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Abstract

Building world models that accurately and comprehensively represent the real1

world is a holy grail for image generative models as it would enable their use as2

world simulators. For conditional image generative models to be successful world3

models, they should not only excel at image quality and prompt-image consistency4

but also ensure high representation diversity. However, current research in5

generative models mostly focuses on creative applications that are predominantly6

concerned with human preferences of image quality and aesthetics. We note that7

generative models have inference time mechanisms – or knobs – that allow the8

control of generation consistency, quality, and diversity. In this paper, we use9

state-of-the-art text-to-image and their knobs to draw consistency-diversity-realism10

Pareto fronts that provide a holistic view on consistency-diversity-realism11

multi-objective. Our experiments suggest that realism and consistency can both be12

improved simultaneously; however there exists a clear tradeoff between realism/-13

consistency and diversity. By looking at Pareto optimal points, we note that earlier14

models are better at representation diversity and worse in consistency-realism, and15

more recent models excel in consistency-realism while decreasing significantly16

the representation diversity. Overall, our analysis clearly shows that there is no17

best model and the choice of model should be determined by the downstream18

application. With this analysis, we invite the research community to consider19

Pareto fronts as an analytical tool to measure progress towards world models.20

1 Introduction21

Progress in foundational vision-based machine learning models has heavily relied on large-scale22

Internet-crawled datasets of real images (Schuhmann et al., 2022). Yet, with the acceleration of23

research on generative models and the unprecedented photorealistic quality achieved by recent text-24

to-image generative models (Podell et al., 2023; Esser et al., 2024; Ramesh et al., 2022; Saharia et al.,25

2022), researchers have started exploring their potential as world models that generate images to train26

downstream representation learning models (Astolfi et al., 2023; Hemmat et al., 2023; Tian et al.,27

2024).28

World models aim to represent the real world as accurately and comprehensively as possible.29

Therefore, visual world models should not only be able to yield high quality image generations,30

but also generate content that is representative of the diversity of the world, while ensuring prompt31

consistency. However, state-of-the-art conditional image generative models have mostly been32

optimized for human preference, and thus, a single high-quality and consistent sample fulfills the33

current optimization criteria. This vastly disregards representation diversity (Hall et al., 2024; Sehwag34

et al., 2022; Zameshina et al., 2023; Corso et al., 2024; Hemmat et al., 2023; Sadat et al., 2024),35

and questions the potential of state-of-the-art conditional image generative models to operate as36
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effective world models. Optimizing for human preferences only partially fulfills the multi-objective37

optimization required to leverage conditional generative models as world models.38

At the same time, state-of-the-art conditional image generative models have built-in inference time39

mechanisms, hereinafter referred to as knobs, to control the realism (also referred to as quality or40

fidelity), consistency, and diversity dimensions of the generation process. For example, it has been41

shown that the guidance scale in classifier free guidance of diffusion models (Ho & Salimans, 2021),42

trades image fidelity for diversity (Saharia et al., 2022; Corso et al., 2024). Similarly, post-hoc43

filtering (Karthik et al., 2023) is used to improve consistency. Although recent works have carried44

out extensive evaluations of image generative models (Ku et al., 2024; Lee et al., 2024), these45

evaluations have been primarily designed from the perspective of creative applications. To the best46

of our knowledge, a comprehensive and systematic analysis of the effect of the knobs controlling the47

different performance dimensions of conditional image generative models has not yet been carried out.48

In this paper, we benchmark conditional image generative models in terms of the world models’49

multi-objective. In particular, we perform an optimization over both knobs and state-of-the-art models50

with the goal of capturing the consistency-diversity, realism-diversity, and consistency-realism Pareto51

fronts that are currently reachable. In our analysis, we include text-to-image (T2I) models, consid-52

ering several versions of latent diffusion models (LDM), namely LDM1.5 and LDM2.1 (Rombach53

et al., 2022), as well as LDMXL (Podell et al., 2023). We perform the core of our analysis using the54

ubiquitous MSCOCO (Lin et al., 2014) validation dataset. To quantify the multi-objective, we use55

inter-sample similarity and recall (Kynkäänniemi et al., 2019) to measure representation diversity;56

image reconstruction quality and precision (Kynkäänniemi et al., 2019) to quantify realism; and57

the Davidsonian scene graph score (Cho et al., 2024)) to assess prompt-generation consistency.58

By drawing the Pareto fronts, we observe that progress in conditional image generative models has59

been driven by improvements in image realism and/or prompt-generation consistency, and that these60

improvements result in models sacrificing representation diversity. On MSCOCO, our analysis sug-61

gests that more recent models should be used when the downstream task requires samples with high62

realism – LDMXL-Turbo– and consistency – LDMXL–. However, older models – LDM1.5 and LDM2.1–63

are preferable for tasks that require good representation diversity. We believe that the proposed64

evaluation framework and the findings that arise from it will enable faster progress towards enabling65

the use of conditional image generative models as world models, and we hope it will encourage the66

research community to work on models that present softer consistency-diversity-realism tradeoffs.67

2 Methodology of the analysis68

In this section, we summarize the metrics we use to evaluate conditional image generative models,69

and describe existing knobs that control the consistency-diversity-realism multi-objective. For a70

more detailed description of the metrics and knobs adopted, we refer to Appendix D.71

Evaluating conditional image generation We evaluate conditional image generation in terms of72

prompt-sample consistency, sample diversity and realism (also referred to as quality or fidelity in73

the literature). We consider two complementary ways of quantifying the performance of conditional74

image generative models: conditional and marginal. On the one hand, conditional metrics are75

prompt-specific scores computed on the set of image generations resulting from a prompt. An overall76

score may be obtained by averaging out all prompt-specific scores. On the other hand, marginal77

metrics are overall scores computed on the generations resulting from all the prompts directly. In78

practice, marginal metrics compare a set of generated images to a reference dataset while ignoring79

the prompts used to obtain the sets. In the reminder of this subsection, we define consistency – that is80

always conditional –, conditional and marginal diversity, as well as conditional and marginal realism.81

Consistency-diversity-realism knobs. We steer the generations of conditional generative using two82

well-known knobs: guidance scale and post-hoc filtering. The guidance scale is a parameter that83

controls the strength of the conditioning in the denoising process of diffusion models; higher values84

steer the generation to be more aligned with the textual prompt. Post-hoc filtering first generates85

multiple samples given the same prompt, but different prior, and then select the ones with the highest86

consistency to the prompt based on automatic metrics like CLIPScore.87

Pareto fronts. We perform an optimization over state-of-the-art models and their knobs with the goal88

of capturing the consistency-diversity, realism-diversity, and consistency-realism Pareto fronts that are89

currently reachable, and building understanding on the consistency-diversity-realism multi-objective.90

More precisely, we quantify consistency, diversity and realism for each pair of (model, knob-value)91
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using the metrics presented in Section ??. We then leverage all the resulting measurements to obtain92

the Pareto fronts that capture the optimal consistency-diversity-realism values achieved by current93

state-of-the-art conditional image generative models. For visualization ease, we transform the multi-94

objective into three bi-objectives: consistency-diversity, realism-diversity and consistency-realism.95

3 Experiments96
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Figure 1: Consistency-diversity (left), realism-diversity (middle) and consistency-realism (right)
Pareto fronts for T2I generative models. (top) marginal, (bottom) conditional metrics. Each dot is
a configuration of model’s knobs. Labeled dots (A-D) are visualized in Fig. 2.

3.1 Setting97

Models. We consider different versions of latent diffusion models: LDM1.5, LDM2.1 (Rombach98

et al., 2022), LDMXL (Podell et al., 2023)1, and LDMXL-Turbo (Sauer et al., 2023). We report99

the knobs ablated in Appendix. Moreover, in Appendix we extend Pareto fronts to measure the100

geographical diversity of the same models.101

Datasets. We benchmark the models on MSCOCO (Lin et al., 2014; Caesar et al., 2018). In particular,102

we use the validation set from the 2014 split (Lin et al., 2014), which contains 41K images, to compute103

the marginal metrics, and the 2017 split (Caesar et al., 2018), which contains 5K images, to compute104

the conditional metrics. This choice is mostly to limit computational costs, as conditional metrics105

require multiple samples per conditioning.106

3.2 Consistency-diversity-realism multi-objective for text-to-image models107

In Fig. 1, we depict consistency-diversity, realism-diversity and consistency-realism Pareto fronts for108

open source T2I generative models. In particular, Fig. 1 (top) depicts marginal realism and diversity109

metrics while Fig. 1 (bottom) shows their conditional counterparts. Note that consistency is computed110

in the same way (DSG) in both figures. We now discuss each of the pair-wise metrics Pareto fronts.111

Consistency-diversity. The Pareto fronts in Fig. 1 (left, top and bottom), are composed of three mod-112

els: LDM1.5, LDM2.1 and LDMXL. We observe that improvement in diversity, both marginal (Recall)113

and conditional (DreamSim score), comes at the expense of consistency (DSG). On the one hand,114

LDM2.1 and LDM1.5 achieve the best marginal and conditional diversities, respectively. On the other115

hand, and perhaps unsurprisingly, LDMXL reaches the best consistency ( ≥ 95% of DSG accuracy),116

while LDM1.5 and LDM2.1 dominate the middle region of the frontier. Moreover, by comparing these117

1For LDMXL we use the base model v1.0 without the refiner
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Figure 2: T2I qualitative results on MSCOCO. A-D refer to the models marked in Fig. 1.
(left) Two planes flying in the sky over a bridge. (right) There is a dog holding
a Frisbee in its mouth.

two models, we notice that Pareto optimal hyperparameter configurations of LDM2.1 obtain slightly118

higher consistency scores. In Fig. 2, we validate these observations showcasing samples from LDM1.5119

(A) at high-diversity/low-consistency, LDM2.1 (B) from the middle of the frontier, and LDMXL (C)120

at high-consistency/low-diversity. Both in the case of the “two planes” and of the “dog”, the variance121

of colors and backgrounds are reduced when visual quality is increased. Other samples are in ??.122

Realism-diversity. The marginal realism-diversity (Precision-Recall) Pareto front in Fig. 1 (middle,123

top), is composed of three models: LDM1.5, LDM2.1 and LDMXL-Turbo. In this case, we also124

observe a tradeoff: higher marginal diversity coincides with lower realism for LDM1.5 and LDM2.1.125

LDMXL-Turbo obtains the samples of highest realism. However, we observe that the realism gain126

compared to LDM2.1 is rather small and leads to a steep decrease in sample diversity. We attribute127

this drop to the adversarial objective used to distill LDMXL-Turbo from LDMXL, as also noted by128

Sauer et al. (2023). Interestingly, LDMXL does not appear on the Pareto front, and it is even quite far129

away from it. This is probably due to LDMXL (without refiner) generating smooth images lacking130

of high frequency details (e.g., see the dog in Fig. 2 and (Podell et al., 2023)), and the marginal131

metrics, which are computed with InceptionV3 features, are sensitive to those frequencies (Geirhos132

et al., 2018). Instead, by looking at the conditional metrics in Fig. 1 (middle), which are based on133

DreamSim that extract more sematical features (Fu et al., 2023), we observe that LDMXL belongs to134

the Pareto front together with LDM1.5, LDM2.1. In particular, LDMXL achieves the best conditional135

realism, obtained at the expense of conditional diversity. Here, we remark that LDMXL-Turbo only gets136

comparable (slightly lower) realism but considerably lower diversity. This difference is evident by137

looking at C (LDMXL) vs. D (LDMXL-Turbo) in Fig. 2. When comparing Pareto optimal points of138

LDM1.5 and LDM2.1, we note that LDM1.5 reaches slightly better conditional realism than LDM2.1.139

Consistency-realism. In Fig. 1 (right, top and bottom) we observe that realism and consistency140

show relatively strong positive correlation as improvement in one metric oftentimes leads to an141

improvement in the other metric, with the correlation being stronger for the conditional metrics than142

for the marginal ones. We observe that the Pareto front is dominated by LDMXL and LDMXL-Turbo143

model, highlighting how the advancement of T2I generative models have favored consistency-realism144

over the diversity objective. Indeed, we can also notice that in the distribution of non-Pareto-optimal145

points, LDM2.1 seems better than LDM1.5, matching the historical development of these models.146

Conclusions
• Progress in T2I models has been driven by improvements in realism and/or consistency. State-of-

the art T2I models improve consistency and/or realism by sacrificing representation diversity. Yet,
improvements in realism are correlated with improvements in consistency.

• More recent models should be used when the downstream task requires samples with high realism
– LDMXL-Turbo– and consistency – LDMXL–. However, older models – LDM1.5 and LDM2.1– are
preferable for tasks that require good representation diversity.

• Both marginal and conditional metrics display correlated Pareto fronts.
• There is no best model and the choice of model should be determined by the downstream application.

147
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A Related work334

The evaluation of recent state-of-the-art image generative models is often carried with human studies335

focusing on human preference (Ku et al., 2024; Dong et al., 2024; Kirstain et al., 2023; Otani et al.,336

2023; Zhou et al., 2019), where human annotators are asked to choose among images generated337

with different models. They are usually asked to select either the image they like the most or the338

image that is more aligned with the prompt used to generate it. However, due to the high cost of339

human annotations, works like Xu et al. (2024) use the collected human preferences to train a model340

to predicts them, in order to compute these metrics at lower cost. While the outcome of all these341

studies is useful to detect the most appealing generations, it provides only limited signal when the342

objective is to evaluate image generative models as world models, where several aspects need to343

be evaluated simultaneously. To this end, other works have focused on extending the evaluation to344

different aspects of the generation like fine-grained prompt-image alignment (e.g., object counting345

and color consistency) (Ghosh et al., 2024; Hinz et al., 2020), compositionality (Li et al., 2024;346

Huang et al., 2023; Zhu et al., 2023; Park et al., 2021) and reasoning (Cho et al., 2023). Finally,347

HEIM (Lee et al., 2024) and HRS (Bakr et al., 2023) recently proposed to holistically evaluate348

T2I models, addressing up to 13 aspects including robustness, generalization, bias, fairness, and349

others, in addition to prompt-image alignment and image quality. However, some crucial aspects350

such as sample diversity are not investigated in these works, and more importantly, the several351

aspects analyzed are not combined together to understand the trade-offs and the multi-objective352

optimization of world models. In this regard, Yang et al. (2024); Rame et al. (2024) have investigated353

the multi-objective optimization in the context of finetuning foundation models including multimodal354

models and T2I models. In particular, these studies use Pareto fronts of multiple objectives as rewards355

to be directly optimized via reinforcement learning. However, none of these works considers the356

consistency-diversity-realism multi-objectives for conditional generative models as we do.357

B Limitations358

Our analysis only considers open models as evaluating closed models is very expensive or sometimes359

not possible. It would be interesting placing the dots of closed state-of-the-art models within the360

multi-objective pareto front. Moreover, it would be interesting to extend the analysis to ablate further361

knobs. For example, we have not included the knob of structured conditioning, like layouts, sketches362

or other form of control typically used to increase consistency. Another aspect that our analysis does363

not ablate is the effect of different data distribution on the consistency-diversity-realism pareto fronts364

–this aspect is currenty very hard to study due to the closed data filtering recipes of most models.365

Furthermore, for certain evaluated knobs like the retrieval augmented generation, the analysis could366

be deepen by considering for example the effect of different retrieval databases or stronger/more367

recent models than RDM—unfortunately, there is a scarcity of open models using RAG. Finally, our368

work suggests future research to understand whether the observed tradeoffs are fundamental, or could369

be overcome by future generations of better generative models.370

C Additional results371

C.1 Pareto fronts for geographic disparities in T2I models372

We extend the use of consistency-diversity-realism Pareto fronts to characterize potential geographic373

disparities of state-of-the-art conditional image generative models. In particular, we follow Hall et al.374

(2024) and investigate geographic disparities of T2I models using the GeoDE dataset (Ramaswamy375

et al., 2024).376

Consistency-diversity. Fig. 3 (left) depicts the region-wise consistency-diversity Pareto fronts.377

We observe that Europe, the Americas, and Southeast Asia exhibit the best Pareto fronts, with378

consistently higher diversity and consistency than Africa and West Asia. As previously noted,379

improving diversity (computed as marginal or conditional) comes at the expense of consistency.380

When considering marginal metrics (top), we observe that Europe and the Americas present the381

best Pareto fronts. Remarkably, LDM1.5 appears in all region-wise Pareto fronts, whereas LDM2.1382

appears remarkably less frequently, and does not appear at all in the Pareto front of Europe. This383

is in line with prior works that demonstrate that recent advancements on standard benchmarks may384
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Figure 3: Consistency-diversity (left), realism-diversity (middle) and consistency-realism (right)
Pareto fronts for T2I models on the GeoDE dataset. Consistency measures only the presence of the
object in the image. Each models’ configuration differ solely for guidance scale value.
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Figure 4: GeoDE qualitative. Left: A chair in {region}. Right: A car in {region}

have come at the cost of reduced real world geographic representations (Hall et al., 2024). However,385

we positively discover that disparity reduction occurs via LDMXL which appears in the Pareto fronts386

of Africa, West Asia and South East Asia, bringing the results of Africa closer to those of Europe or387

the Americas. Yet, LDMXL-Turbo only appears in the Pareto fronts of some regions, and presents the388

highest consistency. We observe that the improvements achieved by LDMXL for Africa are notably389

reduced when distilling the model into LDMXL-Turbo. When considering conditional metrics (bottom),390

we see that all T2I models appear in the Pareto fronts. Once again, LDM1.5 shows the highest391

diversity and LDMXL-Turbo the highest consistency. As in the previous case, LDMXL only appears392

in the Pareto fronts of West Asia, Africa, and South East Asia, and bridges the consistency and393

diversity performance gap between Africa and both Europe and the Americas. Yet, the improvements394

observed in LDMXL for Africa disappear when considering LDMXL-Turbo.395

Realism-diversity. Fig. 3 (middle) depicts the region-wise realism-diversity Pareto fronts. In the396

top panel (precision vs. recall), we observe that, similarly to MSCOCO2014 (Fig. 1), realism and397

diversity performance of T2I models present a clear tradeoff. Focusing on the regions, we see that398

the Pareto fronts of West Asia and Africa are visibly worse than the others. In terms of models,399

LDM1.5 is the model that generally dominates the Pareto fronts of all regions. Moving to conditional400

metrics (bottom), we notice similar trends. However, LDMXL appears in the highest realism part401

of the Pareto front of Africa, and LDMXL-Turbo appears in the highest realism part of the Pareto fronts402
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of Europe and Southeast Asia. By looking at the inter-region disparities along different areas of403

the Pareto fronts, we notice a gradual increase of the inter-region variance when moving from high404

diversity (low realism) to high realism (low diversity). This result suggest that maximizing realism405

might exacerbate stereotypes – as suggested by the lower diversity – and increase geographical406

disparities – as suggested by the increased variance across region-wise Pareto fronts. We provide407

a visual validation of this phenomenon in Fig. 4 (See ???? in ?? for more examples).408

Consistency-realism. Fig. 3 (right) depics the region-wise consistency-realism Pareto fronts. As409

shown in the figure, consistency and realism correlate as previously noticed on MSCOCO2014. The410

region-wise stratification shows that West Asia and Africa are again the regions with the worst Pareto411

fronts. The regions that exhibit the best Pareto fronts are East Asia, Southeast Asia, and Europe.412

Focusing on the top plot (marginal metrics), the Pareto fronts of all regions except the Americas413

contain LDM1.5 and LDMXL-Turbo. Note that LDM1.5 consistently stands out in terms of realism,414

whereas LDMXL-Turbo shines in consistency. LDM2.1 and LDMXL are only present in the Pareto415

of the Americas and Africa, respectively. In the bottom plot (conditional metrics), the situation416

is very similar, but we notice that for Europe and Southeast Asia the Pareto is only composed by417

LDMXL-Turbo.418

Key insights
• Improving generation diversity comes at the expense of consistency for all regions considered. Realism

and diversity also present a clear tradeoff for all regions, whereas realism and consistency appear
correlated.

• Interestingly, the oldest model, LDM1.5 dominates the most recent ones, and consistently appears in
the Pareto fronts of all regions, when considering any pair-wise objective. However, LDMXL reduces
the disparities between Africa and Europe or the Americas in terms of diversity and consistency, as we
move towards the high consistency part of the Pareto fronts.

• Advances in T2I models reduce region-wise disparities in terms of consistency and increase the
disparities in terms of realism, while sacrificing diversity across all regions.

419

C.2 The impact of knobs on consistency-diversity-realism420

Finally, in this section, we study the effect of different knobs that control consistency, diversity and421

realism of conditional image generative models. In the interest of space, we focus on the conditional422

metrics, and perform the analysis on MSCOCO2014.423
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Figure 5: Ablation on guidance scale. To help readability, we report only a subset of the points
presented in Fig. 1 and ??, selecting runs with default values for other knobs.
Guidance scale. Fig. 5 depicts the effect of guidance scale on consistency-diversity (left panel),424

realism-diversity (middle panel), and consistency-realism (right panel) objectives. By looking at425

the consistency-diversity plot, we observe that increasing the guidance scale leads to improved426

consistency at the expense of the diversity in most cases 2, with LDMXL showing the highest relative427

improvements. Moreover, for all models we notice that the initial increase in the guidance scale –428

2
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Figure 6: Ablation on top-m filtering.

from 1.01 to 3.0 – leads to the biggest consistency improvements. By looking at the realism-diversity429

plot, we note that the increase in the guidance scale often leads to increase in realism at the430

expense of diversity, with LDM2.1-UnCLIP and PerCo benefiting the most and the least from this431

knob, respectively. Moreover, we note that, in most cases, increasing the guidance scales beyond432

7.5 no longer results in realism improvements. Finally, the consistency-realism plot reveals that433

by increasing the guidance scale the models generally improve both the consistency and realism.434

However, too large values of guidance may lead to decreasing the image realism; this happens for435

all models except of LDM2.1-UnCLIP and LDMXL.436

Post-hoc filtering. Fig. 6 depicts the effect of applying top-m filtering. In the consistency-diversity437

plot (left), we observe that top-m filtering (based on CLIPScore) leads to improvements in consistency438

for all models – the lower the value of m, the higher the consistency. Unsurprisingly, the models that439

initially have high consistency scores do not gain as much when leveraging top-m filtering as the mod-440

els that start with low consistency scores. Moreover, we observe that the post-hoc filtering consistently441

leads to a diversity decrease. However, this decrease is less pronounced for the top-m filtering than442

for the guidance knob, as is the case for the consistency increase (cf . Fig. 5). The diversity-realism443

plot (middle) shows that post-hoc image filtering leads to an increase in the realism at the expense444

of diversity. By looking at the realism-consistency plot (right), we note that the post-hoc filtering is445

an effective way to increase both image realism and consistency, with the latter one improving faster.446
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Figure 7: The effect of the neighborhood size on diversity, consistency and realism metrics. To
improve readability we report a zoomed-in view in the top right of each plot.
Retrieval augmentation neighborhood size. The amount of neighbors used in retrieval augmenta-447

tion may impact consistency, diversity, realism based on the semantic of the neighbors. In Fig. 7, we448

study the impact of the neighborhood size k for RDM. We notice that, in absolute terms, the impact449

of k is minor in all the pairs of metrics considered, suggesting that this knob is not as effective as450

the previous ones. In the consistency-diversity plot (left), we observe that increasing k from 4 to 20451

leads to a small but consistent increase in diversity, while maintaining consistency. However, when452

increasing k from 1 to 4, we generally see a small improvement in consistency. This result is expected453
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Figure 8: The effect of the compression rate on diversity, consistency and realism metrics.

as by increasing the neighborhood size we might include more diverse neighbors, and as long as454

those neighbors are semantically similar to the query image, they will not affect the consistency455

of the generation. In the realism-diversity plot (middle), we observe similar trends: increasing k from456

4 to 20 results in small diversity improvements with little to no effect on realism, while increasing457

k from 1 to 4 results in small realism improvements. Interestingly, RDM prompted with text achieves458

lower realism than the others models. Moreover, increasing k when the query image is present459

together with the neighbors, slightly harms the realism. Finally, in the consistency-realism plot460

(right), we note a positive correlation between the two metrics when text query or no query is used.461

Compression rate. The reconstructions produced by an image compression model are highly depen-462

dent on the selected compression rate, measured in terms of bit-per-pixel (bbp) of the compressed463

image, where high compression rate means low bpp. In Fig. 8 we assess PerCo with different bitrates464

and at different guidance scales. By looking at the left panel, we observe that decreasing the bitrate465

leads to notable increases in conditional diversity, which is inline with qualitative observations made466

by Careil et al. (2024). Moreover, these diversity increases only marginally reduce consistency,467

especially for guidance scales > 3, suggesting that even at high compression rates, the reconstructed468

images maintain their semantics. By contrast, in realism-diversity (middle), higher compression leads469

to a pronounced loss in realism, suggesting that the reconstructed images do not necessarily capture470

all the details from the original images. Finally, the results presented for consistency-realism (right)471

suggest, once again, that consistency and realism are correlated.472

Key insights
• Guidance scale trades diversity for consistency and realism. Consistency and realism improve with

higher guidance scale, but realism improvements saturate earlier than consistency improvements.

• Post-hoc filtering improves consistency and realism at the expense of diversity. Although both
consistency and realism improve with this knob, consistency increases at a faster pace. Overall,
post-hoc filtering appears less effective than guidance scale.

• The effect of retrieval augmentation on consistency-diversity-realism appears minor, questioning the
knobs efficacy to control the multi-objective.

• Compression rate affects image realism and diversity, but has little effect on consistency, as compression
models tend to maintain the image semantics.

473

D Analysis details474

D.1 Evaluation metrics475

Consistency, C. Prompt-generation consistency is measured either with distance or similarity-based476

scores – e.g., CLIPScore (Hessel et al., 2021), LPIPS score (Zhang et al., 2018) and DreamSim477

score (Fu et al., 2023) – or with visual question answering (VQA) approaches – e.g., TIFA (Hu et al.,478

2023), VQAScore (Lin et al., 2024), and DSG (Cho et al., 2024) metrics –. In our analysis, we opt to479

use VQA approaches as they are reported to be more calibrated and interpretable than the distance and480

similarity-based scores (Cho et al., 2024). Concretely, we measure the prompt-generation consistency481

with DSG. DSG relies on questions Q generated from the prompt p and their corresponding answers482
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A. Per-prompt consistency, Cp, is defined as:483

Cp =
1

N

N∑
j=1

1

Qj

Qj∑
i=1

1

(
VQA(Yj ,Qi),Ai

)
, (1)

where N represents the number of images generated per conditioning prompt, Qj represents484

the number of question per j-th image, and 1 represents the indicator function. The consistency485

over a set of prompts may be aggregated into a global consistency score, C, by averaging all the486

conditioning-wise DSG scores, Cp.487

Conditional diversity, DC . We measure per-prompt conditional diversity as follows:488

Dp
C =

1

N2 −N

∑
j ̸=i

S(fϕ(Yj), fϕ(Yi)), (2)

where S is a similarity or distance function, and fϕ is an image feature extractor. In our analysis,489

we use cosine similarity and the DreamSim (Fu et al., 2023) feature extractor. DreamSim leverages490

an ensemble of modern vision encoders, including DINO (Caron et al., 2021) and two independently491

trained CLIP encoders, and is reported to correlate well with human perception. The conditional492

diversity over a set of prompts may be aggregated into a global score, DC , by averaging all the493

conditioning-wise scores, Dp
C .494

Conditional realism, RC . We measure per-prompt conditional realism as follows:495

Rp
C =

1

N

N∑
j=1

max
i

(S(fϕ(Xi), fϕ(Yj))), i ∈ {1, . . . , N ′}, (3)

where X ∈ RN ′×H×W×3 represents a tensor of N ′ real images. Note that both X and Y represent496

generations and real images of the same prompt p, respectively. Similarly to conditional diversity,497

we implement S as cosine similarity and use DreamSim as feature extractor. The conditional498

realism over a set of prompts may be aggregated into a global score, RC , by averaging all the499

conditioning-wise scores Rp
C .500

Marginal diversity, DM . Commonly used metrics of marginal diversity, such as recall (Sajjadi et al.,501

2018; Kynkäänniemi et al., 2019) or coverage (Naeem et al., 2020), compare real and generated502

image distributions by leveraging a reference dataset of real images to ground the notion of diversity.503

Marginal diversity may also be measured with metrics which do not rely on a reference dataset,504

such as the Vendi Score (Friedman & Dieng, 2023). In our analysis, we use recall (Sajjadi et al.,505

2018; Kynkäänniemi et al., 2019) to compute marginal diversity given its ubiquitous use in the506

literature. Recall measures marginal diversity as the probability that a random real image falls within507

the support of the generated image distribution.508

Marginal realism, RM . The most commonly used metric to estimate image realism is the Fréchet509

Inception Distance (FID) (Heusel et al., 2017). FID relies on a pre-trained image encoder (usually,510

the Inception-v3 model trained on ImageNet-1k (Szegedy et al., 2015)) that embeds both generated511

and real images from a reference dataset. The metric estimates the distance between distributions512

of features of real images and features of generated images, relying on a Gaussian distribution513

assumption. The FID summarizes image realism and diversity into a single scalar. In our analysis,514

to disentangle both axes of evaluation, we use precision (Kynkäänniemi et al., 2019; Naeem et al.,515

2020) as marginal realism metric. Precision measures marginal realism as the probability that a516

random generated image falls within the support of the real image distribution.517

D.2 Consistency-diversity-realism knobs518

Guidance scale. To control the strength of the conditioning, a guidance scale (g-scale) hyper-519

parameter can be used to bias the sampling of diffusion models like DDPM (Ho et al., 2020), see520

e.g., classifier (Dhariwal & Nichol, 2021) or classifier-free guidance (CFG) (Ho & Salimans, 2021).521

More precisely, rewriting ?? for diffusion models trained with CFG, we obtain:522

Y = λgθ(Z,p) + (1− λ)gθ(Z, ∅), (4)
where λ is the guidance scale, ∅ is an empty conditioning prompt, and the first and second terms523

indicate conditional and unconditional samplings, respectively. Importantly, λ can be arbitrarily524

increased (> 1) in order to steer the model to generate samples more aligned with the conditioning p.525
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Post-hoc filtering. To improve the generated images, e.g. in terms of realism or consistency, or to526

avoid certain undesirable generations, a set of images generated for the same prompt may be filtered527

to retain the top-m images based on a predefined criterion, which can be either based on human528

preferences or automatic metrics. Considering the latter case, a common choice of metric is the529

CLIPScore, resulting in:530

Y = top

(
m, S(p, fϕ(Yj))

)
, (5)

where decreasing m ensures higher consistency.531

D.3 Implementation details.532

We adopt the Diffusers library for the LDM models (von Platen et al., 2022) and the official models’533

repos for RDM and PerCo. We set the number of inference steps to 50 (20 for PerCo as suggested in534

their paper) using deterministic sampling strategies, DPM++ (Lu et al., 2022) for Diffusers models535

and DDIM (Song et al., 2020) for others. For the conditional metrics on MSCOCO, we sample 10536

images per prompt, using the 5,000 image-caption pairs of the 2017 validation split, while for the537

marginal metrics we sample 1 image per conditioning, using 30,000 randomly selected data points538

from the validation set of 2014. Note that, as MSCOCO contains multiples captions for each image,539

we fix the first caption as prompt for generations. For GeoDE, we sample 180 images for each of540

the {object} in {region} prompts for both conditional and marginal metrics. We disaggregate541

metrics by groups, per Hall et al. (2024), to measure disparities between geographic regions. For met-542

rics based on DreamSim we use the ensemble backbone as recommended from the official repository.543

For marginal metrics we use the implementation of prdc. For DSG, we leverage GPT-3.5-turbo to544

generate questions from the prompts, and InstructBLIP (Dai et al., 2024) to make the predictions.545

When performing top-m filtering based on CLIPScore, we use CLIP-ViT-H-14-s32B-b79K from546

Hugging Face. Finally, we ablate different values for each knob as reported in Tab. 1.547

Table 1: Knob values ablated per model.
Knob values

g-scale [1.01, 3.0, 5.0, 7.5, 10.0, 12.5];

top-m filtering [10, 20, 50, 100]%
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