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ABSTRACT

The state-of-the-art (SOTA) for mixed precision training is dominated by variants
of low precision floating point operations, and in particular FP16 accumulating
into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research
has also happened in the domain of low and mixed-precision Integer training, these
works either present results for non-SOTA networks (for instance only AlexNet for
ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train
state-of-the-art visual understanding neural networks on ImageNet-1K dataset, with
Integer operations on General Purpose (GP) hardware. In particular, we focus on
Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs
of INT16 operands and accumulate results into an INT32 output.We propose a
shared exponent representation of tensors, and develop a Dynamic Fixed Point
(DFP) scheme suitable for common neural network operations. The nuances of
developing an efficient integer convolution kernel is examined, including methods
to handle overflow of the INT32 accumulator. We implement CNN training for
ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve
or exceed SOTA accuracy within the same number of iterations as their FP32
counterparts without any change in hyper-parameters and with a 1.8X improvement
in end-to-end training throughput. To the best of our knowledge these results
represent the first INT16 training results on GP hardware for ImageNet-1K dataset
using SOTA CNNs and achieve highest reported accuracy using half precision
representation.

1 INTRODUCTION

While single precision floating point (FP32) representation has been the mainstay for deep learn-
ing training, half-precision and sub-half-precision arithmetic has recently captured interest of the
academic and industrial research community. Primarily this interest stems from the ability to attain
potentially upto 2X or more speedup of training as compared to FP32, when using half-precision
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fused-multiply and accumulate operations. For instance NVIDIA Volta NVIDIA (2017) provides 8X
more half-precision Flops as compared to FP32.

Unlike single precision floating point, which is a unanimous choice for 32b training, half-precision
training can either use half-precision floating point (FP16), or integers (INT16). These two options
offer varying degrees of precision and range; with INT16 having higher precision but lower dynamic
range as compared to FP16. This also leads to residues between half-precision representation and
single precision to be fundamentally different – with integer representations contributing lower
residual errors for larger (and possibly more important) elements of a tensor. Beyond this first
order distinction in data types, there are multiple algorithmic and semantic differences (for example
FP16 multiply-and-accumulate operation accumulating into FP32 results) for each of these data
types. Hence, when discussing half-precision training, the whole gamut of tensor representation,
semantics of multiply-and-accumulate operation, down-conversion scheme (if the accumulation is
to a higher precision), scaling and normalization techniques, and overflow management methods
must be considered in totality to achieve SOTA accuracy. Indeed, unless the right combination of the
aforesaid vectors are selected, half precision training is likely to fail. Conversely, drawing conclusions
on the efficacy of a method by not selecting all vectors properly can lead to inaccurate conclusions.

In this work we describe a mixed-precision training setup which uses:

• INT16 tensors with shared tensor-wide exponent, with a potential to extend to sub-tensor
wide exponents.

• An instruction which multiplies two INT16 numbers and stores the output into a INT32
accumulator.

• A down-convert scheme based on the maximum value of the output tensor in the current
iteration using multiple rounding methods like nearest, stochastic, and biased rounding.

• An overflow management scheme which accumulates partial INT32 results into FP32, along
with trading off input precision with length of accumulate chain to gain performance.

The compute for neural network training is dominated by GEMM-like, convolution, or dot-product
operations. These are amenable to speedup via specialized low-precision instructions for fused-
multiply-and-accumulate (FMA), like AVX512_4VNNI 1. However, this does not necessarily mean
using half-precision representation for all tensors, or using only half-precision operations. In fact,
performance speedups by migrating the compute intensive operations in both forward and back
prorogation (FPROP, BPROP and WTGRAD) is often close to the maximum achievable speedup
obtained by replacing all operations (for instance SGD) in half-precision. In cases where it is not,
performance degradation typically happens due to limitations of memory bandwidth, and other
architectural reasons.Hence on a balanced general purpose machine, a mixed-precision strategy of
keeping precision critical operations (like SGD and some normalizations) in single precision and
compute intensive operations in half precision can be employed. The proposed integer-16 based
mixed-precision training follows this template.

Using the aforesaid method, we train multiple visual understanding CNNs and achieve Top-1 accura-
cies Russakovsky et al. (2015)on the ImageNet-1K dataset Deng et al. (2009) which match or exceed
single precision results. These results are obtained without changing any hyper-parameters, and
in as many iterations as the baseline FP32 training. We achieve 75.77% Top-1 accuracy for
ResNet-50 which, to the best of our knowledge, significantly exceeds any result published for half-
precision training, for example Micikevicius et al. (2017); Ginsburg et al. (2017). Further, we also
demonstrate our methodology achieves state-of-the-art accuracy (comparable to FP32 baseline) with
int16 training on GoogLeNet-v1, VGG-16 and AlexNet networks. To the best of our knowledge,
these are first such results using int16 training.

The rest of the paper is organized as follows: Section 2 discusses the literature pertaining to various
aspects of half-precision training. The dynamic fixed point format for representing half-precision
tensors is described in Section 3. Dynamic fixed point kernels and neural network training operations
are described in Section 4, and experimental results are presented in Section 5. Finally, we conclude
this work in Section 6.

1https://www.anandtech.com/show/11741/hot-chips-intel-knights-mill-live-blog-445pm-pt-1145pm-utc
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2 RELATED WORK

Using reduced precision for Deep learning has been an active topic of research. As a result there are
a number of different reduced precision data representations, the more standard floating-point based
Micikevicius et al. (2017); Ginsburg et al. (2017); Dettmers (2015) and custom fixed point schemes
Vanhoucke et al. (2011); Courbariaux et al. (2014); Gupta et al. (2015); Hubara et al. (2016b); Köster
et al. (2017).

The recently published mixed precision training work from Micikevicius et al. (2017) uses 16-
bit floating point storage for activations, weights and gradients. The forward, back propagation
computation uses FP16 computation with results accumulating into FP32 and a master-copy of the
full precision (FP32) weights are retained for the update operation. They demonstrate a broad variety
of deep learning training applications involving deep networks and larger data-sets (ILSVRC-class
problems) with minimal loss compared to baseline FP32 results. Further, this shows that FP16/FP32
mixed precision requires loss scaling Ginsburg et al. (2017) to achieve near-SOTA accuracy. This
ensures back-propagated gradient values are shifted into FP16 representable range and the small
magnitude (negative exponent) values, which are critical for accuracy are captured. Such scaling is
inherent with fixed point representations, making it more amenable and accurate for deep learning
training.

Custom fixed point representations offer more flexibility - in terms of both increased precision and
dynamic range. This allows for better mapping of the representation to the underlying application,
thus making it more robust and accurate than floating-point based schemes.Vanhoucke et al. (2011)
have shown that the dynamically scaled fixed point representation proposed by Williamson (1991)
can be very effective for convolution neural networks - demonstrating upto to 4× improvement over
an aggressively tuned floating point implementation on general purpose CPU hardware. Gupta et al.
(2015) have done a comprehensive study on the effect of low precision fixed point computation for
deep learning and have successfully trained smaller networks using 16-bit fixed point on specialized
hardware. With further reduced bit-widths, such fixed point data representations are more attractive
- offering increased capacity for precision with larger mantissa bits and dynamically scaled shared
exponents. There have been several publications with <16-bit precision and almost all of them use
such custom fixed point schemes. Courbariaux et al. (2014) use a dynamical fixed point format
(DFXP), with low precision multiplications with upto 12-bit operations. Building on this Courbariaux
et al. (2015) proposed training with only binary weights while all other tensors and operations are
in full precision. Hubara et al. (2016a) further extended this to use binary activations as well, but
with gradients and weights still retained in full precision.Hubara et al. (2016b) proposed training with
activations and weights quantized up to 6-bits and gradients in full precision. Rastegari et al. (2016)
use binary representation for all components including gradients. However, all of the aforementioned
use smaller benchmark model/data-sets and results in a non-trivial drop in accuracy with larger
ImageNet data-set Deng et al. (2009) and classification task Russakovsky et al. (2015). Köster
et al. (2017) have shown that a fixed point numerical format designed for deep neural networks
(Flexpoint), out-performs FP16 and achieves numerical parity with FP32 across a wide set of
applications. However, this is designed specifically for specialized hardware and the published results
are with software emulation. Here we propose a more general dynamic fixed point representation
and associated compute primitives, which can leverage general purpose hardware using the integer-
compute pipeline. Further we provide actual accuracy and performance for training large networks
for the ILSVRC classification task, measured on available hardware.

3 THE DYNAMIC FIXED POINT FORMAT

Dynamic Fixed Point (DFP) tensors are represented by a combination of an integer tensor I and an
exponent Es, shared across all the integer elements. For the sake of convenience, the DFP tensor can
be denoted as DFP-P = 〈I, Es〉, where P represents the number of bits used by the integer elements
in I (ex: DFP-16 contains 16-bit integers).

Figure 1 illustrates the differences in data representation between IEEE-754 standard format float,
half-float and DFP-16 data format. DFP-16 data type offers a trade-off between float and half-float in
terms of precision and dynamic range. When compared to full-precision floats, DFP-16 can achieve
higher compute density and can carry higher effective precision compared to half-floats because of
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Figure 1: Snapshot of precision and dynamic range capabilities of a) IEEE-754 float b) IEEE-754
half-float, and c) Dynamic Fixed Point (DFP-16) data formats.

larger 15-bit mantissa (compared to 11-bits for half-floats). Further, the effective dynamic range of
DFP format can be increased by extending the data type to use Blocked-DFP representation. Blocked-
DFP uses fine-grained quantization to assign multiple exponents per tensor with smaller blocks of
integers sharing a common exponent. Mellempudi et al. (2017) have demonstrated effectiveness of
fine-grained quantization for low-precision inference tasks.

In this work, we use a single shared exponent for each tensor. The integers are stored in 2’s
complement representation and the shared exponent is an 8-bit signed integer. We use standard
commodity integer hardware to perform arithmetic operations on DFP tensors. This implies that the
exponent handling and precision management of DFP is done in the software, which is covered in
more detail in Section 4.3.

3.1 DFP TENSOR PRIMITIVES

To facilitate end-to-end mixed-precision training using DFP, we have created primitives to perform
arithmetic operations on DFP tensors and data conversions between DFP and float. When converting
floating point tensors into to DFP data type, the shared exponent is derived from the exponent of
absolute maximum value of the floating point tensor. If F is the floating point tensor, the exponent of
the absolute maximum value is expressed as follows.

Efmax = E(max
∀f∈F

|f |) (1)

The value of the shared exponent Es is a function of Efmax and the number of bits P used by the
output integer tensor I .

Es = Efmax − (P − 2) (2)
The relationship of the resulting DFP tensor 〈I, Es〉 with the input floating point tensor F is expressed
by Eq.3.

∀in ∈ I, fn = in × 2Es ,wherefn ∈ F (3)
Extending this basic formulation Eq.3, we can define a set of common DFP primitives required for
neural network training.

• Multiplying two DFP-16 tensors produces 32-bit I tensor with a new shared exponent
expressed as follows.

iab = ia × ib and exponent, Eab
s = Ea

s + Eb
s (4)

• Adding two DFP-16 tensors results in a 32-bit I tensor and a new shared exponent.

ia+b =

{
ia + (ib>>(Ea

s − Eb
s)), when Ea

s >Eb
s

ib + (ia>>(Eb
s − Ea

s )), when Eb
s>Ea

s

and exponent, Ea+b
s = max

Ea
s ,E

b
s

(5)

Note that when a Fused Multiply and Add operation is performed, all products have the
same shared exponent: Eab

s = Ea
s + Eb

s , and hence the sum of such products also has the
same shared exponent.
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• Down-Conversion scales DFP-32 output of a layer to DFP-16 to be passed as input to the
next layer. The 32-bit I tensor right-shifted Rs bits to fit into 16-bit tensor. The Rs value
and the new shared exponent are expressed as follows.

Rs = A− (P + LZC( max
∀iab∈I32

|iab|))

idab = iab>>Rs and exponent, Eab
s + = Rs

(6)

In Eqn.6, A is accumulator bit-width, LZC( ) returns the leading zero bit-count.

4 NEURAL NETWORK TRAINING USING DYNAMIC FIXED POINT

Neural network training is an iterative process over mini-batches of data points, with four main
operations on a given mini-batch: forward propagation (FPROP), back-propagation (BPROP), weight
gradient computation (WTGRAD), and the solver (typically stochastic gradient descent, or ADAM).

In a CNN, the three steps of forward-propagation, back-propagation, and weight-gradient compu-
tation are often the compute intensive steps, and consist of GEMM-like (General Matrix Multiply)
convolution operations which dominate the compute, and additional element-wise operations like
normalization, non-linear (ReLU) and element-wise addition. In this work we propse a method to
use INT16 operations, for implementing kernels for the convolutions and GEMM. There kernels are
stitched with the rest of the operations in neural network training via Dynamic Fixed Point to floating
point conversions described earlier in Section 3. In this section, we first describe the overall method
for using dynamic fixed point in neural network training, and then explain the optimized kernel for
convolutions.

4.1 TRAINING WITH DYNAMIC FIXED POINT

The mixed precision training scheme used in this work is described in Figure 2. The core compute
kernels in this scheme are the FP, BP, and WU convolution functions which take two DFP-16 tensors
as input and produces a FP32 tensor as output. For example FP accepts two DFP-16 tensors, aq , and
wq (activations and weights for layer-l), and produces a FP32 output tensorThe FP and BP operations
are followed by quantization steps (Qa, Qe) which convert the FP32 tensors to DFP-16 tensors (âlq,
elq) for operations in the next layer. The WU step is followed by the Stochastic Gradient Descent
(SGD) step, which takes the FP32 tensor for weight-gradients (∆w) and a FP32 copy of the weights
(W l) as inputs, and produces an updated weight tensor as output. We follow the now established
practice Micikevicius et al. (2017) of keeping a FP32 copy of weights as well as a low precision
(DFP-16) copy of weights. Therefore SGD or other solvers are FP32 operations. In case a batch-norm
layer is used, the DFP-16 tensors are loaded into registers and then the data is up-converted to FP32
to prevent overflows during stats computation.

4.2 CORE COMPUTE KERNELS

In this section we delve into efficient implementations of core compute kernels written using Integer
FMA instruction sequence; in particular the AVX512_4VNNI instruction (described in Algorithm
1). This instruction takes a memory pointer as the first input and four vector registers as the second
input and performs 8 multiply-add operations per output (16 Integer-OPs). For each 32b lane, the
instruction takes two pairs of 16-bit Integers, performs a multiply followed by a horizontal add.

Algorithm 1 Semantics of the QVNNI16 Instruction
1: K=4; SIMD_WIDTH=16;
2: QVNNI16(short *mem, _m512i vinp2[0..3], _m512i vout)
3: for v = 0 . . . K-1 do
4: for o = 0 . . . SIMD_WIDTH-1 do
5: vout[o] += vinp2[v][2*o]*mem[2*v] + vinp2[v][2*o+1]*mem[2*v+1]
6: end for
7: end for

The FPROP convolution kernel is written using AVX512_4VNNI instruction in Algorithm 2. The
data layout of the weights captures the 2-way horizontal accumulation operation in AVX512_4VNNI.
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Figure 2: High-level data flow diagram for mixed precision training. Operators FP l, BP l and WU l

indicate convolution layers, while Qa, Qw, Qe are quantization operators for activations, weights
and back propagated errors. Please note, the weight gradients (∆wl) are not quantized before SGD,
the updated weights are quantized for the next iteration.

Here the last dimension moves along consecutive input-feature maps. Hence the dimensions of
activations is: N, C/16, H, W, 16, and that of weights is C/16, K/16, KH, KW, 8c, 16k, 2c (where C
and K are input and output feature maps, H, W are input feature map height and width, and KH, KW
are kernel height/width). Note that while we briefly touch upon data layout and blocking of the core
kernel loops in Algorithm 2, detailed analysis of performance is not the objective of this work. These
details are explored only to highlight different functional components of the kernel.

4.3 HANDLING OVERFLOWS IN INT16-INT32 FMAS

Multiplication of two INT16 numbers can result in a 30-bit outcome, and hence an accumulate
chain of 3 products of INT16 multiplicative pairs can cause an overflow of the INT32 accumulator.
In neural network training, accumulate chains can exceed a million in length (for example in the
WTGRAD kernel).

One way to prevent overflows is to convert an INT32 intermediate output into FP32 before accumu-
lation as described in lines 26-31 in Algorithm 2. Here we first convert the INT32 result to FP32
using the VCVTINTFP32 instruction, followed by a scale and accumulate into the final FP32 result
using the VFP32MADD instruction. The scale used is 2(Einp+Ewt) (equation 3), which is broadcast
and stored in the vscale vector register. The instruction sequence in lines 26-31 can be applied after
every AVX512_4VNNI instruction to prevent almost all overflows. However the overheads would be
significant and hurt performance. Hence we pick the strategy of partial accumulations into INT32 for
short accumulate chains, and subsequently converting the results into FP32.

Performance Impact: As outlined in Algorithm2 for performance we block additionally over the input
feature maps (ICBLK) and use optimal register blocking (RB_SIZE). The difference between an ideal
instruction sequence (with no overflow management) and Algorithm 2 is essentially the additional
VCVTINTFP32 instruction (line 28). In the loop in lines 8-31, we have (ICBLK/16)*KH*KW*2*RB
AVX512_4VNNI instructions, and RB*4 + (ICBLK/16)*KH*KW*4 non-AVX512_4VNNI instruc-
tions, and RB VCVTINTFP32 instructions. The instruction overhead from overflow management
therefore varies between <1% in most cases, to at most 3%.

The length of the accumulate chain (via sizing the input feature map blocking factor ICBLK in line
7) is selected to optimize instruction overheads and cache/instruction reuse. In this work we strive
to keep the accumulate chain to more than 200 (which is empirically shown to be close to optimal).
Often this accumulate chain also overflows, which we circumvent by shifting inputs. In this work,
we shift both the inputs by 1-bit for all convolutions in all experiments. Hence effectively we have a
DFP15 representation of all DFP tensors. It is notable that this shift value is largely dependent on this
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Algorithm 2 Example Forward Propagation Loop
1: fprop(DFP16 <input[IC/16][IH][IW][16], einp>, DFP16 <weights[IC/16][OC/16][KH][KW][8][16][2],

ewt>; FP32 output[OC/16][OH][OW][16] = 0)
2: _m512 vwt[0. . . 3], vout[RB_SIZE], vtemp, vscale;
3: vscale = VBROADCAST(2(e_inp+e_wt))
4: for ofm = 0 . . . OC/16-1 do
5: for ofh = 0 . . . OH-1 do
6: for ofw = 0 . . . OW/RB_SIZE-1 do
7: for ifm = 0 ... IC/ICBLK-1 do
8: for rb=0 . . . RB_SIZE-1 do
9: vout[rb] = SETZERO()

10: end for
11: for ifmb = 0 ... ICBLK/16-1 do
12: for kh = 0 . . . KH-1 do
13: for kw = 0 . . . KW-1 do
14: for ib = 0. . . 1 do
15: for v= 0. . . 3 do
16: vwt[v] = LOAD(&weights[ifm][ofm][kh][kw][ib*4+v][0][0])
17: end for
18: for rb = 0 . . . RB_SIZE-1 do
19: AVX512_4VNNI(&input[ifm*(IC/ICBLK)+icb][S*ofh+kh][S*ofw+kw][ib]),

vwt[0. . . 3], vout[rb])
20: end for
21: end for
22: end for
23: end for
24: end for
25: end for
26: for rb=0 . . . RB-1 do
27: vtemp = LOAD(&output[ofm][ofmh][ofmw*RB_SIZE + rb][0])
28: vout[rb] = VCVTINTFP32(vout[rb])
29: vtemp = VFP32MADD(vtemp, vout[rb], vscale) //vtemp = vtemp + vout[rb]*vscale
30: STORE(vtemp, &output[ofm][ofmh][ofmw*RB_SIZE + rb][0])
31: end for
32: end for
33: end for
34: end for

inner accumulate chain length, and by constraining it we can find a shift value applicable across all
operations. The combination of input shift and conversion of outputs to FP32 allows us to prevent
occurrence of any overflows and hence catastrophic errors during training.

5 EXPERIMENTS AND RESULTS

We compare mixed precision DFP16 training with baseline full precision (FP32) for several ImageNet-
class SOTA CNNs. Both baseline and DFP16 experiments are run using versions of the BVLC
CAFFE framework Jia et al. (2014). For the baseline runs we use Intel’s CAFFE branch2. For the
mixed precision DFP16 experiments we use a private fork of this branch, where we have added
DFP16 data-type support. The DFP16 compute primitives are supported through the prototype 16-bit
integer kernels in Intel’s MKL-DNN library3 along with explicit exponent management as described
in Section.4. Both baseline and mixed precision DFP16 experiments are run on the newly introduced
Intel R© XeonPhi

TM
Knights-Mill4. hardware using upto 32 nodes for training. Overall we see an

average 1.8X speedup in the training throughput compared to the the baseline FP32 performance on
the same platform.

2
https://github.com/intel/caffe

3
https://01.org/mkl-dnn

4
Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. Software and workloads used in performance tests may

have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For
more information go to http://www.intel.com/performance
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Table 1: Training configuration and ImageNet-1K classification accuracy

Models
Batch-size / Epochs Baseline Mixed precision DFP16

Top-1 Top-5 Top-1 Top-5

ResNet-50 1024 / 90 75.70% 92.78% 75.77% 92.84%
GoogLeNet-v1 1024/ 80 69.26% 89.31% 69.34% 89.31%
VGG-16 256 / 60 68.23% 88.47% 68.12% 88.18%
AlexNet 1024 / 88 57.43% 80.65% 56.94% 80.06%

5.1 ACCURACY RESULTS FOR CNNS

We trained several CNNs for the ImageNet-1K classification task using mixed precision DFP16:
AlexNet Krizhevsky et al. (2012), VGG-16 Simonyan & Zisserman (2014), GoogLeNet-v1 Szegedy
et al. (2015), ResNet-50 He et al. (2016). We use exactly the same batch-size and hyper-parameter
configuration for both the baseline FP32 and DFP16 training runs (Table.1). In both cases, the models
are trained from scratch using synchronous SGD on multiple nodes. In our experiments the first
convolution layer (C1) and the fully connected layers are in FP32 (constituting about 5 − 10% of
compute for modern CNNs). Table.1 shows ImageNet-1K classification accuracies, training with
DFP16 achieve SOTA accuracy for all four models and in several cases even better than the baseline
full precision result.

To the best of our knowledge, top-1 accuracy of 75.77% and top-5 accuracy of 92.84% for ResNet-50
with mixed precision DFP16 - is highest achieved accuracy on the ImageNet-1K classification task
with any form of reduced precision training.
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Figure 3: Convergence plots for DFP-16b training vs. reference baseline FP32 results for ResNet-50,
GoogLeNet-v1, VGG-16 and AlexNet trained for ImageNet-1K classification task

It can be seen from Figure.3 that DFP16, closely tracks the full precision training. For some models
like GoogLeNet-v1 and AlexNet, we observe the initially DFP16 training lags the baseline, however
this gaps is closed with subsequent epochs especially after the learning rate changes. Further, we
observe that compared to baseline run - with DFP16 the validation/test loss tracks much closer to the
training loss. We believe this is the effect of the additional noise introduced from reduced precision
computation/storage, which is results in better generalization with reduced training-testing gap and
better accuracies.
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5.2 PERFORMANCE DISCUSSION

For demonstrating the performance potential with mixed precision DFP16 training, we present
detailed performance analysis and breakdown for the ResNet-50 topology as case study. The
performance numbers reported below were measured on an Intel R© XeonPhi

TM
Processor 7295

(codename Knights-Mill)5 4
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Figure 4: Performance breakdown of mixed precision DFP16
training vs. baseline FP32

For the convolution kernels going from
FP32 to DFP16, the 3× 3 kernels are 1.8×
faster and the 1×1 kernels are 1.4× faster;
resulting in overall 1.5× speedup. The
baseline kernels include memory prefetch
optimization, which when applied to DFP
kernels should improve the performance by
an additional 20%. The batchnorm compu-
tation is 2× faster with DFP16, the speed
up here is primarily due to 50% bandwidth
saving due to smaller memory footprint.
In addition, the ReLU and EltWise lay-
ers are fused with batchnorm (Figure.4))
to avoid additional memory passes over the
activation tensor. This fusion technique
is orthogonal to mixed precision DFP16
training and can also be applied to baseline
FP32 version as well, however its more rel-
evant mixed precision DFP16 training due
to faster compute. Furthermore, such memory bandwidth optimizations are becoming more critical
with the growing disparity between compute capabilities and memory bandwidth with advent of
specialized compute accelerators.

With the above optimizations, we achieve an overall training throughput of 276 images/sec and 1.8X
speed up over FP32 for ResNet-50. Additionally, we have improved SGD computation by 3× over
the standard implementation in Intel-Caffe, pushing the training throughput to 317 images/sec, shown
as the framework overhead reduction in Figure.4. When exlpoiting similar tuning knobs, such as
fusion and improved SGD, in case the of the baseline FP32 version its performance increases to 194
images/sec. Even in this case Mixed Precision DFP16 can yield a high speedup of 1.6X with respect
to time-to-train.

6 CONCLUSIONS

We demonstrate industry-first reduced precision INT-based training result on large networks/data-sets.
Showing on-par or better than FP32 baseline accuracies and potentially 2× savings in computation,
communication and storage. Further, we propose a general dynamic fixed point representation
scheme, with associated compute primitives and algorithm for the shared exponent management. This
DFP solution can be used with general purpose hardware, leveraging the integer compute pipeline.
We demonstrate this with implementation of CNN training for ResNet-50, GoogLeNet-v1, VGG-16
and AlexNet; training these networks with mixed precision DFP16 for the ImageNet-1K classification
task. While this work focuses on visual understanding CNNs, in future we plan to demonstrate the
efficacy of this method for other types of networks like RNNs, LSTMs, GANs and extend this to
wider set of applications.
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