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Abstract

Understanding the dynamics of urban environments is crucial for path planning
and safe navigation. However, the dynamics might be extremely complex making
mapping a non-trivial problem. Within the methods available for learning dynamic
environments, Dynamic Gaussian process occupancy maps (DGPOM) are attractive
because they can produce spatially-continuous occupancy maps taking into account
neighborhood information, and provide probabilistic estimates, naturally inferring
the uncertainty of predictions. Despite these properties, they are extremely slow,
especially in dynamic mapping where the parameters of the map have to be updated
as new data arrive from range sensors such as LiDARs. In this work, we leverage
recent advancements in stochastic variational inference (SVI) to quickly learn
dynamic areas in an online fashion. Further, we propose an information-driven
technique to “intelligently” select inducing points required for SVI without relying
on any object tracker or velocity information. Our experiments with both simulation
and real robot data on road intersections show a significant improvement in speed
while maintaining a comparable or better accuracy as DGPOM. video: https:
//youtu.be/RItH8HH82ss

1 INTRODUCTION

Autonomous vehicles will be present in most major cities within the next ten years. These vehicles
will be required to navigate among people, bicycles, and other vehicles, while attempting to maximize
the transport efficiency and reducing the chance of accidents. However, urban environments can be
very challenging to model due to the multitude of objects and complex dynamics such as intersections
where cars move in opposite directions, at different speeds, and potentially also turning. Hence, in
order to develop planning algorithms that are both safe and robust, it is important to learn which areas
are safe to maneuver. Additionally, a long-term model of the dynamics of urban environments can
improve traffic minimizing travel times and battery consumption.

The majority of the methods used to represent occupancy assumes a static environment. In occupancy
grid maps [3], the world is divided into a grid with a fixed cell size and a Bayes filter is used to estimate
the occupancy probability. It has three main limitations: 1) the cell size has to be predetermined
heuristically (cannot be very large or small) and hence a map with varying resolutions cannot be
rendered, 2) the world is discretized and hence the map is not continuous and, importantly, 3) the
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(a) Motion field (b) VSDGPOM
(c) DGrid

Figure 1: The occupancy map produced using the proposed algorithm (VSDGPOM). The robot,
indicated by the black arrow head, resides at the middle of the two roads. Its field of view is shown in
blue laser beams with red laser hit points, when there are no moving vehicles. Static objects such
as buildings and parked vehicles are shown in yellow and the traffic flow in green arrows. Vehicles
moving in the upward direction are more frequent than that of downward. Therefore, after several
laser observations, the occupancy probability of the left road shown in (b), the results obtained from
the proposed method, is higher than that of the right road. The occupancy probability of unseen
outlying areas is almost 0.5. Since the model captures neighborhood relationships, areas around
(−50, 15), (−50, 35) and (60, 20) are correctly mapped, regardless of occlusions due to the three
parked vehicles. (c) is the equivalent map obtained from dynamic occupancy grid maps (DGrid).

cells are assumed to be independent and hence loose the interpolation power which makes the map
susceptible for occlusions and invalid laser reflections (Fig. 1).

Considering these disadvantages of grid maps, Gaussian process occupancy maps (GPOM) [11, 17]
and Hilbert maps [12] were built for purely static environments. The key to the success of these
methods was using kernel machines to capture spatial relationships and dependencies. Though it is
not clear how Hilbert maps can be used in dynamic environments, [10] proposed an extension to
GPOM called dynamic GPOM (DGPOM), for mapping long-term dynamics. Although DGPOMs are
appealing, they have an O(N3) computational cost as in any conventional Gaussian process based
model where N is the number of data points. In the dynamic setting, where the map has to be updated
as new laser scans arrive, N grows unwieldy and hence updating the map at least in near real-time is
prohibitive beyond a few hundred data points. The other conventional approach to use occupancy grid
maps to build long-term dynamic occupancy grid maps (DGrid) is assigning a memory unit for each
cell and updating individual cells as new data arrives without considering any spatial relationships [1].
The majority of other works that use grid maps in non-static environments have been dedicated for
other aspects of dynamic environments such as detecting short-term patterns [8, 18] and removing
dynamic objects from static maps [5] [16].

Despite Gaussian processes [13] massive success in machine learning and geostatistics for spatial
interpolation problems, they have been less appealing for robotics applications mainly because
of the scalability issues which in turn became the major bottleneck of DGPOM. In this paper,
we utilize state-of-the-art stochastic optimization techniques to build dynamic occupancy maps,
significantly ameliorating the scalability issues. Rather than using the entire data set for optimization,
our framework “intelligently” select inducing input points to sparsely represent denser areas without
discarding1 any data.

While entertaining all advantages of GPOM — continuous, considers spatial dependencies and
provides mean and variance of estimations — our model2 has the following advantages compared to
existing methods;

1. It can build long-term occupancy maps in large and highly dynamic environments with
thousands of data points within minutes, which would otherwise take several days with
existing methods such as vanilla DGPOM.

2. It can sequentially update the long-term occupancy map as new laser scans are captured.

3. It learns all key parameters, including inducing points, by the model itself and hence the
accuracy does not rely on heuristic parameter choices.

4. It does not require any underlying motion model or object trackers.
1Note that discarding informative data is not desirable for any learning technique.
2Python code: https://goo.gl/VvlF6f
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2 GAUSSIAN PROCESS OCCUPANCY MAPS

Consider a robot with known localization and equipped with a 2D laser scanner in a static environment.
The end-point of each laser reflection is considered as occupied y = 1 and a randomly sampled points
between the end-point and the sensor are considered as unoccupied y = 0. The corresponding 2D
longitude-latitude locations are given by x = (xlongi, xlati). The robot collects such N input-output
pairs {(xn, yn)}Nn=0 over time.

A Gaussian process prior is introduced over the latent functions f :=(
f(x1), f(x2), f(x3), . . . , f(xN )

)
as p(f) = GP(0,KNN ) where KNN is the N × N co-

variance matrix whose elements are typically calculated as k(x,x′) := α exp (−γ‖x− x′‖22). Since
the output is either 0 or 1 (unoccupied or occupied), the likelihood is a Bernoulli distribution
p(y|f) =

∏N
n=1 φ

yn
n (1− φn)1−yn where φn := φ(f(xn)) is the function evaluated at xn and then

“squashed” using a probit or sigmoid function denoted by φ(·). The marginal likelihood can be
calculated by integrating the joint prior-likelihood distribution over f . However, because of the
Bernoulli likelihood, exact computation of the posterior is not analytically tractable and hence the
posterior is approximated by a Gaussian distribution q(f) ≈ p(f |y). GPOM uses a local probabilistic
least square approximation [13] while we use a more robust approach in this paper which will be
discussed in section 3.1.

Once the data are collected, the first step is to learn the model by optimizing hyperparameters α and
γ with respect to the log marginal likelihood log p(y) [13] using an iterative optimization procedure.
However, since log p(y) = − 1

2y>K−1
NNy − 1

2 log
(
(2π)N |KNN |

)
, each step of optimization has

computational complexityO(N3). Since the number of data points N grows over time, computations
become extremely slow and hence GPOM is limited to a few hundred data points. Having trained the
model, the predictive occupancy with mean and variance for a query location x∗ can be obtained by in-
tegrating the approximated posterior as p(f(x∗)|y, X,x∗) =

∫
p(f(x∗)|f)q(f)df = N (mean, var).

This step also involves inverting KNN which slows the GPOM further.

[10] extends this procedure to dynamic environments (DGPOM) by incorporating motion information
of the environment into the static map. To this end, the velocities of the dynamic areas v :=
[vlongi, vlati] are calculated by subtracting consecutive laser scans and then they are implicitly fed
into the kernel as xmodified := [(xlongi +

∫
vlongidt), (xlati +

∫
vlatidt), (tnew − told)], assuming

constant acceleration of dynamic objects. The authors illustrate the potential of this method for
developing long-term maps [10]. However, the computational time dramatically increases as more
data are collected. In section 3, we propose a scalable technique to build long-term maps which
sequentially learns dynamic areas by itself without relying on underlying vehicle trackers or optical
flow. Under our framework, we do not consider the dichotomy, static vs. dynamic maps, as static
maps are essentially a sub-case of dynamic maps.

3 LONG-TERM MAPS WITH GAUSSIAN PROCESS (VSDGPOM)

3.1 Variational sparse Gaussian Process classification

In section 3 we described that the exact posterior is intractable and hence GPOM uses an alternative
approximation which is often less robust. Other techniques, such as variational inference [2],
approximate the intractable posterior p(f |y) with q(f), a distribution of know form such as f ∼
N (mean, variance). Alternatively, Markov chain Monte Carlo (MCMC) sampling and Laplace
approximation can be can be used to approximate the posterior. In this paper, we use variational
inference due to its appealing computational cost, being significantly faster than MCMC, while
preserving similar level of accuracy. Variational inference is also known to provide more accurate
approximations than first order methods such as Laplace approximation [2].

In variational inference, the parameters of q(f) = N (mean, variance) are iteratively estimated by
minimizing the distance between the true posterior distribution and approximate posterior distribution
measured by the KL-divergence KL[p(f |y)‖q(f))]. Since the true posterior is difficult to compute,
an alternative lower bound L is minimized. In 2015, Hensmen et al. [6] leverage properties of
variational inference and incorporate them into the sparse GP classification framework [19]. Since
inducing inputs are used in sparse GPs, an approximate posterior distribution q(f̆) can be defined



Figure 2: (a) Raw data of a new laser scan (both occupied and unoccupied plotted together at t > 1
for the dataset in Fig. 1a. The data is used to query the model and the distance metric is calculated as
in (b). Thresholded data with ζ = 3.5 shown in (c) are used to calculate cluster centroids (DBSCAN)
as indicated in F. Nt = 1186 data points in (a) is reduced to 21 after thresholding and, further
reduced to Mt = 5 after obtaining centroids.

over inducing functions f̆ :=
(
f(x̆1), f(x̆2), f(x̆3), . . . , f(x̆M )

)
in a similar way f is defined as in

Section 2, but with a smaller number of points M � N .

3.2 Choosing inducing points

Selecting the minimum number of inducing points and placing them appropriately are crucial to
maintain the speed-accuracy trade off. The common practice is to naively choose a pre-determined
number of inducing points (fixed M ) randomly or using the k-means algorithm because at least
obtaining a sub-optimal solution is computationally prohibitive [15]. In this section, we propose a
technique capable of determining the number of inducing points M as well as where to place them.
This involves two steps and they are summarized in Fig. 2, Algorithm 2 and, the following two
subsections.

Algorithm 1 VSDGPOM learning algorithm

1: function LEARN(ζ)
2: Initialize (x, y) as null matrices
3: Initialize t← 0
4: while new laser scan do
5: t← t+ 1
6: (xt, yt)← Extract new points
7: if t = 1 then
8: Randomly initialize x̆, γ, α,m,S
9: else

10: x̆t← Algorithm2()
11: end if
12: Augment x̆ with x̆t

13: Augment m,S with size(x̆t) random
14: end while
15: Augment (x, y) with (xt, yt)
16: Optimize γ, σ,m,S w.r.t. L - eq. (1)
17: end function

Algorithm 2 Choosing inducing points

1: function GETIND(x∗, y∗,x, x̆, γ, α,m,S, ζ)
2: Initialize xinformative as a null matrix
3: Initialize Nt ← length(x)
4: for i = 1 to Nt do
5: µ∗i ← eq. (2)
6: σ∗i ← eq. (3)
7: disti ← |y∗i − µ∗i |/σ∗i
8: if disti ≥ ζ then
9: Augment xinformative with x∗i

10: end if
11: Augment xinformative with x∗i
12: end for
13: end function

3.2.1 Filtering uninformative data

Intelligent selection (Algorithm 2) is run for each new scan after the very first scan. Considering the
tth time step, Nt data points {xi, yi}Nt

i=0, both occupied and unoccupied are obtained from the sensor.
Variational parameters and hyper-parameters have been optimized sequentially from time steps 0 to
t− 1. Based on these previously optimized parameters, we use the laser locations of the current scan
xi and query the predictive mean and variance. Then, the distance, dist[yi, p(y∗|x∗;µ∗i , σ∗i)] =
|yi − µ∗i |/σ∗i , is used as a metric to measure how influential the individual data point in the new
laser scan to make a change in our model. This metric indicates dynamic areas which have been
underrated in previous time steps. The distance values above a user-defined threshold ζ are considered
as informative data points and such data points indicate candidate areas for inducing points.



3.2.2 Clustering filtered informative data

Our objective is to select highly representative inducing points. Since physical objects have several
laser returns, it is ineffective to include all informative data (3.2.1) as inducing points. Therefore, at
this stage, we cluster informative data and choose cluster centroids as inducing points.

The number of clusters depends on the number of dynamic objects in the environment and how
well the model has been learned so far. Therefore, we cannot use the ubiquitous k-means algorithm.
Here, we adopt the seminal Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [4] that automatically decides the number of clusters by itself based on data density. As
shown in Fig. 2d, centroids of these clusters are set as inducing point locations x̆t. This essentially
avoids the inclusion of extraneous inducing points making M significantly smaller.

3.3 Optimizing the lower bound

Now, the goal is to find the sparse and approximate posterior q(f̆) = N (f̆ |m,S) using the lower
bound [6] given in (1),

L =

N∑
n=1

{
Eq(f(x̆n))[log p(yn|fn)]−KL[q(f̆)‖p(f̆)]

}
, (1)

where q(f(x̆n)) indicates marginals of q(f) = N (f |µ,Σ) with,

µ = KNMK
−1
MMm, (2)

Σ = KNN +KNMK
−1
MM (S−KMM )K−>MMKNM . (3)

Learning the model requires the optimization of 1) variational parameters m and S and; 2) hyper-
parameters of the kernel α and γ. Although (1) looks cumbersome, KL term can be analytically
evaluated with a computational cost of O(M3), while the Eq(fn) term can be computed using 1D
Gaussian quadratures. Note that its a summation over individual data points and hence stochastic
gradient descent (SGD) can be effectively used for each new laser scan, making it suitable for big data
sets. When compared with conventional GPs and GPOMs whose computational cost is O(N3) with
M � N , this a significant improvement to the speed of the framework, assuming inducing points are
chosen using Algorithm 2. Once variational parameters and kernel hyperparameters are optimized,
the predictive occupancy map can be generated by evaluating

∫
p(f∗ | f̆)q(f̆)df̆ any location in the

continuous longitude-latitude space.

In summary, we describe how to utilize the sparse variatianal GP framework to build long term maps
in dynamic environments. Two approximations: 1) variational approximation to obtain the posterior
2) nyström low rank approximation [20] to represent the covariance matrix using inducing point
selection method were utilized to achieve a significant improvement in time compared to DGPOM.

4 EXPERIMENTS

In order to eliminate any confounding factors, and without loss of generality, the robot was kept
stationary in all experiments. A moving robot has no detrimental effect on our algorithm. All
algorithms were prototyped in python and executed in a 8 GB RAM laptop. Two datasets were used
to demonstrate the speed and accuracy performance of the algorithm. Dataset 1 (Fig. 1) was obtained
from a laser simulator. Dataset 2 [10] is a real four-way busy traffic intersection where vehicles move
in various directions obeying traffic light signals. We used 1) area under ROC curve (AUC) and, 2)
negative log loss (NLL), − log p(y|y∗) [2], to evaluate the accuracy of our method. NLL is a more
representative measure of the robustness of these models [2] because it takes the probabilities of
predictions into account. The smaller the NLL, the better the model is. ζ, the only free parameter of
the proposed method, was kept constant at 5 through out all experiments. For DGrid, the optimal grid
resolutions were chosen in advance by grid search that maximizes the AUC.

Data frames representing the past and future were randomly selected as the test dataset and it was
never used for training. To maintain the class-balance, each frame of the test dataset had equal number
of occupied and unoccupied points. At each time step, the entire test dataset was used to query the
model and, AUC and NLL were calculated.



(a) Dataset 1 (b) Dataset 2

Table 1: Accuracy of occluded
areas for dataset 1

Method AUC (µ± 2σ)
DGrid 0.50 ± 0.00
DGPOM 0.99 ± 0.02
VSDGPOM 1.00 ±0.00

Method NLL (µ± 2σ)
DGrid 0.69 ± 0.00
DGPOM 0.31 ± 0.13
VSDGPOM 0.02 ±0.16

Figure 3: Speed and accuracy performance of sequential learning. For each new laser scan, the models
update their parameters and calculate accuracy against a test dataset which represents randomly
chosen samples from the past and future. Compared to DGPOM, our model has an incredible
improvement in speed (top row) for a similar accuracy (middle and center rows). For instance
DGPOM50% (DGPOM with 50% data) takes 2 hours to update the map around t = 40 in dataset 1.
Though DGrid is also fast, it has a low accuracy and a sluggish learning curve, especially when the
probabilistic measure (NLL) is considered.

As shown in Fig. 3, VSDGPOM and DGPOM learn the correct occupancy probability within few
iterations while DGrid has a poor learning curve (compare red and blue NLL curves). The observation
that the accuracy measures of DGPOM is slightly better than VSDGPOM (note that NLL is a log-
based metric) completely makes sense because VSDGPOM is an approximation to the Gaussian
process whereas DGPOM is a full-rank matrix. This slight drop in spatio-temporal accuracy is
negligible when compared to the time saved. The first row of Fig. 3 clearly shows that VSDGPOM
does not have an exponentially increasing time as in DGPOM. This was possible because the speed
of the core algorithm depends on the size (M ) and quality of inducing points rather than the amount
of data (N ) collected. Note that DGPOM and DGPOM50% were automatically stopped after several
time steps due to memory limitations as each dataset has at least 150,000 data points and hence it
cannot capture long-term dynamics over a long period. In contrast, VSDGPOM can handle large
datasets thanks to the information-driven intelligent inducing point selection algorithm.

Then, we manually labeled occluded areas and the accuracy was calculated to show the algorithm’s
robustness against occlusions (Table 1). This was possible only for dataset 1 as determining occluded
areas exactly is only possible for a simulation dataset. Unsurprisingly, DGrid has an AUC of exactly
0.5 which is equivalent to a random guess. In contrast, DGPOM and VSDGPOM have an accuracy
close to 1 because the kernels can interpolate based on neighbor points. In VSDGPOM, NLL is
comparably smaller. These results are apparent when comparing occluded areas behind parked
vehicles in Fig. 1. In contrast to many other techniques, our method did not rely on separate object
tracking algorithms nor manual parameter tuning. These tasks were both embedded within the
method.

5 FUTURE WORK

Probabilistic representations are quintessential to make path planning more reliable and safer [9].
Therefore, the long-term maps proposed in this paper will be incorporated with short-term maps [14]
to make probabilistic path planing [7] more robust.
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