk−1(iλ)∗ =
φk−1(−iλ), and in turn this is true because φk−1 ∈ R[X] by the induction hypothesis.

Once we have seen that αk = 0, it is straightforward to apply the induction hypothesis once again
to show that φk also satisfies the even/odd property. Namely, for k even (resp. odd), γkPk =
λPk−1 − βkPk−2, and the two polynomials in the right-hand side have even (resp. odd) degrees.
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Finally, φk must have real coefficients because φk−1 and φk−2 have real coefficients by the induction
hypothesis, and the recurrence coefficient βk is real, as

〈λPk−1(λ), Pk−2(λ)〉 =

∫
iR
λφk−1(λ)φk−2(λ)∗|λ|ρMM>(|λ|2)d|λ|

=

∫
R≥0

iλ(φk−1(iλ)φk−2(iλ)∗ − φk−1(iλ)∗φk−2(iλ))λρMM>(λ2)dλ

= −
∫
R≥0

2λIm(φk−1(iλ)φk−2(iλ)∗)λρMM>(λ2)dλ ∈ R.

(39)

Proposition B.6. Let t ≥ 0 even. Assume that on R>0, the expected spectral density µMM> has
Radon-Nikodym derivative ρMM> with respect to the Lebesgue measure. If

Q?t/2
def
= arg min

Pt/2∈ΠR
t/2,

Pt/2(0)=1

∫
R>0

Pt/2(λ)2 dµ−A2(λ), (40)

and

P ?t
def
= arg min

Pt∈ΠR
t ,

Pt(0)=1

∫
iR\{0}

|Pt(λ)|2|λ|ρMM>(|λ|2) d|λ|, (41)

then P ?t (λ) = Q?t/2(−λ2).

Proof. First, remark that the equalities in (40) and (41) are well defined because the arg min are
unique by Theorem 2.3. Without loss of generality, assume that dx ≤ dy (otherwise switch the

players), and let r def
= dx/dy < 1. Since,

−A2 =

[
MM> 0

0 M>M

]
, (42)

each eigenvalue of MM> ∈ Rdx×dx is an eigenvalue of −A2 with doubled duplicity, and the rest
of eigenvalues are zero. Hence, we have µ−A2 =

(
1− 2/(1 + 1

r )
)
δ0 + 2µMM>/(1 + 1

r ). Thus,
for all t ≥ 0,

Q?t = arg min
Pt∈ΠR

t ,
Pt(0)=1

∫
R>0

Pt(λ)2 dµ−A2(λ) = arg min
Pt∈ΠR

t ,
Pt(0)=1

∫
R>0

Pt(λ)2ρMM>(λ) dλ (43)

By Proposition B.4, for an even t ≥ 0 the minimum in (41) is attained by an even polynomial with
real coefficients. Hence,

min
Pt∈ΠR

t ,
Pt(0)=1

∫
iR\{0}

|Pt(λ)|2|λ|ρMM>(|λ|2) d|λ| = min
Pt/2∈ΠR

t/2,

Pt/2(0)=1

∫
iR\{0}

|Pt/2(λ2)|2|λ|ρMM>(|λ|2) d|λ|

= 2 min
Pt/2∈ΠR

t/2,

Pt/2(0)=1

∫
R>0

|Pt/2((iλ)2)|2λρMM>(λ2) dλ = 2 min
Pt/2∈ΠR

t/2,

Pt/2(0)=1

∫
R>0

Pt/2(λ2)2λρMM>(λ2) dλ

= min
Pt/2∈ΠR

t/2,

Pt/2(0)=1

∫
R>0

Pt/2(λ)2ρMM>(λ) dλ

(44)

Moreover, for any polynomialQt/2 that attains the minimum on the right-most term, the polynomial

Pt(λ) = Qt/2(−λ2) attains the minimum on the left-most term. In particular, using (43), P ?t (λ)
def
=

Q?t/2(−λ2) attains the minimum on the left-most term.

15



Published as a conference paper at ICLR 2021

Theorem 3.1. Suppose that Assumption 1 holds and that the expected spectral distribution of
MM> is absolutely continuous with respect to the Lebesgue measure. Then, the method (11)
is average-case optimal for bilinear games when ht, mt are chosen to be the coefficients of the
average-case optimal minimization of 1

2‖F (x)‖2.

Proof. Making use of Theorem 2.1 and Proposition B.2, we obtain that for any first-order method
using the vector field F ,

E[dist(xt,X ?)] = R2

∫
C\{0}

|Pt(λ)|2 dµA(λ) =
2R2

1 + 1
r

∫
iR\{0}

|Pt(λ)|2|λ|ρMM>(|λ|2) d|λ|

(45)

Let Q?t/2, P
?
t be as defined in (41) and (40). For t ≥ 0 even the iteration t of the average-case

optimal method for the bilinear game must satisfy

xt − PX?(x0) = P ?t (A)(x0 − PX?(x0)) = Q?t/2(−A2)(x0 − PX?(x0)) (46)

On the other hand, the first-order methods for the minimization of the function 1
2‖F (x)‖2 make use

of the vector field ∇
(

1
2‖F (x)‖2

)
= A>(Ax + b) = −A2(x − x?). Let µ−A2 be the spectral

density of −A2. By Theorem 2.1, the average-case optimal first-order method for the minimization
problem is the one for which the residual polynomial Pt (Proposition 2.1) minimizes the functional∫
R P

2
t dµ−A2 . That is, the residual polynomial is Q?t . From (46), we see that the t-th iterate of the

average-case optimal method for F is equal to the t/2-th iterator of the average-case optimal method
for ∇

(
1
2‖F (x)‖2

)
.

C PROOFS OF THEOREM 4.1 AND THEOREM 4.2

Theorem 4.1. Under Assumption 4 and the assumptions of Theorem 2.1, the following algorithm is
optimal in the average case, with y−1 = y0 = x0:

yt = atyt−1 + (1− at)yt−2 + btF (yt−1)

xt =
Bt

Bt + βt
xt−1 +

βt
Bt + βt

yt , βt = φ2
t (0), Bt = Bt−1 + βt−1, B0 = 0 . (16)

where (φk(0))k≥0 can be computed using the three-term recurrence (upon normalization). More-
over, E (A,x?,x0) dist(xt,X ?) converges to zero at rate 1/Bt.

Proof. We prove by induction that

xt − x? =

∑t
k=0 φk(A)φk(0)∗∑t

k=0 φk(0)2
(x0 − x?) (47)

The base step t = 0 holds trivially because φ0 = 1. Assume that (47) holds for t − 1. Subtracting
x? from (16), we have

xt − x? =

∑t−1
k=0 φk(0)2∑t
k=0 φk(0)2

(xt−1 − x?) +
φt(0)2∑t
k=0 φk(0)2

(yt − x?) (48)

If

φt(0)2(yt − x?) = φt(0)φt(A)(x0 − x?), (49)

by the induction hypothesis for t− 1 and (48), we have

xt − x? =

∑t−1
k=0 φt(0)φt(A)∑t
k=0 φk(0)2

(x0 − x?) +
φt(0)φt(A)∑t
k=0 φk(0)2

(x0 − x∗)

=

∑t
k=0 φt(0)φt(A)∑t
k=0 φk(0)2

(x0 − x∗),
(50)
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which concludes the proof of (47). The only thing left is to show (49), again by induction. The base
case follows readily from y0 = x0 in (16). Dividing by φt(0)2, we rewrite (49) as

yt − x? =
φt(A)

φt(0)
(x0 − x?) = ψt(A)(x0 − x?), (51)

where ψt is the t-th orthogonal residual polynomial of sequence. By Assumption 4, ψt must satisfy
the recurrence in (15). If we subtract x∗ from the second line of (16), we apply the induction
hypothesis and then the recurrence in (15), we obtain

yt − x? = at(yt−1 − x?) + (1− at)(yt−2 − x?) + btF (yt−1)

= at(yt−1 − x?) + (1− at)(yt−2 − x?) + btA(yt−1 − x∗)
= atψt−1(A)(x0 − x?) + (1− at)ψt−2(A)(x0 − x?) + btAψt−1(A)(x0 − x?)
= ψt(A)(x0 − x?),

(52)

thus concluding the proof of (49).

Proposition C.1. Suppose that Assumption 5 holds with C = 0, that is, the circular support of µ is
centered at 0. Then, the basis of orthonormal polynomials for the scalar product

〈P,Q〉 =

∫
DR,0

P (λ)Q(λ)∗ dµ(λ) is φk(λ) =
λk

Dk,R
, ∀k ≥ 0, (53)

where Kk,R =
√

2π
∫ R

0
r2kdµR(r).

Proof. First, we will show that if µ satisfies Assumption 5 with C = 0, then 〈λi, λj〉 = 0 if j, k ≥ 0
with j 6= k (without loss of generality, suppose that j > k).

〈λj , λk〉 =

∫
DR,0

λj(λ∗)k dµ(λ) =

∫
DR,0

λj−k|λ|2k dµ(λ)

=

∫ R

0

1

2π

∫ 2π

0

(reiθ)j−kr2k dθ dµR(r) =
1

2π

∫ 2π

0

eiθ(j−k) dθ

∫ R

0

rj+k dµR(r)

=
ei2π − 1

2πi(j − k)

∫ R

0

rj+k dµR(r) = 0

(54)

And for all k ≥ 0,

〈λk, λk〉 =

∫
DR,0

|λk|2 dµ(λ) =

∫ R

0

1

2π

∫ 2π

0

r2k dθ dµR(r) =

∫ 2π

0

r2k dµR(r). (55)

Proposition 4.1. If µ satisfies Assumption 5, the sequence of orthonormal polynomials is (φt)t≥0,

φt(λ) =
(λ− C)t

Kt,R
, where Kt,R =

√∫ R
0
r2t dµR(r) . (17)

Proof. The result follows from Proposition C.1 using the change of variables z → z + C. To
compute the measure µR for the uniform measure on DC,R, we perform a change of variables to
circular coordinates:∫

DC,R

f(λ) dµ(λ) =
1

πR2

∫ R

0

∫ 2π

0

f(C + reiθ)r dθ dr =

∫ R

0

∫ 2π

0

f(C + reiθ) dθ dµR(r).

=⇒ dµR(r) =
r

πR2
dr

(56)

And ∫ R

0

r2t dµR(r) =
1

πR2

∫ R

0

r2t+1 dr =
1

π

R2t

2t+ 2
=⇒ Kt,R = Rt/

√
t+ 1. (57)
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Theorem 4.2. Given an initialization x0(y0 = x0), if Assumption 5 is fulfilled with R < C and the
assumptions of Theorem 2.1 hold, then the average-case optimal first-order method is

yt = yt−1 − 1
CF (yt−1), βt = C2t/K2

t,R, Bt = Bt−1 + βt−1,

xt =
Bt

Bt + βt
xt−1 +

βt
Bt + βt

yt.
(18)

Moreover, E (A,x?,x0) dist(xt,X ?) converges to zero at rate 1/Bt.

Proof. By Proposition 4.1, the sequence of residual orthogonal polynomials is given by ψt(λ) =

φt(λ)/φt(0) =
(
1− λ

C

)t
. Hence, Assumption 4 is fulfilled with at = 1, bt = − 1

C , as ψt(λ) =

ψt−1(λ) − λ
Cψt−1(λ). We apply Theorem 4.1 and make use of the fact that φk(0)2 = C2k

K2
t,R

. See

Proposition D.3 for the rate on dist(xt,X ?).

D PROOF OF PROPOSITION 5.2

Proposition D.1. Suppose that the assumptions of Theorem 4.2 hold with the probability measure
µR fulfilling µR([r,R]) = Ω((R − r)κ) for r in [r0, R] for some r0 ∈ [0, R) and for some κ ∈ Z.
Then,

lim
t→∞

C2t

K2
t,R∑t

k=0
C2k

K2
k,R

= 1− R2

C2
. (58)

Proof. Given ε > 0, let cε ∈ Z≥0 be the minimum such that

1∑cε
i=0

(
R2

C2

)i ≤ (1 + ε)
1∑∞

i=0

(
R2

C2

)i = (1 + ε)

(
1− R2

C2

)
(59)

Define Qt,R
def
= R2t

K2
t,R

. Then,

C2t

K2
t,R∑t

k=0
C2k

K2
k,R

=
C2t

R2tQt,R∑t
k=0

C2k

R2kQk,R
=

Qt,R∑t
k=0

(
R2

C2

)t−k
Qk,R

(60)

Now, on one hand, using that Qt,R is an increasing sequence on t,

Qt,R∑t
k=0

(
R2

C2

)t−k
Qk,R

≥ 1∑t
k=0

(
R2

C2

)t−k ≥ 1∑∞
k=0

(
R2

C2

)k = 1− R2

C2
(61)

On the other hand, for t ≥ cε,
Qt,R∑t

k=0

(
R2

C2

)t−k
Qk,R

≤ Qt,R∑t
k=t−cε

(
R2

C2

)t−k
Qk,R

=
Qt,R∑t

k=t−cε

(
R2

C2

)t−k (
Qt,R −

∫ t
k
d
dsQs,R ds

)
(62)

Thus, we want to upper-bound
∫ t
k
d
dsQs,R ds. First, notice that

d

ds
Qs,R =

d

ds

(∫ R

0

( r
R

)2s

dµR(r)

)−1

=

∫ R
0

(
r
R

)2s (− log( rR )
)

dµR(r)(∫ R
0

(
r
R

)2s
dµR(r)

)2 (63)

By concavity of the logarithm function we obtain log(Rr ) ≤ R
r0
− 1 for r ∈ [r0, R]. Choose r0 close

enough to R so that R
r0
− 1 ≤ ε/cε. We obtain that∫ R

0

( r
R

)2s

log

(
R

r

)
dµR(r) ≤

∫ r0

0

( r
R

)2s

log

(
R

r

)
dµR(r) +

∫ R

r0

( r
R

)2s
(
R

r0
− 1

)
dµR(r).

(64)
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Thus,

∫ t

k

d

ds
Qs,R ds ≤

∫ t

k

∫ r0
0

(
r
R

)2s
log
(
R
r

)
dµR(r)(∫ R

0

(
r
R

)2s
dµR(r)

)2 ds+

∫ t

k

∫ R
r0

(
r
R

)2s ( R
r0
− 1
)

dµR(r)(∫ R
0

(
r
R

)2s
dµR(r)

)2 ds. (65)

Using that log x ≤ x, for k ∈ [t− cε, t] we can bound the first term of (65) as∫ t

k

∫ r0
0

(
r
R

)2s
log
(
R
r

)
dµR(r)(∫ R

0

(
r
R

)2s
dµR(r)

)2 ds ≤
∫ t

k

∫ r0
0

(
r
R

)2s−1
dµR(r)(∫ R

0

(
r
R

)2s
dµR(r)

)2 ds

≤ (t− k)

(
r0
R

)2k−1(∫ R
0

(
r
R

)2t
dµR(r)

)2

≤ cε
(r0

R

)2(t−cε)−1

Q2
t,R

≤ cε
(r0

R

)2(t−cε)−1 1

(c1)2
(2t+ 1)2κ t→∞−−−→ 0.

(66)

In the last inequality we use that by Proposition D.2, for t large enough, Qt,R = R2t

K2
t,R
≤ (2t +

1)k/c1. For k ∈ [t− cε, t], the second term of (65) can be bounded as∫ t

k

∫ R
r0

(
r
R

)2s R
r0

dµR(r)(∫ R
0

(
r
R

)2s
dµR(r)

)2 ds ≤ (t− k)

(
R

r0
− 1

)
1∫ R

0

(
r
R

)2t
dµR(r)

≤ cε
(
R

r0
− 1

)
1∫ R

0

(
r
R

)2t
dµR(r)

≤ εQt,R.

(67)

From (65), (66) and (67), we obtain that for t large enough, for k ∈ [t− cε, t],∫ t

k

d

ds
Qs,R ds ≤ 2εQt,R. (68)

Hence, we can bound the right-hand side of (62):

Qt,R∑t
k=t−cε

(
R2

C2

)t−k (
Qt,R −

∫ t
k
d
dsQs,R ds

) ≤ Qt,R∑t
k=t−cε

(
R2

C2

)t−k
(Qt,R − 2εQt,R)

=
1

(1− 2ε)
∑t
k=t−cε

(
R2

C2

)t−k =
1

(1− 2ε)
∑cε
k=0

(
R2

C2

)k ≤ 1 + ε

1− 2ε

(
1− R2

C2

)
.

(69)

The last inequality follows from the definition of cε in (59). Since ε is arbitrary, by the sandwich
theorem applied on (60), (61) and (69),

lim
t→∞

C2t

K2
t,R∑t

k=0
C2k

K2
k,R

= 1− R2

C2
. (70)

Proposition D.2. Under the assumptions of Theorem 4.2, we have that there exists c1 > 0 such that
for t large enough,

K2
t,R ≥ c1R2t(2t+ 1)−κ. (71)
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Proof. By the assumption on µR, there exist r0, c1, κ > 0 such that

K2
t,R

def
= 2π

∫ R

0

r2t dµR(r) = 2π

∫ r0

0

r2t dµR(r) + 2π

∫ R

r0

r2t dµR(r)

≥ 2πc1

∫ R

r0

r2t(R− r)κ−1 dr = −2πc1

∫ r0

0

r2t(R− r)κ−1 dr + 2πc1

∫ R

0

r2t(R− r)κ−1 dr

≥ −2πc1Rr
2t
0 + 2πc1R

2t+κB(2t+ 1, κ).
(72)

where the beta function B(x, y) is defined as

B(x, y)
def
=

∫ 1

0

rx+1(1− r)y+1 dr. (73)

Using the link between the beta function and the gamma function B(x, y) = Γ(x)Γ(y)/Γ(x + y),
and Stirling’s approximation, we obtain that for fixed y and large x,

B(x, y) ∼ Γ(y)x−y. (74)

Hence, for t large enough, B(2t+ 1, κ) ∼ Γ(κ)(2t+ 1)−κ = (κ− 1)!(2t+ 1)−κ. Hence, from (72)
we obtain that there exist c′1 depending only on κ and r0 such that for t large enough

K2
t,R ≥ −2πc1Rr

2t
0 + 2πc1R

2t+κ(k − 1)!(2t+ 1)−κ ≥ c′1R2t(2t+ 1)−κ. (75)

Proposition 5.2. Suppose that the assumptions of Theorem 4.2 hold with µR ∈ P([0, R]) fulfilling
µR([r,R]) = Ω((R − r)κ) for r in [r0, R] for some r0 ∈ [0, R) and for some κ ∈ Z. Then, the
average-case asymptotically optimal algorithm is, with y0 = x0:

yt = yt−1 − 1
CF (yt−1),

xt =
(
R
C

)2
xt−1 +

(
1−

(
R
C

)2)
yt.

(20)

Moreover, the convergence rate for this algorithm is asymptotically the same one as for the optimal
algorithm in Theorem 4.2. Namely, limt→∞ E [dist(xt,X ?)]Bt = 1.

Proof. The proof follows directly from Theorem 4.2 and Proposition D.1. See (77) and (79) in
Proposition D.3 for the statement regarding the convergence rate.

Proposition D.3. For the average-case optimal algorithm (18),

Edist(xt,X ?) = ξopt(t)
def
=

1∑t
k=0

C2k

K2
k,R

(76)

For the average-case asymptotically optimal algorithm (20),

Edist(xt,X ?) = ξasymp(t)
def
=

(
1−

(
R

C

)2
)2 t∑

k=1

K2
k,R

C2k

(
R

C

)4(t−k)

+

(
R

C

)4t

(77)

For the iterates yt in (18), i.e. gradient descent with stepsize 1/C, we have

Edist(yt,X ?) = ξGD(t)
def
=
K2
t,R

C2t
(78)

Moreover, for all t ≥ 0, we have ξopt(t) ≤ ξasymp(t), and under the assumptions of (5.1),

lim
t→∞

ξopt(t)

ξasymp(t)
= 1, lim

t→∞

ξopt(t)

ξGD(t)
=
ξasymp(t)

ξGD(t)
= 1−

(
R

C

)2

(79)
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Proof. To show (76), (77), (78), we use the expression xt−x? = Pt(A)(x0−x?) (Proposition 2.1)
and then evaluate ‖Pt‖2µ =

∫
C\{0} |Pt|

2 dµ (Theorem 2.1).

For (76), the value of ‖Pt‖2µ follows directly from Theorem 2.3, which states that the value for the
optimal residual polynomial Pt is

1∑t
k=0 |φk(0)|2

=
1∑t

k=0
C2k

K2
k,R

. (80)

A simple proof by induction shows that for the asymptotically optimal algorithm (20), the following
expression holds for all t ≥ 0:

xt − x? =

((
R

C

)2t

+

(
1−

(
R

C

)2
)

t∑
k=1

(
1− A

C

)k (
R

C

)2(t−k)
)

(x0 − x?) (81)

Thus,

Pt(λ) =

(
R

C

)2t

+

(
1−

(
R

C

)2
)

t∑
k=1

(
1− λ

C

)k (
R

C

)2(t−k)

=

(
R

C

)2t

φ0(λ) +

(
1−

(
R

C

)2
)

t∑
k=1

Kk,R

Ck
φk(λ)

(
R

C

)2(t−k)

,

(82)

which concludes the proof of (77), as

‖Pt‖2µ =

(
1−

(
R

C

)2
)2 t∑

k=1

K2
k,R

C2k

(
R

C

)4(t−k)

+

(
R

C

)4t

. (83)

By equation (52),

yt − x? =

(
1− A

C

)t
(y0 − x?) =

Kt,R

Ct
φk(A)(y0 − x?) (84)

Thus, for the yt iterates, ‖Pt‖2µ =
K2
t,R

C2t , and (78) follows.

Now, ξopt(t) ≤ ξasymp(t),∀t ≥ 0 is a consequence of ξopt(t) being the rate of the optimal algorithm.
And

lim
t→∞

ξopt(t)

ξGD(t)
= lim
t→∞

C2t

K2
t,R∑t

k=0
C2k

K2
k,R

= 1− R2

C2
(85)

follows from Proposition D.1. To show limt→∞
ξopt(t)
ξGD(t) = 1 − R2

C2 , which concludes the proof, we
rewrite

ξasymp(t) =

(
R

C

)2t
(1−

(
R

C

)2
)2 t∑

k=1

1

Qk,R

(
R

C

)2(t−k)

+

(
R

C

)2t
 , (86)

using that by definition, Qk,R = R2k/K2
k,R. Now, let cε ∈ Z≥0 such that

∞∑
k=cε

(
R

C

)2k

≤ ε. (87)

Using the same argument as in Proposition D.1 (see (68)), for t large enough and k ∈ [t− cε, t],∫ t

k

d

ds
Qs,R ds ≤ 2εQt,R. (88)
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Hence, for t large enough,(
1−

(
R

C

)2
)2 t∑

k=1

1

Qk,R

(
R

C

)2(t−k)

+

(
R

C

)2t

=

(
1−

(
R

C

)2
)2( t∑

k=t−cε

1

Qt,R −
∫ t
k
d
dsQs,R

(
R

C

)2(t−k)

+

t−cε∑
k=1

1

Qk,R

(
R

C

)2(t−k)
)

+

(
R

C

)2t

≤

(
1−

(
R

C

)2
)2(

1

(1− 2ε)Qt,R

t∑
k=t−cε

(
R

C

)2(t−k)

+

t−cε∑
k=1

(
R

C

)2(t−k)
)

+ ε

≤

(
1−

(
R

C

)2
)(

1

(1− 2ε)Qt,R
+

(
1−

(
R

C

)2
)
ε

)
+ ε,

(89)

which can be made arbitrarily close to
(

1−
(
R
C

)2) 1
Qt,R

by taking ε > 0 small enough. Plugging

this into (86), we obtain that we can make ξasymp(t) arbitrarily close to
(

1−
(
R
C

)2) (R
C

)2t 1
Qt,R

=(
1−

(
R
C

)2)
ξGD(t) by taking t large enough.

22


	Introduction
	Average-case analysis for normal matrices
	Orthogonal residual polynomials and first-order methods
	Expected Spectral Distribution
	Expected error of first-order methods
	Difficulties of First-Order Methods on Games and Related Work

	Average-case Optimal Methods for Bilinear Games
	Particular case: M with i.i.d. components

	General average-case optimal method for normal operators
	Circular spectral distributions

	Asymptotic behavior
	Experiments
	Discussion and Future Research Directions
	Proof of Theorem 2.1
	Preliminaries
	Proof of the theorem

	Proofs of Theorem 3.1 and Proposition 3.1
	Proofs of Theorem 4.1 and Theorem 4.2
	Proof of Proposition 5.2

