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Abstract
We propose, implement, and compare with com-
petitors a new architecture of equivariant neural
networks based on geometric (Clifford) algebras:
Generalized Lipschitz Group Equivariant Neu-
ral Networks (GLGENN). These networks are
equivariant to all pseudo-orthogonal transforma-
tions, including rotations and reflections, of a vec-
tor space with any non-degenerate or degenerate
symmetric bilinear form. We propose a weight-
sharing parametrization technique that takes into
account the fundamental structures and operations
of geometric algebras. Due to this technique,
GLGENN architecture is parameter-light and has
less tendency to overfitting than baseline equiv-
ariant models. GLGENN outperforms or matches
competitors on several benchmarking equivariant
tasks, including estimation of an equivariant func-
tion and a convex hull experiment, while using
significantly fewer optimizable parameters.

1. Introduction
Equivariant neural networks are a class of neural networks
that explicitly incorporate symmetries into their architec-
ture, making them well-suited for tasks that inherently re-
quire equivariance to transformations with respect to some
group’s action (e.g., rotations, permutations, translations,
etc.). Equivariant neural networks were introduced in Cohen
& Welling, 2016 and have since been extensively developed
and applied in a wide range of tasks in computer and natural
sciences. These applications include modeling dynamical
systems (Finzi et al., 2021), particle physics (Ruhe et al.,
2023; Finzi et al., 2021), analyzing molecular properties and
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protein structures (Townshend et al., 2021; Liu et al., 2024;
Satorras et al., 2021; Pepe et al., 2024; Fuchs et al., 2020),
estimating arterial wall-shear stress (Brehmer et al., 2023),
processing tasks involving point clouds (Thomas et al., 2018;
Fuchs et al., 2020), motion capture (Liu et al., 2024), robotic
planning (Brehmer et al., 2023), etc. Early works addressing
equivariance with respect to pseudo-orthogonal transforma-
tions (pseudo-orthogonal groups) include Cohen & Welling,
2016; 2017; Weiler & Cesa, 2019; Thomas et al., 2018;
Weiler et al., 2018; Anderson et al., 2019; Finzi et al., 2021.

Figure 1. GLGENN is an architecture of neural networks equivari-
ant with respect to any pseudo-orthogonal transformation. Inputs
and outputs are represented as multivectors (elements of geomet-
ric algebras), which encode various geometric quantities such as
scalars, vectors, oriented areas (bivectors) and volumes (trivectors),
and higher-dimensional objects (4-vectors, etc.). GLGENN are
parameter-light, since they operate in a unified manner across 4
fundamental subspaces of geometric algebras defined by the grade
involution (̂) and reversion (˜); they processes geometric objects
in groups with a step size of 4.
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This work introduces a novel neural network architecture
that is equivariant with respect to any pseudo-orthogonal
transformation, including rotations and reflections. Our ap-
proach is based on the well-known mathematical framework
of (Clifford) geometric algebras (GAs), which have found
applications in various scientific fields, including physics
(Doran & Lasenby, 2003; Hestenes & Sobczyk, 1984), com-
puter science (Bayro-Corrochano, 2019; Brandstetter et al.,
2023; Dorst et al., 2002), engineering (Dorst et al., 2002),
and other scientific fields. Works on applications of GAs
in neural networks include Pearson & Bisset, 1994; Bayro-
Corrochano & Buchholz, 1997; Buchholz & Sommer, 2008;
Kuroe, 2011; Brandstetter et al., 2023.

In particular, GAs provide an efficient and elegant repre-
sentation of pseudo-orthogonal transformations via spin
groups, Lipschitz groups (sometimes also called Clifford
groups in the literature), and twisted adjoint representations.
Specifically, for any pseudo-orthogonal matrix, there ex-
ists a corresponding element of the Lipschitz group in GAs
that induces the same transformation of vectors through the
twisted adjoint action. The transition from matrix formal-
ism to GA formalism is highly beneficial and inspiring for
applications, as it introduces a rich set of operations that are
naturally defined within the GA framework.

The idea of leveraging GAs to construct pseudo-orthogonal
group equivariant neural networks was first proposed by the
Amsterdam Machine Learning Lab (University of Amster-
dam). Their pioneering work Ruhe et al., 2023 introduced
Clifford Group Equivariant Neural Networks (CGENN)
and served as the foundation for many subsequent research
works. Brehmer et al., 2023 propose Geometric Algebra
Transformer (GATr), which incorporates GA into ordinary
transformer architecture and outperforms traditional non-
geometric baselines in N -body modeling and robotic plan-
ning. Zhdanov et al., 2024 introduce Clifford-Steerable Con-
volutional Neural Networks based on CGENN approach,
demonstrating superior performance in tasks related to fluid
dynamics and relativistic electrodynamics forecasting. Liu
et al., 2024 introduce Clifford Group Equivariant Simplicial
Message Passing Networks, a method for steerable E(n)-
equivariant message passing on simplicial complexes. Pepe
et al., 2024 use CGENN to predict protein coordinates to
estimate the 3D structure of a protein.

The above mentioned papers demonstrate the importance
of Lipschitz groups in GA as a fundamental tool for build-
ing expressive state-of-the-art equivariant neural networks.
However, one major challenge in the design of GA-based
equivariant neural networks is overparameterization. This
issue often leads to a tendency to overfit, particularly in
cases where the training dataset is small – a common sce-
nario in natural science applications where such networks
are typically employed. Additionally, the excessive number
of parameters results in inefficient training times. The goal

of this work is to present a novel, parameter-light equivari-
ant neural network architecture, which balances between
expressiveness of CGENN and parameter efficiency. We
call this architecture Generalized Lipschitz Group Equivari-
ant Neural Networks (GLGENN), see Fig. 1. Our approach
introduces a new parameter-light parametrization technique,
which enables our model to either outperform or match ex-
isting equivariant models while significantly reducing the
number of trainable parameters. The key idea is to design
a novel weight-sharing approach (Lecun et al., 1998) for
GA-based neural networks that respects the fundamental
algebraic structures of GAs, thereby improving efficiency
without sacrificing expressive power.1

The key contributions are as follows:

• Introduction of generalized Lipschitz groups. We
introduce and study a new class of Lie groups in arbi-
trary geometric algebra, which are related to pseudo-
orthogonal groups and useful for construction of equiv-
ariant neural networks.

• Design and implementation of GLGENN. We
construct a novel, parameter-light architecture of
pseudo-orthogonal groups equivariant neural networks
based on geometric algebras. Code is available at
https://github.com/katyafilimoshina/glgenn

• Superior performance. GLGENN achieve state-of-
the-art performance on benchmark equivariant tasks
with significantly fewer trainable parameters.

The paper is organized as follows. Section 2 provides all
necessary definitions related to GAs and equivariant neural
networks. In Section 3, we present our main theoretical
results and introduce and study generalized Lipschitz groups.
Section 4 applies these results for GLGENN construction.
In Section 5, we evaluate GLGENN through experiments.
All the mathematical details and proofs can be found in the
appendix.

1Application of the generalized Lipschitz groups instead of
ordinary Lipschitz groups allows to achieve parameter efficiency.
The generalized Lipschitz groups are important because they pre-
serve the four fundamental subspaces of GAs under the significant
operation of the twisted adjoint representation. We prove that
equivariance of a mapping w.r.t. these groups, as well as the ordi-
nary Lipschitz groups, implies its orthogonal groups equivariance.
The key distinction is that the generalized Lipschitz groups contain
ordinary Lipschitz groups as subgroups. As a result, the set of
operations equivariant w.r.t. the generalized Lipschitz groups is a
subset of the set of operations equivariant w.r.t. ordinary Lipschitz
groups. This reduction in the number of ‘degrees of freedom’
encourages us to parametrize operations in layers in a more ‘eco-
nomic’ way (there is a smaller number of parameters that we can
place). Specifically, in all GLGENN layers, we employ such equiv-
ariant operations as projections of inputs-multivectors onto the
four fundamental subspaces of GAs mentioned above, whereas
CGENN relies on projections onto the subspaces of fixed grades.
GLGENN and CGENN layers parameterize linear combinations,
products, and normalizations of the corresponding projections.
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2. Theoretical Background
2.1. Geometric (Clifford) Algebras
Let us consider (Clifford) geometric algebra (GA) (Hestenes
& Sobczyk, 1984; Lounesto, 1997; Porteous, 1995)
Cℓ(V ) = Cℓp,q,r, p+ q + r = n ≥ 1, over a vector space
V with a symmetric bilinear form b and the corresponding
quadratic form q, where V can be real Rp,q,r or complex
Cp+q,0,r. We use F to denote the field of real numbers R
in the first case and the field of complex numbers C in the
second case. In this work, we consider both the case of
the non-degenerate GAs Cℓp,q := Cℓp,q,0, r = 0, and the
case of the degenerate GAs Cℓp,q,r, r ̸= 0. We use Λr to
denote the subalgebra Cℓ0,0,r, which is the Grassmann (ex-
terior) algebra (Doran & Lasenby, 2003; Lounesto, 1997). A
well-known example of geometric algebra is the spacetime
algebra Cℓ1,3 = Cℓ(R1,3), associated with the Minkowski
space R1,3, which plays a central role in relativistic physics.
For the readers’ convenience, in Appendix B, we illustrate
all key theoretical concepts introduced in this section with
examples in the setting of Cℓ1,3.

The identity element of Cℓp,q,r is denoted by e ≡ 1, the
generators are denoted by ea, a = 1, . . . , n. The generators
satisfy the following conditions: eaeb + ebea = 2ηabe for
any a, b = 1, . . . , n, where η = (ηab) is the diagonal matrix
with p times +1, q times −1, and r times 0 on the diagonal
in the real case Cℓ(Rp,q,r) and p+ q times +1 and r times
0 on the diagonal in the complex case Cℓ(Cp+q,0,r).

Let us consider the subspaces Cℓkp,q,r of fixed grades k =
0, . . . , n. Their elements are linear combinations of the basis
elements ea1...ak := ea1 · · · eak , a1 < · · · < ak. The grade-
0 subspace can be denoted by Cℓ0 without the lower indices
p, q, r, since it does not depend on the GA’s signature. We
have Cℓkp,q,r = {0} for k < 0 and k > n. We can represent
any element (multivector) U ∈ Cℓp,q,r as a sum of n + 1
elements U = ⟨U⟩0 + · · · + ⟨U⟩n, ⟨U⟩k ∈ Cℓkp,q,r, k =
0, . . . , n. We call any operation of the form

U 7→
n∑
k=0

λk⟨U⟩k, λk = ±1, (1)

a conjugation operation in Cℓp,q,r. Consider conjugation
operations called grade involution and reversion. The grade
involute of an element U ∈ Cℓp,q,r is denoted by Û and
the reversion is denoted by Ũ , and they are defined for an
arbitrary U ∈ Cℓp,q,r as

Û :=

n∑
k=0

(−1)k⟨U⟩k, Ũ :=

n∑
k=0

(−1)
k(k−1)

2 ⟨U⟩k. (2)

The composition of grade involution and reversion is called
Clifford conjugation. The Clifford conjugate of U ∈ Cℓp,q,r

is denoted by ̂̃
U . The grade involution defines the even

Cℓ
(0)
p,q,r and odd Cℓ(1)p,q,r subspaces:

Cℓ(l)p,q,r := {U ∈ Cℓp,q,r : Û = (−1)lU}, l = 0, 1. (3)

Table 1. Signs of the projections of U = ⟨U⟩0 + ⟨U⟩1 + ⟨U⟩2 +
⟨U⟩3 ∈ Cℓp,q,r for the grade involution (̂ ), reversion (˜ ), and
Clifford conjugation ( ̂̃ ) acting on it.

Cℓkp,q,r k = 0 k = 1 k = 2 k = 3̂ + − + −˜ + + − −̂̃ + − − +

We can represent any element U ∈ Cℓp,q,r as a sum U =

⟨U⟩(0) + ⟨U⟩(1), ⟨U⟩(l) ∈ Cℓ
(l)
p,q,r, l = 0, 1. We use

angle brackets ⟨·⟩(l) to denote the operation of projection of
multivectors and sets onto Cℓ(l)p,q,r. The grade involution and
reversion define four subspaces Cℓ0p,q,r, Cℓ

1
p,q,r, Cℓ

2
p,q,r,

and Cℓ3p,q,r (they are called the subspaces of quaternion
types 0, 1, 2, and 3 respectively in Shirokov, 2012a;b):

Cℓkp,q,r := {U ∈ Cℓp,q,r : Û = (−1)kU,

Ũ = (−1)
k(k−1)

2 U}, k = 0, 1, 2, 3. (4)
In other words, Cℓkp,q,r := Cℓkp,q,r ⊕ Cℓk+4

p,q,r ⊕ Cℓk+8
p,q,r ⊕

· · · for k = 0, 1, 2, 3. A discussion on the significance
of the grade involution, reversion, and these subspaces is
provided in Appendix C. Note that the GA Cℓp,q,r can be
represented as a direct sum of the subspaces Cℓkp,q,r, k =
0, 1, 2, 3, and viewed as Z2×Z2-graded algebra with respect
to the commutator and anticommutator (Shirokov, 2018).
We can represent any element U ∈ Cℓp,q,r as a sum of 4
elements: U = ⟨U⟩0+⟨U⟩1+⟨U⟩2+⟨U⟩3, where ⟨U⟩m ∈
Cℓmp,q,r, m = 0, 1, 2, 3. The action of the grade involution,
reversion, and Clifford conjugation on a multivectorU of the
form above is summarized in Table 1. Note that Cℓkp,q,r =
Cℓkp,q,r, k = 0, 1, 2, 3, in the cases n ≤ 3.

2.2. Lipschitz Groups and Twisted Adjoint
Representations

We use the upper index × to denote the subset H× of all
invertible elements of any set H. Let us consider the adjoint
representation ad acting on the group of all invertible ele-
ments ad : Cℓ×p,q,r → Aut(Cℓp,q,r) as T 7→ adT , where
adT : Cℓp,q,r → Cℓp,q,r:

adT (U) := TUT−1, U ∈ Cℓp,q,r, T ∈ Cℓ×p,q,r. (5)

Also let us consider the twisted adjoint representation. This
notion is introduced by Atiyah, Bott, and Shapiro (Atiyah
et al., 1964) in a particular case, and there are two ways
how to generalize it (see motivation in Appendix E). The
first approach (Choi et al., 2002; Harvey, 1990; Lundholm
& Svensson, 2009) is to define it as the operation ǎd acting
on the group of all invertible elements ǎd : Cℓ×p,q,r →
Aut(Cℓp,q,r) as T 7→ ǎdT with ǎdT : Cℓp,q,r → Cℓp,q,r:

ǎdT (U) := T̂UT−1, U ∈ Cℓp,q,r, T ∈ Cℓ×p,q,r. (6)
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The second approach (Helmstetter & Micali, 2008; Knus,
1991; Walpuski, 2022) is to define the twisted adjoint rep-
resentation as the operation ãd : Cℓ×p,q,r → Aut(Cℓp,q,r)

acting as T 7→ ãdT with ãdT : Cℓp,q,r → Cℓp,q,r:

ãdT (U) := T ⟨U⟩(0)T−1 + T̂ ⟨U⟩(1)T−1 (7)

for any U ∈ Cℓp,q,r and T ∈ Cℓ×p,q,r. The representation ãd
has the following properties, which we prove in Lemma E.2
and apply in construction of equivariant layers in Section 3.3.
The properties of ad and ǎd, are considered in Lemma E.2
as well.
Lemma 2.1. Let W ∈ Cℓ×p,q,r, U, V ∈ Cℓp,q,r, and

T ∈ (Cℓ
(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ×

r , where the notation (Cℓ
(0)×
p,q,r ∪

Cℓ
(1)×
p,q,r)Λ×

r := {ab | a ∈ Cℓ
(0)×
p,q,r ∪ Cℓ

(1)×
p,q,r, b ∈ Λ×

r }
stands for the product of two groups. Then ãdW satisfies:

ãdW (U + V ) = ãdW (U) + ãdW (V ), ãdW (c) = c (8)

for any c ∈ Cℓ0. Moreover, ãdT satisfies multiplicativity:

ãdT (UV ) = ãdT (U)ãdT (V ). (9)

Consider the Lipschitz groups Γ̃1
p,q,r (Benn & Tucker, 1987;

Lounesto, 1997; Ablamowicz, 1986; Brooke, 1978; 1980):

Γ̃1
p,q,r := {T ∈ Cℓ×p,q,r : ãdT (Cℓ

1
p,q,r)}, (10)

where ãdT (Cℓ
1
p,q,r) = T̂Cℓ1p,q,rT

−1 ⊆ Cℓ1p,q,r. These
groups are often considered in the literature in the case of
the non-degenerate geometric algebra Cℓp,q. The defini-
tion (10) straightforwardly generalizes the common defini-
tion to the case of arbitrary Cℓp,q,r. The well-known spin
groups (see details in Appendix E) in the non-degenerate
(Benn & Tucker, 1987; Lounesto, 1997; Porteous, 1995)
and degenerate (Ablamowicz, 1986; Crumeyrolle, 1990;
Brooke, 1978; 1980; Dereli et al., 2010) cases, which
have various applications in physics, are normalized sub-
groups of Γ̃1

p,q,r defined using the following norm functions
ψ, χ : Cℓp,q,r → Cℓp,q,r of the GA elements:

ψ(U) := ŨU, χ(U) :=
̂̃
UU. (11)

2.3. Equivariant Mappings and Neural Networks
Suppose G is a group and ◦X and ◦Y are its actions on the
sets X and Y respectively. A function (network) L : X →
Y is called G-equivariant (see, e.g., Bredon, 1972; Pitts,
2013; Yarotsky, 2022) iff it commutes with these actions:

L(g ◦X x) = g ◦Y L(x), ∀g ∈ G, ∀x ∈ X. (12)

The definition means that we get the same output if we trans-
form the input to the neural network or transform the output.
We prove several general statements about equivariance with
respect to an arbitrary group in Appendix G.

3. Theoretical Results
3.1. Generalized Lipschitz Groups
In this section, we introduce and study the generalized Lip-
schitz groups Γ̃kp,q,r, k = 0, 1, 2, 3, in the case of arbitrary

degenerate or non-degenerate geometric algebra Cℓp,q,r.
For GLGENN, we are mainly interested in Γ̃1

p,q,r, however
other groups Γ̃kp,q,r, k = 0, 2, 3, are necessary to prove the
main statements about Γ̃1

p,q,r and serve as auxiliary tools.
The (ordinary) Lipschitz groups Γ̃1

p,q,r (10) preserve the
subspace Cℓ1p,q,r of the first grade under the twisted adjoint
representation ãd (6). The generalized Lipschitz groups
preserve the subspaces Cℓkp,q,r, k = 0, 1, 2, 3, determined
by the grade involution and reversion (4), under the same
representation ãd:

Γ̃kp,q,r := {T ∈ Cℓ×p,q,r : ãdT (Cℓ
k
p,q,r) ⊆ Cℓkp,q,r}. (13)

The groups Γ̃kp,q,r, k = 0, 1, 2, 3, can be considered as
generalizations of Lipschitz groups because of the following
theorem.
Theorem 3.1. The (ordinary) Lipschitz groups are sub-
groups of the generalized Lipschitz groups and coincide
with some of them in the low-dimensional case:

Γ̃1
p,q,r ⊆ Γ̃1

p,q,r ⊆ Γ̃kp,q,r, k = 0, 1, 2, 3, ∀n; (14)

Γ̃1
p,q,r = Γ̃1

p,q,r, n ≤ 4. (15)

Proof. The proof is based on the equivalent definitions of
Γ̃kp,q,r, k = 0, 1, 2, 3, and is provided in Appendix F (see
Corollary F.4, Remark F.6, and Theorem F.7).

In this work, we construct neural networks that are equivari-
ant with respect to the action ãd of the generalized Lipschitz
groups Γ̃1

p,q,r (13). To prove the main statements for the de-
sign of the layers, we need Theorem 3.2 about these groups.

Consider the following groups preserving the subspaces
Cℓkp,q,r, k = 0, 1, 2, 3, under the adjoint representation
ad (5) and twisted adjoint representation ǎd (6) respectively:

Γkp,q,r := {T ∈ Cℓ×p,q,r : adT (Cℓ
k
p,q,r) ⊆ Cℓkp,q,r}, (16)

Γ̌kp,q,r := {T ∈ Cℓ×p,q,r : ǎdT (Cℓ
k
p,q,r) ⊆ Cℓkp,q,r}, (17)

where adT (Cℓ
k
p,q,r) = TCℓkp,q,rT

−1 and ǎdT (Cℓ
k
p,q,r) =

T̂Cℓkp,q,rT
−1. Further, we show that these groups can be

defined in an equivalent way, using only the norm functions
ψ and χ (11) applied in the theory of spin groups.

Let us introduce the families of Lie groups Q1
p,q,r, Q

2
p,q,r,

Q3
p,q,r, and Q0

p,q,r:

Qkp,q,r := {T ∈ Cℓ×p,q,r : T̃ T,
̂̃
TT ∈ Zk×p,q,r}, (18)

Q0
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T,

̂̃
TT ∈ Z4×

p,q,r}, (19)

and Q̌1
p,q,r, Q̌

2
p,q,r, Q̌

3
p,q,r, Q̌

0
p,q,r:

Q̌kp,q,r := {T ∈ Cℓ×p,q,r : T̃ T,
̂̃
TT ∈ Žk×p,q,r}, (20)

Q̌0
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T,

̂̃
TT ∈ ⟨Z4

p,q,r⟩×(0)}, (21)
with k = 1, 2, 3, where the sets
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Zmp,q,r := {X ∈ Cℓp,q,r : XV = V X, ∀V ∈ Cℓmp,q,r}

are the centralizers of the subspaces Cℓmp,q,r in Cℓp,q,r, and

Žmp,q,r := {X ∈ Cℓp,q,r : X̂V = V X, ∀V ∈ Cℓmp,q,r}

are the twisted centralizers of Cℓmp,q,r in Cℓp,q,r. These
sets are studied in detail in Filimoshina & Shirokov, 2024b.
We provide explicit forms of Zmp,q,r and Žmp,q,r, m ≤ 4, in
Remark D.1.

Theorem 3.2. In degenerate and non-degenerate geometric
algebras Cℓp,q,r, we have for k = 1, 2, 3,

Γkp,q,r = Qkp,q,r, Γ0
p,q,r = Q0

p,q,r, (22)

Γ̌1
p,q,r = Q̌1

p,q,r ⊆ Γ̌3
p,q,r = Q̌3

p,q,r, (23)

Γ̌2
p,q,r = Q̌2

p,q,r, Γ̌0
p,q,r = Q̌0

p,q,r. (24)

Moreover, for m = 0, 1, 2, 3,

Γ1
p,q,r ⊆ Γmp,q,r ⊆ Γ0

p,q,r, (25)

Γ̌mp,q,r ⊆ Γ0
p,q,r, Γ̌1

p,q,r ⊆ Γ2
p,q,r. (26)

Proof. The proof relies on the relation between the preser-
vation of the subspaces Cℓkp,q,r, k = 0, 1, 2, 3, under ãd and
the values of the norm functions ψ and χ (11). It is provided
in Appendix F (see Theorems F.1, F.2 and Remark F.3).

The generalized Lipschitz groups Γ̃kp,q,r (13), k = 0, 1, 2, 3,
are related to the groups Γkp,q,r (16) and Γ̌kp,q,r (17):

Γ̃kp,q,r =

{
Γ̌kp,q,r, k = 1, 3,

Γkp,q,r, k = 0, 2,
(27)

since ãdT (Cℓ
k
p,q,r) = adT (Cℓ

k
p,q,r) in the cases k = 0, 2

and ãdT (Cℓ
k
p,q,r) = ǎdT (Cℓ

k
p,q,r) in the cases k = 1, 3.

As a corollary of Theorem 3.2 and (27), the generalized
Lipschitz groups Γ̃kp,q,r (13) satisfy

Γ̃1
p,q,r=Q̌1

p,q,r ⊆ Γ̃2
p,q,r=Q2

p,q,r ⊆ Γ̃0
p,q,r=Q0

p,q,r, (28)

Γ̃1
p,q,r ⊆ Γ̃3

p,q,r = Q̌3
p,q,r. (29)

Note that the group Γ̃1
p,q,r can be regarded as the most

significant among the generalized Lipschitz groups Γ̃kp,q,r,
k = 0, 1, 2, 3, because it contains the (ordinary) Lipschitz
group as a subgroup and is itself a subgroup of all other
generalized Lipschitz groups (see Theorem 3.1 and (28)-
(29)). We prove that its elements are of a special form:

Theorem 3.3. We have Γ̃1
p,q,r ⊆ (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r)×Λ×

r .
Proof. The proof is based on the equivalent definition of
the group (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r)×Λ×

r and is provided in Theo-
rem F.5.

The key takeaways from this section for constructing the
generalized Lipschitz groups Γ̃1

p,q,r-equivariant layers are as
follows: (1) the ordinary Lipschitz groups are subgroups of

the generalized Lipschitz groups Γ̃kp,q,r (Theorem 3.1), (2)
elements of the generalized Lipschitz groups Γ̃1

p,q,r preserve
not only the subspace Cℓ1p,q,r, but also all other subspaces
Cℓmp,q,r, m = 0, 2, 3, under the twisted adjoint representa-
tion ãd (see (28)-(29)), and (3) elements of Γ̃1

p,q,r have a
special form (Theorem 3.3).

3.2. Pseudo-orthogonal Groups, Complex Orthogonal
Groups, and Generalized Lipschitz Groups
Equivariance

Let us consider the degenerate and non-degenerate pseudo-
orthogonal group (in the real case V = Rp,q,r) or complex
orthogonal group (in the complex case V = Cp+q,0,r) de-
noted by O(V, q), which is the Lie group of all linear trans-
formations of an n-dimensional vector space V that leave
invariant a quadratic form q of signature (p, q, r) if V is real
and (p+ q, 0, r) if V is complex (see Appendix H):

O(V, q) := {Φ : V → V : Φ is linear, invertible,
q(Φ(v)) = q(v), ∀v ∈ V }. (30)

When considering both the real and complex cases, we refer
to the group O(V, q) as the orthogonal group. Consider the
following subgroup of the orthogonal group, which leaves
invariant the radical subspace Λ1

r := Cℓ10,0,r:

OΛ1
r
(V, q) := {Φ ∈ O(V, q) : Φ|Λ1

r
= idΛ1

r
}. (31)

We have the following relation between the Lipschitz group
Γ̃1
p,q,r and the corresponding restricted orthogonal group

OΛ1
r
(V, q):

ãd
1
: Γ̃1

p,q,r

/
Λ×
r

∼= OΛ1
r
(V, q), (32)

where ãd
1
: Cℓ×p,q,r → Aut(Cℓp,q,r) is ãd restricted to V

(a real Rp,q,r or complex Cp+q,0,r vector space, which can
be identified with the space of vectors Cℓ1p,q,r, see page 3),

i.e. it acts as T 7→ ãd
1

T : Cℓ1p,q,r → Cℓp,q,r defined as

ãd
1

T (v) := T̂ vT−1 for any vector v ∈ Cℓ1p,q,r. From (32),
we have that for any T ∈ Γ̃1

p,q,r there exists Φ ∈ OΛ1
r
(V, q)

such that ãd
1

T = Φ and vice versa. We prove (32) in The-
orem H.10. In the particular case Cℓp,q, the statement (32)
is well-known (see, for example, Benn & Tucker, 1987),
and the similar statements are proved in Crumeyrolle, 1990;
Ruhe et al., 2023.

The relation (32) implies that OΛ1
r
(V, q) acts on the whole

Cℓp,q,r in a well-defined way (Ruhe et al., 2023). Namely,
for an arbitrary element x =

∑
i uivi,1 · · · vi,ki ∈ Cℓp,q,r

with vi,j ∈ V , ui ∈ F, for any T ∈ Γ̃1
p,q,r with the corre-

sponding Φ = ãd
1

T , we have

ãdT (x) =
∑
i

uiãd
1

T (vi,1) · · · ãd
1

T (vi,ki) (33)

=
∑
i

uiΦ(vi,1) · · ·Φ(vi,ki) =: Φ(x). (34)
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The following theorem discusses the relation between
OΛ1

r
(V, q)- and Γ̃1

p,q,r-equivariance.
Theorem 3.4. If a mapping f : Cℓp,q,r → Cℓp,q,r is equiv-
ariant with respect to any group H that contains the Lips-
chitz group Γ̃1

p,q,r as a subgroup, then f is equivariant with
respect to the corresponding orthogonal group. That is, if
ãdT (f(x)) = f(ãdT (x)) for any T ∈ H and x ∈ Cℓp,q,r,
then f(Φ(x)) = Φ(f(x)) for any Φ ∈ OΛ1

r
(V, q) and

x ∈ Cℓp,q,r, where Φ acts on x in a sense (34).
Proof. The proof relies on the direct relation between Γ̃1

p,q,r-
and OΛ1

r
(V, q)-equivariance (see Theorem H.11).

Since Γ̃1
p,q,r ⊆ Γ̃1

p,q,r by Theorem 3.1, all generalized Lip-
schitz group Γ̃1

p,q,r-equivariant mappings are restricted
orthogonal group OΛ1

r
(V, q)-equivariant as well.

3.3. Generalized and Ordinary Lipschitz Groups
Equivariant Mappings

This section proves that several mappings are generalized
Lipschitz groups Γ̃1

p,q,r-equivariant.

Theorem 3.5. Let T ∈ (Cℓ
(0)×
p,q,r ∪ Cℓ

(1)×
p,q,r)Λ×

r and F ∈
F[T1, . . . , Tl] be a polynomial in l variables with coefficients
in F. Consider l multivectors x1, . . . , xl ∈ Cℓp,q,r. We
have the following equivariance property with respect to the
group (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ×

r :

ãdT (F (x1, . . . , xl)) = F (ãdT (x1), . . . , ãdT (xl)). (35)

Proof. This fact follows directly from additivity and mul-
tiplicativity of ãdT for T ∈ (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ×

r , which
are proved in Lemma 2.1.

Note that the statement that all polynomials are Γ̃1
p,q-

equivariant, which follows as a corollary of Theorem 3.5, is
well-known (Ruhe et al., 2023).
Theorem 3.6. For any x ∈ Cℓp,q,r and m = 0, 1, 2, 3, we
have the following equivariant property with respect to the
generalized Lipschitz groups:

ãdT
(
⟨x⟩m

)
= ⟨ãdT (x)⟩m, ∀T ∈ Γ̃1

p,q,r. (36)

Proof. Suppose T ∈ Γ̃1
p,q,r and x = x(0) + x(1) ∈ Cℓp,q,r,

where x(0) := ⟨x⟩(0) and x(1) := ⟨x⟩(1). For any m =
0, 1, 2, 3, we get

⟨ãdT (x)⟩m = ⟨Tx(0)T−1 + T̂ x(1)T
−1⟩m (37)

= ⟨
∑
i=0,2

T ⟨x⟩iT
−1 +

∑
i=1,3

T̂ ⟨x⟩iT
−1⟩m (38)

=
∑
i=0,2

⟨T ⟨x⟩iT
−1⟩m +

∑
i=1,3

⟨T̂ ⟨x⟩iT
−1⟩m (39)

=

{
⟨T ⟨x⟩mT−1⟩m = T ⟨x⟩mT−1, m is even,
⟨T̂ ⟨x⟩mT−1⟩m = T̂ ⟨x⟩mT−1, m is odd,

(40)

where in (39) we apply linearity of projection ⟨⟩m, and in
(40), we use Theorem 3.2 and the notes below it.

In Theorem 3.7, we prove that several conjugation opera-
tions (1) in Cℓp,q,r are generalized Lipschitz group Γ̃1

p,q,r-
equivariant. Note that it does not hold for any conjugation
operation. However, we prove that any conjugation op-
eration is (ordinary) Lipschitz group Γ̃1

p,q,r-equivariant in
Theorem 3.8.
Theorem 3.7. The grade involution, reversion, and Clif-
ford conjugation are Γ̃1

p,q,r-equivariant: ãdT (x̂) =

̂̃adT (x), ãdT (x̃) = ˜̃adT (x), ãdT (̂̃x) =
̂̃̃
adT (x) for any

T ∈ Γ̃1
p,q,r and x ∈ Cℓp,q,r.

Proof. Since the grade involute, reversion, and Clifford con-
jugate of an element x ∈ Cℓp,q,r are linear combinations of
the projections onto the subspaces Cℓmp,q,r, m = 0, 1, 2, 3,
(see Table 1) which are Γ̃1

p,q,r-equivariant, we get the state-
ment by Lemma G.3 and Theorem 3.6.
Theorem 3.8. Any conjugation operation in Cℓp,q,r is Lips-
chitz group Γ̃1

p,q,r-equivariant:

ãdT
( n∑
k=0

λk⟨x⟩k
)
=

n∑
k=0

λk⟨ãdT (x)⟩k, λk = ±1,

for any T ∈ Γ̃1
p,q,r and x ∈ Cℓp,q,r.

Proof. By definition (1), any conjugation operation is a
linear combination of projections onto the subspacesCℓkp,q,r,
k = 0, . . . , n, which are Γ̃1

p,q,r-equivariant (see Corollary
3.3 Ruhe et al., 2023): ãdT (⟨x⟩k) = ⟨ãdT (x)⟩k, for any
T ∈ Γ̃1

p,q,r and x ∈ Cℓp,q,r. Then, we get the statement by
Lemma G.3.
Theorem 3.9. The norm functions ψ and χ (11) are Γ̃1

p,q,r-
equivariant:

ãdT
(
ψ(x)

)
=ψ(ãdT (x)), ãdT

(
χ(x)

)
=χ(ãdT (x)) (41)

for any T ∈ Γ̃1
p,q,r and x ∈ Cℓp,q,r.

Proof. Since Γ̃1
p,q,r ⊆ (Cℓ

(0)×
p,q,r∪Cℓ(1)×p,q,r)Λ×

r (Theorem 3.3),
ãdT is multiplicative for any T ∈ Γ̃1

p,q,r by Lemma 2.1. The
mappings ψ(x) and χ(x) are Γ̃1

p,q,r-equivariant by Lemma
G.4, since they are products of the Γ̃1

p,q,r-equivariant map-
pings: x 7→ x̃, x 7→ ̂̃x, and x 7→ x (Theorem 3.7).

4. Methodology
In this section, we describe the architecture of Gener-
alized Lipschitz Groups Neural Networks layers. In
this and the following sections, we consider the real
geometric algebra Cℓ(Rp,q,r). Code is available at
https://github.com/katyafilimoshina/glgenn. We plan to con-
tinue developing this repository.
4.1. Geometric Algebra Data Embeddings
GLGENN, along with other GA-based equivariant neural
networks such as CGENN (Ruhe et al., 2023), can be ap-
plied to any data representable as multivectors. For example,
consider the following task in R0,3. We have data objects
x1, . . . , xl, where each xi contains a scalar (e.g. a ∈ R, rep-
resenting mass, temperature, or a one-hot-encoded feature,
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etc.), a vector (e.g. (b, c, d) ∈ R0,3, where b, c, d ∈ R, rep-
resenting position, velocity, etc.), and a pseudoscalar (e.g.,
a signed volume value f ∈ R). These components can be
embedded in GA as ae+ be1 + ce2 + de3 + fe123 ∈ Cℓ0,3
and processed by our layers. Additional grades beyond 0, 1,
and 3 can be utilized as well.2 The output can be obtained
by projecting the resulting multivectors onto the appropriate
subspace based on the task. E.g., projecting onto Cℓ0 allows
for scalar predictions (which will be both equivariant and
invariant), or onto Cℓ1p,q,r if vector predictions are required.

4.2. Conjugation Operations Layers
These layers are based on the concept of conjugation opera-
tions in Cℓp,q,r (1). Suppose x1, . . . , xl ∈ Cℓp,q,r are input
data multivectors, where l is a number of input channels.
For an input data multivector xcin ∈ Cℓp,q,r, cin = 1, . . . , l,
a conjugation operations layer is constructed using

xcin 7→
n∑
k=0

ϕcink⟨xcin⟩k, ϕcink = ±1, (42)

where ϕcink ∈ {−1, 1} are optimizable coefficients. The
conjugation operation layer is Γ̃1

p,q,r-equivariant by The-
orem 3.8 and contains l(n + 1) optimizable parameters.
We suggest the following method to make the optimiza-
tion of conjugation layers with discrete parameters possible.
We first apply a linear transformation of the projections of
the input multivector as in (42) but with any parameters.
Then we round them to −1 or 1 either by directly applying
ϕcink 7→ sgn(ϕcink) or by firstly applying the sigmoid func-
tion, then scaling the value to [−1, 1], and applying sign
function to the result. Conjugation operations, including ̂,˜, and ̂̃, play a significant role in GAs and their applica-
tions (see Appendix C for a detailed discussion), making
these layers highly promising for experiments.

4.3. Cℓkp,q,r-Linear Layers
A Cℓkp,q,r-linear layer is constructed using

⟨ycout
⟩k :=

l∑
cin=0

ϕcoutcink
⟨xcin⟩k, (43)

where ycout :=
∑3
k=0⟨ycout⟩k is an output channel,

ϕcincoutk
∈ R are optimizable coefficients, and cin and

2Note that in the case of Cℓ0,3, the equivariant model proposed
in this paper has some connection with equivariant models based
on irreducible representations (irreps) of O(3) (Han et al., 2022).
Generally speaking, these are two different approaches: irreps of
O(3) follow the tensor approach, whereas the GAs operate with
multivectors. However, there are connections between the two
approaches: scalars, vectors, bivectors, and trivectors in GA are
equivalent to l = 0 irreps with even parity, l = 1 irreps with
odd parity, l = 1 irreps with even parity, and l = 0 irreps with
odd parity, respectively. The dimensions are the same (1, 3, 3,
and 1, respectively), the behavior under rotations/reflections of the
coordinate system matches, and the coupling operations (such as
scalar multiplication, vector scalar and cross products in various
cases) are also the same. Further study of this connection deserves
a separate study and is not the topic of the current work, but seems
important for building bridges between the two communities.

cout are used to denote the number of the input and the
output channels respectively. In other words, for any fixed
k = 0, 1, 2, 3, the value ⟨ycout⟩k is a linear combination of
⟨xcin⟩k, where cin = 1, . . . , l. One Cℓkp,q,r-linear layer is
parametrized with 4lm optimizable coefficients, where l and
m are the numbers of input and output channels respectively.
Such layers are Γ̃1

p,q,r-equivariant by Theorems 3.5 and 3.6.

4.4. Cℓkp,q,r-Geometric Product Layers
Now let us parameterize product interaction terms. We
consider only the second-order interactions, because the
higher-order interactions are indirectly modeled via multi-
ple successive layers (Ruhe et al., 2023). A second-order
interaction term for the pair of multivectors x1 and x2 has
the form ⟨⟨x1⟩i⟨x2⟩j⟩k, where i, j, k = 0, 1, 2, 3. All the

terms from Cℓkp,q,r resulting from the interaction of x1 and
x2 are parameterized as

P (x1, x2)
k :=

3∑
i=0

3∑
j=0

ϕijk⟨⟨x1⟩i⟨x2⟩j⟩k, (44)

where ϕijk ∈ R are optimizable coefficients. P (x1, x2)k

is Γ̃1
p,q,r-equivariant by Theorem 3.5 and Theorem 3.6. We

get 43 parameters ϕijk for each geometric product of a pair
of multivectors. Since we have l2 possible pairs of multi-
vectors for l input channels, parameterizing such number
of coefficients can be computationally expensive. There-
fore, if a number of channels l is large, let us compute
geometric products for less than l2 pairs of multivectors
by an approach proposed in Ruhe et al., 2023. Firstly,
we apply to x1, . . . , xl ∈ Cℓp,q,r a linear map to get
y1, . . . , yl ∈ Cℓp,q,r and then compute the products of the
pairs xi, yi for i = 1, . . . , l, which we denote by z1, . . . , zl
respectively. Using such a trick, the terms that will be mul-
tiplied get learned. Now, we need to calculate only l geo-
metric products. We get ⟨zcout⟩k := P (xcin , ycin)

k, where
zcout

:=
∑3
k=0⟨zcout

⟩k and cin = cout = 1, . . . , l. In to-
tal, for a Cℓkp,q,r-geometric product layer, we get 4l2 + 43l
parameters for l input channels.

4.5. Cℓkp,q,r-Normalization Layers
For numerical stability of Cℓkp,q,r-geometric product lay-
ers, we apply normalization to the four projections ⟨xcin⟩0,
⟨xcin⟩1, ⟨xcin⟩2, and ⟨xcin⟩3 for each multivector xcin ,
cin = 1, . . . , l before geometric product:

⟨xcin⟩k 7→
⟨xcin⟩k

σ(ϕcink)(⟨
˜⟨xcin⟩k⟨xcin⟩k⟩0 − 1) + 1

, (45)

where σ(x) := 1
1+e−x ∈ (0, 1) is the logistic sigmoid func-

tion and ϕcinm ∈ R are optimizable parameters. The sim-
ilar approach is applied in Ruhe et al., 2023. Note that
⟨ ˜⟨xcin⟩k⟨xcin⟩k⟩0 is Γ̃1

p,q,r-equivariant by Theorems 3.6
and 3.9. Each normalization layer contains 4l optimizable
parameters, where l is the number of input channels.
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5. Experiments
We demonstrate that GLGENN either outperforms or
matches the performance of other equivariant models, while
using significantly fewer optimizable parameters. For
CGENN (Ruhe et al., 2023), the training setups are aligned
with its public code release. For other models, we use the
loss values from the corresponding code repository (Finzi
et al., 2021). All experimental details and discussions can be
found in Appendix I and our code repository. For simplicity,
the current examples focus on the case of the non-degenerate
GA Cℓp,q. Experiments involving Cℓp,q,r will be explored
in future research. We construct our models to closely re-
semble the CGENN architecture, replacing the Cℓkp,q-linear,
Cℓkp,q-geometric product, and Cℓkp,q-normalization layers
from Ruhe et al., 2023 with the same number of GLGENN’s
Cℓkp,q counterparts (see Section 4).
O(5, 0)-Regression Task
We consider an O(5, 0)-invariant regression task (Finzi
et al., 2021) to estimate the function sin(∥x1∥)−∥x2∥3/2+
xT
1 x2

∥x1∥∥x2∥ , where x1, x2 ∈ R5,0 are vectors sampled from a
standard Gaussian distribution. The loss function used is
Mean squared error (MSE). We evaluate the performance us-
ing four different training dataset sizes and compare against
the ordinary MLP, MLP with augmentations, the O(5, 0)-
and SO(5, 0)-equivariant MLP architectures proposed in
(Finzi et al., 2021), and with CGENN (Ruhe et al., 2023).
The results, presented in Tables 2 and 6 and Figure 2 (left),
demonstrate that GLGENN achieves performance on a par
with CGENN, while significantly outperforming the other
models. Moreover, GLGENN attains these results with
fewer parameters and reduced training time compared to
CGENN. In this experiment, CGENN has approximately
1.8K parameters associated with GA layers, while GLGENN
has around 0.6K parameters. Other models have approxi-
mately the same number of parameters as CGENN. In Ta-
bles 2 and 6, MSE for CGENN and GLGENN are averaged
over 5 runs. MSE for other models are averaged over 3 runs
(from Finzi et al., 2021). Number of iterations is the same
for all algorithms. Note that when CGENN has the same
size as GLGENN (with ≈ 0.6K GA-associated parameters),
we get the similar results (Table 10).
O(5, 0)- and O(7, 0)-Convex Hull Volume Estimation
In these experiments, the task is to estimate the volume of a
convex hull generated by K points in R5,0 and R7,0 respec-
tively. We first consider the setup with K = 16 points, as in

Table 2. MSE (↓) on the O(5, 0)-Regression Experiment

MODEL # OF TRAINING SAMPLES
3 · 101 3 · 102 3 · 103 3 · 104

GLGENN 0.1055 0.0020 0.0031 0.0011
MLP 28.1011 0.2482 0.0623 0.0622

MLP+AUG 0.4758 0.0936 0.0889 0.0672
EMLP-O(5) 0.152 0.0344 0.0310 0.0273

EMLP-SO(5) 0.1102 0.0384 0.032 0.0279
CGENN 0.0791 0.0089 0.0012 0.0003

Ruhe et al., 2023; Liu et al., 2024. The average convex hull
volume in a training dataset is ≈ 11.4. The results, which
are presented in Figure 2 (middle) and Table 3, demon-
strate that GLGENN either outperform or match CGENN,
which itself outperforms ordinary MLP, Geometric Vector
Perceptrons (Jing et al., 2021), and Vector Neurons (Deng
et al., 2021). In Table 3, MSE for K = 16 are averaged
over 5 runs, number of iterations is the same for both algo-
rithms. Notably, as highlighted Ruhe et al., 2023, CGENN
tends to overfit when trained on small datasets. In contrast,
GLGENN demonstrate a reduced tendency to overfitting.
The reason might be that GLGENN achieve these superior
results with more than twice the parameter efficiency, us-
ing significantly fewer parameters than CGENN. Note that
when CGENN is scaled down to approximately the same
size as GLGENN (around 25K trainable parameters), its
performance deteriorates compared to its original configura-
tion (see Table 9). In the case n = 7, we get similar results
(see Appendix I).
Following the suggestion of one of the anonymous review-
ers, we further increase the difficulty and real-world rel-
evance of the experiment by estimating the convex hull
volumes of K = 256 and 512 points in R5,0. In this setup,
the average convex hull volumes in the training datasets
are ≈ 430.3 and 694 respectively. GLGENN consistently
outperforms the best-performing CGENN architecture, with
the results summarized in Table 3. Due to its significantly
smaller number of trainable parameters, GLGENN also re-
quire less training time (see Table 7 in Appendix I).

Combining GLGENN with Typical Activation Functions
Standard activation functions (e.g. SiLU or ReLU) can be
applied to elements of Cℓ0 (scalars) without breaking equiv-
ariance. For simple tasks, the best performance is achieved
by combining GLGENN (applied to all grade subspaces)
with a standard neural network, such as MLP, acting on
elements of Cℓ0. E.g., in the O(5, 0)-Regression Task: (1) a
standalone MLP with three ReLU-activated layers performs
poorly; (2) GLGENN alone performs reasonably well but
converges slower than (3) the combination of GLGENN (to
all grades) + MLP (to scalars). With 300 training samples,
this improvement is shown in Figure 3 and Table 11. The
main limitation is that applying nonlinearities only to cer-
tain subspaces (e.g., scalars) prevents interaction between
different grades (e.g., vectors and bivectors), effectively iso-
lating them. In contrast, the nonlinearities introduced via
geometric product layers inherently mix all grades, creating
strong interactions.

O(5, 0)-N -Body Experiment
In this benchmarking equivariant experiment (Ruhe et al.,
2023; Brehmer et al., 2023), we consider a system ofN = 5
charged particles (bodies) with given masses, initial po-
sitions, and velocities. The objective is to predict the fi-
nal positions of the bodies after the system evolves under
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Figure 2. Left: O(5, 0)-Regression. Middle: O(5, 0)-Convex Hull, 16 points. The shaded regions depict 95% confidence intervals taken
over 5 runs. Right: O(5, 0)-N -Body. The shaded regions depict 95% confidence intervals taken over 3 runs.

Table 3. MSE (↓) on the O(5, 0)-Convex Hull Experiment (K points). The average convex hull volume in the training dataset for K = 16,
256, 512 points is ≈ 11.4, ≈ 430.3, and ≈ 694, respectively. The number of trainable parameters is as follows: for K = 16, GLGENN
24.1K vs. CGENN 58.8K; for K = 256, GLGENN 791K vs. CGENN 1.72M; for K = 512, GLGENN 922K vs. CGENN 1.75M.

K 16 256 512
MODEL # TRAIN SAMPLES # TRAIN SAMPLES # TRAIN SAMPLES

28 210 212 214 215 216 217 210 214 210 214

GLGENN 16.94 10.40 6.2 4.46 3.62 3.04 2.61 2908.16 2918.09 8538.86 4872.39
CGENN 18.71 11.93 6.1 4.11 3.23 2.52 2.08 5176.7 3384.62 14727.6 7212.44

GAP −1.77 −1.53 0.1 0.35 0.39 0.52 0.53 −2268.54 −466.53 −6188.74 −2340.05

Figure 3. Combination of MLP with GLGENN and CGENN in
O(5, 0)-Regression.

Newtonian gravity for 1000 Euler integration steps. Unlike
standard low-dimensional setups, we simulate the system
in R5,0 and embed the data into Cℓ5,0. We construct a
graph neural network (GNN) based on the message-passing
paradigm (Gilmer et al., 2017), where bodies are treated as
nodes in a graph, and their pairwise interactions are modeled
as edges. For each edge, we compute a message and then
aggregate at each node to update the particle states. The
message and update networks are equivariant GLGENN. We
compare against CGENN, which itself outperforms several
state-of-the-art method (see Appendix I). To ensure a fair
comparison, we use the best-performing CGENN architec-
ture and then replace its layers with analogous GLGENN
counterparts to obtain the GLGENN architecture, which au-
tomatically has two times fewer trainable parameters. The
results are presented in Table 12 and Figure 2 (right).

6. Conclusions
We introduce a new equivariant neural networks archi-
tecture based on geometric algebras (GAs), called Gen-

eralized Lipschitz Groups Equivariant Neural Networks
(GLGENN). These networks are equivariant with respect to
pseudo-orthogonal transformations of a vector space with
any non-degenerate or degenerate bilinear form. GLGENN
are parameter-light, since they operate in a unified manner
across four fundamental subpaces of GAs defined by the
grade involution and reversion. GLGENN strike a balance
between the expressiveness of Clifford Group Equivariant
Neural Networks (CGENN) and parameter efficiency by
respecting the fundamental algebraic structures of GAs3.

To develop GLGENN layers, we introduce and study the no-
tion of generalized Lipschitz groups in GAs. We prove that
the equivariance of a mapping with respect to these groups
implies equivariance with respect to pseudo-orthogonal
groups. As a result, GLGENN are equivariant with re-
spect to a larger group than the pseudo-orthogonal group.
However, empirically, we find that these networks are suffi-
ciently expressive for tasks that require pseudo-orthogonal
group equivariance. Experimental results demonstrate that
GLGENN either outperform or match state-of-the-art mod-
els, while having significantly fewer trainable parameters
and lower training time. Future research will focus on apply-
ing GLGENN to more complex real-world data experiments.
Given their lower training time and promising results, we
are optimistic about their potential.

3GLGENN goes beyond CGENN in the following: (1)
Parameter-sharing approach for GA-based neural networks is pre-
sented for the first time. (2) New layers with parameter sharing
are proposed, theoretical justification is provided (Section 4). (3)
General idea is proposed that if we need orthogonal groups equiv-
ariance, then we may search for broader groups equivariance, such
as new generalized Lipschitz groups, and get reasonable results
(Theorem 3.4 and experiments).
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Brief Summary of Appendix
In Appendix A, we provide an overview of notation that we use throughout the paper.

Appendix B provides an example of the main theoretical constructions considered in Section 2 using the geometric algebra
Cℓ1,3 of the Minkowski space R1,3.

Appendix C discusses the significance of grade involution and reversion in geometric algebras (GAs) Cℓp,q,r. We show
that these operations are in some sense unique in geometric algebras. This paragraph serves as motivation for considering
the four subspaces of geometric algebras determined by the grade involution and the reversion. Our proposed architecture
GLGENN actively operates with these subspaces in its structure.

In Appendix D, we consider the notion of centralizers and twisted centralizers of the subspaces of fixed grades and subspaces
determined by the grade involution and reversion. We write out explicit forms of these sets. The centralizers and twisted
centralizers play a crucial role in our main theoretical results on generalized Lipschitz groups.

Appendix E considers the (ordinary) Lipschitz groups, spin groups, and adjoint and twisted adjoint representations in
arbitrary degenerate and non-degenerate geometric algebras. We prove several properties of these representations and find
their kernels.

Appendix F presents and proves the key theoretical results necessary to constructing GLGENN. Specifically, we introduce
and study generalized Lipschitz groups in arbitrary degenerate or non-degenerate geometric algebra. These groups preserve
the subspaces determined by the grade involution and reversion under the twisted adjoint representation. We prove that these
groups can be defined equivalently, using only the norm functions, which are applied in the theory of spin groups. This
results allows us to prove that the (ordinary) Lipschitz groups are subgroups of the generalized Lipschitz groups.

Appendix G proves several properties of equivariant mappings, which are applied in Section 4.

Appendix H considers the relation between the well-known degenerate and non-degenerate pseudo-orthogonal (or complex
orthogonal) groups and generalized Lipschitz groups. The obtained results enable us to prove that equivariance of a mapping
with respect to the generalized Lipschitz groups implies its equivariance with respect to the corresponding pseudo-orthogonal
group. This result is crucial for the construction of GLGENN, which are equivariant with respect to pseudo-orthogonal
transformations.

Appendix I provides experimental details and discussions.

A. Notation
In Table 4, we provide an overview of notation used throughout the paper. We write out the notation, its meaning, and the
place where it is mentioned for the first time.

B. Example of Geometric Algebra Cℓ1,3 of Minkowski Space R1,3

In this section, we provide an example of the key theoretical concepts and constructions considered in Section 2. Let us
consider the Minkowski space V = R1,3 equipped with the Minkowski metric η = diag(1,−1,−1,−1). In this case, we
have p = 1, q = 3, r = 0, and n = p+ q = 4. The corresponding geometric (Clifford) algebra is Cℓ1,3 = Cℓ(R1,3), which
is the real non-degenerate 24 = 16-dimensional algebra with the identity element e and generators e1, e2, e3, e4 that satisfy:

eaeb + ebea = 2ηabe, a, b = 1, . . . , 4, (46)

which implies that the distinct generators anticommute, the first generator squared gives +e, and the other three generators
squared give −e:

eaeb = −ebea, a, b = 1, . . . 4, a ̸= b; (e1)
2 = +e, (e2)

2 = (e3)
2 = (e4)

2 = −e. (47)

The basis elements of the algebra Cℓ1,3 are constructed as ordered products of distinct generators, such as e123 = e1e2e3
and, in general, ea1...ak = ea1 · · · eak for a1, . . . , ak ∈ {1, 2, 3, 4} and a1 < · · · < ak. In the case of Cℓ1,3, we have five
non-trivial subspaces of fixed grades:

Cℓ01,3 = span{e} ≡ R, Cℓ11,3 = span{e1, e2, e3, e4} ≡ V, Cℓ21,3 = span{e12, e13, e14, e23, e24, e34}, (48)
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Table 4. Summary of notation.

NOTATION MEANING FIRST MEN-
TION

Cℓp,q,r (CLIFFORD) GEOMETRIC ALGEBRA (GA) OVER THE REAL Rp,q,r OR COM-
PLEX Cp+q,0,r VECTOR SPACE

PAGE 3

Cℓp,q NON-DEGENERATE GEOMETRIC ALGEBRA Cℓp,q,0 PAGE 3
Λr GRASSMANN SUBALGEBRA Cℓ0,0,r OF Cℓp,q,r PAGE 3
V REAL Rp,q,r OR COMPLEX Cp+q,0,r VECTOR SPACE PAGE 3
F FIELD OF REAL OR COMPLEX NUMBERS IN THE CASES Rp,q,r AND Cp+q,0,r

RESPECTIVELY
PAGE 3

η MATRIX OF A BILINEAR FORM V × V → F PAGE 3
b SYMMETRIC BILINEAR FORM, b : V × V → F PAGE 3
q QUADRATIC FORM, q : V → F PAGE 3
e IDENTITY ELEMENT PAGE 3
e1, . . . , en GENERATORS OF Cℓp,q,r PAGE 3
Cℓ0 SUBSPACE OF GRADE 0 PAGE 3
Cℓkp,q,r SUBSPACE OF GRADE k, WHERE k = 1, . . . , n PAGE 3
{Cℓkp,qΛl

r} SUBSPACE OF Cℓp,q,r SPANNED BY THE ELEMENTS OF THE FORM ab, WHERE

a ∈ Cℓkp,q AND b ∈ Λl
r

PAGE 17

⟨⟩k PROJECTION ONTO THE SUBSPACE OF GRADE k PAGE 3
Û GRADE INVOLUTE OF U ∈ Cℓp,q,r FORMULA (2)
Ũ REVERSION OF U ∈ Cℓp,q,r FORMULA (2)̂̃
U CLIFFORD CONJUGATE OF U ∈ Cℓp,q,r PAGE 3
Cℓ

(0)
p,q,r , Cℓ(1)p,q,r EVEN AND ODD SUBSPACES OF Cℓp,q,r FORMULA (3)

(Cℓ
(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ

×
r PRODUCT OF TWO GROUPS: {ab | a ∈ Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r, b ∈ Λ×

r } LEMMA 2.1
⟨⟩(l) PROJECTION ONTO THE SUBSPACE Cℓ

(l)
p,q,r , WHERE l = 0, 1 PAGE 3

Cℓmp,q,r SUBSPACES DETERMINED BY GRADE INVOLUTION AND REVERSION FORMULA (4)
⟨⟩m PROJECTION ONTO THE SUBSPACE Cℓmp,q,r , WHERE m = 0, 1, 2, 3 PAGE 3
H× SUBSET OF ALL INVERTIBLE ELEMENTS OF A SET H PAGE 3
ad ADJOINT REPRESENTATION adT (U) = TUT−1 FORMULA (5)
ǎd TWISTED ADJOINT REPRESENTATION ǎdT (U) = T̂UT−1 FORMULA (6)
ãd TWISTED ADJOINT REPRESENTATION ãdT (U) = T ⟨U⟩(0)T−1+T̂ ⟨U⟩(1)T−1 FORMULA (7)
ãd

1
ãd RESTRICTED TO Cℓ1p,q,r PAGE 5

Γ̃1
p,q,r ORDINARY LIPSCHITZ GROUPS FORMULA (10)
ψ, χ NORM FUNCTIONS OF Cℓp,q,r ELEMENTS FORMULA (11)
Γ̃k
p,q,r GENERALIZED LIPSCHITZ GROUPS, k = 0, 1, 2, 3 FORMULA (13)

Γk
p,q,r = Qk

p,q,r , GROUPS PRESERVING THE SUBSPACES Cℓkp,q,r , k = 0, 1, 2, 3, UNDER ad FORMULAS
(16) AND (18)–
(19)

Γ̌k
p,q,r = Q̌k

p,q,r GROUPS PRESERVING THE SUBSPACES Cℓkp,q,r , k = 0, 1, 2, 3, UNDER ǎd FORMULAS
(17) AND (20)–
(21)

Zp,q,r CENTER OF Cℓp,q,r FORMULA (70)
Zk
p,q,r , Žk

p,q,r CENTRALIZERS AND TWISTED CENTRALIZERS RESPECTIVELY OF Cℓkp,q,r ,
k = 0, . . . , n

PAGE 4

Zk
p,q,r , Žk

p,q,r CENTRALIZERS AND TWISTED CENTRALIZERS RESPECTIVELY OF Cℓkp,q,r ,
k = 0, 1, 2, 3

FORMULAS
(86)–(87)

GL(n,F) GENERAL LINEAR GROUP ACTING ON AN n-DIMENSIONAL VECTOR SPACE
OVER F

FORMULA (30)

O(V, q) ORTHOGONAL GROUP FORMULA (30)
OΛ1

r
(V, q) SUBGROUP OF O(V, q) THAT LEAVES INVARIANT Λ1

r FORMULA (31)

Cℓ31,3 = span{e123, e124, e134, e234}, Cℓ41,3 = span{e1234}, (49)

which we call the subspaces of scalars, vectors, bivectors, trivectors, and 4-vectors respectively. An arbitrary element
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U ∈ Cℓ1,3 can be written as

U = ue+
∑

a=1,...,4

uaea +
∑

a,b=1,...,4,
a<b

uabeab +
∑

a,b,c=1,...,4,
a<b<c

uabceabc + u1234e1234, u, . . . , u1234 ∈ R. (50)

The even Cℓ(0)1,3 and odd Cℓ(1)1,3 subspaces are defined as

Cℓ
(0)
1,3 = Cℓ01,3 ⊕ Cℓ21,3 ⊕ Cℓ41,3, Cℓ

(1)
1,3 = Cℓ11,3 ⊕ Cℓ31,3. (51)

In Cℓ1,3, the four subspaces determined by the grade involution̂and the reversion˜ (the subspaces of quaternion types) are
defined as

Cℓ01,3 = Cℓ01,3 ⊕ Cℓ41,3, Cℓ11,3 = Cℓ11,3, Cℓ21,3 = Cℓ21,3, Cℓ31,3 = Cℓ31,3 (52)

and are very similar to the subspaces of fixed grades because of small n = 4.

Let us consider the following example on how the projections ⟨⟩k onto the subspaces of fixed grades Cℓk1,3, k = 0, . . . , 4,

the projections ⟨⟩(l) onto the even and odd subspaces Cℓ(l)1,3, l = 0, 1, and the projections ⟨⟩m onto Cℓm1,3, m = 0, 1, 2, 3 act
on the element W = e+ 2e1 + 3e2 + 4e234 + 5e1234:

⟨W ⟩0 = e, ⟨W ⟩1 = ⟨W ⟩1 = 2e1 + 3e2, ⟨W ⟩2 = ⟨W ⟩2 = 0, ⟨W ⟩3 = ⟨W ⟩3 = 4e234, ⟨W ⟩4 = 5e1234, (53)
⟨W ⟩0 = ⟨W ⟩(0) = e+ 5e1234, ⟨W ⟩(1) = 2e1 + 3e2 + 4e234. (54)

For an arbitrary U ∈ Cℓ1,3 (50), we have

Û = ⟨U⟩(0) − ⟨U⟩(1), Ũ = ⟨U⟩0 + ⟨U⟩1 − ⟨U⟩2 − ⟨U⟩3,
̂̃
U = ⟨U⟩0 − ⟨U⟩1 − ⟨U⟩2 + ⟨U⟩3. (55)

Now let us consider the example on how the adjoint representation ad (5) and twisted adjoint representations ǎd (6) and
ãd (7) act. Let us consider the element T = e1 + e123 ∈ Cℓ×1,3, which is invertible because 1

2 (e1 + e123)(e1 − e123) = e.
Suppose U = e+ e4 ∈ Cℓ1,3. We have

adT (U) = TUT−1 = T (e+ e4)T
−1 = TT−1 + Te4T

−1 = e+
1

2
(e1 + e123)e4(e1 − e123) (56)

= e+
1

2
(e1 + e123)(−e1 + e123)e4 = e− 1

2
(e1 + e123)(e1 − e123)e4 = e− e4, (57)

ǎdT (U) = T̂UT−1 = −TUT−1 = −e+ e4, (58)

ãdT (U) = T ⟨U⟩(0)T−1 + T̂ ⟨U⟩(1)T−1 = TeT−1 − Te4T
−1 = e+ e4. (59)

Note that the results are different for different operations ad, ǎd, ãd.

The Lipschitz group in the case Cℓ1,3 has the form

Γ̃1
1,3 = {T ∈ Cℓ×1,3 : T̂Cℓ11,3T

−1 ⊆ Cℓ11,3}. (60)

A simple example of an element of Γ̃1
1,3 is any basis element ea1...ak , since e−1

a1...ak
= ±ea1...ak , where the sign depends on

a1, . . . , ak and k, and êa1...akeae
−1
a1...ak

= ±ea ∈ Cℓ11,3 for any a = 1, . . . , 4. A slightly more complicated example of the
Lipschitz group Γ̃1

1,3 element is T = e1 + e123 ∈ Cℓ×1,3 considered in the paragraph above. We have:

T̂ e1T
−1 = −1

2
(e1 + e123)e1(e1 − e123) = −e1, T̂ e2T

−1 = e3, T̂ e3T
−1 = e2, T̂ e4T

−1 = e4. (61)

Therefore, T̂ eaT−1 ∈ Cℓ11,3 for a = 1, . . . , 4; thus, T ∈ Γ̃1
1,3.
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C. Grade Involution and Reversion as Fundamental Operations in Cℓp,q,r

This work introduces the neural networks that are equivariant with respect to the groups Γ̃1
p,q,r (27) preserving the subspace

Cℓ1p,q,r (4) determined by the grade involution and reversion under the twisted adjoint representation ãd. These operations
can be considered as fundamental operations in geometric algebras Cℓp,q,r. In this section, we discuss their significance.

In Subsection 2.1, the grade involute and reversion of an arbitrary U ∈ Cℓp,q,r are defined in the following way respectively:

Û :=

n∑
k=0

(−1)k⟨U⟩k, Ũ :=

n∑
k=0

(−1)
k(k−1)

2 ⟨U⟩k. (62)

These mappings have the following well-known properties, which we apply for many times in our work:

(̂UV ) = Û V̂ , (̃UV ) = Ṽ Ũ , ∀U, V ∈ Cℓp,q,r. (63)

Let us show that these operations are in some sense unique in Cℓp,q,r. For this purpose, we need to consider another
equivalent definition of geometric algebras Cℓp,q,r. More detailed discussion of definitions and statements of this section
can be found, for example, in Lounesto, 1997; Helmstetter & Micali, 2008.

The geometric (Clifford) algebra Cℓ(V ) is an associative algebra with the unity e over a vector space V with a symmetric
bilinear form b : V × V → F and the corresponding quadratic form q : V → F, with a linear map j : V → Cℓ(V ) such that

j2(x) = q(x)e, ∀x ∈ V, (64)

and for any other associative algebra A over V with the unity eA and any linear map k : V → A, such that k2(x) = q(x)eA
for any x ∈ V , there exists a unique algebra homomorphism f : Cℓ(V ) → A, such that f ◦ j = k, i.e. the corresponding
diagram is commutative:

V Cℓ(V )

A

j

k
f

Theorem C.1. In any geometric algebra Cℓ(V ), there is a unique antiautomorphism τ : Cℓ(V ) → Cℓ(V ), such that

τ(xy) = τ(y)τ(x), τ ◦ τ = id, τ(j(v)) = j(v), ∀x, y ∈ Cℓ(V ), ∀v ∈ V. (65)

Proof. Let us consider the opposite algebra Cℓ(V )o, in which the product of x and y is given by yx. Then there exists a
unique algebra homomorphism τ : Cℓ(V ) → Cℓ(V )o as in the diagram below

V Cℓ(V )

Cℓ(V )o

j

j
τ

This completes the proof.

Since in our case, V has finite dimension n with a basis e1, . . . , en, the mapping τ is completely determined by its action on
the basis elements. Namely, τ is defined by

τ(ei) = ei, τ(ei1ei2 · · · eik) = eikeik−1
· · · ei1 , τ(e) = e, (66)

where 1 ≤ i1 < i2 < · · · < ik ≤ n. The mapping τ coincides with the reversion ˜ defined as in (62).

Theorem C.2. In any geometric algebra Cℓ(V ), there is a unique automorphism α : Cℓ(V ) → Cℓ(V ), such that

α(xy) = α(x)α(y), α ◦ α = id, α(j(v)) = −j(v), ∀x, y ∈ Cℓ(V ), ∀v ∈ V. (67)
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Proof. Let us consider the linear mapping α0 : V → Cℓ(V ) defined as α0(v) = −j(v) for any v ∈ V . We get a unique
homomorphism α as in the diagram below

V Cℓ(V )

Cℓ(V )

j

α0
α

Furthermore, any x ∈ Cℓ(V ) can be represented as

x =
∑

x1 · · ·xm, x1, . . . , xm ∈ j(V ), (68)

and since α(xj) = −xj for any j = 1, . . . ,m, we get α ◦ α = id. This completes the proof.

Again, since V has finite dimension, the mapping α is completely determined by its action on the basis elements. Namely, α
is defined by

α(ei) = −ei, α(ei1ei2 · · · eik) = (−1)kei1ei2 · · · eik , α(e) = e, (69)

where 1 ≤ i1 < i2 < · · · < ik ≤ n. The mapping α coincides with the grade involution ̂ defined as in (62).

D. Centralizers and Twisted Centralizers
We denote the center of the algebra Cℓp,q,r by Zp,q,r. It is a well-known fact (Crumeyrolle, 1990) that the center has the
following form

Zp,q,r =

{
(Λ

(0)
r ⊕ Cℓnp,q,r)

×, n is odd;
Λ
(0)×
r , n is even.

(70)

Consider the centralizers (see, for example, Garling, 2011; Isaacs, 2009) of the subspaces of fixed grades Cℓmp,q,r, m =
0, . . . , n, in Cℓp,q,r:

Zmp,q,r := {X ∈ Cℓp,q,r : XV = V X, ∀V ∈ Cℓmp,q,r}. (71)

The centralizer Zmp,q,r contains all the elements of Cℓp,q,r that commute with any grade-m element. The center of the
Clifford algebra Cℓp,q,r is the centralizer of the entire Clifford algebra Cℓp,q,r.

Similarly, we consider the twisted centralizers of Cℓmp,q,r, m = 0, . . . , n, in Cℓp,q,r:

Žmp,q,r := {X ∈ Cℓp,q,r : X̂V = V X, ∀V ∈ Cℓmp,q,r}. (72)

Note that Zmp,q,r = Žmp,q,r = Cℓp,q,r for m < 0 and m > n. The particular case Ž1
p,q,r is considered in the papers Ruhe et al.,

2023; Brooke, 1980; Filimoshina & Shirokov, 2024b; 2023.

Note that the projections ⟨Zmp,q,r⟩(0) and ⟨Žmp,q,r⟩(0) of Zmp,q,r and Žmp,q,r respectively onto the even subspace Cℓ(0)p,q,r coincide
by definition:

⟨Zmp,q,r⟩(0) = ⟨Žmp,q,r⟩(0), ∀m = 0, 1, . . . , n. (73)

The paper Filimoshina & Shirokov, 2024b studies explicit forms of the sets Zmp,q,r and Žmp,q,r in the case of arbitrary
m = 0, . . . , n. In Remark D.1, for the readers’ convenience, we write out several particular cases of these sets, which we
further use. A few words about the notation in this remark and below. The spaces Cℓkp,q and Λkr , k = 0, . . . , n, are regarded
as subspaces of Cℓp,q,r. By {Cℓkp,qΛlr}, we denote the subspace of Cℓp,q,r spanned by the elements of the form ab, where
a ∈ Cℓkp,q and b ∈ Λlr.
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Remark D.1 (Explicit forms of centralizers and twisted centralizers). We have:

Z1
p,q,r = Zp,q,r =

{
Λ
(0)
r ⊕ Cℓnp,q,r, n is odd,

Λ
(0)
r , n is even;

(74)

Z2
p,q,r =

{
Λr ⊕ Cℓnp,q,r, r ̸= n,
Λr, r = n;

(75)

Z3
p,q,r=

{
Λ
(0)
r ⊕Λn−2

r ⊕ {Cℓ1p,q(Λn−3
r ⊕ Λn−2

r )} ⊕ {Cℓ2p,qΛn−3
r } ⊕ Cℓnp,q,r, n is odd,

Λ
(0)
r ⊕Λn−1

r ⊕ {Cℓ1p,qΛ≥n−2
r } ⊕ {Cℓ2p,qΛn−2

r }, n is even;
(76)

Z4
p,q,r=

{
Λr ⊕ {Cℓ1p,q(Λn−3

r ⊕ Λn−2
r )} ⊕ {Cℓ2p,q(Λn−4

r ⊕ Λn−3
r )} ⊕ Cℓnp,q,r, r ̸= n,

Λr, r = n;
(77)

and:

Ž1
p,q,r = Λr; (78)

Ž2
p,q,r =


Λ
(0)
r ⊕ Λnr ⊕ {Cℓ1p,qΛn−1

r }, n is odd,
Λ
(0)
r ⊕ Λn−1

r ⊕ {Cℓ1p,qΛn−2
r } ⊕ Cℓnp,q,r, n is even, r ̸= n;

Λ
(0)
r ⊕ Λn−1

r , n is even, r = n;

(79)

Ž3
p,q,r = Λr ⊕ {Cℓ1p,qΛ≥n−2

r } ⊕ {Cℓ2p,qΛ≥n−3
r }. (80)

Remark D.2. In the particular case of the non-degenerate geometric algebras Cℓp,q , we have

Z1
p,q = Zp,q =

{
Cℓ0 ⊕ Cℓnp,q, n is odd,
Cℓ0, n is even;

Z2
p,q = Cℓ0 ⊕ Cℓnp,q; (81)

Z3
p,q =

{
Cℓp,q, n = 2, 3,

Cℓ0, n ̸= 2, 3;
Z4
p,q =


Cℓp,q, n = 2, 3,

Cℓ
(0)
p,q, n = 4,

Cℓ0 ⊕ Cℓnp,q, n ̸= 2, 3, 4;

(82)

Ž1
p,q = Cℓ0, Ž2

p,q =


Cℓp,q, n = 1, 2,

Cℓ0, n ̸= 1 is odd,
Cℓ0 ⊕ Cℓnp,q, n ̸= 2 is even;

Ž3
p,q =


Cℓp,q, n = 1, 2,

Cℓ
(0)
p,q, n = 3,

Cℓ0, n ≥ 4.

(83)

Using the definition of the even subspace Cℓ(0)p,q,r and explicit forms of centralizers of fixed grades, presented in Filimoshina
& Shirokov, 2024b, the following lemma can be obtained.

Lemma D.3. We have

{X ∈ Cℓp,q,r : XV = V X, ∀V ∈ Cℓ(0)p,q,r} =

{
Λr ⊕ Cℓnp,q,r, r ̸= n,
Λn, r = n,

(84)

{X ∈ Cℓp,q,r : X̂V = V X, ∀V ∈ Cℓ(0)p,q,r} =

{
Λ
(0)
r , n is odd; r = n is even;

Λ
(0)
r ⊕ Cℓnp,q,r, n is even, r ̸= n.

(85)

Now let us consider the centralizers and twisted centralizers respectively of the subspaces Cℓkp,q,r (4), k = 0, 1, 2, 3, defined
by the grade involution and reversion, in Cℓp,q,r:

Zkp,q,r := {X ∈ Cℓp,q,r : XV = V X, ∀V ∈ Cℓkp,q,r}, (86)

Žkp,q,r := {X ∈ Cℓp,q,r : X̂V = V X, ∀V ∈ Cℓkp,q,r}. (87)

Theorem D.4. (Filimoshina & Shirokov, 2024b) We have

Zmp,q,r = Zmp,q,r, Žmp,q,r = Žmp,q,r, m = 1, 2, 3; Z0
p,q,r = Z4

p,q,r, Ž0
p,q,r = ⟨Z4

p,q,r⟩(0). (88)

18



GLGENN: A Novel Equivariant Neural Network Architecture Based on Clifford Geometric Algebras

The centralizers Zmp,q,r and twisted centralizers Žmp,q,r, m = 1, 2, 3, 4, are written out explicitly in Remark D.1. In the
formula (88), we have

⟨Z4
p,q,r⟩(0)=

{
Λ
(0)
r ⊕ {Cℓ1p,qΛn−2

r } ⊕ {Cℓ2p,qΛn−3
r }, n is odd or r = n;

Λ
(0)
r ⊕ {Cℓ1p,qΛn−3

r } ⊕ {Cℓ2p,qΛn−4
r } ⊕ Cℓnp,q,r, n is even, r ̸= n.

(89)

Let us consider the following Lemma D.5 about T ∈ Cℓp,q,r such that ψ(T ) and χ(T ) (11) are in the centralizers Zkp,q,r
(86) and twisted centralizers Žkp,q,r (87). The proofs of theorems in Appendix F are based on this lemma.

Lemma D.5. (Filimoshina & Shirokov, 2025) For any T ∈ Cℓ×p,q,r, in the cases (k, l) = (0, 1), (1, 0), (2, 3), (3, 2):

TCℓkp,q,rT
−1 ⊆ Cℓklp,q,r ⇔ T̃ T ∈ Zk×p,q,r, (90)

T̂Cℓkp,q,rT
−1 ⊆ Cℓklp,q,r ⇔ ̂̃

TT ∈ Žk×p,q,r, (91)

and in the cases (k, l) = (0, 3), (3, 0), (1, 2), (2, 1), we have:

TCℓkp,q,rT
−1 ⊆ Cℓklp,q,r ⇔ ̂̃

TT ∈ Zk×p,q,r, (92)

T̂Cℓkp,q,rT
−1 ⊆ Cℓklp,q,r ⇔ T̃ T ∈ Žk×p,q,r. (93)

E. Ordinary Lipschitz Groups, Spin Groups, Adjoint and Twisted Adjoint Representations
In the non-degenerate geometric algebras Cℓp,q, the Lipschitz group is defined as the group of all invertible elements
preserving the grade-1 subspace under the twisted adjoint representation ǎd. Generalizing this definition to the case of the
degenerate Cℓp,q,r, we similarly define the Lipschitz group Γ̃1

p,q,r as

Γ̃1
p,q,r := {T ∈ Cℓ×p,q,r : T̂Cℓ1p,q,rT

−1 ⊆ Cℓ1p,q,r}. (94)

The definition (94) of the degenerate Lipschitz group is used, for example, in the works Brooke, 1980; 1978; Crumeyrolle,
1990.

The well-known spin groups (see, for example, Lounesto, 1997; Crumeyrolle, 1990) are defined as normalized subgroups of
the Lipschitz groups Γ̃1

p,q,r, using the norm functions ψ and χ (11). For example, in the non-degenerate geometric algebras
Cℓp,q , they are defined as

Pinp,q := {T ∈ Γ̃1
p,q : T̃ T = ±e} = {T ∈ Γ̃1

p,q :
̂̃
TT = ±e}, (95)

Pinψp,q := {T ∈ Γ̃1
p,q : T̃ T = +e}, (96)

Pinχp,q := {T ∈ Γ̃1
p,q :

̂̃
TT = +e}, (97)

Spinp,q := {T ∈ Γ̃1
p,q ∩ Cℓ(0)×p,q : T̃ T = ±e} = {T ∈ Γ̃1

p,q ∩ Cℓ(0)×p,q :
̂̃
TT = ±e}, (98)

Spin+p,q := {T ∈ Γ̃1
p,q ∩ Cℓ(0)×p,q : T̃ T = +e} = {T ∈ Γ̃1

p,q ∩ Cℓ(0)×p,q :
̂̃
TT = +e}. (99)

Let us consider the adjoint representation ad acting on the group of all invertible elements ad : Cℓ×p,q,r → Aut(Cℓp,q,r) as
T 7→ adT , where adT : Cℓp,q,r → Cℓp,q,r:

adT (U) = TUT−1, U ∈ Cℓp,q,r, T ∈ Cℓ×p,q,r. (100)

Since adT (UV ) = adT (U)adT (V ) for all U, V ∈ Cℓp,q,r, the mapping adT is an algebra homomorphism, which is
moreover an algebra automorphism for all T ∈ Cℓ×p,q,r. It is called inner automorphism (or conjugation).

Also let us consider the twisted adjoint representation, which is introduced by Atiyah, Bott, and Shapiro in Atiyah et al.,
1964. In this paper, the twisted adjoint representation is defined in the case of the non-degenerate algebra Cℓ0,q,0. It acts
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on the Lipschitz group Γ̃1
0,q,0 (94) in the way ǎd : Γ±

0,q,0 → Aut(Cℓ10,q,0) as T → ǎdT , where ǎdT : Cℓ10,q,0 → Cℓ10,q,0 is
defined for elements of the grade-1 subspace (vectors) as

ǎdT (U) = T̂UT−1, U ∈ Cℓ10,q,0, T ∈ Γ̃1
0,q,0. (101)

There are two ways how to generalize the definition (101) of the twisted adjoint representation to the case of any degenerate
and non-degenerate Cℓp,q,r and arbitrary T ∈ Cℓ×p,q,r, U ∈ Cℓp,q,r. The first approach (Choi et al., 2002; Harvey,
1990; Lundholm & Svensson, 2009) is to define it as the operation ǎd acting on the group of all invertible elements
ǎd : Cℓ×p,q,r → Aut(Cℓp,q,r) as T 7→ ǎdT with ǎdT : Cℓp,q,r → Cℓp,q,r:

ǎdT (U) = T̂UT−1, U ∈ Cℓp,q,r, T ∈ Cℓ×p,q,r. (102)

The operation ǎdT (102) is similar to some operations considered in representation theory of Lie groups (Zerouali, 2020).
Note that unlike adT (100) the mapping ǎdT (102) is not multiplicative in U and, therefore, is not an algebra homomorphism
for all T ∈ Cℓ×p,q,r.

The second approach (Helmstetter & Micali, 2008; Knus, 1991; Walpuski, 2022) is to define the twisted adjoint representation
as the operation acting on the group of all invertible grade-m elements ãd : Cℓm×

p,q,r → Aut(Cℓp,q,r) as T 7→ ãdT with
ãdT : Cℓp,q,r → Cℓp,q,r defined as:

ãdT (U) = (−1)kmTUT−1, U ∈ Cℓkp,q,r, T ∈ Cℓm×
p,q,r, (103)

where we use another notation ãdT not to confuse it with ǎdT (102). The mapping ãdT is also called twisted inner
automorphism, for example, in Helmstetter & Micali, 2008. The operation ãdT can be extended by linearity ãdT (U +V ) =
ãdT (U) + ãdT (V ), and we finally obtain

ãdT (U) = T ⟨U⟩(0)T−1 + T̂ ⟨U⟩(1)T−1, ∀U ∈ Cℓp,q,r, T ∈ Cℓ×p,q,r. (104)

Note that for any elements of fixed parity U(0) and U(1), we have

ãdT (U(0)) = adT (U(0)), ∀U(0) ∈ Cℓ(0)p,q,r, T ∈ Cℓ×p,q,r, (105)

ãdT (U(1)) = ǎdT (U(1)), ∀U(1) ∈ Cℓ(1)p,q,r, T ∈ Cℓ×p,q,r. (106)

Note that both generalizations ǎd (102) and ãd (104) of the twisted adjoint representation (101) to the case of arbitrary
T ∈ Cℓ×p,q,r and U ∈ Cℓp,q,r are used in the literature for various purposes and have some advantages indicated in the works
cited above.

Let us consider the kernels of the adjoint and the twisted adjoint representations:

ker(ad) = {T ∈ Cℓ×p,q,r : TUT−1 = U, ∀U ∈ Cℓp,q,r},

ker(ǎd) = {T ∈ Cℓ×p,q,r : T̂UT−1 = U, ∀U ∈ Cℓp,q,r},

ker(ãd) = {T ∈ Cℓ×p,q,r : TU(0)T
−1 + T̂U(1)T

−1 = U, ∀U = U(0) + U(1) ∈ Cℓp,q,r, U(0) ∈ Cℓ(0)p,q,r, U(1) ∈ Cℓ(1)p,q,r}.

Lemma E.1. (Filimoshina & Shirokov, 2023) We have

ker(ad) = Z×
p,q,r =

{
(Λ

(0)
r ⊕ Cℓnp,q,r)

× if n is odd,
Λ
(0)×
r if n is even;

(107)

ker(ǎd) = Λ(0)×
r ; (108)

ker(ãd) = Λ×
r . (109)

Proof. We obtain (107) from (70).

Let us prove Λ
(0)×
r ⊆ ker (ǎd). Suppose T ∈ Λ

(0)×
r ; then TUT−1 = U for any U ∈ Cℓp,q,r. Since T is even, we have

T̂ = T ; therefore, T̂UT−1 = U for any U ∈ Cℓp,q,r.
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Let us prove ker (ǎd) ⊆ Λ
(0)×
r . Suppose T ∈ Cℓ×p,q,r satisfies T̂UT−1 = U for any U ∈ Cℓp,q,r. Substituting the element

U = e, we obtain T̂ = T ; hence, T ∈ Cℓ
(0)×
p,q,r and TUT−1 = U for any U ∈ Cℓp,q,r. In other words, T ∈ Cℓ

(0)×
p,q,r∩ker (ad).

Using (107), we obtain T ∈ Cℓ
(0)×
p,q,r ∩ (Λ

(0)
r ⊕ Cℓnp,q,r)

× = Λ
(0)×
r in the case of odd n, T ∈ Λ

(0)×
r in the case of even n,

and the proof is completed.

Let us prove ker(ãd) ⊆ Λ×
r . Suppose T ∈ ker(ãd); then T̂U1T

−1 = U1 for any U1 ∈ Cℓ1p,q,r. Thus, T ∈ Λ×
r by the

statement (78) of Remark D.1.

Now we must only prove that Λ×
r ⊆ ker(ãd). Suppose T ∈ Λ×

r ; then TCℓ(0)p,q,r = Cℓ
(0)
p,q,rT and T̂Cℓ1p,q,r = Cℓ1p,q,rT

by Lemma D.3 and the statement (78) of Remark D.1 respectively. Since any odd basis element can be represented as
a product of an odd number of generators, we obtain T̂Cℓ(1)p,q,r = Cℓ

(1)
p,q,rT . Thus, TU(0)T

−1 + T̂U(1)T
−1 = U for all

U = U(0) + U(1) ∈ Cℓp,q,r, where U(0) ∈ Cℓ
(0)
p,q,r and U(1) ∈ Cℓ

(1)
p,q,r, and the proof is completed.

In the next lemma, we study the properties of ad, ǎd, and ãd. Note that the multiplicativity of ãdT (115) is proved in the
particular case T ∈ Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r in Ruhe et al., 2023, and we generalize this statement to T ∈ (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ×

r .

Lemma E.2 (Lemma 2.1). Let H ∈ Cℓ
(0)×
p,q,r ∪Cℓ(1)×p,q,r, T ∈ (Cℓ

(0)×
p,q,r ∪Cℓ(1)×p,q,r)Λ×

r , W ∈ Cℓ×p,q,r, and U, V ∈ Cℓp,q,r. Then
adW , ǎdW , and ãdW satisfy additivity:

adW (U + V ) = adW (U) + adW (V ), (110)

ǎdW (U + V ) = ǎdW (U) + ǎdW (V ), (111)

ãdW (U + V ) = ãdW (U) + ãdW (V ), (112)

adW , ǎdH , and ãdW satisfy for any c ∈ Cℓ0,

adW (c) = ãdW (c) = c, ǎdH(c) = (−1)lc, (113)

where l = 0 if H ∈ Cℓ
(0)×
p,q,r and l = 1 if H ∈ Cℓ

(1)×
p,q,r. Moreover, adW and ãdT satisfy multiplicativity:

adW (UV ) = adW (U)adW (V ), (114)

ãdT (UV ) = ãdT (U)ãdT (V ). (115)

Proof. The formulas (110)–(113) can be easily checked using the definitions of ad (100), ǎd (102), and ãd (104). Let us
prove (114) and (115). We have

adW (U)adW (V ) =WUW−1WVW−1 = adW (UV ).

Since U = ⟨U⟩(0) + ⟨U⟩(1), we get

ãdT (U)ãdT (V ) = (T ⟨U⟩(0)T−1 + T̂ ⟨U⟩(1)T−1)(T ⟨V ⟩(0)T−1 + T̂ ⟨V ⟩(1)T−1) (116)

= T ⟨U⟩(0)⟨V ⟩(0)T−1 + T̂ ⟨U⟩(1)⟨V ⟩(0)T−1 + T ⟨U⟩(0)T−1T̂ ⟨V ⟩(1)T−1 + T̂ ⟨U⟩(1)T−1T̂ ⟨V ⟩(1)T−1. (117)

Now we apply the result of Theorem 4.7 Filimoshina & Shirokov, 2023:

(Cℓ(0)×p,q,r ∪ Cℓ(1)×p,q,r)Λ
×
r = {T ∈ Cℓ×p,q,r : T̂−1T ∈ Λ×

r }

and get T̂−1T ∈ Λ×
r , which implies T−1T̂ =

̂̂
T−1T ∈ Λ×

r . Since Λ×
r = ker(ãd) by Lemma E.1, we obtain that

(T−1T̂ )X = X(T−1T̂ ) for any even X ∈ Cℓ
(0)
p,q,r and (T−1T̂ )X = X

̂
(T−1T̂ ) for any odd X ∈ Cℓ

(1)
p,q,r. Therefore,

T ⟨U⟩(0)T−1T̂ ⟨V ⟩(1)T−1 = TT−1T̂ ⟨U⟩(0)⟨V ⟩(1)T−1 = T̂ ⟨U⟩(0)⟨V ⟩(1)T−1, (118)

T̂ ⟨U⟩(1)T−1T̂ ⟨V ⟩(1)T−1 = T̂ T̂−1T ⟨U⟩(1)⟨V ⟩(1)T−1 = T ⟨U⟩(1)⟨V ⟩(1)T−1. (119)

Finally,

ãdT (U)ãdT (V ) = T ⟨U⟩(0)⟨V ⟩(0)T−1 + T̂ ⟨U⟩(1)⟨V ⟩(0)T−1 + T̂ ⟨U⟩(0)⟨V ⟩(1)T−1 + T ⟨U⟩(1)⟨V ⟩(1)T−1 = ãdT (UV ),

where we use that the product of two elements of the same parity is even and the product of two elements of different parity
is odd.
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F. Generalized Lipschitz Groups in Cℓp,q,r

In this section, we introduce and study degenerate and non-degenerate generalized Lipschitz groups in geometric algebras
Cℓp,q,r of arbitrary dimension and signature.

The generalized Lipschitz groups are defined as the groups preserving the subspaces Cℓkp,q,r (4), k = 0, 1, 2, 3, determined
by the grade involution and reversion, under the twisted adjoin representation ãd (104):

Γ̃kp,q,r := {T ∈ Cℓ×p,q,r : ãdT (Cℓ
k
p,q,r) ⊆ Cℓkp,q,r}. (120)

These groups are setwise stabilizers (see, for example, Isaacs, 2009) of the subspaces Cℓkp,q,r (4), k = 0, 1, 2, 3, in the group
Cℓ×p,q,r under the group action ãd. To study these groups, we introduce and study the following groups, which are setwise
stabilizers of Cℓkp,q,r, k = 0, 1, 2, 3, in Cℓ×p,q,r under ad (100) and ǎd (102) respectively:

Γkp,q,r := {T ∈ Cℓ×p,q,r : adT (Cℓ
k
p,q,r) := TCℓkp,q,rT

−1 ⊆ Cℓkp,q,r}, (121)

Γ̌kp,q,r := {T ∈ Cℓ×p,q,r : ǎdT (Cℓ
k
p,q,r) := T̂Cℓkp,q,rT

−1 ⊆ Cℓkp,q,r}, (122)

and are related to Γ̃kp,q,r (120) as follows:

Γ̃kp,q,r =

{
Γ̌kp,q,r, k = 1, 3,

Γkp,q,r, k = 0, 2,
(123)

since ãdT (Cℓ
k
p,q,r) = adT (Cℓ

k
p,q,r) in the cases k = 0, 2 and ãdT (Cℓ

k
p,q,r) = ǎdT (Cℓ

k
p,q,r) in the cases k = 1, 3 by

(105)–(106).

In Subsections F.1 and F.2, we find the equivalent definitions of the groups Γkp,q,r and Γ̌kp,q,r, k = 0, 1, 2, 3.

F.1. The Groups Q0
p,q,r, Q1

p,q,r, Q2
p,q,r, Q3

p,q,r, Γ0
p,q,r, Γ1

p,q,r, Γ2
p,q,r, and Γ3

p,q,r

Let us consider the groups Q1
p,q,r, Q

2
p,q,r, Q

3
p,q,r, and Q0

p,q,r:

Q1
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Z1×

p,q,r = ker(ad),
̂̃
TT ∈ Z1×

p,q,r = ker(ad)}, (124)

Q2
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Z2×

p,q,r,
̂̃
TT ∈ Z2×

p,q,r}, (125)

Q3
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Z3×

p,q,r,
̂̃
TT ∈ Z3×

p,q,r}, (126)

Q0
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Z4×

p,q,r,
̂̃
TT ∈ Z4×

p,q,r}, (127)

where ker(ad) (107) is the kernel of the adjoint representation ad (100), Z1
p,q,r, Z

2
p,q,r, Z

3
p,q,r, and Z4

p,q,r (see Remark D.1)
are the centralizers of the subspaces Cℓ1p,q,r, Cℓ

2
p,q,r, Cℓ

3
p,q,r, and Cℓ4p,q,r respectively considered in Section D.

The groups Q1
p,q,r, Q

2
p,q,r, Q

3
p,q,r, and Q0

p,q,r are generalizations of the groups Q and Q′ (Shirokov, 2021) in the non-
degenerate geometric algebras Cℓp,q to the case of the degenerate geometric algebras Cℓp,q,r and coincide with them if
r = 0:

Q1
p,q = Q3

p,q = Q, Q0
p,q = Q2

p,q =

{
Q, n = 1, 2, 3 mod 4,
Q′, n = 0 mod 4,

n ̸= 2, 3,

and Q1
p,q = Q2

p,q = Q if n = 2, 3.
Theorem F.1 (Formulas (22) and (25) of Theorem 3.2). In the degenerate and non-degenerate geometric algebras Cℓp,q,r,
we have

Q1
p,q,r = Γ1

p,q,r, Q2
p,q,r = Γ2

p,q,r, Q3
p,q,r = Γ3

p,q,r, Q0
p,q,r = Γ0

p,q,r,

where

Γ1
p,q,r ⊆ Γmp,q,r ⊆ Γ0

p,q,r, m = 2, 3. (128)
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Proof. For fixed k = 0, 1, 2, 3 mod 4 and m = (k − 1) mod 4, l = (k + 1) mod 4, we get

Γkp,q,r = {T ∈ Cℓ×p,q,r : TCℓkp,q,rT
−1 ⊆ (Cℓkmp,q,r ∩ Cℓklp,q,r)} (129)

= {T ∈ Cℓ×p,q,r : TCℓkp,q,rT
−1 ⊆ Cℓkmp,q,r, TCℓkp,q,rT

−1 ⊆ Cℓklp,q,r} (130)

= {T ∈ Cℓ×p,q,r : T̃ T ∈ Zk×p,q,r,
̂̃
TT ∈ Zk×p,q,r} = Qkp,q,r, (131)

where we use Lemma D.5 in the first equality (131) and Zkp,q,r = Zkp,q,r, k = 1, 2, 3, and Z0
p,q,r = Z4

p,q,r by Lemma D.4 in
the second equality (131). The inclusions in (128) follow from the definitions (124)–(127) and the following facts about
explicit forms of centralizers and twisted centralizers implied by Remark D.1:

ker(ad) = Z1×
p,q,r ⊆ Zm×

p,q,r ⊆ Z4×
p,q,r, m = 2, 3. (132)

This completes the proof.

F.2. The Groups Q̌0
p,q,r, Q̌1

p,q,r, Q̌2
p,q,r, Q̌3

p,q,r, Γ̌0
p,q,r, Γ̌1

p,q,r, Γ̌2
p,q,r, and Γ̌3

p,q,r

Consider the groups Q̌1
p,q,r, Q̌

2
p,q,r, Q̌

3
p,q,r, and Q̌0

p,q,r:

Q̌1
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Ž1×

p,q,r = ker(ãd),
̂̃
TT ∈ Ž1×

p,q,r = ker(ãd)}, (133)

Q̌2
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Ž2×

p,q,r,
̂̃
TT ∈ Ž2×

p,q,r}, (134)

Q̌3
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ Ž3×

p,q,r,
̂̃
TT ∈ Ž3×

p,q,r}, (135)

Q̌0
p,q,r := {T ∈ Cℓ×p,q,r : T̃ T ∈ ⟨Z4

p,q,r⟩×(0),
̂̃
TT ∈ ⟨Z4

p,q,r⟩×(0)}, (136)

where ker(ãd) (109) is the kernel of the twisted adjoint representation ãd (104), the sets Ž2
p,q,r (79) and Ž3

p,q,r (80) are
the twisted centralizers of the subspaces Cℓ2p,q,r and Cℓ3p,q,r respectively, and Z4

p,q,r (Remark D.1) is the centralizer of the
subspace Cℓ4p,q,r (see Appendix D). We useˇ in the notation of the groups (133)–(136) due to Theorem F.2 below. We have
(see (109)):

⟨Z4
p,q,r⟩(0) =


Λ
(0)
r ⊕ {Cℓ1p,qΛn−2

r } ⊕ {Cℓ2p,qΛn−3
r }, n is odd;

Λ
(0)
r ⊕ {Cℓ1p,qΛn−3

r } ⊕ {Cℓ2p,qΛn−4
r } ⊕ Cℓnp,q,r, n is even, r ̸= n;

Λ
(0)
r , n is even, r = n.

(137)

In the particular case of the non-degenerate geometric algebra Cℓp,q, we obtain the groups Q± and Q′ considered in
Filimoshina & Shirokov, 2024a:

Q̌1
p,q = Q̌3

p,q = Q±, Q̌0
p,q = Q̌2

p,q =

{
Q±, n = 1, 2, 3 mod 4,
Q′, n = 0 mod 4,

n ̸= 1, 2,

and Q̌1
p,q = Q̌0

p,q = Q± if n = 1, 2.
Theorem F.2 (Formulas (23)–(24) of Theorem 3.2). In degenerate and non-degenerate geometric algebras Cℓp,q,r, we have

Q̌1
p,q,r = Γ̌1

p,q,r ⊆ Q̌3
p,q,r = Γ̌3

p,q,r, Q̌2
p,q,r = Γ̌2

p,q,r, Q̌0
p,q,r = Γ̌0

p,q,r.

Proof. We get Q̌1
p,q,r ⊆ Q̌3

p,q,r, using Ž1
p,q,r ⊆ Ž3

p,q,r (see Remark D.1). For fixed k = 0, 1, 2, 3 mod 4 and m =
(k − 1) mod 4, l = (k + 1) mod 4, we obtain

Γ̌kp,q,r = {T ∈ Cℓ×p,q,r : T̂Cℓkp,q,rT
−1 ⊆ (Cℓkmp,q,r ∩ Cℓklp,q,r)} (138)

= {T ∈ Cℓ×p,q,r : T̂Cℓkp,q,rT
−1 ⊆ Cℓkmp,q,r, T̂Cℓkp,q,rT

−1 ⊆ Cℓklp,q,r} (139)

= {T ∈ Cℓ×p,q,r : T̃ T ∈ Žk×p,q,r,
̂̃
TT ∈ Žk×p,q,r} = Q̌kp,q,r, (140)

where we use Lemma D.5 in the first equality (140) and Žkp,q,r = Žkp,q,r, k = 1, 2, 3, and Ž0
p,q,r = Ž4

p,q,r ∩ Cℓ
(0)
p,q,r =

Z4
p,q,r ∩ Cℓ

(0)
p,q,r by Lemma D.4 and (73) in the second equality (140).
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Remark F.3 (Formula (26) of Theorem 3.2). We have the following relations between the groups Γkp,q,r (121) and Γ̌kp,q,r
(122), k = 0, 1, 2, 3:

Γ̌mp,q,r ⊆ Γ0
p,q,r, m = 0, 1, 2, 3; Γ̌1

p,q,r ⊆ Γ2
p,q,r. (141)

The statements follow from Theorems F.1 and F.2, the definitions of the groups Q̌mp,q,r (133)–(136), m = 0, 1, 2, 3, Q0
p,q,r

(127), Q2
p,q,r (125), Ž1

p,q,r ⊆ Z2
p,q,r, and Žkp,q,r ⊆ Z4

p,q,r, k = 1, 2, 3, by Remark D.1.

F.3. The Groups Γ̃0
p,q,r, Γ̃1

p,q,r, Γ̃2
p,q,r, and Γ̃3

p,q,r

In Corollary F.4, we summarize the results on the equivalent definitions of the generalized Lipschitz groups Γ̃kp,q,r (120),
k = 0, 1, 2, 3. They follow from Theorems F.1 and F.2 on the equivalent definitions of the groups Γkp,q,r (121) and Γ̌kp,q,r
(122), k = 0, 1, 2, 3, respectively, Remark F.3, and the relation (123) between these groups and the generalized Lipschitz
groups Γ̃kp,q,r.

Corollary F.4 (Formula (14) of Theorem 3.1). In the case of arbitrary Cℓp,q,r, we have

Γ̃1
p,q,r=Q̌1

p,q,r ⊆ Γ̃2
p,q,r=Q2

p,q,r ⊆ Γ̃0
p,q,r=Q0

p,q,r, (142)

Γ̃1
p,q,r ⊆ Γ̃3

p,q,r = Q̌3
p,q,r (143)

Theorem F.5 (Theorem 3.3). The elements of the generalized Lipschitz groups Γ̃1
p,q,r have the following special form:

Γ̃1
p,q,r ⊆ (Cℓ(0)×p,q,r ∪ Cℓ(1)×p,q,r)Λ

×
r . (144)

Proof. Suppose T ∈ Γ̃1
p,q,r; then T̃ T =W ∈ ker(ãd) and ̂̃

TT = U ∈ ker(ãd). Therefore, T = T̃−1W and T̂−1 = Û−1T̃ .

Thus, T̂−1T = (Û−1T̃ )(T̃−1W ) = Û−1W ∈ ker(ãd) = Λ×
r . Now we apply Theorem 4.7 (Filimoshina & Shirokov,

2023):

(Cℓ(0)×p,q,r ∪ Cℓ(1)×p,q,r)Λ
×
r = {T ∈ Cℓ×p,q,r : T̂−1T ∈ Λ×

r }.

and obtain T ∈ (Cℓ
(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ×

r .

F.4. Relation Between Ordinary and Generalized Lipschitz Groups

The group Γ̃1
p,q,r may be considered the most important among the generalized Lipschitz groups Γ̃kp,q,r (120), k = 0, 1, 2, 3,

because its elements preserve under ãd not only the subspace Cℓ1p,q,r, but also all other subspaces Cℓkp,q,r, k = 1, 2, 3,
by Corollary F.4. Moreover, the group Γ̃1

p,q,r coincides with the ordinary Lipschitz group Γ̃1
p,q,r (10) in the case of the

low-dimensional geometric algebras Cℓp,q,r (Remark F.6 below) and contains it as a subgroup in the case of arbitrary Cℓp,q,r
(Theorem F.7).
Remark F.6 (Formula (15) of Theorem 3.1). In the case of the small dimensions n ≤ 4, the (ordinary) Lipschitz groups (10)
coincide with the generalized Lipschitz groups Γ̃1

p,q,r due to Cℓ1p,q,r = Cℓ1p,q,r:

Γ̃1
p,q,r = Γ̃1

p,q,r, n ≤ 4. (145)

Note that in the particular case of the non-degenerate geometric algebra Cℓp,q , it is proved (Filimoshina & Shirokov, 2024a)
that the groups coincide in the case n = 5 as well:

Γ̃1
p,q = Γ̃1

p,q, n ≤ 5. (146)

Theorem F.7 (Formula (14) of Theorem 3.1). In arbitrary Cℓp,q,r, the (ordinary) Lipschitz group Γ̃1
p,q,r (10) is a subgroup

of the generalized Lipschitz group Γ̃1
p,q,r (120):

Γ̃1
p,q,r ⊆ Γ̃1

p,q,r. (147)
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Proof. Suppose T ∈ Γ̃1
p,q,r, then T ∈ Cℓ×p,q,r and T̂U1T

−1 ∈ Cℓ1p,q,r for any U1 ∈ Cℓ1p,q,r by definition. We get

T̂U1T
−1 = (T̂U1T

−1)̃ = T̃−1Ũ1
̂̃
T = T̃−1U1

̂̃
T , ∀U1 ∈ Cℓ1p,q,r, (148)

T̂U1T
−1 = −(T̂U1T

−1 )̂̃ = −̂̃
T−1̂̃U1T̃ =

̂̃
T−1U1T̃ , ∀U1 ∈ Cℓ1p,q,r, (149)

where we use Cℓ1p,q,r ⊆ Cℓ1p,q,r, Table 1, and the properties of the reversion ŨV = Ṽ Ũ , Clifford conjugation ̂̃
UV =

̂̃
V
̂̃
U ,

and grade involution ̂̂
U = U , for any U, V ∈ Cℓp,q,r. We multiply both sides of the equality (148) on the left by T̃ and on

the right by T , both sides of the equality (149) on the left by ̂̃
T and on the right by T , and get

̂
(
̂̃
TT )U1 = U1(

̂̃
TT ), (̂T̃ T )U1 = U1(T̃ T ), ∀U1 ∈ Cℓ1p,q,r. (150)

Therefore, by the definition (72) of the twisted centralizers, the elements ̂̃
TT and T̃ T belong to the twisted centralizer of the

grade-1 subspace Cℓ1p,q,r in Cℓp,q,r:

̂̃
TT ∈ Ž1

p,q,r, T̃ T ∈ Ž1
p,q,r. (151)

We have Ž1
p,q,r = Λr by Remark D.1. Therefore, ̂̃TT, T̃T ∈ Λ×

r , and T ∈ Q̌1
p,q,r by definition (133). By Corollary F.4,

Q̌1
p,q,r = Γ̃1

p,q,r. Thus, T ∈ Γ̃1
p,q,r, and the proof is completed.

G. Equivariant Mappings
Let G be a group and X be a set. A (left) group action is a map: ◦ : G×X → X , (g, x) 7→ g ◦ x that satisfies associativity
(i.e. (gh) ◦ x = g ◦ (h ◦ x) for any g, h ∈ G and x ∈ X) and identity condition (i.e. e ◦ x = x for any x ∈ X).

Suppose G is a group and ◦X and ◦Y are its actions on the sets X and Y respectively. A function (network) L : X → Y is
called G-equivariant iff it commutes with these actions:

L(g ◦X x) = g ◦Y L(x), ∀g ∈ G, ∀x ∈ X. (152)

Example G.1. Consider the generalized Lipschitz group Γ̃1
p,q,r with the action ãd and a function L : Cℓp,q,r → Cℓp,q,r.

This function is Γ̃1
p,q,r-equivariant iff

L(ãdT (x)) = ãdT (L(x)), ∀T ∈ Γ̃1
p,q,r, ∀x ∈ Cℓp,q,r, (153)

i.e.

L(T ⟨x⟩(0)T−1 + T̂ ⟨x⟩(1)T−1) = T ⟨L(x)⟩(0)T−1 + T̂ ⟨L(x)⟩(1)T−1, ∀T ∈ Γ̃1
p,q,r, ∀x ∈ Cℓp,q,r. (154)

We prove several general statements about equivariance with respect to an arbitrary group. Suppose G is a group, ◦X is its
action defined on a set X .

Lemma G.2. Consider k G-equivariant mappings fi : Xi−1 → Xi, i = 1, . . . , k. Their composition is G-equivariant:

fk(· · · (f2(f1(g ◦X0 x)))) = g ◦Xk
fk(· · · (f2(f1(x)))) (155)

for any g ∈ G and x ∈ X0.

Proof. We prove the statement by induction, using

f2(f1(g ◦X0 x)) = f2(g ◦X1 (f1(x)) = g ◦X2 f2(f1(x)).
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Lemma G.3. Suppose group G action ◦ is linear, i.e. for any g ∈ G, x, y ∈ X , and α ∈ F

g ◦Y (αx) = α(g ◦X x), g ◦Y (x+ y) = g ◦X x+ g ◦X y.

Consider k G-equivariant mappings f1, . . . , fk : X → Y . Their linear combinations are G-equivariant:

k∑
i=1

αifi(g ◦X x) = g ◦Y
( k∑
i=1

αifi(x)
)

(156)

for any g ∈ G, x ∈ X , αi ∈ F.

Proof. We have

α1f1(g ◦X x) + α2f2(g ◦X x) = α1(g ◦Y f1(x)) + α2(g ◦Y f2(x)) = g ◦Y (α1f1(x) + α2f2(x)) (157)

and obtain the result similarly for k summands.

Lemma G.4. Suppose group G action ◦ is multiplicative, i.e.

g ◦Y (xy) = (g ◦X x)(g ◦X y), ∀g ∈ G, x, y ∈ X.

The product of two G-equivariant mappings f1, f2 : X → Y is G-equivariant:

g ◦Y (f1(x)f2(x)) = f1(g ◦X x)f2(g ◦X x) (158)

for any g ∈ G and x ∈ X .

Proof. We have

g ◦Y (f1(x)f2(x)) = (g ◦Y f1(x))(g ◦Y f2(x)) = f1(g ◦X x)f2(g ◦X x). (159)

H. Degenerate and Non-degenerate Lipschitz, Generalized Lipschitz, and Orthogonal Groups
Equivariance

In this section, we consider the relation between the degenerate and non-degenerate pseudo-orthogonal (complex orthogonal)
groups and the ordinary and generalized Lipschitz groups. We extend the work presented in Crumeyrolle, 1990; Brooke,
1980; Dereli et al., 2010; Ruhe et al., 2023, etc.

Consider the degenerate and non-degenerate pseudo-orthogonal group (in the real case V = Rp,q,r) or complex orthogonal
group (in the complex case V = Cp+q,0,r) denoted by O(V, q). It is defined as the Lie group of all linear transformations of
an n-dimensional vector space V that leave invariant a quadratic form q of signature (p, q, r) if V is real and (p+ q, 0, r) if
V is complex:

O(V, q) := {Φ : V → V : Φ is linear, invertible, q(Φ(v)) = q(v), ∀v ∈ V }. (160)

Note that

O(V, q) ∼= {A ∈ GL(n,F) : ATηA = η}.

When considering both the real and complex cases, we refer to the group O(V, q) as the orthogonal group.

Let us use the following notation. The radical subspace is denoted by Λ1
r := Cℓ10,0,r. We have V = Cℓ1p,q,r = Cℓ1p,q ⊕ Λ1

r .
The subalgebra generated by the basis elements of Λ1

r is denoted by Λr and is a Grassmann (exterior) algebra.

Consider the following subgroup of the orthogonal group, which leaves invariant the radical subspace Λ1
r:

OΛ1
r
(V, q) := {Φ ∈ O(V, q) : Φ|Λ1

r
= idΛ1

r
}. (161)

The following statement about the matrix forms of the orthogonal O(V, q) and restricted orthogonal OΛ1
r
(V, q) groups

is well-known and considered, for example, in Crumeyrolle, 1990; Ruhe et al., 2023. We use it in the proof of the main
statements about the relation between the Lipschitz and orthogonal groups below.
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Lemma H.1. We have the following isomorphisms

O(V, q) ∼= {
(
A 0(p+q)×r
M G

)
}, A ∈ O(Cℓ1p,q, q|Cℓ1p,q ), M ∈ Matr×(p+q)(F), G ∈ GL(r,F); (162)

OΛ1
r
(V, q) ∼= {

(
A 0(p+q)×r
M Ir

)
}, A ∈ O(Cℓ1p,q, q|Cℓ1p,q ), M ∈ Matr×(p+q)(F), (163)

where O(Cℓ1p,q, q|Cℓ1p,q ) is the non-degenerate orthogonal group of transformations ofCℓ1p,q with a non-degenerate quadratic
form q|Cℓ1p,q ; 0(p+q)×r is the zero matrix of size (p+ q)× r; Matr×(p+q)(F) is a set of arbitrary matrices of size r× (p+ q)

with coefficients in F; Ir is the identity matrix of size r× r; GL(r,F) is the general linear group acting on an r-dimensional
vector space over F.

Theorem H.2 (Kernel of ãd
1
). The kernel of the restricted twisted adjoint representation ãd

1
acting on the Lipschitz group

ãd
1
: Γ̃1

p,q,r → Aut(Cℓp,q,r) has the following form:

ker(ãd
1
: Γ̃1

p,q,r → Aut(Cℓp,q,r)) = Λ×
r . (164)

Proof. We have

ker(ãd
1
: Γ̃1

p,q,r → Aut(Cℓp,q,r)) = {T ∈ Γ̃1
p,q,r : T̂ vT−1 = v, ∀v ∈ Cℓ1p,q,r} (165)

= Γ̃1
p,q,r ∩ {T ∈ Cℓ×p,q,r : T̂ vT−1 = v, ∀v ∈ Cℓ1p,q,r} (166)

= Γ̃1
p,q,r ∩ Λ×

r , (167)

where in (167), we apply the statement (109) of Lemma E.1. Note that Λ×
r ⊆ Γ̃1

p,q,r, since for any T ∈ Λ×
r and any

v ∈ Cℓ1p,q,r, we have T̂ vT−1 = vTT−1 = v ∈ Cℓ1p,q,r again by Lemma E.1. Thus, we obtain (164).

Remark H.3. Note that for any vectors v, v1, v2 ∈ V , we have

2b(v1, v2)e = v1v2 + v2v1, q(v)e = v2. (168)

In Remark H.4, we consider how reflections can be represented in geometric algebras. We use this particular case of the
relation between elements of the orthogonal groups O(V, q) and the Lipschitz groups Γ̃1

p,q,r in the proof of Theorem H.9
below.
Remark H.4. The mapping ãd

1

v, where v ∈ Cℓ1×p,q is an invertible vector, acts on an arbitrary vector x ∈ Cℓ1p,q,r as a
reflection of a vector x across the hyperplane orthogonal to the vector v:

ãd
1

v(x) = v̂xv−1 = −vxv−1 = x− (xv + vx)v−1 = x− 2b(x, v)
v2

q(v)
v−1 = x− 2

b(x, v)

b(v, v)
v, (169)

where in the right-hand side, we have the difference between the vector x and twice the projection of the vector x onto the
vector v.

In Remarks H.5 and H.6, we consider several examples of elements that belong to the Lipschitz group Γ̃1
p,q,r (10).

Remark H.5. All invertible non-degenerate vectors belong to the Lipschitz group:

Cℓ1×p,q ⊆ Γ̃1
p,q,r, (170)

since, by Remark H.4, we have ãd
1

v(x) = x− 2b(x,v)
b(v,v)v ∈ Cℓ1p,q,r for any x ∈ Cℓ1p,q,r and v ∈ Cℓ1×p,q .

Remark H.6. Any element U ∈ Cℓp,q,r of the form

U = e+meab ∈ Cℓ0 ⊕ Cℓ2p,q,r, ∀m ∈ F, ∀ea ∈ Cℓ1p,q, ∀eb ∈ Λ1
r, (171)
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is invertible and belongs to the Lipschitz group:

U ∈ Γ̃1
p,qr. (172)

Let us prove these statement. Firstly, U is invertible, since (e+meab)(e−meab) = e. Secondly U preserves the grade-1
subspace under ãd, since

ÛeaU
−1 = (e+meab)ea(e−meab) = (ea −mηaaeb)(e−meab) = ea − 2mηaaeb ∈ Cℓ1p,q,r, (173)

ÛebU
−1 = (e+meab)eb(e−meab) = eb ∈ Cℓ1p,q,r, (174)

ÛecU
−1 = (e+meab)ec(e−meab) = (ec +meabec)(e−meab) = ec ∈ Cℓ1p,q,r, ∀c = 1, . . . , n, c ̸= a, b. (175)

Thus, by definition of the Lipschitz group Γ̃1
p,q,r (10), we get (172).

Let us prove auxiliary Lemmas H.7 and H.8, which we use in the proof of Theorem H.9.
Lemma H.7. In the case r ̸= 0 and r ̸= n, consider any matrix of the form

Bi,j =

(
Ip+q 0
Mi,j Ir

)
∈ OΛ1

r
(V, q), (176)

where Ip+q and Ir are the identity matrices of the sizes (p+ q)× (p+ q) and r × r respectively, and Mi,j ∈ Matr,p+q(F)
has at most one non-zero element mij , which is in the i-th row and j-th column, for fixed i = 1, . . . , r, j = 1, . . . , p+ q.
Then for the following multivector

Ui,j := e+ cijejep+q+i ∈ (Cℓ0 ⊕ Cℓ2p,q,r)
×, cij := −mij

2ηjj
∈ F, ej ∈ Cℓ1p,q, ep+q+i ∈ Λ1

r,

we have

Bi,j = ãd
1

Ui,j
. (177)

In the cases r = n or r = 0, for the identity matrices Ir or Ip+q respectively, we have Ir = ãd
1

e and Ip+q = ãd
1

e

respectively.

Proof. In the cases r = n or r = 0, we have ãd
1

e(v) = eve−1 = v for any v ∈ Cℓ1p,q,r and get the statement.

Further in the proof, we consider the case r ̸= 0 and r ̸= n. Without loss of generality, let us prove the statement for B1,1.

Since B1,1 ∈ OΛ1
r
(V, q) (163), it leaves invariant Λ1

r . Thus, B1,1v = idv for any v ∈ Λ1
r . On the other hand, for

U1,1 := e + c11e1ep+q+1, we have ãd
1

U1,1
(v) = U1,1vU

−1
1,1 = vU1,1U

−1
1,1 = v, for any cij ∈ F, where we apply the

statement (84) of Lemma D.3, since U1,1 ∈ Cℓ
(0)
p,q,r and v ∈ Λ1

r .

Let us consider how B1,1 acts on the vectors from a canonical basis of Cℓ1p,q .

For the vector v1 = (1, 0, . . . , 0) ∈ V corresponding to e1, we have

B1,1v1 = (1, 0, . . . , 0,m11, 0, . . . , 0), (178)

where m11 is on the (p+ q + 1)-th position. On the other hand, for U1,1 and e1, we get

ãd
1

U1,1
(e1) = (e1 − c11η11ep+q+1)(e− c11e1ep+q+1) = e1 − 2η11c11ep+q+1 = e1 +m11ep+q+1, (179)

which corresponds to (178).

For any other vector vk ∈ V , k = 2, . . . , p+ q, corresponding to ek, we have

B1,1vk = (0, . . . , 0, 1, 0, . . . , 0), (180)

where 1 is on the k-th position. On the other hand, for U1,1 and ek, we get

ãd
1

U1,1
(ek) = (e+ c11e1ep+q+1)ek(e− c11e1ep+q+1) = ek, (181)

which corresponds to (180). We have proved that B1,1v = ãd
1

U1,1
(v) for any v from a canonical basis of V . By linearity,

we get the statement (177). This completes the proof.
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Lemma H.8. We have

X̂V = V X, ∀X ∈ (Cℓ(0)×p,q,r ∪ Cℓ(1)×p,q,r)Λ
×
r , ∀V ∈ Λ1×

r . (182)

Proof. Suppose V ∈ Λ1×
r and X =WH , where W ∈ (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r) and H ∈ Λ×

r .

Note that ĤV = V H by the statement (109) of Lemma E.1.

If W ∈ Cℓ
(0)×
p,q,r, then we have ŴV =WV = VW by the statement (84) of Lemma D.3.

Consider the case W ∈ Cℓ
(1)×
p,q,r. If r = n, then W ∈ Λ

(1)×
r , and we get ŴV = VW again by the statement (109) of Lemma

E.1. If r ̸= n, then there exists such generator ei that (ei)2 ̸= 0, and we can always represent W as W = ei(ηiieiW ).
Since ηiieiW ∈ Cℓ

(0)
p,q,r, we again get ̂(ηiieiW )V = V (ηiieiW ) by the statement (84) of Lemma D.3. Also we have

êiV = −eiV = V ei, since V ∈ Λ1
r does not contain ei. So, in this case, we get ŴV = êi ̂(ηiieiW )V = êiV ηiieiW =

V eiηiieiW = VW as well.

Using the notes above, we finally get

X̂V = Ŵ ĤV = ŴV H = VWH = V X, (183)

and the statement is proved.

Theorem H.9 (Image of ãd
1
). The image of the restricted twisted adjoint representation ãd

1
acting on the Lipschitz group

ãd
1
: Γ̃1

p,q,r → Aut(Cℓp,q,r) has the form:

im(ãd
1
: Γ̃1

p,q,r → Aut(Cℓp,q,r)) = OΛ1
r
(V, q). (184)

Proof. Firstly, we prove that im(ãd
1
: Γ̃1

p,q,r → Aut(Cℓp,q,r)) ⊆ OΛ1
r
(V, q), i.e. that ãd

1

T ∈ OΛ1
r
(V, q) for any T ∈ Γ̃1

p,q,r.

Suppose T ∈ Γ̃1
p,q,r, then ãd

1

T is linear by Lemma 2.1. Moreover, ãd
1

T is invertible with the inverse ãd
1

T−1 , since

ãd
1

T−1(ãd
1

T (v)) = T̂−1(T̂ vT−1)T = v, ∀v ∈ Cℓ1p,q,r. (185)

Now, we need to show that

q(ãd
1

T (v)) = q(v), ∀v ∈ Cℓ1p,q,r. (186)

We have

q(ãd
1

T (v)) = q(ãdT (v)) = ãdT (v)ãdT (v) = ãdT (v
2), (187)

where we apply Remark H.3, since ãdT (v) ∈ V , and multiplicativity of ãdT (Lemma 2.1), since T ∈ Γ̃1
p,q,r ⊆ (Cℓ

(0)×
p,q,r ∪

Cℓ
(1)×
p,q,r)Λ×

r by Theorem 3.3. Since v2 = q(v) again by Remark H.3, we finally get

q(ãd
1

T (v)) = ãdT (q(v)) = q(v), (188)

where in the last equality we use the property that ãdT leaves invariant the scalars by the statement (8) of Lemma 2.1. The
statement (186) is proved, i.e. we have shown that ãd

1

T ∈ O(V, q). To prove ãd
1

T ∈ OΛ1
r
(V, q), we finally need to show that

ãd
1

T |Λ1
r
= idΛ1

r
. This statement is true because for any v ∈ Λ1

r and T ∈ Γ̃1
p,q,r ⊆ (Cℓ

(0)×
p,q,r ∪ Cℓ(1)×p,q,r)Λ×

r (Theorem 3.3), we

have ãd
1

T (v) = T̂ vT−1 = vTT−1 = v by Lemma H.8.

Now let us prove OΛ1
r
(V, q) ⊆ im(ãd

1
: Γ̃1

p,q,r → Aut(Cℓp,q,r)), i.e. let is prove the surjectivity of the mapping ãd
1
. We

have by Lemma H.1:

OΛ1
r
(V, q) ∼= {

(
A 0
M Ir

)
}, A ∈ O(Cℓ1p,q, q|Cℓ1p,q ), M ∈ Matr×(p+q)(F). (189)
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Suppose Φ ∈ OΛ1
r
(V, q). Then, there exist A ∈ O(Cℓ1p,q, q|Cℓ1p,q ) and M ∈ Matr×(p+q)(F) such that

Φ =

(
A 0
M Ir

)
=

(
A 0
0 Ir

)(
Ip+q 0
M Ir

)
=

(
A1 0
0 Ir

)
· · ·

(
Ak 0
0 Ir

)(
Ip+q 0
M1,1 Ir

)
· · ·

(
Ip+q 0
Mr,p+q Ir

)
, (190)

where A = A1 · · ·Ak, k ≤ p + q, and A1, . . . , Ak ∈ O(Cℓ1p,q, q|Cℓ1p,q ) are matrices representing reflections, by the
well-known Cartan–Dieudonné theorem (Dieudonné, 1971), which states that every orthogonal transformation in a (p+ q)-
dimensional space with a non-degenerate symmetric bilinear form can be represented as a composition of at most p+ q
reflections; and Mi,j ∈ Matr×(p+q)(F), i = 1, . . . , r, j = 1, . . . , p + q is a matrix with at most one non-zero element,
which is on the i-th row and j-th column, such that M =

∑
i=1,...,r

∑
j=1,...,p+qMi,j .

Note that each reflection matrix Ai, i = 1, . . . , k, can be associated with some vector vi ∈ Cℓ1p,q, so that Ai = ãd
1

vi , by
Remark H.4. Any matrix

Bi,j =

(
Ip+q 0
Mi,j Ir

)
(191)

can be associated with some multivector γi,j = e +mi,jejep+q+i ∈ Cℓ0 ⊕ Cℓ2p,q,r, where mi,j ∈ F, ej ∈ Cℓ1p,q, and

ep+q+i ∈ Λ1
r , so that Bi,j = ãd

1

γi,j , by Lemma H.7. Consider the following multivector, which consists of k+ p+ q factors:

T = v1 · · · vkγ1,1 · · · γr,p+q. (192)

Note that T ∈ Γ̃1
p,q,r, since v1, . . . , vk ∈ Γ̃1

p,q,r by Remark H.5 and γ1,1, . . . , γr,p+q ∈ Γ̃1
p,q,r by Remark H.6. We obtain

for any v ∈ V = Cℓ1p,q,r:

Φ(v) =

(
A1 0
0 Ir

)
· · ·

(
Ak 0
0 Ir

)(
Ip+q 0
M1,1 Ir

)
· · ·

(
Ip+q 0
Mr,p+q Ir

)
v (193)

= ãd
1

v1

(
ãd

1

vk

(
ãd

1

γ1,1

(
· · · (ãd

1

γr,p+q
(v)

)))
(194)

= v̂1 · · · (v̂k(γ̂1,1 · · · (γ̂r,p+qvγ−1
r,p+q) · · · γ−1

1,1)v
−1
k ) · · · v−1

1 , (195)

= ̂(v1 · · · vkγ1,1 · · · γr,p+q)v(v1 · · · vkγ1,1 · · · γr,p+q)−1 (196)

= ãd
1

v1···vkγ1,1···γr,p+q
(v) (197)

= ãd
1

T (v). (198)

Thus, for any Φ ∈ OΛ1
r
(V, q), there exists T ∈ Γ̃1

p,q,r such that Φ = ãd
1

T , and this completes the proof.

Theorem H.10. In the case of any degenerate or non-degenerate Cℓp,q,r, the mapping ãd
1

defines the following isomor-
phism:

ãd
1
: Γ̃1

p,q,r

/
Λ×
r

∼= OΛ1
r
(V, q), (199)

Proof. We have the homomorphism ãd
1

of the groups Γ̃1
p,q,r and OΛ1

r
(V, q), which is surjective by the statement (184)

of Theorem H.9. By the fundamental homomorphism theorem, the group OΛ1
r
(V, q) is isomorphic to the quotient group

Γ̃1
p,q,r

/
ker(ãd

1
) . By applying Theorem H.2, we complete the proof.

Note that in the particular case of the non-degenerate geometric algebra Cℓp,q , Theorem H.10 has the form

ãd
1
: Γ̃1

p,q /Cℓ0× ∼= O(V, q) (200)

and is well-known (see, for example, Benn & Tucker, 1987).
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Theorem H.11 (Theorem 3.4). If a mapping f : Cℓp,q,r → Cℓp,q,r is equivariant with respect to any group H that contains
the Lipschitz group Γ̃1

p,q,r as a subgroup, then f is equivariant with respect to the corresponding restricted orthogonal
group. In other words, if

ãdT (f(x)) = f(ãdT (x)), ∀T ∈ H, ∀x ∈ Cℓp,q,r,

then

f(Φ(x)) = Φ(f(x)), ∀Φ ∈ OΛ1
r
(V, q), ∀x ∈ Cℓp,q,r,

where Φ acts on x in a sense (34) by applying an orthogonal transformation to its vector components.

Proof. Suppose H is a group, Γ̃1
p,q,r ⊆ H, and ãdT (f(x)) = f(ãdT (x)) for some mapping f , for any T ∈ H, and

x ∈ Cℓp,q,r. Then it holds, in particular, for any T ∈ Γ̃1
p,q,r, and f is Γ̃1

p,q,r-equivariant. By Theorem H.10, a mapping is
equivariant w.r.t. Γ̃1

p,q,r iff it is equivariant w.r.t. OΛ1
r
(V, q). Therefore, f is O(V, q)Λ1

r
-equivariant, and the statement is

proved.

I. Experimental Details
The implementation of GLGENN and summary of each experiment are available at
https://github.com/katyafilimoshina/glgenn.

For CGENN (Ruhe et al., 2023), we follow the training setups from the corresponding public code release. For other models,
we use the loss values from the corresponding code repository (Finzi et al., 2021).

We construct our models to closely resemble the CGENN architecture, replacing the Cℓkp,q-linear, Cℓkp,q-geometric product,
and Cℓkp,q-normalization layers from Ruhe et al., 2023 with the same number of GLGENN’s Cℓkp,q counterparts (see Section
4). This design choice results in GLGENN having significantly fewer parameters than CGENN, as they operate in a unified
manner across 4 fundamental subspaces of geometric algebras defined by the grade involution (̂) and reversion (˜); they
processes geometric objects in groups with a step size of 4.

However, this parameter efficiency difference between GLGENN and CGENN becomes apparent only for tasks with n > 3.
In lower-dimensional cases (n ≤ 3), subspaces of fixed grades coincide with the subspaces determined by grade involution
and reversion (4), i.e., Cℓkp,q,r = Cℓkp,q,r for k = 0, 1, 2, 3. Nonetheless, as experiments show, even in 5-dimensional cases,
the performance gap between CGENN and GLGENN is substantial. Moreover, GLGENN’s parameter efficiency advantage
increases with dimension n, as the subspaces Cℓkp,q,r diverge further from Cℓkp,q,r.

O(5, 0)-Regression Task

In our first experiment, we consider an O(5, 0)-invariant regression task proposed in (Finzi et al., 2021). The task is to
estimate the function sin(∥x1∥)− ∥x2∥3/2 + xT

1 x2

∥x1∥∥x2∥ , where x1, x2 ∈ R5,0 are vectors sampled from a standard Gaussian
distribution. The loss function used is Mean squared error (MSE).

We evaluate the performance using four different training dataset sizes and compare against the ordinary MLP, MLP with
augmentations, the O(5, 0)- and SO(5, 0)-equivariant MLP architectures proposed in (Finzi et al., 2021), and with CGENN
(Ruhe et al., 2023). CGENN, MLP, MLP with augmentations, O(5, 0)- and SO(5, 0)-equivariant MLP architectures have
approximately the same number of parameters, we use the setup from the similar experiment provided in Ruhe et al., 2023
(they state that they compare their model CGENN with other models with the same number of trainable parameters).

The number of parameters in Table 5 (O(5, 0)-Regression Experiment) is as follows. All the models besides GLGENN
and CGENN have ≈ 150.3K parameters in total. In CGENN and GLGENN, the architecture contains sequentially applied
geometric algebra-based layers (applied to the subspaces of all grades) and ordinary MLP layers (applied only to the
subspace of 0-grade (scalars)). The most significant layers and at the same time the most consuming for training are
geometric algebra-based ones, and CGENN possess ≈ 1.8K of parameters associated with such layers, while GLGENN has
≈ 0.6K of such parameters. For the MLP part, which is very fast and easy for training, both CGENN and GLGENN both
have ≈ 148.5K parameters.
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Table 5. MSE (↓) on the O(5, 0)-Regression Experiment.

MODEL # OF TRAINING SAMPLES
3 · 101 3 · 102 3 · 103 3 · 104

GLGENN 0.1055 0.0020 0.0031 0.0011
MLP 28.1011 0.2482 0.0623 0.0622

MLP+AUG 0.4758 0.0936 0.0889 0.0672
EMLP-O(5) 0.152 0.0344 0.0310 0.0273

EMLP-SO(5) 0.1102 0.0384 0.032 0.0279
CGENN 0.0791 0.0089 0.0012 0.0003

Table 6. MSE (↓) on the O(5, 0)-Regression Experiment in the case of large training set size.

MODEL # OF TRAINING SAMPLES
6 · 104 1 · 105

GLGENN 0.0001 0.0001
CGENN 0.0002 0.0002

The results, presented in Tables 5, 6 and Figure 2 (left), demonstrate that GLGENN achieves performance on a par
with CGENN, while significantly outperforming the other models. Moreover, GLGENN attains these results with fewer
parameters and reduced training time compared to CGENN. In Table 5, MSE for CGENN and GLGENN are averaged over
5 runs. MSE for other models are averaged over 3 runs (from Finzi et al., 2021). Number of iterations is the same for all
algorithms.

O(5, 0)-Convex Hull Volume Estimation

In this equivariant experiment, the task is to estimate the volume of a convex hull generated byK points in R5,0. We consider
three different values of K: 16 (as used in (Ruhe et al., 2023; Liu et al., 2024)) and two additional settings, K = 256 and
512, which are more relevant for real-world applications.

In the case K = 16, we consider 4 different sizes of the training set: 256, 1024, 4096, and 16384 samples. We compare
GLGENN with the state-of-the-art model CGENN (Ruhe et al., 2023). While both models share a similar architecture,
GLGENN has 24.1K trainable parameters, whereas CGENN has 58.8K. The number of training steps is the same for both
models. The results are presented in Table 3 and Figure 2 (middle). GLGENN either outperforms or matches CGENN
across all training set sizes. The most noticeable difference occurs with smaller training sets. We attribute this to GLGENN’s
lower parameter count, which reduces its tendency to overfit—an issue commonly observed in small datasets.

To study the behavior of CGENN and GLGENN on different iterations of training, we provide Figure 4. This figure shows
the training and test loss at different iterations. Notably, CGENN tends to achieve lower training loss compared to GLGENN.
However, at a certain point, while CGENN’s training loss continues to decrease, its test loss plateaus and remains almost
constant. In contrast, GLGENN’s training loss decreases at a slower rate, but its test loss is consistently lower than that of
CGENN, indicating better generalization.

For K = 256 and K = 512, the results are also presented in Table 3. To ensure a fair comparison, we first select
CGENN architectures that perform best for each setup. We then construct corresponding GLGENN models by replacing
CGENN layers with their GLGENN counterparts, resulting in significantly fewer trainable parameters. Note that GLGENN
consistently outperform CGENN in these real-world settings.

There is a contrast in GLGENN and CGENN generalization behavior in cases of large K. We illustrate it in Figure 5, which
shows the training and test losses for K = 256 in the case of 1024 (left) and 16384 (right) training set sizes. GLGENN
demonstrate stable convergence without signs of overfitting: the training and test losses decrease in a similar way throughout
the optimization trajectory. CGENN show a clear overfitting pattern: while the training loss quickly drops to near-zero, the
test loss plateaus early and remains significantly higher, especially in the small-data regime.

Following the recommendation of one of the anonymous reviewers, in Table 7, we report the average wall-clock time
required to process one training batch for GLGENN and CGENN across different training set sizes and number of points K.
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Figure 4. O(5, 0)-Convex Hull, K = 16. The plots illustrate the training and test loss curves for CGENN and GLGENN across different
training iterations. Subfigures (A)–(D) correspond to different training set sizes: 256 (A), 1024 (B), 4096 (C), and 16384 (D), respectively.

The results demonstrate that GLGENN consistently achieve faster training times compared to CGENN. The performance
gap remains notable across training dataset scales. The majority of memory usage is attributed to the Python environment
and PyTorch’s internal components rather than to the models themselves; as a result, the memory footprint is comparable
between GLGENN and CGENN.

Table 7. Average time (in seconds) for processing one training batch in O(5, 0)-Convex Hull Experiment. In case of the number of points
K = 16 and 256, for datasets with 28, 210, and 212 training samples, the batch size is 128; for 214 samples, the batch size is 256. In case
of K = 512, for datasets with 210 and 212 samples, batch sizes are 256 and 512 respectively.

K 16 256 512
MODEL # TRAIN SAMPLES # TRAIN SAMPLES # TRAIN SAMPLES

28 210 212 214 210 214 210 214

GLGENN 0.22352 0.16708 0.1712 0.3408 3.9931 12.8758 13.3317 27.4383
CGENN 0.33692 0.2331 0.23418 0.43854 8.658 17.7424 17.6603 35.5605

GAP −0.1134 −0.06602 −0.06298 −0.09774 −4.6649 −4.8666 −4.3286 −8.1222

O(7, 0)-Convex Hull Volume Estimation

In this experiment, we extend the previous task with number of points K = 16 to a higher-dimensional setting and evaluate
the performance of GLGENN and CGENN in estimating the volume of a convex hull formed by 16 points in R7,0. We
consider three different training set sizes: 256, 512, and 1024 samples.

While both models share a similar architecture, GLGENN maintains 24.1K trainable parameters, as in the previous
experiment, whereas CGENN’s parameter count increases to 83.7K. The number of training steps remains the same for both
models.

33



GLGENN: A Novel Equivariant Neural Network Architecture Based on Clifford Geometric Algebras

Figure 5. O(5, 0)-Convex Hull, K = 256. The plots illustrate the training and test loss curves for CGENN and GLGENN across different
training iterations. Subfigures (A)–(B) correspond to training with 1024 samples; subfigures (C)–(D) correspond to training with 16384
samples. The right-hand plots zoom in on the final iterations of training.

Figure 6. O(7, 0) Convex Hull. The plots illustrate the training and test loss curves for CGENN and GLGENN across different training
iterations. Subfigures correspond to different training set sizes: 256 (left), 512 (middle), 1024 (right), respectively.

The results, presented in Table 8, show that GLGENN consistently outperforms or matches CGENN. The smaller is the
training set size, the higher is the difference.

Figure 6 compares the training and test loss for CGENN and GLGENN across different iterations. The observed behavior is
consistent with the results from the O(5, 0)-Convex Hull Experiment: CGENN tends to achieve lower training loss, while
GLGENN exhibits better generalization, particularly for smaller training sets.
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Table 8. MSE (↓) on the O(7, 0)-Convex Hull Experiment on the test dataset.

MODEL # OF TRAINING SAMPLES # OF PARA-
28 29 210 METERS

GLGENN 4.0032 3.7378 3.5343 24.1K
CGENN 4.4914 3.7756 3.5408 83.7K

CGENN Same Size as GLGENN

In all our experiments, GLGENN architecture, by construction, has fewer trainable parameters than CGENN. This is because,
for each task, we first construct the best-performing CGENN architecture and then obtain GLGENN by replacing CGENN
layers with their corresponding GLGENN counterparts considered in Section 4, which have fewer parameters. Across all
experiments, GLGENN either matches or outperforms CGENN, despite using fewer parameters.

In this subsection, we explore another setting: we compare GLGENN with CGENN architectures constrained to have the
same number of parameters as the best-performing GLGENN. Our results show that, in almost all cases, CGENN performs
worse under this constraint.

Table 9 presents results from the O(5, 0)-Convex Hull Volume Estimation Experiment. In this setup, the CGENN model is
downsized to have approximately 25K parameters (compared to 58.8K in its best-performing version), while GLGENN has
24.1K parameters. As shown, GLGENN outperforms the size-matched CGENN across all training set sizes.

Table 9. MSE (↓) on the O(5, 0)-Convex Hull Experiment (K = 16 Points) on the test dataset. Comparison of CGENN of different sizes
with GLGENN.

MODEL # OF PARA- # OF TRAINING SAMPLES
METERS 28 210 212 214

GLGENN 24.1K 16.94 10.40 6.2 4.46
CGENN (SAME SIZE AS GLGENN) 25K 19.79 15.94 7.69 4.23

CGENN (BEST PERFORMING) 58.8K 18.71 11.93 6.1 4.11

Table 10 reports results for the O(5, 0)-Regression Task, where both GLGENN and CGENN are constrained to have
approximately 149.1K total parameters, including about 0.6K parameters in geometric algebra-based layers. Again,
GLGENN achieves superior or comparable performance.

Table 10. MSE (↓) on the O(5, 0)-Regression Task on the Test Dataset. Comparison of CGENN of different sizes with GLGENN. The
second column shows the number of trainable parameters associated with geometric algebra-based layers.

MODEL # OF GA-PARA- # OF TRAINING SAMPLES
METERS 3 · 101 3 · 102 3 · 103 3 · 104

GLGENN 0.6K 0.1055 0.0020 0.0031 0.0011
CGENN (SAME SIZE AS GLGENN) 0.6K 0.2856 0.0076 0.0017 0.0005

CGENN (BEST PERFORMING) 1.8K 0.0791 0.0089 0.0012 0.0003

Application of Typical Activation Functions

It is possible to combine geometric algebra-based layers with standard neural network layers, such as MLPs, while preserving
equivariance — provided that the non-geometric algebra-based layers are applied only to scalars (i.e., elements of the
subspace Cℓ0). The diversity of layers in this combination may lead to better results, although in equivariant tasks, non-
geometric algebra-based layers on their own generally underperform compared to GLGENN layers or other geometric
algebra-based layers. Applying non-geometric layers to Cℓ0 has inherent limitations compared to geometric algebra-based
nonlinearities: they do not mix grades and instead isolate them, thereby hindering interactions across subspaces.

We provide an example in the case of the O(5, 0)-Regression Task with 300 training samples. The results presented in
Table 11 and Figure 3 show that the best performance is achieved by a combination of GLGENN (applied to all grades) and
MLP (applied to scalars).
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Table 11. MSE (↓) on combination of MLP with GLGENN and CGENN in O(5, 0)-Regression.

MODEL MSE ON TEST
MLP 0.1706

GLGENN W/ MLP 0.0010
CGENN W/ MLP 0.0066

GLGENN W/O MLP 0.0265
CGENN W/O MLP 0.0723

O(5, 0)-N -Body Experiment

We consider a system of N = 5 charged particles (bodies) in R5,0 with given masses, initial positions, and velocities. The
task is to predict the final positions of the bodies after the system evolves under Newtonian gravity for 1000 Euler integration
steps. For this purpose, we embed all the data in the geometric algebra Cℓ5,0.

We construct a graph neural network (GNN) based on the message-passing paradigm (Gilmer et al., 2017), where bodies are
treated as nodes in a graph, and their pairwise interactions are modeled as edges. The message and update networks are
equivariant GLGENN. We use Cℓk5,0-linear, Cℓk5,0-normalization, and Cℓk5,0-geometric product GLGENN layers combined
with MVSiLU layer from CGENN (Ruhe et al., 2023). We compare against CGENN, which itself outperforms several
state-of-the-art methods, including steerable SE(3)-Transformers (Fuchs et al., 2020), Tensor Field Networks (Thomas
et al., 2018), SEGNN (Brandstetter et al., 2022), Radial Field (Köhler et al., 2020), EGNN (Satorras et al., 2021), and NMP
(Gilmer et al., 2017). To ensure a fair comparison, we use the best-performing CGENN architecture and then replace its
layers with analogous GLGENN counterparts to obtain the GLGENN architecture, which automatically has two times fewer
trainable parameters. The results are presented in Table 12 and Figure 2 (right).

Table 12. MSE (↓) on the O(5, 0)-N -Body Experiment.

MODEL # OF TRAINING SAMPLES # OF PARA-
3 · 101 3 · 102 3 · 103 METERS

GLGENN 0.007 0.0011 0.0009 103K
CGENN 0.0136 0.0015 0.0007 210K
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