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ABSTRACT

Distributed training of deep learning is widely conducted with large neural net-
works and large datasets. Besides asynchronous stochastic gradient descent (SGD),
synchronous SGD is a reasonable alternative with better convergence guaran-
tees. However, synchronous SGD suffers from stragglers. To make things worse,
although there are some strategies dealing with slow workers, the issue of slow
servers is commonly ignored. In this paper, we propose a new parameter server (PS)
framework dealing with not only slow workers, but also slow servers by weakening
the synchronization criterion. The empirical results show good performance when
there are stragglers.

1 INTRODUCTION

Speed is crucial for training deep neural networks. Deep learning is now widely used in computer
vision (Zeiler & Fergus, 2014; Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et al., 2016),
speech (Hinton et al., 2012a; Xiong et al., 2017), and natural language processing (Collobert et al.,
2011; Wu et al., 2016). It benefits mainly from the complex representations, which require large
neural networks and large datasets. While larger network architectures and larger datasets improve
accuracy, they also require longer training times, which borders many researchers and developers.
Hence, distributed training is a potential solution to improve the rate of updates.

Currently, mini-batch Stochastic Gradient Descent (SGD) and its variants are popular choices for
training deep neural networks. For distributed training, it is common to use the Parameter Server (PS)
architecture. It is composed of the server nodes and the worker nodes. The server nodes maintain a
global copy of the parameters, receive the updates from the workers, apply the updates to the model,
and broadcast the latest parameters to the workers. The worker nodes pull the latest parameters
from the server nodes, perform the computation of the updates according to the local portion of the
training data, and push the updates to the server nodes. The entire set of parameters is distributed
to multiple server nodes. The full dataset and the corresponding workload is distributed to multiple
worker nodes.

As shown in Figure 1, the updating mechanism of PS repeats the following 4 steps: (1). Workers pull
the parameters from servers→ (2). Workers compute the gradients→ (3). Workers push the gradients
to servers→ (4). Servers aggregate the gradients and update the parameters. The updates can be
synchronous or asynchronous. Synchronous training requires the aggregation of the gradients from
all the workers before the updates are applied to the parameters in each iteration, while asynchronous
training applies the updates whenever they are received by the server nodes. Note the Figure 1 also
illustrates the architecture of communication between server nodes and worker nodes, which is a
fully connected bipartite graph.

Typically, asynchronous SGD is more popular among practitioners because of faster and immediate
updates. Without waiting for all the updates pushed by the workers, delays can be reduced. However,
the asynchrony also brings more noise and higher variance to the updates (Liu et al., 2015), which
can result in slow convergence or convergence to poor solutions.

Synchronous SGD can have faster and more stable convergence, but it suffers from waiting for
synchronization. Servers must wait for all the workers to push their updates. Similarly, workers must
wait for all the servers to send back the latest version of the parameters. To make things worse, the
waiting time for synchronization increases when the number of nodes increases.
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Figure 1: Parameter server architecture.

However, most of the previous research focuses on the issue of slow workers, while the servers can
also be the stragglers. The communication between servers and workers in Figure 1 is mutual. The
workers need servers’ responses to continue the gradient computation. The servers can be slow due
to networking issues such as unpredictable message delay, heterogeneous computational ability or
memory capacity. A typical scenario which causes slow servers is that sometimes the server nodes
and the worker nodes can be placed on the same machine, where the workers occupy most of the
computational resources. Approaches like Stale Synchronous Parallel (SSP) (Dai et al., 2013; Ho
et al., 2013; Li et al., 2014a;b) can be used to accelerate synchronous training. By upper-bounding
the staleness between any two workers, the synchronization is weakened. As long as the bounded
staleness criterion is satisfied, the servers can apply the updates whenever they are received by the
server nodes. Waiting only happens when the bounded staleness criterion is not satisfied. Using
backup workers (Pan et al., 2017) can also accelerate synchronous training.

In this paper, we propose a new PS framework, which deals with not only slow workers, but also
slow servers by weakening the synchronization criterion. Any agent, regardless server or worker, can
continue its own task even if the global pushing / pulling (i.e. steps 1 and 3 in Figure 1) in the current
global iteration are not yet complete.

The main contributions of this paper are listed as follows:

• New PS framework. From the systems view, we implement a new PS framework that is tolerant
to both slow workers and slow servers.

• Partial synchronization in distributed training of deep neural networks. The empirical results
show that the proposed PS framework can accelerate the distributed training of deep neural networks
with low validation errors.

• Communication-efficiency. The servers and workers can proactively choose not to send some of
the messages to reduce communication overhead.

• Illustration of the slow server effect. We illustrate how the slow servers could influence the
training speed, which has received scant attention in previous research.

2 SYNCHRONOUS SGD

The learning problem in this paper is minimizing the the loss function L(w) defined as follows:

L(w) =
1

|X |
∑
x∈X

l(x,w), (1)

where X is the dataset, x ∈ X is a data sample, l(x,w) is the loss value computed by the data sample
x and the parameter (model) w.
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In this paper, we use synchronous SGD as the basic algorithm to minimize the loss function (1),
which can be formally described by the following update procedure:

∇l̃(wt) =
1

|B|
∑
x∈B
∇l(x,wt), (2)

wt+1 = wt − ηtUpdater(∇l̃(wt)), (3)

where t is the index of iteration, B is the minibatch, ∇l̃(wt) is the aggregated gradient, ηt is
the learning rate, Updater(·) is the updater function which is used to compute the update of the
parameters. The updater function can be any variant of gradient descent, such as momentum
SGD (Qian, 1999), Nesterov accelerated SGD (Nesterov, 1983), Adam (Kingma & Ba, 2014),
AdaGrad (Duchi et al., 2011), or RMSProp (Hinton et al., 2012b).

2.1 DISTRIBUTED SYNCHRONOUS SGD

The computation of the gradients in (2) can be distributed to multiple workers and then aggregated by
the servers. To be more specific, (2) can be rewritten as

∇l̃(wt) =
1

|B|

k∑
j=1

∑
x∈Bj

∇l(x,wt) =
1

kn

k∑
j=1

∑
x∈Bj

∇l(x,wt),

where j is the index of worker, k is the total number of workers, Bj is the minibatch on the jth
worker, and

∑
j |Bj | = |B|. We further assume that the minibatches of different workers all have the

same size n = |Bj | for ∀j ∈ [k].

Note that although from the point of view of each individual worker, the size of minibatch is n, for
synchronous SGD, the actual size of the minibatch is kn.

In the distributed scenario, there could be multiple server nodes. Each server is responsible for storing
and updating a portion (several blocks) of the entire set of parameters. Formally, the blockwise
aggregation and updating is

∇l̃i(wt) =
1

|B|

k∑
j=1

∑
x∈Bj

∇li(x,wt) =
1

kn

k∑
j=1

∑
x∈Bj

∇li(x,wt), (4)

wt+1
i = wt

i − ηtUpdater(∇l̃i(wt)), (5)

where l̃i(wt), li(x,wt), and wt
i are the ith blocks of l̃(wt), l(x,wt), and wt.

For the basic synchronous SGD, the update (3) must wait until the aggregation (2) is finished. Thus,
with larger |B|, more gradients must be computed, which requires more time for each iteration.
Although the distributed training can accelerate the computation of gradients, the communication and
synchronization are often a bottleneck in practice. In some cases, distributed training can even be
slower than single-node SGD. To deal with such issue, following two techniques are utilized.

2.2 LARGE MINIBATCH SGD

Goyal et al. (2017) empirically shows that distributed synchronous SGD can be accelerated by tuning
the learning rate. To be more specific, fixing the original learning rate, when the size of minibatch
is multiplied by k, the learning rate is also multiplied by k. Bottou et al. (2017) also theoretically
discuss such linear scaling rule.

2.3 PARTIAL PUSHING

To deal with the issue of slow workers, Pan et al. (2017) introduced “backup workers” to the PS
framework. In this paper, we call it “partial pushing” or “partial aggregation” because the server only
waits for the first m ≤ k workers’ before updating. All other delayed workers are simply ignored.
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Integrated with blockwise aggregation on multiple servers, the partial pushing can be defined as

∇l̃ti(wt) =
1

|At|n
∑
j∈At

∑
x∈Bj

∇li(x,wt), (6)

wt+1
i = wt

i − ηtUpdater(∇l̃ti(wt)), (7)

where At is the set of the indexes of the first m responding workers in the tth iteration.

3 PROPOSED METHOD

As shown in Figure 1, before computing the gradient, each worker must finish the pulling, which
requires receiving parameters from all the servers. When there are stragglers in the server group, all
the other servers and workers will have to wait for the stragglers before starting the next iteration.

Algorithm 1 Partially Synchronous Parallelism SGD (PSP-SGD)
Server i = 1, 2, . . .:
1: Initialize w0

i , set t← 0
2: for t = 0, 1, 2, . . . do
3: Broadcast parameters with timestamp 〈wt

i , t〉 to all the workers
4: g ← 0, d← 0
5: repeat
6: Receive gradient block with timestamp 〈g′i, t′〉
7: if t′ < t then
8: Drop g′i
9: else

10: gi ← gi + g′i, d← d+ 1
11: end if
12: until Timeout τ1 after c gradients have been received or all workers have responded
13: wt+1

i ← wt
i − dηtUpdater( 1dgi)

14: t← t+ 1
15: end for
Worker i = 1, 2, . . .:
1: t← 0
2: for t = 0, 1, 2, . . . do
3: if t > 0 then
4: wt ← wt−1

5: else
6: wt ← 0
7: end if
8: repeat
9: Receive the jth block and timestamp 〈wt′

j , t
′〉

10: if t′ < t then
11: Drop wt′

j
12: else
13: wt

j ← wt′

j
14: end if
15: until Timeout τ2 after b% blocks have been received or all servers have responded
16: Compute the gradient g with wt

17: Push each block with timestamp 〈gj , t〉 to its corresponding server
18: t← t+ 1
19: end for

To deal with the issue of slow servers, we introduce partial pulling: in each iteration, a worker only
waits for the first b blocks rather than all the blocks of the parameters to arrive before computing
the gradients. Similar to partial pushing, partial pulling also weakens the synchronization, which
helps alleviate straggler effects. This is integrated with the partial pulling and learning rate tuning
techniques introduced in Section 2. Furthermore, to make the algorithm more practical, we add a
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timeout mechanism to both partial pushing and partial pulling. Combining all of these ideas results
in a new algorithm which we call Partially Synchronous Parallelism SGD (PSP-SGD). The details
are shown in Algorithm 1, where c is the minimum number of aggregated pushes, b is the minimum
number of successful pulls, wi is the ith block of the parameter w, gi is the ith block of the gradient,
t is the timestamp, d is the number of aggregated gradients, τ1 is the timeout threshold of partial
pushing, and τ2 is the timeout threshold of partial pulling.

We summarize the techniques we use to accelerate synchronous SGD here:

• Linear scaling rule. In the server part of Algorithm 1, Line 13 uses the linear scaling rule
introduced in Section 2.2 to tune the learning rate according to the number of aggregated gradients
d.

• Partial pushing. In the server part of Algorithm 1, Line 7-12 uses the partial pushing introduced
in Section 2.3. For each block of parameters, for the workers, at least c gradients are guaranteed to
be aggregated. After the minimum synchronization criterion are satisfied, the servers will wait up
to τ1 of time before continuing to the next step.

• Partial pulling. In the worker part of Algorithm 1, Line 10-15 uses the partial pulling. For the
workers, at least b% of the blocks are guaranteed to be pulled. After the minimum synchronization
criterion are satisfied, the agents will wait up to τ1 or τ2 of time before continuing to the next step.

4 EXPERIMENTS

Figure 2: The PDF of message delay.

4.1 CLUSTER CONFIGURATION

In the distributed experiments, we use a cluster of 32 machines. Each machine has 4× 68-core Intel
Xeon Phi CPUs and 192GB RAM. The machines are connected with 1 Gbps Ethernet. All of the
machines are used for placing both the server nodes and the worker nodes. We evenly distribute the
servers and the workers to the other 32 machines.

Table 1: Numerical results with simulated delays, c is the threshold of partial pushing, b is the
threshold of partial pulling

Partial pushing with c equals to 32 28 28 20
Partial pulling with b equals to 100% 100% 90% 75%

Running time 199.97 164.97 139.95 136.54
Top-1 validation error 0.1479 0.1609 0.1565 0.2914

4.2 EXPERIMENT CONFIGURATION

We conduct experiments on the ResNet-50 (He et al., 2016) model trained on CIFAR-10 (Krizhevsky
& Hinton, 2009) dataset. Our implementation is based on MXNET (Chen et al., 2015). We run
90 epochs for each experiment. The learning rate is set as 0.02 × dn

128 , where d is the number of
responding workers, n is the minibatch size of a single worker. The learning rate will decrease by a
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Figure 3: Top-1 validation error on CIFAR-10. With appropriate hyperparameters, using partial
pushing and partial pulling, the algorithms can still have low validation error and converge faster at
the same time

factor of 0.1 at the 30th and 60th epochs. We also use a weight decay of 0.0001 and momentum of
0.9. We use top-1 validation error to measure the performance.

We use the naive synchronous SGD and partial pushing as the baselines. For each experiment, we
launch 32 servers and 32 workers. The size of minibatch for each worker is n = 160. Thus, the
actual size of minibatch for each iteration is 160 × 32 = 5120. The naive synchronous SGD is
denoted as Sync. For synchronous SGD with partial pushing, the threshold c is set as 28, which
means the servers only need to wait 28 instead of 32 workers to respond. This setting is denoted
as Sync+push:28. For the proposed method, which is synchronous SGD with partial pushing and
partial pulling, we test 2 different settings: (i). the servers wait for the first c = 28 pushing and the
workers wait for the first b = 90% pulling, which is denoted as Sync+push:28+pull:0.9; (ii). the
servers wait for the first c = 20 pushing and the workers wait for the first b = 75% pulling, which is
denoted as Sync+push:20+pull:0.75. We run each experiment 3 times and take the average. Note
that in these experiments, we do not use the timeout mechanism, which means we set τ1 = 0 and
τ2 = 0 in Algorithm 1.

Besides the normal scenario, we also test the proposed algorithm with simulated message delay to
show the efficiency. The general idea of the simulation is that the delays are rare but large. We
randomly pick 0.16% of the responses of pulling to have extra delays of 4 seconds, which makes
some servers stragglers.

In Figure 2, we plot the probability density function (PDF) of the the delays of pulling in the normal
scenario and the scenario with simulated extra delays. The delay is measured by the duration between
the times when the pulling request is sent and the time when the response arrives.
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4.3 EMPIRICAL RESULTS

In Figure 3, we illustrate the performance of our algorithm in the normal scenario without simulated
delays. We can see that with appropriate hyperparameters, using partial pushing and partial pulling,
the algorithms can still have low validation error and converge faster at the same time.

In Figure 4, we illustrate the performance of our algorithm with simulated delays. We observe that
with appropriate hyperparameters, with partial pushing and partial pulling, the algorithms can remain
as effective as when there is no extra delay at all as expected, which reduces the training time. In
Table 1, we list the numerical results of the experiments. It is shown that with partial pushing only, the
training time can be reduced by nearly 17% compared to the naive synchronous SGD. Furthermore,
by using both partial pushing and partial pulling with appropriate hyperparameters (i.e. c = 28,
b = 90%), the training time can be reduced by nearly 30%, with the validation error remaining low.
However, when we set c and b to be too small, the algorithm may end up with a poor solution with
relatively high validation error.

We conclude that the proposed method can efficiently deal with the slow servers with appropriate
choice of hyperparameters c and b. When there are no severely slow servers, our algorithm performs
as good as the baseline. When there are slow servers, our algorithm can train the model much faster
than the baseline with almost the same validation accuracy.
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Figure 4: Top-1 validation error on CIFAR-10 with Simulated Delay. Compared to the naive
synchronous SGD, training time can be reduced by nearly 17% using partial pushing, and reduced by
nearly 30% using partial pushing and partial pulling.
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4.4 DISCUSSION

The experiments show the efficiency of the proposed algorithm. The partial pulling can deal with
slow servers, accelerate the training , while leaving the validation accuracy unharmed. It is shown
that the synchronous SGD can be be very slow when a very small portion of messages are delayed. In
our simulation, the naive synchronous SGD is prolonged by nearly 30%. Actually, with appropriate
value of c and b, the training time can be almost the same as the case with is no delayed messages at
all, while also leaving the validation accuracy unharmed. However, users should be careful when
using small c and b, which will incur additional noise to the updates and may result in poor solutions.
Note that we do not use the timeout mechanism in the experiments to make the illustrations clearer.
Using timeout, with larger τ1 and τ2, the performance will be closer to naive synchronous SGD.

5 RELATED WORK

Stale Synchronous Parallelism The PS frameworks with SSP such as Parameter Server Li et al.
(2014b;a) and Petuum Dai et al. (2013); Ho et al. (2013) focus on solving the issues of slow
workers. Such idea is orthogonal to this paper. As SSP can be view as another way to weaken the
synchronization for the pushing, it can be potentially combined into our algorithm by replacing the
partial pushing with SSP. The efficiency of such combination requires future research.

Asynchronous SGD Asynchronous SGD is an widely-used alternative to synchronous SGD, whose
synchronization criterion is fully relaxed. There are many variants of asynchronous SGD, such as
Nesterov accelerated asynchronous SGD with variance reduction (Meng et al., 2016), and asyn-
chronous SGD with delay compensation (Zheng et al., 2017). Although SSP and synchronous SGD
have better theoretical results compared to asynchronous SGD, it is still unclear that which one is
better in practice.

6 CONCLUSION

In this paper, we study the issue of slow servers for synchronous SGD. We propose a new parameter
server (PS) framework dealing with not only slow workers, but also slow servers by weakening the
synchronization criterion. The empirical results show good performance when there are stragglers.
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