
Published as a conference paper at ICLR 2017

TRAINING DEEP NEURAL-NETWORKS USING A NOISE
ADAPTATION LAYER

Jacob Goldberger & Ehud Ben-Reuven
Engineering Faculty, Bar-Ilan University,
Ramat-Gan 52900, Israel
jacob.goldberger@biu.ac.il,udi.benreuven@gmail.com

ABSTRACT

The availability of large datsets has enabled neural networks to achieve impressive
recognition results. However, the presence of inaccurate class labels is known to
deteriorate the performance of even the best classifiers in a broad range of classi-
fication problems. Noisy labels also tend to be more harmful than noisy attributes.
When the observed label is noisy, we can view the correct label as a latent ran-
dom variable and model the noise processes by a communication channel with
unknown parameters. Thus we can apply the EM algorithm to find the parameters
of both the network and the noise and estimate the correct label. In this study we
present a neural-network approach that optimizes the same likelihood function as
optimized by the EM algorithm. The noise is explicitly modeled by an additional
softmax layer that connects the correct labels to the noisy ones. This scheme is
then extended to the case where the noisy labels are dependent on the features in
addition to the correct labels. Experimental results demonstrate that this approach
outperforms previous methods.

1 INTRODUCTION

The presence of class label noise inherent to training samples has been reported to deteriorate the
performance of even the best classifiers in a broad range of classification problems (Nettleton et al.
(2010), Pechenizkiy et al. (2006), Zhu & Wu (2004)). Noisy labels also tend to be more harmful
than noisy attributes (Zhu & Wu (2004)). Noisy data are usually related to the data collection
process. Typically, the labels used to train a classifier are assumed to be unambiguous and accurate.
However, this assumption often does not hold since labels that are provided by human judgments
are subjective. Many of the largest image datasets have been extracted from social networks. These
images are labeled by non-expert users and building a consistent model based on a precisely labeled
training set is very tedious. Mislabeling examples have been reported even in critical applications
such as biomedical datasets where the available data are restricted (Alon et al. (1999)). A very
common approach to noisy datasets is to remove the suspect samples in a preprocessing stage or have
them relabeled by a data expert (Brodley & Friedl (1999)). However, these methods are not scalable
and may run the risk of removing crucial examples that can impact small datasets considerably.

Variants that are noise robust have been proposed for the most common classifiers such as logistic-
regression and SVM (Frénay & Verleysen (2014), Jakramate & Kabán (2012), Beigman & Klebanov
(2009)). However, classifiers based on label-noise robust algorithms are still affected by label noise.
From a theoretical point of view, Bartlett et al. (2006) showed that most loss functions are not com-
pletely robust to label noise. Natarajan et al. (2013) proposed a generic unbiased estimator for binary
classification with noisy labels. They developed a surrogate cost function that can be expressed by
a weighted sum of the original cost functions, and provided asymptotic bounds for performance.
Grandvalet & Bengio (2005) addressed the problem of missing labels that can be viewed as an ex-
treme case of noisy label data. They suggested a semi-supervised algorithm that encourages the
classifier to predict the non-labeled data with high confidence by adding a regularization term to the
cost function. The problem of classification with label noise is an active research area. Comprehen-
sive up-to-date reviews of both the theoretical and applied aspects of classification with label noise
can be found in Frénay & Kaban (2014) and Frénay & Verleysen (2014).

1

Published as a conference paper at ICLR 2017

In spite of the huge success of deep learning there are not many studies that have explicitly attempted
to address the problem of Neural Net (NN) training using data with unreliable labels. Larsen et al.
(1998) introduced a single noise parameter that can be calculated by adding a new regularization
term and cross validation. Minh & Hinton (2012) proposed a more realistic noise model that de-
pends on the true label. However, they only considered the binary classification case. Sukhbaatar
& Fergus (2014) recently proposed adding a constrained linear layer at the top of the softmax layer,
and showed that only under some strong assumptions can the linear layer be interpreted as the tran-
sition matrix between the true and noisy (observed) labels and the softmax output layer as the true
probabilities of the labels. Reed et al. (2014) suggested handling the unreliability of the training data
labels by maximizing the likelihood function with an additional classification entropy regularization
term.

The correct unknown label can be viewed as a hidden random variable. Hence, it is natural to apply
the EM algorithm where in the E-step we estimate the true label and in the M-step we retrain the
network. Several variations of this paradigm have been proposed (e.g. Minh & Hinton (2012),
Bekker & Goldberger (2016)). However, iterating between EM-steps and neural network training
does not scale well. In this study we use latent variable probabilistic modeling but we optimize the
likelihood score function within the framework of neural networks. Current noisy label approaches
assume either implicitly or explicitly that, given the correct label, the noisy label is independent
of the feature vector. This assumption is probably needed to simplify the modeling and derive
applicable learning algorithms. However, in many cases this assumption is not realistic since a
wrong annotation is more likely to occur in cases where the features are misleading. By contrast,
our framework makes it easy to extend the proposed learning algorithm to the case where the noise
is dependent on both the correct label and the input features. In the next section we describe a model
formulation and review the EM based approach. In Section 3 we described our method which is
based on adding another softmax layer to the network and in Section 4 we present our results.

2 A PROBABILISTIC FRAMEWORK FOR NOISY LABELS

Assume we want to train a multi-class neural-network soft-classifier p(y = i|x;w) where x is the
feature vector, w is the network parameter-set and i is a member of the class-set {1, ..., k}. We
further assume that in the training process we cannot directly observe the correct label y. Instead,
we only have access to a noisy version of it denoted by z. Here we follow the probabilistic modeling
and the EM learning approach described in Bekker & Goldberger (2016). In this approach noise
generation is assumed to be independent of the features and is modeled by a parameter θ(i, j) =
p(z = j|y = i). The noise distribution is unknown and we want to learn it as part of the training
phase. The probability of observing a noisy label z given the feature vector x is:

p(z = j|x;w, θ) =
k∑

i=1

p(z = j|y = i; θ)p(y = i|x;w) (1)

where k is the number of classes. The model is illustrated in the following diagram:

Neural-Network

w

noisy channel

θ

x y z

In the training phase we are given n feature vectors x1, ..., xn with the corresponding noisy la-
bels z1, ..., zn which are viewed as noisy versions of the correct hidden labels y1, ..., yn. The log-
likelihood of the model parameters is:

L(w, θ) =

n∑
t=1

log(

k∑
i=1

p(zt|yt = i; θ)p(yt = i|xt;w)) (2)

Based on the training data, the goal is to find both the noise distribution θ and the Neural Network
parameters w that maximize the likelihood function. Since the random variables y1, ..., yn are hid-
den, we can apply the EM algorithm to find the maximum-likelihood parameter set. In the E-step of

2

Published as a conference paper at ICLR 2017

each EM iteration we estimate the hidden true data labels based on the noisy labels and the current
parameters:

cti = p(yt = i|xt, zt;w0, θ0), i = 1, ..., k, t = 1, ..., n (3)

where w0 and θ0 are the current parameter estimations. In the M-step we update both the NN and
the noisy channel parameters. The updated noise distribution has a closed-form solution.

θ(i, j) =

∑
t cti1{zt=j}∑

t cti
, i, j ∈ {1, ..., k} (4)

The k × k matrix θ can be viewed as a confusion matrix between the soft estimates of the true label
{cti|i = 1, ..., k} and the observed noisy labels zt. As part of the EM M-step, to find the updated
NN parameter w we need to maximize the following function:

S(w) =

n∑
t=1

k∑
i=1

cti log p(yt = i|xt;w) (5)

which is a soft-version of the likelihood function of the fully observed case, based on the current
estimate of the true labels. The back-propagation derivatives of the function (5) that we maximize
in the M-step are:

∂S

∂ui
=

n∑
t=1

(p(yt = i|xt, zt;w0, θ0)− p(yt = i|xt;w))h(xt) (6)

such that h is the final hidden layer and u1, ..., uk are the parameters of the soft-max output layer.

The method reviewed here is closely related to the work of Minh & Hinton (2012). They addressed
the problem of mislabeled data points in a particular type of dataset (aerial images). The main
difference is that in their approach they assumed that they do not learn the noise parameter. Instead
they assume that the noise model can be separately tuned using a validation set or set by hand. Note
that even if the true noise parameters are given, we still need the apply the EM iterative procedure.
However, this assumption makes the interaction between the E-step and the NN learning much
easier since each time a data-point xt is visited we can compute the p(yt = i|xt, zt) based on the
current network parameters and the pre-defined noise parameters. Motivated by the need for model
compression, Hinton et al. (2014) introduced an approach to learn a “distilled” model by training
a more compact neural network to reproduce the output of a larger network. Using the notation
defined above, in the second training stage they actually optimized the cost function: S(w) =∑n

t=1

∑k
i=1 p(yt = i|xt;w0, θ0) log p(yt = i;xt;w) such that w0 is the parameter of the larger

network that was trained using the labels z1, ..., zn, w is the parameter of the smaller network and
θ0(i, j) in this case is a non-informative distribution (i.e. θ0(i, j) = 1/k).

There are several drawbacks to the EM-based approach described above. The EM algorithm is
a greedy optimization procedure that is notoriously known to get stuck in local optima. Another
potential issue with combining neural networks and EM direction is scalability. The framework
requires training a neural network in each iteration of the EM algorithm. For real-world, large-scale
networks, even a single training iteration is a non-trivial challenge. Moreover, in many domains
(e.g. object recognition in images) the number of labels is very large, so many EM iterations are
likely to be needed for convergence. Another drawback of the probabilistic models is that they are
based on the simplistic assumption that the noise error is only based on the true labels but not on the
input features. In this study we propose a method for training neural networks with noisy labels that
successfully addresses all these problems.

3 TRAINING DEEP NEURAL NETWORKS USING A NOISE ADAPTATION LAYER

In the previous section we utilized the EM algorithm to optimize the noisy-label likelihood function
(2). In this section we describe an algorithm that optimizes the same function within the framework
of neural networks. Assume the neural network classifier we are using is based on non-linear inter-
mediate layers followed by a soft-max output layer used for soft classification. Denote the non-linear

3

Published as a conference paper at ICLR 2017

function applied on an input x by h = h(x) and denote the soft-max layer that predicts the true y
label by:

p(y = i|x;w) = exp(u>
i h+ bi)∑k

l=1 exp(u
>
l h+ bl)

, i = 1, ..., k (7)

where w is the network parameter-set (including the softmax layer). We next add another softmax
output layer to predict the noisy label z based on both the true label and the input features:

p(z = j|y = i, x) =
exp(u>

ijh+ bij)∑
l exp(u

>
ilh+ bil)

(8)

p(z = j|x) =
∑
i

p(z = j|y = i, x)p(y = i|x) (9)

We can also define a simplified version where the noisy label only depends on the true label; i.e. we
assume that labels flips are independent of x:

p(z = j|y = i) =
exp(bij)∑
l exp(bil)

(10)

p(z = j|x) =
∑
i

p(z = j|y = i)p(y = i|x) (11)

We denote the two noise modeling variants as the complex model (c-model) (8) and the simple
model (s-model) (10). Hereafter we use the notation wnoise for all the parameters of the second
softmax layer which can be viewed as a noise adaptation layer.

In the training phase we are given n feature vectors x1, ..., xn with corresponding noisy labels
z1, ..., zn which are viewed as noisy versions of the correct hidden labels y1, ..., yn. The log-
likelihood of the model parameters is:

S(w,wnoise) =
∑
t

log p(zt|xt) =
∑
t

log(
∑
i

p(zt|yt = i, xt;wnoise)p(yt = i|xt;w)) (12)

Since the noise is modeled by adding another layer to the network, the score S(w,wnoise) can be
optimized using standard techniques for neural network training. By setting

p(z = j|y = i) = θ(i, j) =
exp(bij)∑
l exp(bil)

, (13)

it can easily verified that, by using either the EM algorithm (2) or the s-model neural network
scheme (12), we are actually optimizing exactly the same function. Thus the neural network with
the s-model noise adaptation layer provides an alternative optimization strategy to the EM algorithm.
Instead of alternating between optimizing the noisy model and the network classifier, we consider
them as components of the same network and optimize them simultaneously.

non-linear function

w

soft-max

w

soft-max

wnoise

x h h, y z

non-linear function

w

soft-max

w

x h y

Figure 1: An illustration of the noisy-label neural network architecture for the training phase (above)
and test phase (below).

4

Published as a conference paper at ICLR 2017

Note that in the c-model, where the noise is also dependent on the input features, we can still apply
the EM algorithm to learn the parameters of the additional noise layer. However, there is no closed-
form solution in the M-step for the optimal parameters and we need to apply neural-network training
in the M-step to find the noise-layer parameters.

At test time we want to predict the true labels. Hence, we remove the last softmax layer that aims to
get rid of the noise in the training set. We compute the true-label softmax estimation p(y = i|x;w)
(7). The proposed architecture for training the neural network based on training data with noisy
labels is illustrated in Figure 1.

There are degrees of freedom in the two softmax layer model. Hence, a careful initialization of the
parameters of the noise adaptation layer is crucial for successful convergence of the network into
a good classifier of the correct labels at test time. We used the parameters of the original network
to initialize the parameters of the s-model network that contains the noise adaptation level. We can
initialize the softmax parameters of the s-model by assuming a small uniform noise:

bij = log((1− ε)1{i=j} +
ε

k−1
1{i 6=j})

such that k is the number of different classes. A better procedure is to first train the original NN
without the noise-adaptation layer, ignoring the fact that the labels are noisy. We can then treat the
labels produced by the NN as the true labels and compute the confusion matrix on the train set and
used it as an initial value for the bias parameters:

bij = log(

∑
t 1{zt=j}p(yt = i|xt)∑

t p(yt = i|xt)
)

such that x1, ..., xn are the feature vectors of the training dataset and z1, ..., zn are the corresponding
noisy labels. So far we have concentrated on parameter initialization for the s-model. The strategy
that works best to initialize the c-model parameters is to use the parameters that were optimized for
the s-model. In other words we set linear terms uij to zero and initialize the bias terms bij with the
values that were optimized by the s-model.

The computational complexity of the proposed method is quadratic in the size of the class-set. Sup-
pose there are k classes to predict, in this case the proposed methods require k+1 sets of softmax
operations with a size of k each. Hence there are scalability problems when the class set is large. As
we explained in the previous paragraph, we initialized the second soft-max layer using the confusion
matrix of the baseline system. The confusion matrix is a good estimation of the label noise. Assume
the rows of the matrix correspond to the true labels and the matrix columns correspond to the noisy
labels. The l largest elements in the i-th row are the most frequent noisy class values when the true
class value is i. We can thus connect the i-th element in the first softmax layer only to its l most
probable noisy class candidates. Note that if we connect the i-th label in the first softmax only to the
i-th label in the second softmax layer, the second softmax layer collapses to identity and we obtain
the standard baseline model. Taking the l most likely connections to the second softmax layer, we
allow an additional l−1 possible noisy labels for each correct label. We thus obtain a data driven
sparsifying of the second softmax layer which solves the scalability problem since the complexity
becomes linear in the number of classes instead of quadratic. In the experiment section we show
that by using this approach there is not much deference in performance.

Our architecture, which is based on a concatenation of softmax layers, resembles the hierarchical
softmax approach Morin & Bengio (2005) that replaces the flat softmax layer with a hierarchical
layer that has the classes as leaves. This allowed them to decompose calculating the probability
of the class into a sequence of probability calculations, which saves us from having to calculate
the expensive normalization over all classes. The main difference between our approach and theirs
(apart from the motivation) is that in our approach the true-label softmax layer is fully connected
to the noisy-label layer. Sukhbaatar & Fergus (2014) suggested adding a linear layer to handle
noisy labels. Their approach is similar to our s-model. In their approach, however, they proposed a
different learning procedure.

4 EXPERIMENTS

In this section, we evaluate the robustness of deep learning to training data with noisy labels with
and without explicit noise modeling. We first show results on the MNIST data-set with injected label

5

Published as a conference paper at ICLR 2017

(a) 20% dataset (b) 50% dataset

(c) 100% dataset

Figure 2: Test classification accuracy results on the MNIST dataset as a function of the noise level.
The results are shown for several training data sizes (20%,50%,100%) of the training subset.

noise in our experiments. The MNIST is a database of handwritten digits, which consists of 28× 28
images. The dataset has 60k images for training and 10k images for testing. We used a two hidden
layer NN comprised of 500 and 300 neurons. The non-linear activation we used was ReLU and
we used dropout with parameter 0.5. We trained the network using the Adam optimizer (Kingma
& Ba (2014)) with default parameters, which we found to converge more quickly and effectively
than SGD. We used a mini-batch size of 256. These settings were kept fixed for all the experiments
described below. In addition to a network that is based on fully connected layers, we also applied a
network based on a CNN architecture. The results we obtained in the two architectures were similar.
The network we implemented is publicly available 1.

We generated noisy data from clean data by stochastically changing some of the labels. We con-
verted each label with probability p to a different label according to a predefined permutation. We
used the same permutation as in Reed et al. (2014). The labels of the test data remained, of course,
unperturbed to validate and compare our method to the regular approach.

We compared the proposed noise robust models to other model training strategies. The first network
was the baseline approach that ignores the fact that the labels of the training data are unreliable.
Denote the observed noisy label by z and the softmax decision by q1, ..., qk. The baseline log-
likelihood score (for a single input) is:

S =
∑
i

1{z=i} log(qi)

1code available at https://github.com/udibr/noisy_labels

6

https://github.com/udibr/noisy_labels

Published as a conference paper at ICLR 2017

Figure 3: Test classification accuracy results on the CIFAR-100 dataset as a function of the noise
level. The results are shown for several training data sizes (20%,50%,100%) of the training subset
for a CNN network architecture).

We also implemented two variants of the noise robust approach proposed by Reed et al. (2014).
They suggested a soft version

βS − (1− β)H(q) = β
∑
i

1{z=i} log(qi) + (1− β)
∑
i

qi log(qi)

and a hard version:
βS + (1− β)max

i
log(qi)

In their experiments they took β = 0.8 for the hard version and β = 0.95 for the soft version, and
observed that the hard version provided better results. Finally we implemented the two variants of
our approach; namely, the noise modeling based only on the labels (s-model) and the noise modeling
that was also based on the features (c-model).

Figure 2 depicts the comparative test errors results as a function of the fractions of noise. The results
are shown for three different sizes of training data i.e. (20%,50%,100%) of the MNIST training
subset. Bootstrapping was used to compute confidence intervals around the mean. For 1000 times,
N = 10 samples were randomly drawn with repeats from the N available samples and mean was
computed. The confidence interval was taken to be the 2.5% and 97.5% percentiles of this process.

The results show that all the methods that are explicitly aware of the noise in the labels are better
than the baseline which is the standard training approach. We revalidated the results reported in Reed
et al. (2014) and showed that the hard version of their method performs better than the soft version.
In all cases our models performed better than the alternatives. In most cases the c-model was better
than the s-model. In the case where the entire dataset was used for training, we can see from the
results that there was a phase transition phenomenon. We obtained almost perfect classification
results until the noise level was high and there was a sudden strong performance drop. Analyzing
why this effect occurred is left for future research.

We next show the results on the CIFAR-100 image dataset Krizhevsky & Hinton (2009) which con-
sists of 32 × 32 color images arranged in 100 classes containing 600 images each. There are 500
training images and 100 testing images per class. We used raw images directly without any pre-
processing or augmentation. We generated noisy data from clean data by stochastically changing
some of the labels. We converted each one of the 100 labels with probability p to a different label
according to a predefined permutation. The labels of the test data remained, of course, unperturbed
to validate and compare our method to the regular approach. We used a CNN network with two
convolutional layers combined with ReLU activation and max-pooling, followed by two fully con-
nected layers. Figure 3 depicts the comparative test errors results as a function of the fractions
of noise for three different sizes of training data i.e. (20%,50%,100%) of the CIFAR-100 training

7

Published as a conference paper at ICLR 2017

Figure 4: Test classification accuracy results on the CIFAR-100 dataset as a function of the noise
level. The results of regular and sparse second softmax layers are shown for several training data
sizes (20%,50%,100%) of the training subset .

subset. Bootstrapping was used to compute confidence intervals around the mean in the same way
as for the MNIST experiment. The results showed that the proposed method works better than the
alternatives. The simple model consistently provided the best results but when the noise level was
very high the complex method tended to perform better.

We next report experimental results for the sparse variant of our method that remains efficient even
when the class set is large. We demonstrate this on the case of the CIFAR-100 dataset which consists
of 100 possible classes. For each class we only took the five most probable classes in the confusion
matrix which is used to initialize the model parameter (see Section 3). As can be seen in Figure 4,
sparsifying the second softmax layer did not not result in a drop in performance

5 CONCLUSION

In this paper we investigated the problem of training neural networks that are robust to label noise.
We proposed an algorithm for training neural networks based solely on noisy data where the noise
distribution is unknown. We showed that we can reliably learn the noise distribution from the noisy
data without using any clean data which, in many cases, are not available. The algorithm can be
easily combined with any existing deep learning implementation by simply adding another softmax
output layer. Our results encourage collecting more data at a cheaper price, since mistaken data
labels can be less harmful to performance. One possible future research direction would be to
generalize our learning scheme to cases where both the features and the labels are noisy. We showed
results on datasets with small and medium sized class-sets. Future research direction would be to
evaluate the performance and efficiency of the proposed method on tasks with large class-sets.

ACKNOWLEDGMENTS

This work is supported by the Intel Collaborative Research Institute for Computational Intelligence
(ICRI-CI).

REFERENCES

U. Alon, N. Barkai, D. Notterman, K. Gish, S.and D. Mack, and A. Levine. Broad patterns of
gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12):6745–6750,
1999.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal
of the American Statistical Association, pp. 138–156, 2006.

E. Beigman and B. B. Klebanov. Learning with annotation noise. In ACL-IJCNLP, 2009.

8

Published as a conference paper at ICLR 2017

A. Bekker and J. Goldberger. Training deep neural-networks based on unreliable labels. In IEEE
Int.l Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2682–2686, 2016.

C. Brodley and M. Friedl. Identifying mislabeled training data. J. Artif. Intell. Res.(JAIR), 11:
131–167, 1999.

B. Frénay and A. Kaban. A comprehensive introduction to label noise. In European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2014.

B. Frénay and M. Verleysen. Classification in the presence of label noise: a survey. IEEE Trans. on
Neural Networks and Learning Systems, 25(5):845–869, 2014.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Advances in
Neural Information Processing Systems (NIPS), 2005.

G.E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS Deep
Learning and Representation Learning Workshop, 2014.

B. Jakramate and A. Kabán. Label-noise robust logistic regression and its applications. In Machine
Learning and Knowledge Discovery in Databases, pp. 143–158. 2012.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, Computer Science Department, University of Toronto, 2009.

J. Larsen, L. Nonboe, M. Hintz-Madsen, and K. L. Hansen. Design of robust neural network classi-
fiers. In Int. Conf. on Acoustics, Speech and Signal Processing, pp. 1205–1208, 1998.

V. Minh and G. Hinton. Learning to label aerial images from noisy data. In Int. Conf. on Machine
Learning (ICML), 2012.

F. Morin and Y. Bengio. Hierarchical probabilistic neural network language model. In Aistats,
volume 5, pp. 246–252, 2005.

N. Natarajan, I. Dhillon, P. Ravikumar, and A. Tewari. Learning with noisy labels. In Advances in
Neural Information Processing Systems (NIPS), 2013.

D. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on
the precision of supervised learning techniques. Artificial intelligence review, 2010.

M. Pechenizkiy, A. Tsymbal, S. Puuronen, and O. Pechenizkiy. Class noise and supervised learn-
ing in medical domains: The effect of feature extraction. In Computer-Based Medical Systems
(CBMS), 2006.

S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural
networks on noisy labels with bootstrapping. In arXiv preprint arXiv:1412.6596, 2014.

S. Sukhbaatar and R. Fergus. Learning from noisy labels with deep neural networks. In arXiv
preprint arXiv:1406.2080, 2014.

X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artificial Intelligence
Review, 22(3):177–210, 2004.

9

	Introduction
	A probabilistic Framework for Noisy Labels
	Training deep neural networks using a noise adaptation layer
	Experiments
	Conclusion

