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ABSTRACT

Self-normalizing discriminative models approximate the normalized probability of
a class without having to compute the partition function. This property is useful to
computationally-intensive neural network classifiers, as the cost of computing the
partition function grows linearly with the number of classes and may become pro-
hibitive. In particular, since neural language models may deal with up to millions
of classes, their self-normalization properties received notable attention. Several
recent studies empirically found that language models, trained using Noise Con-
trastive Estimation (NCE), exhibit self-normalization, but could not explain why.
In this study, we provide a theoretical justification to this property by viewing
NCE as a low-rank matrix approximation. Our empirical investigation compares
NCE to the alternative explicit approach for self-normalizing language models.
It also uncovers a surprising negative correlation between self-normalization and
perplexity, as well as some regularity in the observed errors that may potentially
be used for improving self-normalization algorithms in the future.

1 INTRODUCTION

The ability of statistical language models (LMs) to estimate the probability of a word given a context
of preceding words, plays an important role in many NLP tasks, such as speech recognition and
machine translation. Recurrent Neural Network (RNN) language models have recently become the
preferred method of choice, having outperformed traditional n-gram LMs across a range of tasks
(Jozefowicz et al. (2016)). Unfortunately however, they suffer from scalability issues incurred by
the computation of the softmax normalization term, which is required to guarantee proper probability
predictions. The cost of this computation is linearly proportional to the size of the word vocabulary
and has a significant impact on both training and testing.1

Several methods have been proposed to cope with this scaling issue by replacing the softmax with a
more computationally efficient component at train time. These include importance sampling (Bengio
& et al (2003)), hierarchical softmax (Minh & Hinton (2008), BlackOut (Ji et al. (2016)) and Noise
Contrastive Estimation (NCE) (Gutmann & Hyvarinen (2012)). NCE has been applied to train neural
LMs with large vocabularies (Mnih & Teh (2012)) and more recently was also successfully used to
train LSTM-RNN LMs (Vaswani et al. (2013); Chen et al. (2015); Zoph et al. (2016)), achieving
near state-of-the-art performance on language modeling tasks (Jozefowicz et al. (2016); Chen et al.
(2016)). All the above works focused on solving the run-time complexity problem at train time.
However, at test time the assumption was that one still needs to explicitly compute the softmax
normalization term to obtain a normalized score fit as an estimate for the probability of a word.

Self-normalization was recently proposed as means to address the high run-time complexity associ-
ated with predicting normalized probabilities at test time. A self-normalized discriminative model is
trained to produce near-normalized scores in the sense that the sum over the scores of all classes is
approximately one. If this approximation is close enough, the assumption is that the costly exact nor-
malization can be waived at test time without significantly sacrificing prediction accuracy (Devlin
et al. (2014)). Two main approaches were proposed to train self-normalizing models. Explicit self-
normalization is based on using softmax for training and explicitly encouraging the normalization
term of the softmax to be as close to one as possible, thus making its computation redundant at test

1Alleviating this problem using sub-word representations is a parallel line of research not discussed here.
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time (Devlin et al. (2014); Andreas & Klein (2015); Chen et al. (2016)). The alternative approach
is based on NCE. The original formulation of NCE included a normalization term Z. However, the
first work that applied NCE to LM (Mnih & Teh (2012)) discovered, empirically, that fixing Z to
a constant did not affect the performance. More recent studies (Vaswani et al. (2013); Zoph et al.
(2016); Chen et al. (2015); Oualil & Klakow (2017)) empirically found that models trained using
NCE with a fixed Z, exhibit self-normalization, but they could not explain this behavior. To the
best of our knowledge, the only theoretical analysis of self-normalization was proposed by Andreas
& Klein (2015). This analysis shows that a model trained explicitly to be self-normalizing only on
a subset of the training instances, can potentially be self-normalizing on other similar instances as
well. However, their analysis cannot explain how NCE can be self-normalizing without explicitly
imposing self-normalization on any of its training instances.

The main contribution of this study is providing a theoretical justification to the self-normalization
property of NCE, which was empirically observed in prior work. We do so by showing that NCE’s
unnormalized objective can be viewed as finding the best low-rank approximation of the normalized
conditional probabilities matrix, without having to explicitly estimate the partition function. While
the said self-normalizing property of NCE is more general, we focus the empirical contribution of
the paper on language modeling. We investigate the self-normalization performance of NCE as
well as that of the alternative explicit self-normalization approach over two datasets. Our results
suggest, somewhat surprisingly, that models that achieve better perplexities tend to have worse self-
normalization properties. We also observe that given a context, the sum of the self-normalized scores
is negatively correlated with the entropy of the respective normalized distribution.

2 VIEWING NCE AS A MATRIX FACTORIZATION

In this section, we first review the NCE algorithm for language modeling and then introduce an
interpretation of it as a matrix factorization procedure. Noise Contrastive Estimation (NCE) is a
popular algorithm for efficiently training language models. NCE transforms the parameter learning
problem into a binary classifier training problem. Let p(w|c) be the probability of a word w given
a context c that represents its entire preceding context, and let p(w) be a ‘noise’ word distribution
(e.g. a unigram distribution). The NCE approach assumes that the word w is sampled from a
mixture distribution 1

k+1 (p(w|c) + kp(w)) such that the noise samples are k times more frequent
than samples from the ‘true’ distribution p(w|c). Let y be a binary random variable such that y = 0
and y = 1 correspond to a noise sample and a true sample, respectively, i.e. p(w|c, y = 0) = p(w)
and p(w|c, y = 1) = p(w|c). Assume the distribution p(w|c) has the following parametric form:

pnce(w|c) =
1

Zc
exp(~w · ~c+ bw) (1)

such that ~w and ~c are d-dimensional vector representations of the word w and its context c and Zc is
a normalization term. Applying Bayes’ rule, it can be easily verified that:

pnce(y = 1|w, c) = σ(~w · ~c+ bw − logZc − log(p(w)k)) (2)

where σ() is the sigmoid function.

NCE uses Eq. (2) and the following objective function to train a binary classifier that decides which
distribution was used to sample w:

Snce =
∑
w,c∈D

[
log p(1|w, c) +

k∑
i=1

log p(0|ui, c)
]

(3)

such that w, c go over all the word-context co-occurrences in the learning corpus D and u1, ..., uk
are ‘noise’ samples drawn from the word unigram distribution.

The normalization factor Zc is not a free parameter and to obtain its value, one needs to compute
Zc =

∑
v∈V exp(~v · ~c+ bv) for each context c, where V is the word vocabulary. The original NCE

paper (Gutmann & Hyvarinen (2012)) proposed to learn the normalization term during training and
then use it to normalize the model at test time. In language modeling applications, this computation
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is typically not feasible due to the exponentially large number of possible contexts. Computing the
value of Zc at test time is possible, though expensive due to the large vocabulary size. Mnih & Teh
(2012) found empirically that setting Zc = 1 at train time, which removes the explicit normalization
constraint in the NCE formulation (1), didn’t affect the performance of the resulting model. At test
time, to compute log p(w|c), they still had to normalize the score ~w ·~c+ bw, by explicitly computing
Zc over all the vocabulary words, in order to obtain a proper distribution.

We next present an alternative interpretation of the NCE language modeling algorithm as a low-rank
matrix approximation. This view of NCE makes the normalization factor redundant during training
and explains the self-normalization property, as was empirically observed in later works (Vaswani
et al. (2013); Zoph et al. (2016); Chen et al. (2015); Oualil & Klakow (2017)).

Definition: The Pointwise Conditional Entropy (PCE) matrix of a conditional word distribution
p(w|c) is:

pce(w, c) = log p(w|c)
where w goes over the words in the vocabulary and c goes over all the left (preceding) side contexts.

The NCE modeling (1) can also be written as a matrixm(w, c) = log pnce(w|c) = ~w·~c+bw−logZc
with the same dimensions as the PCE matrix. Assuming that ~w and ~c are d-dimensional vectors, the
rank of the matrix m is at most d+ 2.

Let p(w, c) be the joint distribution of words and their left side contexts. The NCE score (3) can be
viewed as a corpus-based approximation of the following expectation based score:

Snce(m) =
∑
w,c

p(w, c) log σ
(
m(w, c)− log(p(w)k)

)
(4)

+k
∑
w,c

p(w)p(c) log
(
1− σ

(
m(w, c)− log(p(w)k)

))
.

When we actually compute the NCE score based on a given corpus, we replace the expectation in
the first term by averaging over the corpus and the expectation in the second term is replaced by
sampling of negative examples from the word unigram distribution.

Theorem 1: The NCE score Snce(m) (4) obtains its global maximum at the PCE matrix. In other
words, Snce(m) ≤ Snce(pce) for every matrix m.

Proof: The claim can be easily verified by computing the derivative and set it to zero. An alternative
proof is based on the fact that the word2vec NEG cost function obtains its global maximum at the
Pointwise Mutual Information (PMI) matrix. (Levy & Goldberg (2014)) showed that the function

f(x) = p(w, c) log σ(x) + kp(w)p(c) log(1− σ(x))

obtains its global maximum when x = pmik(w, c) = log p(w,c)
kp(w)p(c) . In our case it implies that the

global maximum of (4) is obtained when m(w, c) − log(p(w)k) = pmik(w, c). Observing that
pmi(w, c) = pce(w, c)− log(p(w)k) we complete the proof. �

We next show that the value of the function Snce(m) at its maximum point, the PCE matrix, has a
concrete interpretation. The Kullback-Leibler (KL) divergence of a distribution p from a distribution
q is defined as follows: KL(p||q) =

∑
i∈A pi log

pi
qi

. The Jensen-Shannon (JS) divergence (Lin
(1991)) between distributions p and q is:

JSα(p, q) =αKL(p||r) + (1−α)KL(q||r) (5)

such that 0 < α < 1, r = αp + (1 − α)q. Unlike KL divergence, JS divergence is bounded from
above and 0 ≤ JSα(p, q) ≤ 1. It can be easily verified that the value of the NCE score with k
negative samples (4) at the PCE matrix satisfies:

Snce(pce) = (k+1) · JSα(p(w, c), p(c)p(w))

where α = 1
k+1 . In other words the global optimum of the NCE score is the Jensen-Shannon

divergence between the joint distribution of words and their left-side contexts and the product of their
marginal distributions. The NCE algorithm finds the best d-dimensional approximation m of the
PCE matrix in the sense that it minimizes the difference (k+1) ·JSα(p(w, c), p(c)p(w))−Snce(m).
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In the traditional derivation of NCE, the parametric model is used to define a proper conditional
probability: pnce(w|c) = 1

Zc
exp(~w·~c+bw).Hence, to guarantee that we need a normalization factor

Zc for each context c. In our NCE interpretation, the training goal is to find the best unnormalized
low-rank approximation of the PCE matrix. Hence, no normalization factor is involved. Although,
normalization is not explicitly included in our view of NCE, we have shown that even so, our model
attempts to approximate the true conditional probabilities, which are normalized, and hence we can
provide guarantees as to its self-normalization properties as we describe in the next section.

Finally, revisiting prior work, Mnih & Teh (2012); Vaswani et al. (2013); Zoph et al. (2016) used
Z = 1, while Chen et al. (2015); Oualil & Klakow (2017) reported that using log(Z) = 9 at train
time gave them the best results with their NCE implementation. Setting a specific fixed value for Z
would alter the mean input to the sigmoid function in the NCE score, which may ensure that it is
closer to zero. This can potentially improve training stability, convergence speed and performance
in a way similar to batch normalization (Ioffe & Szegedy (2015)). However, we note that it is not
related to distribution normalization.

3 THE NCE SELF-NORMALIZATION PROPERTY

At test time, when we use the model learned by NCE to compute the conditional probability
pnce(w|c) (1), we need to compute the normalization factor:

Zc =
∑
w

exp(m(w, c)) =
∑
w

exp(~w · ~c+ bw). (6)

Note that the NCE language model obtained from the PCE matrix by settingm(w, c) = pce(w, c) =
log(w|c), is clearly self normalized:

Zc =
∑
w

exp(pce(w, c)) =
∑
w

p(w|c) = 1.

Theorem 1 showed that the NCE algorithm finds the best low-rank unnornmalized matrix approxi-
mation of the PCE matrix. Hence, we can assume that the matrix m is close to the PCE matrix and
therefore the normalization factors of the LM based on m should be also close to 1:∑

w

exp(m(w, c)) ≈
∑
w

exp(pce(w, c)) = 1. (7)

We next formally show that if the matrix m is close to the PCE matrix then the NCE model defined
by m is approximately self-normalized.

Theorem 2: Assume that for a given context c there is an 0 < ε such that |m(w, c)− pce(w, c)| ≤ ε
for every w ∈ V . Then | logZc| ≤ ε.
Proof:

logZc = log
∑
w

exp(~w · ~c+ bw − log p(w|c) + log p(w|c))

= log
∑
w

(p(w|c) exp(~w · ~c+ bw − log p(w|c))).

Given the assumption that |m(w, c)− pce(w, c)| = |~w · ~c+ bw − log p(w|c)| ≤ ε, we obtain that:

logZc ≤ log
∑
w

(p(w|c) exp(ε)) = ε. (8)

The concavity of the log function implies that:

logZc ≥
∑
w

p(w|c) log exp(~w · ~c+ bw − log p(w|c)) ≥
∑
w

p(w|c)(−ε) = −ε. (9)

Combining Eq. (8) and Eq. (9) we finally obtain that | logZc| ≤ ε. �

In the appendix we show that Theorem 2 remains true if we replace the assumption
maxw∈V |m(w, c) − pce(w, c)| ≤ ε by the weaker and more realistic assumption that
log
∑
w∈V p(w|c) exp(|m(w, c)− pce(w, c)|) ≤ ε.
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To summarize, in our analysis we first show (Theorem 1) that the NCE training goal is to make the
unnormalized score (~w ·~c+ bw) close to the normalized log p(w|c). We then show (Theorem 2) that
if the unnormalized score is indeed close to log p(w|c), then logZc is close to zero. Combining the
two theorems, we obtain that the LM learned by NCE is self-normalized.

4 RELATIONS TO OTHER LANGUAGE MODELS

In this section we address two related language models and briefly describe how our analysis
is related to their training strategies. The standard LM learning method, which is based on a
softmax output layer, is not self-normalized. Devlin et al. (2014) proposed to explicitly encour-
age self-normalization as part of its training objective function by penalizing deviation from self-
normalizing:

SDev =
∑
w,c∈D

[
(~w · ~c+ bw − logZc)− α(logZc)2

]
(10)

where Zc =
∑
v∈V exp(~v · ~c + bv) and α is a constant. The drawback of this approach is that at

least at train time you need to explicitly compute the costly Zc. Andreas & Klein (2015) proposed
an efficiently computed approximation of (10) by eliminating Zc in the first term and computing the
second term only on a sampled subset D′ of the corpus D:

SAnd =
∑
w,c∈D

(~w · ~c+ bw)−
α

γ

∑
c∈D′

(logZc)
2 (11)

where γ is an additional constant that determines the sampling rate. They also provided analysis
that justifies computing Zc only on a subset of the corpus by showing that if a given LM is exactly
self-normalized on a dense set of contexts (i.e. each context c is close to a context c′ s.t. logZc′ = 0)
then E| logZc| is small. This could justifies computing Zc only on a small subset of contexts, but
cannot explain why NCE training produces a self-normalized model without computing Zc on any
context at all.

Importance sampling (IS) (Bengio & et al (2003)) is an efficient alternative to a full softmax layer
that is closely related to NCE. In IS we assume that for each context c we are given k + 1 words
w = u0, u1, ..., uk that were sampled in the following way. First we sample a uniform random
variable y ∈ {0, ..., k}. Then for y = i we sample ui according to p(·|c) and all the other k words
are sampled from the unigram distribution:

p(u0, ..., uk|c, y = i) = p(ui|c)
∏
j 6=i

p(uj) =
p(ui|c)
p(ui)

k∏
j=0

p(uj).

Given the observation that for all the contexts y = 0, (i.e. u1, ..., uk are sampled from the word
unigram distribution and u0 = w is sampled from p(w|c)), the IS objective function is:

Sis =
∑
w,c∈D

[
(~w · ~c+ bw − logZc)− log p(w)− log(

k∑
i=0

exp(~ui · ~c+ b(ui)− logZc)

p(ui)
)
]
. (12)

It can be easily verified that the normalization factor Zc is canceled out in the IS objective function.
Hence, there is no need to estimate it in training. Unlike NCE, the network learned by IS was not
found to be self-normalized. As a result, explicit computation of the normalization factor is required
at test time (Oualil & Klakow (2017)).

5 EXPERIMENTS

In this section, we empirically investigate the self-normalization properties of NCE language mod-
eling and its explicit self-normalization alternative.

5.1 EXPERIMENTAL SETTINGS

We investigated LSTM-based language models with two alternative training schemes: (1) NCE-LM
- the NCE language model described in Section 2; and (2) DEV-LM - the softmax language model
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NCE-LM SM-LM
d µz σz perp µz σz perp

PTB validation set
30 -0.18 0.11 267.6 2.29 0.97 243.4

100 -0.19 0.17 150.9 3.03 1.52 145.2
300 -0.15 0.29 100.1 3.77 1.98 97.7
650 -0.17 0.37 87.4 4.36 2.31 87.3

WIKI validation set
30 -0.20 0.13 357.4 2.57 1.02 322.2

100 -0.24 0.19 194.3 3.34 1.45 191.1
300 -0.23 0.27 125.6 4.19 1.73 123.3
650 -0.23 0.35 110.5 4.67 1.83 110.7

Table 1: Self-normalization and perplexity results of the self-normalizing NCE-LM against the non-
self-normalizing standard softmax LM (SM-LM). d denotes the size of the compared models (units).

with explicit self-normalization proposed by Devlin et al. (2014). Following Devlin et al. (2014), to
make both DEV-LM and NCE-LM approximately self-normalized at init time, we initialized their
output bias terms to bw = − log |V |, where V is the word vocabulary. We set the negative sampling
parameter for NCE-LM to k = 100, following Zoph et al. (2016), who showed highly competitive
performance with NCE LMs trained with this number of samples, and Melamud et al. (2017). Except
where noted otherwise, other details of our implementation and choice of hyperparameters follow
Zaremba et al. (2014) who achieved strong perplexity results using standard LSTM-based neural
language models. Specifically, we used a 2-layer LSTM with a 50% dropout ratio to represent the
preceding (left-side) context of a predicted word.2 All models were implemented using the Chainer
toolkit (Tokui et al. (2015)).

We used two language modeling datasets in the evaluation. The first dataset, denoted PTB, is
a version of the Penn Tree Bank, commonly used to evaluate language models.3 It consists of
929K/73K/82K training/validation/test words respectively and has a 10K word vocabulary. The
second dataset, denoted WIKI, is the WikiText-2, more recently introduced by Merity et al. (2016).
This dataset was extracted from Wikipedia articles and is somewhat larger, with 2,088K/217K/245K
train/validation/test tokens, respectively, and a vocabulary size of 33K.

To evaluate self-normalization, we look at two metrics: (1) µz = E(log(Zc)), which is the mean log
value of the normalization term, across contexts c in a dataset C; and (2) σz = σ(log(Zc)), which
is the corresponding standard deviation. The closer these two metrics are to zero, the more self-
normalizing the model is considered to be. We note that a model with |µz| >> 0 can potentially be
‘corrected’ (as we show later) by subtracting µz from the unnormalized score. However, this is not
the case for σz . Therefore, from a practical point of view, we consider σz to be the more important
metric of the two. In addition, we also look at the classic perplexity metric, which is considered a
standard measure for the quality of the model predictions. Importantly, when measuring perplexity,
except where noted otherwise, we first perform exact normalization of the models’ unnormalized
scores by computing the normalization term.

5.2 RESULTS

Table 1 shows a range of results that we got on the validation sets when evaluating NCE-LM against
standard softmax language model baseline (SM-LM).4 Looking at the results, we can first see that
consistently with previous works, NCE-LM is approximately self-normalized as apparent by rel-
atively low |µz| and σz values. On the other hand, SM-LM, as expected, is far from being self-
normalized. In terms of perplexity, we see that SM-LM performs a little better when model dimen-
sionality is low, but the gap closes entirely at d = 650. Curiously, while perplexity improves with

2For more details, we refer the reader to the description of the medium LSTM model in Zaremba et al.
(2014). We used only 20 training iterations instead of 39, since all models seemed to have converged by then.

3Available from Tomas Mikolov at: http://www.fit.vutbr.cz/˜imikolov/rnnlm/
simple-examples.tgz

4More specifically, SM-LM is exactly DEV-LM with α = 0.
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DEV-LM
α = 0.1 α = 1.0 α = 10.0

d µz σz perp µZ σz perp µz σz perp
PTB validation set

30 -0.12 0.21 242.6 -0.16 0.09 250.9 -0.13 0.060 307.2
100 -0.10 0.28 143.3 -0.17 0.11 149.5 -0.12 0.058 182.0
300 -0.09 0.36 96.3 -0.14 0.14 100.8 -0.16 0.054 121.3
650 -0.14 0.43 85.0 -0.17 0.18 86.3 -0.11 0.071 99.5

WIKI validation set
30 -0.10 0.23 334.1 -0.17 0.08 338.7 -0.15 0.055 389.0

100 -0.13 0.28 189.4 -0.22 0.13 191.1 -0.15 0.071 228.3
300 -0.15 0.34 121.9 -0.20 0.17 125.7 -0.13 0.081 143.6
650 -0.23 0.42 109.1 -0.23 0.20 110.0 -0.12 0.089 116.9

Table 2: Self-normalization and perplexity results of the self-normalizing DEV-LM for different
values of the normalization factor α. d denotes the size of the compared models (units).

NCE-LM DEV-LM (α = 1.0)
dataset µz σz perp u-perp µz σz perp u-perp
PTB-test -0.004 0.35 83.7 83.4 -0.001 0.17 83.1 83.0
WIKI-test 0.003 0.36 104.3 104.6 0.002 0.20 104.1 104.2

Table 3: Self-normalization and perplexity results on test sets for ‘shifted’ models with d = 650.
‘u-perp’ denotes unnormalized perplexity.

higher dimensionality, we see that the quality of NCE-LM’s self-normalization, as evident partic-
ularly by σz , actually degrades. This is surprising, as we would expect that stronger models with
more parameters would approximate p(w|c) more closely. We further investigate this behavior in
Section 5.3.

Next, Table 2 compares the self-normalization and perplexity performance of DEV-LM for different
values of the constant α on the validation sets. As could be expected, the larger the value of α is,
the better the self-normalization becomes, reaching very good self-normalization for α = 10.0. On
the other hand, the improvement in self-normalization seems to occur at the expense of perplexity.
This is particularly true for the smaller models,5 but is still evident even for d = 650. Interestingly,
as with NCE-LM, we see that σz is growing (i.e. self-normalization becomes worse), with the size
of the model, and is negatively correlated with the improvement in perplexity.

Finally, for the test-set evaluation, we propose a simple technique to center the log(Z) values of a
self-normalizing model’s scores around zero. Let µz be E(log(Z)) observed on the validation set at
train time. The probability estimates of the ‘shifted’ model are log p(w|c) = ~w ·~c+ bw − µz . Table
3 shows the results that we get when evaluating the shifted NCE-LM and DEV-LM models with
d = 650. For DEV-LM, we chose α = 1.0, which seems to provide an optimal trade-off between
self-normalization and perplexity performance on the validation sets. Following Oualil & Klakow
(2017), in addition to perplexity, we also report ‘unnormalized perplexity’, which is computed with
the unnormalized conditional probability estimates. When the perplexity measure is close to the
unnormalized perplexity, this suggests that the unnormalized estimates are in fact nearly normalized.
As can be seen, with the shifting method, both models achieve near perfect (zero) µz value, and their
unnormalized perplexities are almost identical to their respective real perplexities. Also, comparing
the perplexities of NCE-LM to those of DEV-LM, we see near identical performance. The standard
deviation of the normalization term of DEV-LM is notably better than that of NCE-LM. However,
we note that NCE’s advantage is that unlike DEV-LM, it doesn’t include the normalization term in
its training objective, and therefore its training time does not grow with the size of the vocabulary.

5We also experimented with α = 0.01, but this yielded worse self-normalization with no perplexity benefits
and therefore these results were omitted for brevity.
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PTB-validation WIKI-validation
d NCE-LM DEV-LM (α = 1.0) NCE-LM DEV-LM (α = 1.0)

30 -0.33 -0.27 -0.50 -0.26
100 -0.29 -0.29 -0.53 -0.49
300 -0.46 -0.41 -0.56 -0.63
650 -0.50 -0.45 -0.53 -0.64

Table 4: Pearson’s correlation between entropy and log(Z) on samples from the validation sets.

Figure 1: The normalization term of a predicted distribution as a function of its entropy on a sample
from the WIKI validation set.

5.3 ANALYSIS

The entropy of the distributions predicted by a language model is a measure of how uncertain it
is regarding the identity of the predicted word. Low-entropy distributions would be concentrated
around few possible words, while high-entropy ones would be much more spread out. To more care-
fully analyze the self-normalization properties of NCE-LM, we computed the Pearson’s correlation
between the entropy of a predicted distribution Hc = −

∑
v p(v|c) log p(v|c) and its normalization

term, log(Zc). As can be seen in Table 4, it appears that a regularity exists, where the value of
log(Zc) is negatively correlated with entropy. Furthermore, it seems that, to an extent, the correla-
tion is stronger for larger models. To illustrate this phenomenon, we plot a sample of the predicted
distributions in Figure 1. We can see there in particular, that low entropy distributions can be as-
sociated with very high values of log(Zc), deviating a lot from the self-normalization objective of
log(Zc) = 0. Examples for contexts for which NCE-LM predicts such distributions are: “During the
American Civil [War]” and “The United [States]”, where the actual word following the preceding
context appears in parenthesis. We hypothesize that this observation could be a contributing factor
to our earlier finding that larger models have larger variance in their normalization terms, though it
seems to account only for some of that at best. Furthermore, we hope that this regularity could be
exploited to improve self-normalization algorithms in the future.

6 CONCLUSIONS

We provided theoretical justification to the empirical observation that NCE is self-normalizing. Our
empirical investigation shows that it performs reasonably well, but not as good as a language model
that is explicitly trained to self-normalize. Accordingly, we believe that an interesting future re-
search direction could be to augment NCE’s training objective with some explicit self-normalization
component. In addition, we revealed unexpected correlations between self-normalization and per-
plexity performance, as well as between the partition function of self-normalized predictions and
the entropy of the respective distribution. We hope that these insights would be useful in improving
self-normalizing models in future work.
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APPENDIX

Theorem A1: Assume that for a given context c there is an 0 < ε such that

log
∑
w∈V

p(w|c) exp(|m(w, c)− log p(w|c)|) ≤ ε.

Let Zc =
∑
w exp(m(w, c)). Then | logZc| ≤ ε.

Proof:
logZc = log

∑
w

exp(~w · ~c+ bw − log p(w|c) + log p(w|c))

= log
∑
w

(p(w|c) exp(m(w, c)− log p(w, c)))

≤ log
∑
w∈V

p(w|c) exp(|m(w, c)− log p(w, c)|) ≤ ε. (13)

The concavity of the log function implies that:

− logZc ≤ −
∑
w

p(w|c) log exp(~w · ~c+ bw − log p(w|c)) (14)

=
∑
w

p(w|c)(−(~w · ~c+ bw − log p(w|c)))

The concavity of the log function implies that:

≤ log
∑
w

p(w|c) exp(−(~w · ~c+ bw − log p(w|c)))

≤ log
∑
w

p(w|c) exp(|m(w, c)− log p(w|c)|) ≤ ε

Combining Eq. (13) and Eq. (14) we finally obtain that | logZc| ≤ ε. �

We can also state a global version of Theorem A.1 and its proof is similar.

Theorem A2: Assume that there is an 0 < ε such that

log
∑
w,c

p(w, c) exp(|m(w, c)− log p(w|c)|) ≤ ε.

Then |
∑
c p(c) logZc| ≤ ε.
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