AnyPlace: Learning Generalizable Object Placement
for Robot Manipulation

Yuchi Zhao'> 2, Miroslav Bogdanovic'> 2, Chengyuan Luo®, Steven Tohme*,
Kourosh Darvish'- >, Alan Aspuru-Guzik'??, Florian Shkurti'->, Animesh Garg®
"University of Toronto, >Vector Institute, 3Shanghai Jiao Tong University,
*Wilfrid Laurier University, > Acceleration Consortium, °Georgia Institute of Technology

1. Language-conditioned
placement task

“Put the into the

i B - /|
A. Stack the funnelion the holder D. Hang the cup,on the rack
R » X
\ \
\ \ \
-3 . { A |
rv
L f

K. Place the bottle in the drawer M. Place the boftle'on the !op N. Place the lid on the pot
Mo “shelf. ‘ ¥

Figure 1: Execution of the AnyPlace approach by the robot. (1) Given a language description of a placement
task, the robot first captures an RGBD image of the scene using its eye-in-hand camera. (2) A segmentation
model and a VLM are used to segment objects and suggest possible placement locations. (3) Multiple placement
poses are predicted for objects around suggested locations. (4) The robot realizes placement into any of the
predicted poses. (A-O) AnyPlace shows generalization and robustness in predicting placement poses across 16
tasks in the real world, despite being trained purely on a small synthetic dataset.

Abstract: Object placement in robotic tasks is inherently challenging due to the
diversity of object geometries and placement configurations. We address this with
AnyPlace, a two-stage method trained entirely on synthetic data, capable of pre-
dicting a wide range of feasible placement poses for real-world tasks. Our key
insight is that by leveraging a Vision-Language Model (VLM) to identify approxi-
mate placement locations, we can focus only on the relevant regions for precise
local placement, which enables us to train the low-level placement-pose-prediction
model to capture multimodal placements efficiently. For training, we generate a
fully synthetic dataset comprising 13 categories of randomly generated objects in
5370 different placement poses across three configurations (insertion, stacking,
hanging) and train local placement-prediction models. We extensively evaluate
our method in high-fidelity simulation and show that it consistently outperforms
baseline approaches across all three tasks in terms of success rate, coverage of

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

placement modes, and precision. In real-world experiments, our method achieves
an average success and coverage rate of 76% across three tasks, where most base-
line methods fail completely. We further validate the generalization of our approach
on 16 real-world placement tasks, demonstrating that models trained purely on
synthetic data can be directly transferred to the real world in a zero-shot setting.
More at: any-place.github.io.

Keywords: Pick and Place, Robot Manipulation, Synthetic Dataset

1 Introduction

Placing objects is a fundamental task that humans perform effortlessly in daily life, from setting
items on a table to inserting cables into sockets. On the other hand, enabling a robot to perform
such tasks can often be highly challenging. The challenges arise from the various constraints of
different placement tasks and the difficulty of generalizing to unseen objects. Additionally, predicting
multimodal placement outputs, which encompass a range of valid locations and modes, remains
challenging, particularly when multiple feasible solutions exist. Existing methods are often task-
specific, using a large number of demonstrations for a single placement task, such as hanging
objects on racks [1], hoping that the robot can generalize to unseen objects. Alternatively, few-shot
approaches [2, 3,4, 5,6,7, 8,9, 10, 11] focus on learning object placement with a few demonstrations,
aiming for the model to replicate the same placement operation across random initial configurations
of similar objects and setups. However, both struggle with generalization and scalability.

We reframe the placement problem as a pairwise shape mating [12], allowing us to unify multiple
placement tasks into a single learning objective. In this work, we address generalizable object
placement that is robust to different objects and capable of predicting diverse and precise placement
poses across various tasks, such as placing in open areas, inserting in fine slots, and hanging. We have
developed a fully synthetic dataset that captures three common placement configurations: inserting,
stacking, and hanging. Furthermore, we develop a placement prediction algorithm that consists of
a high-level placement position proposal module and a low-level placement pose prediction model.
We use a spatial VLM to propose all possible placement locations and extract the local point cloud
regions based on them. By providing a coarse region for the low-level module to focus on, the
model can effectively generalize across objects, learn their geometry, and capture diverse placement
configurations. We use a diffusion model for fine pose prediction, conditioned on a small local point
cloud region, which enables precise and multimodal placement pose predictions. We demonstrate
the effectiveness of our methods across a range of placement tasks in simulation, as well as diverse
real-world tasks, outperforming the baseline models in terms of success rate and coverage in both
cases. The key contributions of our work are:

1. We propose a novel object placement approach that leverages a VLM to reason about potential
placement locations and a low-level pose prediction model to predict placement poses based solely
on the region of interest. We show that this coarse-to-fine mechanism allows us to significantly
improve performance with respect to baseline methods in terms of success rate, precision, and
placement mode coverage.

2. We develop a data generation pipeline and build a fully synthetic dataset containing thousands of
generated objects and capturing a wide range of local placement configurations.

3. We demonstrate our approach generalizes to the real world on 16 placement tasks with novel
objects and varying degrees of precision requirements.

2 Related Work

The problem of robot pick-and-place is typically formulated in two ways: object rearrangement and
direct end-effector pose prediction.

Object Rearrangement In object rearrangement, the goal is to train a model to predict the relative
transformation of the object from its initial pose to its final placement pose. In this setting, many of
the works focus on predicting explicit task-relevant features of both objects and then solving for the

https://any-place.github.io

relative pose through optimization or regression. Specifically, the Neural Descriptor Fields (NDF)
series of papers [2, 3, 4] learn the occupancy field of point clouds as a representation. A fixed set of
keypoints on the placement object queries features from the target’s field, and the best transformation
is estimated by matching these to demonstration features. TaxPose [5] leverages transformer-based
cross-attention to predict corresponding points between two objects and uses differentiable singular
value decomposition (SVD) to solve for the relative transformation. To guarantee the placement
pose prediction model is robust to SE(3) transformations, i.e., SE(3)-equivariant, methods [6, 7, 8]
explicitly predict per point type-0 and type-1 features for object point clouds and then solve an
optimization problem to align these features into specific configurations based on demonstrations.
All of these methods operate in a few-shot setting and can predict a single placement pose given
two objects. It is crucial for models to capture and predict a distribution of placement poses, as
not every placement pose is realizable by a robot due to its kinematic constraints. RPDiff [1], by
contrast, trains a transformer with a diffusion mechanism on a large dataset, gradually denoising the
object placement pose. However, their experiments reveal that the coverage of possible placement
locations is incomplete. The fixed-size cropping mechanism used during diffusion may also struggle
to generalize to objects of varying sizes. Additionally, a recent study [13] samples multiple stable
placements in a simulation and employs a VLM to select the appropriate mode based on a language
query. While these modes are discrete, each mode allows for the rotation of objects along their axis
of symmetry, resulting in valid placement poses that form a continuous distribution.

Direct Pick and Place End-effector Pose Prediction An alternative approach to the pick-and-place
task is predicting the robot’s end-effector pose directly. M2T2 [14] and Pick2Place [15] focus on
planar object placement in cluttered scenes. M2T2 [14] employs a multi-task transformer with
separate decoders to predict grasp poses and placement location affordance maps for each discrete bin
of rotation. Other works, like Pick2Place [15], concentrate on predicting key end-effector poses to
accomplish specific tasks. RVT [16] and RVT-2 [17] also utilize a transformer, leveraging multiview
RGB images of the scene to predict heatmaps for the robot’s next end-effector location. Coarse-to-fine
Q-attention [18], on the other hand, leverages the scene’s voxel to identify the most interesting spatial
point at the current resolution. This point becomes the voxel centroid for the next refinement step,
enabling the model to gather more accurate 3D information. Another line of work on contemporary
VLMs and vision foundation models (VFMs) [19] finds that they often lack reliable spatial reasoning
abilities, limiting their effectiveness in fine-grained manipulation tasks such as peg-in-hole insertion,
where precise object placement is critical.

3 AnyPlace: Generalizable Object Placement

To enable a robot to execute diverse object placements in a scene, we propose decomposing the
placement pose prediction problem into two stages: a high-level coarse placement location proposal
stage and a low-level fine placement pose prediction stage. For the high-level task, we incorporate a
vision-language model, trained to output 2D keypoint locations in an image based on a given text
prompt. A small local region around the candidate placement location can then be extracted for the
low-level pose-prediction model. This simplifies the low-level pose prediction problem significantly
by using a much smaller point cloud as input and improves generalization overall, as features outside
the local region do not influence the prediction. This allows us to focus on a limited set of general
placement types and utilize a fully synthetic dataset, but have the final model be effective in a
broad range of real-world placement tasks. Additionally, the high-level prediction stage enables the
identification of multiple placement modes.

Problem setup. We formulate the object placement task as predicting relative transformations.
Specifically, given an input tuple { D, I'}, where D represents the language description of the place-
ment task and [is an RGBD image of the scene, our goal is to predict a set of rigid transformations
{T,}N_, C SE(3) that move the target object C' from its current position to all viable placement
locations on the base object B that satisfy language conditioning D. Assuming the grasping poses
Tirasp are provided by a grasp prediction model, the final end-effector pose Tpjce can be computed

High-level Coarse Placement Location Prediction

Language-conditioned
segmentation

SAM-2 o)
Task (D) () Generate point clouds SR
“Put the vial into e HES t<t 2
the vial rack” L @ i max
g Py, + Plnad)
‘ ‘ ; PN gt —

Detect candidate Local placement region ' (]
placement location |~ HES
(Molmo) ' | ;12 Timestep
e |2 embedding
s
e | (3 1
— o t
P_crop

R

Transformer ; Diffusion
i Encoder :: Decoder

Figure 2: Overview of the AnyPlace placement pose prediction approach. (1) High-level Coarse Placement
Location Prediction: Given an input language description and an RGBD image, we leverage a VLM and a
segmentation model to extract objects of interest. We then prompt the VLM to propose possible placement
locations and crop the region of interest centered on the proposed points. The resulting point clouds are fed into
the low-level model. (2) Low-level Fine Placement Pose Prediction: We use a transformer architecture, with a
diffusion decoder to predict relative transformation of the point clouds to realize placement.

using the predicted relative transformation between the initial object pose and its final placement
pose as Tyiace = L Tpick-

3.1 VLM-guided coarse placement location prediction

When multiple potential placement locations exist within a task, existing models often struggle
to capture all possibilities. To address this, we propose leveraging spatial VLMs, which have
demonstrated strong capabilities in localizing points and regions within images based on language
descriptions, to directly identify placement locations. Specifically, given a language description of
the placement task D and a RGBD image I, we extract the point cloud of the target object P., and
for each identified placement point in the image, we extract the local region of the base object Py_crop
guided by the 3D bounding box of the target object, where Pe, Py crop € RY *3. These point clouds
are then used as input to the pose prediction model.

This approach enables the low-level pose prediction model to focus on learning different placement
configurations of two objects and predicting placement poses. Also, explicitly identifying placement
modes, rather than relying on models to explore placements across the entire object, is more reliable
and practical when handling diverse objects with multiple possible placement poses. Since our
high-level module is built on a general-purpose VLM, the system can also handle diverse placements
and perform complex language conditioning. We utilize Molmo [20] to detect all potential placement
locations as keypoints in image space, such as specifying all positions where a vial can be inserted into
a vial plate. However, our approach is not specific to one VLM, and other models with capabilities to
give point locations in an image could be used [21]. (See Appendix A for language prompts.)

3.2 Fine-grained placement pose prediction

Given point clouds P, and Py_crop from the high-level module, the low-level pose prediction only
focuses on learning different local placement arrangements, without the need to capture the distribu-
tion of different discrete placement locations. Our intuition is that, with the aid of our large synthetic
dataset, the model should effectively capture key representations of diverse placement configurations
based on object geometry, which enables it to generalize to unseen objects and remain robust to noisy
data. Having only a local region as input, the pose prediction model should be able to achieve better
precision, which is crucial in many relevant placement tasks.

We predict the relative transformation using a diffusion model, which takes as input the two point
clouds, P, and Py,_crop, and through iterative denoising produces the transformation to be applied to
P in order for it to be placed correctly in the Py,_¢rop region. We use a transformer architecture for the
encoder [22, 12], where the features of the two point clouds are first extracted through self-attention

layers, before being combined through cross-attention, and pooled into a latent embedding. We use a
diffusion architecture for the decoder, which, conditioned on this latent embedding and the diffusion
timestep, produces the delta to be applied to the object pose through transformation T,gt). For each
successive diffusion step, we apply this transformation to the original point cloud P, in effect shifting
the object being placed closer to the goal. The resulting transformation to go from the original point
cloud, where the object currently is, to the final placement pose is the product of the output from each
diffusion step T;, = Hi:‘f‘ T,(Lt). At each diffusion step during training, given the ground truth Tr(:)GT

and the predicted Tr(f), we use the L1 distance for the translation loss, the geodesic distance for the
rotation loss, and apply the Chamfer loss between point clouds transformed by predicted and ground
truth poses. The total loss is the sum of these individual losses. (More details in Appendix B.)

Robot pick and place execution After determining the placement poses, we implement a pick-and-
place pipeline to manipulate the object and position it accurately at the target pose. Specifically, we
utilize AnyGrasp [23] to find viable grasps for the target object C' and employ cuRobo [24] as the
motion planner to perform collision-free placement. We perform rejection sampling on (Tpiace, Tpick)
pairs to identify valid grasps for the specific placement pose predicted by our model that can be
executed by the robot. Details of implementation can be found in Appendix C.

4 Synthetic Dataset Generation

Our aim in building the synthetic dataset is to capture a broad range of local placement arrangements.
Existing models use a few very specific tasks (e.g., inserting a book into a bookshelf) to simply
evaluate how well their model works given placement data for such task for training [14, 15, 25]. Our
goal, on the other hand, is not only to use the dataset to evaluate the proposed model, but to build
towards representing a broad range of types of placements (stacking, hanging, inserting) as shown in
Figure 3. The local nature of our pose-prediction model makes this task much easier and enables us
to build a dataset that can generalize to a broad range of real-world placement tasks.

Insertion Hanging o Stacking o
‘, S S — —m
3 \
- 7Y . ° 1
o et It
(A) (B)

Figure 3: Dataset generation and robot performing various placement tasks in simulation.

The data generation pipeline consists of two main components: object generation and placement
pose generation. Specifically, we use Blender to procedurally generate 3D objects with random
object parameters to further enhance diversity. To identify stable placements for objects, we use
NVIDIA IsaacSim to determine object placement poses for three configurations: stacking, inserting,
and hanging. This dataset covers a wide range of placement scenarios encountered in real life. In
total, 1489 objects across 13 categories were created, and 5370 placement poses were generated. (For
more details, see Appendix B.3.)

S Experimental Evaluation

We conduct evaluations against three baseline models on different placement tasks in both simulation
and real-world settings. We aim to answer the following questions:

1. How well does AnyPlace perform in terms of object placement success rate, coverage, and
precision compared to baseline models?

2. How does each component of AnyPlace described in section 3 affect the overall performance?

3. How well can AnyPlace generalize to novel objects and unseen configurations in the real world in
a zero-shot setting, despite being trained only on synthetic data?

Evaluation metrics. We use three metrics to evaluate model performance: success rate, coverage,
and precision. Specifically, we define a placement as successful if the robot places the object at the

Table 1: Success rate (%) on synthetic dataset. Overall, AnyPlace achieves consistently high success rates
across four pick-and-place tasks on the synthetic dataset.

Methods Object Stacking Peg Insertion Cup Hang Vial Insertion

(single-mode) (single-mode) | (multi-mode) (multi-mode)
Single task | NSM [12] 76.57 7.63 35.54 18.70
training RPDiff [1] 80.34 22.94 92.02 16.51
AnyPlace-EBM (ours) 80.04 8.44 91.57 65.64
AnyPlace (ours) 80.16 30.95 94.80 92.74
Multi-task | NSM [12] 77.55 7.69 35.22 9.87
training RPDiff [1] 80.21 22.33 94.05 24.26
AnyPlace-EBM (ours) 78.95 10.75 90.87 57.24
AnyPlace (ours) 78.28 24.99 94.12 75.25

correct location, and it remains stable after release. The success rate is then calculated as the number
of successful placements divided by the total number of trials. To better understand the diversity of
multimodal outputs in placement prediction, we evaluate coverage, defined as the number of distinct
predicted placement locations relative to the total number of possible locations. Finally, for fine
placement tasks, to evaluate the precision, we measure the error between the ground truth pose and
the predicted pose in terms of both distance and angle.

Baselines. We compare our approach with three baselines: NSM [12], RPDiff [1], and an energy-
based model (EBM), a variant of our model that is integrated with our high-level placement location
prediction module. Specifically, NSM shares the same self-attention and cross-attention point cloud
encoder, paired with a regression decoder. For RPDiff, since the low-level pose-prediction module
in our diffusion-based approach shares the same structure, this allows us to directly examine the
effects of the high-level module we propose. To evaluate the effectiveness of the diffusion decoder in
generating multimodal outputs, we build AnyPlace-EBM inspired by Implicit-PDF [26], where the
model uses the same encoders as ours and is trained to assign low energy values to stable placement
poses (Details in Appendix C.2). Each model is trained independently on placement-type-specific
subsets and on the full dataset (the multitask variant).

Placement Success: Single & Multi-Modal. We evaluate all methods in simulation using our
pick-and-place execution pipeline within IsaacLab [27]. Experiments cover four tasks: object
stacking and peg insertion (single-mode), and cup hang and vial insertion
(multi-modal, with multiple valid placements). A summary of results is shown in Table 1.

In single-mode tasks, for the simple stacking task, where precision in placement poses is not required,
all models achieve a similar success rate. For the peg-in-hole task, which requires high precision in
placement pose prediction, AnyPlace surpasses the baseline models by a large margin. Multimodal
tasks are where we expect to get the full benefit from our approach. In the hanging task, the tolerance
for placing a cup on the rack is relatively high, and AnyPlace outperforms baseline models slightly.
In the more challenging vial insertion task, AnyPlace achieves the highest success rate of 92.74%,
while the success rates of all baseline models drop significantly. This demonstrates that relying on
high-level VLM to propose possible placement locations and focusing solely on the local region for
placement prediction simplifies the task for low-level pose prediction models and enables them to
better capture fine-grained point cloud features for high-precision placements. Additionally, despite
using the same high-level placement location prediction, the energy-based model suffers a worse
performance compared to the diffusion-based AnyPlace. This highlights that the iterative denoising
procedure in diffusion is more effective for high-precision placement prediction.

Placement Coverage: Multi-Modal Insertion & Hanging. We now investigate how coverage
changes as the number of samples taken from each model increases. Given the design of NSM and
RPDiff, we can only take independent samples from the model until all possible placement modes
are covered. In contrast, for AnyPlace and AnyPlace-EBM, the high-level VLM module predicts
possible placement locations, allowing us to perform sampling for each mode separately. We perform
an equal number of samples for each mode and compare performance based on the same total number
of samples across all models.

—— NSM —e— AnyPlace-EBM —— NSM —e— AnyPlace-EBM

RPDiff —e— AnyPlace RPDiff —e— AnyPlace
1.0
08
08
2 2
® 06]
-2 06
o Q
g g
5% G 04
> >
2 2
o o
0.2 0.2
0.0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Number of Trials Number of Trials
(A) Vial Insertion Task (B) Hanging Task

Figure 4: Coverage comparison across different models in vial insertion and hanging tasks. In both cases,
AnyPlace achieves near-perfect coverage with just a few samples, while baselines fail to match this even with
100 samples.

Distance Error (MT) [m] Angle Error (MT) [rad]

NSM

Methods Insert vial Hang ring Stack battery
(10 modes) (5 modes) (3 modes)
NSM 0% 0% 0%
RPDiff 0% 60% 0%
AnyPlace-EBM 50% 0% 0%
AnyPlace 80% 80% 67%

AnyPlaceAnyPlace-EBM RPDiff

Lv—'—d—J—v'—‘f | " _— T Table 2: Coverage rate of the real robot executing

000 005 0100150200 ! z : three placement tasks. 10 trials were conducted for
Figure 5: Errors on insertion tasks. Based on his- each task. Our model significantly outperforms base-
tograms of the translation and rotation error in pose line models in real experiments, demonstrating its
prediction, it is clear that AnyPlace achieves the best ability to generalize to unseen objects and effectively
precision. (MT): models trained on multi-task data. handle noisy data.

In Figure 4A, we show results for the vial insertion task. AnyPlace rapidly approaches peak
performance with a single sample per mode due to its high placement success rate and the VLM’s
strong reasoning in identifying diverse placement locations. AnyPlace-EBM models show a similar
trend but plateau at 73% due to lower success rates. In contrast, RPDiff fails to capture multimodality,
with coverage below 10%, and is outperformed even by the NSM regression model. For hanging, we
assess generalization across racks with varied sizes, geometries, and stick spacing. The placement
coverage is reported in Figure 4B. As with vial insertion, AnyPlace consistently achieves 100%
coverage with fewer samples. While RPDiff improves here, its coverage saturates at 90%, revealing
limited generalization. In contrast, AnyPlace ’s coarse predictions guide the fine model to focus on
local placement, enabling robust generalization across object variations.

Placement Precision: Fine-grained Insertion. Our final simulation evaluation focuses on assessing
precision, a key factor in many placement tasks. We test whether restricting input regions improves
placement pose precision by directly analyzing model predictions. Figure 5 shows distance and
rotation error distributions for insertion tasks. We base the error on predicted poses to the closest
viable placement pose. AnyPlace yields smaller and more consistent errors than baselines. We also
evaluate rotation predictions, excluding yaw due to object symmetry. As the initial pose is randomized
and models cannot determine this orientation, all methods produce uniformly random yaw angle
values. Most models predict flipped and correct orientations equally, except NSM, which performs
worse in both position and orientation. Both AnyPlace and RPDiff perform well on orientation, while
AnyPlace-EBM achieves slightly lower accuracy than RPDiff but surpasses NSM, highlighting its
potential as a non-diffusion-based alternative.

(A) Predicted pose and executed placement (B) Multimodal pose prediction

‘v b, 7 4 % . ; ~
~® 3 eg@?

Figure 6: Demonstration of robot executing diverse real-world tasks using AnyPlace predictions. Trained
only on synthetic data, the model generalizes to unseen objects and effectively handles noisy point clouds.

5.1 Real World Evaluation

We evaluate our approach on 16 real-world placement configurations with different objects. For each
scene, a single RGBD image is captured using a ZED Mini camera mounted on a Franka Emika arm.
We use the same high-level pipeline and models trained solely on synthetic data to predict placement
poses in a zero-shot setting. We use a simplified pipeline for executing the placement, using a specific
grasp and performing placement inverse kinematics instead of a full motion planner. In addition, we
do not utilize rejection sampling, but directly execute each trajectory on the real robot. Our goal
is to test whether predicting local placements enables generalization to unseen objects. Additional
visualization and discussion can be found in Appendix C.

Precise Multi-modal Placement. We perform systematic evaluations of coverage and success rate
over 10 trials on three tasks, as shown in Figure 1, each involving multiple possible placement
locations, as shown in Table 2. Overall, NSM and RPDiff fail to adapt to the differences in real-world
tasks compared to the training conditions. AnyPlace, on the other hand, successfully completes
placements, achieving the best performance across all tasks — 80% on the fine-grained vial insertion
task. This demonstrates not only the effectiveness of the VLM in identifying placement modes, but
also the generalization and precision of our low-level pose prediction model.

Generalizable & Language-conditioned Placement. To evaluate generalization, we extensively
test AnyPlace on a variety of real-world placement tasks. The robot successfully performs diverse
placements with unseen rigid and deformable objects, such as stacking a funnel on a holder, hanging
tools and a towel on racks (Figure 1A-E). It handles fine-grained (Figure 1F-H: peg-in-hole, ring
stacking) and long-horizon tasks (Figure 1N-O: lid-on-pot, followed by pot-on-stove). It can also
perform placement at different locations based on language description (Figure 1K-M: bottle on
different shelves). We also visualize raw pose predictions made by the model for a selection of these
experiments, by moving the object point cloud to the predicted pose (Figure 6A), as well as showing
multimodal predictions at the same time (Figure 6B). These experiments demonstrate that combining
VLM-based location prediction with local pose refinement enables accurate and language-guided
placements. This integration, along with synthetic training, allows generalization to unseen objects
and complex configurations.

6 Conclusion

In this work, we presented a general pipeline for performing a wide range of object placement tasks
using a robotic arm. We proposed a two-part framework consisting of a high-level module that
determines coarse placement locations and a low-level module that predicts fine placement poses.
The core idea of our approach is to leverage a VLM to propose placement locations, allowing the
low-level pose prediction model to focus only on the local region of interest in the object’s point cloud.
This effectively reduces complexity and enhances generalization. To train our model, we created
a synthetic dataset containing thousands of randomly generated objects and placement poses. We
demonstrated the effectiveness of the entire pipeline in both simulation and real-world experiments. In
simulation, we showed that AnyPlace outperforms baseline methods in terms of success rate, coverage,
and precision. We then validated its robustness and generalization in real-world settings, where, given
a single RGB-D image, AnyPlace predicts diverse placement configurations in a zero-shot manner
and successfully generalizes to unseen objects, despite being trained purely with synthetic data.

7 Limitations

While our main focus in this work is on predicting placement poses, there are still challenges to
be tackled in order to be able to execute the full pick-and-place task with the same generality. Not
every stable grasp of an object can be used to realize the placement of the same object at a specific
pose, and performing rejection sampling in real-world scenarios can be difficult and time-consuming.
We do believe our synthetic dataset and evaluation pipeline provide a great foundation for making
progress in this direction, by using them to generate data for training an end-to-end pick-and-place
model applicable to a wide range of real-world placement tasks.

A common limitation of object rearrangement approaches, similar to AnyPlace, is their lack of
consideration for object contact interactions during placement. By only controlling the robot end-
effector placement pose based on our model prediction, the robot approaches objects too aggressively,
leading to hard impacts or failed placements due to a lack of smooth and soft contact. Nevertheless,
we demonstrate that AnyPlace is capable of handling a diverse set of placement tasks in the real
world. A promising direction for future work is to incorporate compliance control or force feedback
to adapt the robot’s motion during contact and achieve more reliable placements.

While our approach enables greater precision in the placement pose prediction, it is still limited by
the precision of the point clouds it receives as input. Completing placement tasks requiring significant
precision with imperfect point cloud data can be very difficult. Specifically, we visualize the object
point clouds at the predicted placement poses for failure cases (see Appendix Figure A4). For ring
hanging, the point cloud of the rack is too sparse, causing the predicted position to be off, although
the orientation remains mostly correct. For peg inserting, the captured point clouds of the holes
are noisy and have vague boundaries. While our model predicts the correct orientation, it slightly
misses the hole, leading to insertion failure. For battery stacking, the point cloud of the battery is
largely incomplete, causing the predicted placement to be tilted rather than vertical. The battery
falls over after the robot releases it. For future work, recent methods for estimating depth from RGB
images have some potential to aid in this, as does continued progress in sensor quality. Another very
promising approach for tackling this problem is having a policy for performing the final section of
the placement based on force/torque feedback. Similarly, like in the previous point, we also think that
our dataset and simulation pipeline can be a great starting point for tackling this issue, by providing
us with data for training such reactive placement-execution policies.

The approach we are proposing also does not include language conditioning in the low-level pose
prediction model. This means that we are unable to choose between different types of placements
in the same location. However, with the architecture of the low-level model, it is straightforward to
add an additional language-conditioning input. Our synthetic data generation pipeline lends itself
well to data generation in this case as well, where we can automatically add language conditioning to
different placement types and even use an LLM to add diversity to language-conditioning data.

Acknowledgments

This research was undertaken thanks in part to funding provided to the University of Toronto’s
Acceleration Consortium from the Canada First Research Excellence Fund, grant number CFREF-
2022-00042. We acknowledge the generous support of Dr. Anders G. Frgseth, the Acceleration
Consortium, the Vector Institute, Natural Resources Canada and the Canada 150 Research Chairs
program.

References

[1] A. Simeonov, A. Goyal, L. Manuelli, L. Yen-Chen, A. Sarmiento, A. Rodriguez, P. Agrawal, and
D. Fox. Shelving, stacking, hanging: Relational pose diffusion for multi-modal rearrangement.
Conference on Robot Learning, 2023.

[2] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se(3)-equivariant object representations for manipulation, 2021.
URL https://arxiv.org/abs/2112.05124.

https://arxiv.org/abs/2112.05124

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling. Local neural descrip-
tor fields: Locally conditioned object representations for manipulation. In 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 1830-1836, 2023. doi:
10.1109/ICRA48891.2023.10160423.

A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.
Se(3)-equivariant relational rearrangement with neural descriptor fields. In K. Liu, D. Kulic,
and J. Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning, volume 205
of Proceedings of Machine Learning Research, pages 835-846. PMLR, 14-18 Dec 2023. URL
https://proceedings.mlr.press/v205/simeonov23a.html.

C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held. TAX-pose: Task-specific cross-pose
estimation for robot manipulation. In 6¢th Annual Conference on Robot Learning, 2022. URL
https://arxiv.org/abs/2211.09325.

H. Ryu, J. Kim, H. An, J. Chang, J. Seo, T. Kim, Y. Kim, C. Hwang, J. Choi, and R. Horowitz.
Diffusion-edfs: Bi-equivariant denoising generative modeling on se(3) for visual robotic manip-
ulation, 2023. URL https://arxiv.org/abs/2309.02685.

H. Ryu, H. in Lee, J.-H. Lee, and J. Choi. Equivariant descriptor fields: Se(3)-equivariant
energy-based models for end-to-end visual robotic manipulation learning, 2023. URL https:
//arxiv.org/abs/2206.08321.

C. Gao, Z. Xue, S. Deng, T. Liang, S. Yang, L. Shao, and H. Xu. Riemann: Near real-time
se(3)-equivariant robot manipulation without point cloud segmentation. 2024.

B. Eisner, Y. Yang, T. Davchev, M. Vecerik, J. Scholz, and D. Held. Deep SE(3)-equivariant
geometric reasoning for precise placement tasks. In The Twelfth International Conference on
Learning Representations, 2024. URL https://arxiv.org/abs/2404.13478.

H. Huang, K. Schmeckpeper, D. Wang, O. Biza, Y. Qian, H. Liu, M. Jia, R. Platt, and R. Walters.
Imagination policy: Using generative point cloud models for learning manipulation policies.
arXiv preprint arXiv:2406.11740, 2024.

H. Huang, H. Liu, D. Wang, R. Walters, and R. Platt. Match policy: A simple pipeline from
point cloud registration to manipulation policies, 2024. URL https://arxiv.org/abs/
2409.15517.

Y.-C. Chen, H. Li, D. Turpin, A. Jacobson, and A. Garg. Neural shape mating: Self-supervised
object assembly with adversarial shape priors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12724—12733, 2022.

Y. Ding, H. Geng, C. Xu, X. Fang, J. Zhang, S. Wei, Q. Dai, Z. Zhang, and H. Wang. Open6DOR:
Benchmarking open-instruction 6-dof object rearrangement and a VLM-based approach. In
First Vision and Language for Autonomous Driving and Robotics Workshop, 2024. URL
https://openreview.net/forum?id=RclUiexKMt.

W. Yuan, A. Murali, A. Mousavian, and D. Fox. M2t2: Multi-task masked transformer for
object-centric pick and place. In 7th Annual Conference on Robot Learning, 2023.

Z. He, N. Chavan-Dafle, J. Huh, S. Song, and V. Isler. Pick2place: Task-aware 6dof grasp
estimation via object-centric perspective affordance. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 7996-8002, 2023. doi:10.1109/ICRA48891.2023.
10160736.

A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer for
3d object manipulation. arXiv:2306.14896, 2023.

10

http://dx.doi.org/10.1109/ICRA48891.2023.10160423
http://dx.doi.org/10.1109/ICRA48891.2023.10160423
https://proceedings.mlr.press/v205/simeonov23a.html
https://arxiv.org/abs/2211.09325
https://arxiv.org/abs/2309.02685
https://arxiv.org/abs/2206.08321
https://arxiv.org/abs/2206.08321
https://arxiv.org/abs/2404.13478
https://arxiv.org/abs/2409.15517
https://arxiv.org/abs/2409.15517
https://openreview.net/forum?id=RclUiexKMt
http://dx.doi.org/10.1109/ICRA48891.2023.10160736
http://dx.doi.org/10.1109/ICRA48891.2023.10160736

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt2: Learning precise manipula-
tion from few demonstrations. RSS, 2024.

S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine g-attention: Efficient learning
for visual robotic manipulation via discretisation, 2022. URL https://arxiv.org/abs/
2106.12534.

B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Sadigh, L. Guibas, and F. Xia. Spatialvim: Endowing
vision-language models with spatial reasoning capabilities. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 14455-14465, June
2024.

M. Deitke, C. Clark, S. Lee, R. Tripathi, Y. Yang, J. S. Park, M. Salehi, N. Muennighoff, K. Lo,
L. Soldaini, J. Lu, T. Anderson, E. Bransom, K. Ehsani, H. Ngo, Y. Chen, A. Patel, M. Yatskar,
C. Callison-Burch, A. Head, R. Hendrix, F. Bastani, E. VanderBilt, N. Lambert, Y. Chou,
A. Chheda, J. Sparks, S. Skjonsberg, M. Schmitz, A. Sarnat, B. Bischoff, P. Walsh, C. Newell,
P. Wolters, T. Gupta, K.-H. Zeng, J. Borchardt, D. Groeneveld, J. Dumas, C. Nam, S. Lebrecht,
C. Wittlif, C. Schoenick, O. Michel, R. Krishna, L. Weihs, N. A. Smith, H. Hajishirzi, R. Gir-
shick, A. Farhadi, and A. Kembhavi. Molmo and pixmo: Open weights and open data for state-
of-the-art multimodal models, 2024. URL https://arxiv.org/abs/2409.17146.

G. R. Team, S. Abeyruwan, J. Ainslie, J.-B. Alayrac, M. G. Arenas, T. Armstrong, A. Balakr-
ishna, R. Baruch, M. Bauza, M. Blokzijl, S. Bohez, K. Bousmalis, A. Brohan, T. Buschmann,
A. Byravan, S. Cabi, K. Caluwaerts, F. Casarini, O. Chang, J. E. Chen, X. Chen, H.-T. L.
Chiang, K. Choromanski, D. D’ Ambrosio, S. Dasari, T. Davchev, C. Devin, N. D. Palo, T. Ding,
A. Dostmohamed, D. Driess, Y. Du, D. Dwibedi, M. Elabd, C. Fantacci, C. Fong, E. Frey, C. Fu,
M. Giustina, K. Gopalakrishnan, L. Graesser, L. Hasenclever, N. Heess, B. Hernaez, A. Herzog,
R. A. Hofer, J. Humplik, A. Iscen, M. G. Jacob, D. Jain, R. Julian, D. Kalashnikov, M. E. Karago-
zler, S. Karp, C. Kew, J. Kirkland, S. Kirmani, Y. Kuang, T. Lampe, A. Laurens, I. Leal, A. X.
Lee, T.-W. E. Lee, J. Liang, Y. Lin, S. Maddineni, A. Majumdar, A. H. Michaely, R. Moreno,
M. Neunert, F. Nori, C. Parada, E. Parisotto, P. Pastor, A. Pooley, K. Rao, K. Reymann,
D. Sadigh, S. Saliceti, P. Sanketi, P. Sermanet, D. Shah, M. Sharma, K. Shea, C. Shu, V. Sind-
hwani, S. Singh, R. Soricut, J. T. Springenberg, R. Sterneck, R. Surdulescu, J. Tan, J. Tompson,
V. Vanhoucke, J. Varley, G. Vesom, G. Vezzani, O. Vinyals, A. Wahid, S. Welker, P. Wohlhart,
F. Xia, T. Xiao, A. Xie, J. Xie, P. Xu, S. Xu, Y. Xu, Z. Xu, Y. Yang, R. Yao, S. Yaroshenko,
W. Yu, W. Yuan, J. Zhang, T. Zhang, A. Zhou, and Y. Zhou. Gemini robotics: Bringing ai into
the physical world, 2025. URL https://arxiv.org/abs/2503.20020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 6000-6010, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics (T-RO), 2023.

B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. V. Wyk, V. Blukis, A. Millane,
H. Oleynikova, A. Handa, F. Ramos, N. Ratliff, and D. Fox. curobo: Parallelized collision-free
minimum-jerk robot motion generation, 2023.

Y. You, L. Shao, T. Migimatsu, and J. Bohg. Omnihang: Learning to hang arbitrary objects
using contact point correspondences and neural collision estimation. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021.

K. A. Murphy, C. Esteves, V. Jampani, S. Ramalingam, and A. Makadia. Implicit-pdf: Non-
parametric representation of probability distributions on the rotation manifold. In Proceedings
of the 38th International Conference on Machine Learning, pages 7882-7893, 2021.

11

https://arxiv.org/abs/2106.12534
https://arxiv.org/abs/2106.12534
https://arxiv.org/abs/2409.17146
https://arxiv.org/abs/2503.20020

[27] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar,
A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg. Orbit: A unified simulation
framework for interactive robot learning environments. IEEE Robotics and Automation Letters,
8(6):3740-3747, 2023. doi:10.1109/LRA.2023.3270034.

[28] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS *20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[29] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

12

http://dx.doi.org/10.1109/LRA.2023.3270034
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

A Language Prompts for Molmo and Predicted Placement Visualization

To extract object point clouds, we first prompt Molmo (e.g., points to the bottle) to predict a single
anchor point. This anchor is then passed to SAM-2 to obtain segmentation masks of the object. The
complete point clouds are subsequently extracted using the segmentation and camera information. To
predict placement locations, in Figure Al and Figure A2, we show language prompts used by the
VLM in both real-world and simulation experiments. Based on our observations, the Molmo VLM
accurately identifies the correct placement locations in both real-world and simulated images based
on the language input. Even when the predicted location is not perfectly centered, our low-level
pose prediction model can still be successful in predicting the placement pose. For instance, when
predicting the placement of the bottle on the top shelf (Figure A1, last image in the top row), the
VLM may give a location at the very edge. However, our pose-prediction model focuses on the entire
local region extracted around that point and is able to provide a pose where the entire object is on the
surface, allowing the robot to execute the task successfully.

We do notice that minor prompt engineering is occasionally needed to generate accurate predictions
using Molmo, such as “point to the empty slot between the two poles”. We believe this limitation can
be addressed as VLM models continue to improve.

Prompt: "point to the base of the Prompt: "point to the middle layer Prompt: "point to the top of the shelf
drawer where | can place the bottle" where | can place the bottle" where | can place the bottle"

Prompt: "point to the tip of sticks on Prompt: "point to the tip of rack where
which | can hang a cup” | can place the ring"

Prompt: "point to the hole where i can Prompt: "point to empty slots in the
place the circle" middle of two poles on the rack where
| can place the plate”

Prompt: "point to the pot where | can Prompt: "point to the top of the scale
place the lid" where | can place the pot"

Figure Al: Additional Language Prompts and VLM Output Visualization in the Real-World Evaluation.

13

Prompt: "point to the empty positions Prompt: "point to the tip of sticks on
in the vialplate for vial placement" which | can hang a cup"”

= » =

S

Figure A2: Language Prompts and VLM Output Visualization in the Simulation Evaluation. In our
simulation experiments, we use the VLM to generate placement locations on RGB images from the simulator.
Based on this proposed location, we crop the point clouds and input them into our placement pose prediction
model.

B Additional Details on the Low-level Diffusion Model

B.1 Model Architecture

For our diffusion-based placement prediction model, we leverage a transformer architecture. Details
of the model architecture are listed in Table 3. Starting with two object point clouds, the diffusion
process iteratively denoises the relative transformation, gradually moving the object being placed
toward its final pose. Initially, we transform the object point cloud P, with a random transformation
Thit = (R, t) to get PO, where R is randomly sampled over the SO(3) space, and t is sampled within
the bounding box of the cropped placement region:

PO = Ty P, (1)

where
Tnie = (R,t), R ~U(SO(3)), t~ Ubbox(Pp crop))- 2)

As shown in Figure 2, at each denoising timestep ¢, P and Py ¢rop are input into the encoder.
Specifically, both point clouds are first downsampled to 1024 points using Farthest Point Sampling
(FPS) and normalized to the size of a unit cube. The downsampled point clouds are passed through
a linear layer to extract latent features, which are subsequently concatenated with a one-hot vector
used to identify the corresponding point cloud. These combined features are then processed by the
Transformer encoder [22, 12], where self-attention layers are applied to effectively extract features
from the point clouds. We then leverage cross-attention and pooling layers to further aggregate these
features, producing a unified feature representation that captures the spatial relationship between
the two objects. In the decoder, we first obtain the sinusoidal positional embedding of the diffusion
timestep . Finally, the joint point cloud feature representation, along with the encoded timestep, is
fed into MLP layers to predict the relative transformation T,gt) consisting of a rotation R € SO(3)
and a translation t € R3 for refining the object’s pose. The target object point clouds are then
transformed accordingly before proceeding to the next denoising step as P = T, ét)Pg‘). The full
transformation 7, taking the object from its initial location to the placement pose is the product of all
the incremental transformations predicted through the diffusion steps: 7;, = HEZT‘ Tr(f).

We do not utilize a learned classifier on top of the pose prediction model that is present in RPDiff.
Such a model can be applied on top of any of the methods we evaluate here, including the ones we
propose. Not having it also allows us to evaluate the number of samples needed to achieve a particular
coverage of possible placement locations in the scene.

B.2 Model Training

During training of our low-level diffusion pose prediction model, we perform 5 denoising steps.
Instead of incrementally adding Gaussian noise to the input during the forward process, as is common
practice [28], we manually define the noise added at each timestep. In our case, the noise is the
relative transformation that the model predicts. Specifically, the intermediate ground truth relative

14

Table 3: Summary of Model Architecture

Model Component Details
Model Total Parameters 4,279,688
Number of Heads 1
Number of Self-attention Blocks 4
Number of Cross-attention Blocks 4
Point Cloud Feature Dimension 258 (256 + one-hot embedding)
Transformer Feature Dimension 256

Encoder
Self-Attention Multi-Headed Attention (1 head)
Feedforward Layer Linear (258 — 256), ReLU, Linear (256 — 258)
Normalization LayerNorm

Decoder
Self-Attention Multi-Headed Attention (1 head)
Cross-Attention Multi-Headed Attention (1 head)
Feedforward Layer Linear (258 — 256), ReLLU, Linear (256 — 258)
Normalization LayerNorm

transformations T() o are generated by linearly interpolating the translation and using spherical
linear mterpolatlon (SLERP) to sample rotations between the object’s initial and final placement
poses. During inference, we generate diverse placement poses by sampling the diffusion model
multiple times, each time starting with randomly transformed initial object point clouds P?. We
perform a larger number of denoising steps at test time, by repeating the last denoising step more
times for a total of 50 denoising steps, similar to RPDiff [1]. All single-task models are trained for
three days, while multitask models are trained for five days on a single NVIDIA A100 GPU. Other
parameters can be found in Table 4.

Table 4: Parameters for Model Training

Parameter Value

Diffusion steps 5

Number of training iteration 500k

Batch size 48

Optimizer AdamW [29]

Learning rate 1x1074

Learning rate schedule Linear warmup and cosine decay
Warmup epochs 50

Weight decay 0.1

Optimizer momentum B1=0.9, 3 =0.95

B.3 Additional Details on Data Generation

For object generation in Blender, we procedurally generate 3D objects, such as pegs, holes, cups,
racks, beakers, vials, and vial holders. Object parameters—including height, width, length, shapes,
and number of edges—are randomized to increase variability. For racks and vial plates, we also
randomize the number of poles and holes. Additionally, random scaling is applied along the X, y, and
z axes. This type of programmatic object generation essentially gives us placement poses “for free”.

This approach for object generation not only allows simple randomization of object geometries,
but also supports a range of valid placements rather than a single fixed pose. For training the
AnyPlace low-level pose-prediction model, only local placement data is needed, so we do not have
to generate full objects with all possible placement modes, further simplifying scalability. While

15

adding completely new object classes does require some human effort, it is limited to writing a single
piece of code per class, and common geometric aspects can often be shared. Overall, building a large
dataset of parametrized object classes enables programmatic creation of vast amounts of synthetic
training data, supporting not only placement tasks but potentially many other manipulation problems.

To identify stable placements for objects, we use NVIDIA IsaacSim to determine object placement
poses. At the start of each trial, two objects are randomly sampled and loaded into the simulation.
Since all objects are procedurally generated and possible placement locations are known during
generation (e.g., the center of each hole on a vial plate), the ideal object placement location for
the placing object can easily be determined. This approach finds object placement locations that
maximize the clearance between the objects in their final placement configurations. For object
placement rotations, they are then randomly sampled along their axis of symmetry to explore various
placement poses. Four cameras are set up to capture dense object point clouds and render RGBD
images. This dataset covers a wide range of placement scenarios encountered in real life. Table 5
presents statistics on the number of placements generated using our synthetic dataset generation
pipeline. Notably, by focusing only on the region of interest for placement pose prediction, AnyPlace
models perform well across different placement tasks and generalize to unseen objects. They are
trained with fewer than 2000 samples per task, demonstrating the effectiveness of our design.

Table 5: Dataset Size for Each Placement Task

Placement Task Number of Placements

Hanging 1,767
Stacking 1,696
Vial Insertion 1,107
Other Insertion 800

C Evaluation

C.1 Implementation of the Pick and Place Pipeline

After determining the placement poses by AnyPlace, we implement a pick-and-place pipeline to
manipulate the object and position it accurately at the target pose. Specifically, grasp detection begins
by extracting the target object point clouds P, from an RGBD image. AnyGrasp [23] then processes
the resulting point clouds to identify the optimal grasp candidates sorted by confidence. To pick up the
object, the gripper is first moved to a pre-grasp pose, positioned 10 centimeters away from the target
along the gripper’s z-axis. The gripper then approaches the target in a straight line while maintaining
its orientation. Similarly, during placement, the robot first moves to a pre-place pose, followed by a
final approach without altering the gripper orientation. The distance from the pre-place pose to the
final placement pose is adjusted according to the object’s size to avoid collisions during the transition
to the pre-place position. With the waypoints and end-effector orientation constraints defined, we
use cuRobo to generate the complete motion plan for robot pick and place while accounting for the
object collision model. For each evaluation scene, we perform rejection sampling by generating 100
grasps using AnyGrasp and forming (grasp, placement pose) pairs to identify valid grasps for the
specific placement pose predicted by our model that can be executed by the robot.

The pipeline itself can be used as a separate module. It makes no assumptions about the placement
prediction method and is not specific in any way to other modules in our approach. This enables
it to be used as a general system for evaluating placement pose prediction models. In Figure 3 we
show the system being used to perform insertion, hanging, and placement tasks. Combined with
the synthetic dataset we create, this gives us a complete system for comparing different models and
getting systematic results of success rate, mode coverage, and precision. Both motion planning and
the pick-and-place simulation itself are GPU parallelizable, making the evaluation of new models
even easier.

16

C.2 AnyPlace Energy-based Model

Inspired by Implicit-PDF [26], this model uses the same encoder as ours, but for the decoder, instead
of explicitly predicting the placement pose, it includes two separate branches: one for placement
location prediction and another for predicting the placement rotation energy. During training, we
encourage all placement rotations in SO(3) that result in stable placements to have low energy by
predicting the unnormalized log probability of the joint distribution between the latent state from the
encoder and the SO3 rotation. This approach requires only minimal changes to the model. We use a
negative log-likelihood loss for the rotation as shown below:

exp(f(h, Ro))
SV exp(f(h, R;))

During training, we estimate the normalization factor by sampling. In particular, we ran the model on
4096 randomly sampled SO3 rotations. The total loss is the sum of this loss and the same L1 loss for
translation:

['energy(hv RO) = - IOg 3)

Ltotal = £translation + Eenergy (4)

At test time, we can get the estimate of the full distribution over the rotations conditioned on the
inputs to the model in the same way by randomly sampling thousands of rotations. The rotation with
the lowest energy is then selected as the final placement rotation.

We found that the translation loss consistently converges faster than the energy-based one during
training as a result of its smaller scale. To address this imbalance, we experimented with various
ways of weighting the two loss terms when computing the total loss, which led to slight performance
improvements. In contrast, for the diffusion model, losses are computed at each diffusion step, and
the scales of translation and rotation errors remain more balanced, resulting in more stable training.
Overall, the energy-based model offers faster inference but lower accuracy compared to the diffusion
model.

D Additional Result of Placement Precision

In this section, we provide additional results on the placement precision of fine-grained insertion tasks
for all models trained on single-task data. In Figure A3, we show the distribution of distance errors
for each approach on the insertion tasks. For both single-task and multi-task training, we observe that
AnyPlace achieves smaller errors and does so more reliably than the baselines, in terms of translation
and rotation prediction.

Distance Error [m] Distance Error (MT) [m] Angle Error [rad] Angle Error (MT) [rad]

NSM

AnyPlace AnyPlace-EBM RPDiff

[T e || VI | |

T
0.0 0.1 0.2 0.0 0.1 02 0 1 2 3 0 1 2 3

Figure A3: Evaluation of Distance and Angle Errors in Insertion Tasks. We plot histograms of the translation
and rotation error in pose prediction for each approach trained on single-task data and multi-task data. We base
the error on the position and rotation to the closest viable placement pose. The rotation error is in the range [0, 7].
For both translation and rotation, we use 50 equally-sized bins covering the range of the variable to produce the
histograms.

17

D.1 Additional Analysis of Real Robot Experiments

Ring Hanging Battery Stacking Peg Insertion

Figure A4: Object point clouds at predicted placement poses in failure cases. The point cloud of the object
being placed is shown in black.

We systematically evaluate the performance of all baseline models and AnyPlace across three tasks on
a real robot: vial insertion, ring hanging, and battery stacking. As shown in the Figure A5, AnyPlace
successfully predicts correct and precise placement poses using partial point clouds for all tasks, due
to its ability to focus on the local placement region and the robustness of its diffusion-based pose
prediction model. Although AnyPlace-Energy uses the same high-level placement location module,
we observe that the energy-based model often predicts incorrect poses in all tasks, both in position
and orientation. Similarly, RPDiff frequently converges to the same placement pose, failing to capture
diverse placement locations. It also struggles significantly with predicting accurate positions. Due to
the fixed cropping size introduced in RPDiff, its generalization to various objects is limited, causing
inaccurate prediction. For example, in the vial insertion and ring hanging tasks, the predicted poses
often cause the placing object’s point cloud to deeply intersect with the base objects. For battery
stacking, the model predicts a pose that is far from the correct placement location. Finally, NSM,
which uses a simple regression decoder, is unable to predict any meaningful placement poses.

To further evaluate the generalization and robustness of AnyPlace in the real world, we conducted
extensive experiments across different placement scenarios. We visualize the point clouds at the
predicted placement poses in Figure A6. It is clear that AnyPlace is capable of handling unseen
objects and noisy point clouds. For example, in many insertion tasks, the model accurately predicts
placement poses even when dealing with complex, unseen objects, such as focusing on individual
fingers when hanging a ring onto a hand. This level of generalization is achieved by focusing on local
regions rather than relying on global information, which may contain redundant or irrelevant details.
Moreover, training the low-level model on a diverse synthetic dataset enables it to capture general
concepts and representations across different placement scenarios. For example, the model was never
trained with a funnel or the ring clamp, yet it successfully predicts the correct placement poses for
these novel objects.

18

Vial Insertion Ring Hanging Battery Stacking
.

P ada
AnyPlace

AnyPlace-
Energy

RPDiff

NSM

Objects

Figure AS5: Visualization of Object Point Clouds at Predicted Poses from Different Models. Quantitative
evaluations were conducted on three real-world tasks: vial insertion, ring hanging, and battery stacking. The
figure shows examples of predicted placement poses visualized using point clouds. The point cloud of the placed
object (target object) is shown in black.

19

Point clouds at
the predicted
pose

Robot
Execution

Point clouds at
the predicted
pose

Robot
Execution

Figure A6: Object point clouds at predicted placement poses in failure cases. The point cloud of the object
being placed is shown in black.

20

	Introduction
	Related Work
	AnyPlace: Generalizable Object Placement
	VLM-guided coarse placement location prediction
	Fine-grained placement pose prediction

	Synthetic Dataset Generation
	Experimental Evaluation
	Real World Evaluation

	Conclusion
	Limitations
	Language Prompts for Molmo and Predicted Placement Visualization
	Additional Details on the Low-level Diffusion Model
	Model Architecture
	Model Training
	Additional Details on Data Generation

	Evaluation
	Implementation of the Pick and Place Pipeline
	AnyPlace Energy-based Model

	Additional Result of Placement Precision
	Additional Analysis of Real Robot Experiments

