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Abstract

We consider the algorithmic problem of finding the optimal weights and biases for
a two-layer fully connected neural network to fit a given set of data points, also
known as empirical risk minimization. We show that the problem is ∃R-complete.
This complexity class can be defined as the set of algorithmic problems that are
polynomial-time equivalent to finding real roots of a multivariate polynomial with
integer coefficients. Furthermore, we show that arbitrary algebraic numbers are
required as weights to be able to train some instances to optimality, even if all
data points are rational. Our result already applies to fully connected instances
with two inputs, two outputs, and one hidden layer of ReLU neurons. Thereby,
we strengthen a result by Abrahamsen, Kleist and Miltzow [NeurIPS 2021]. A
consequence of this is that a combinatorial search algorithm like the one by Arora,
Basu, Mianjy and Mukherjee [ICLR 2018] is impossible for networks with more
than one output dimension, unless NP = ∃R.

1 Introduction

The usage of neural networks in modern computer science is ubiquitous. They are arguably the
most powerful tool at our hands in machine learning [42]. One of the most fundamental algorithmic
questions asks for the algorithmic complexity to actually train a neural network. For arbitrary network
architectures, Abrahamsen, Kleist and Miltzow [3] showed that the problem is ∃R-complete already
for two-layer neural networks and linear activation functions. The complexity class ∃R is defined
as the family of algorithmic problems that are polynomial-time equivalent to finding real roots of
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multivariate polynomials with integer coefficients. Under the commonly believed assumption that ∃R
is a strict superset of NP, this implies that training a neural network is harder than NP-complete
problems.

The result by Abrahamsen, Kleist and Miltzow [3] has one major downside, namely that the network
architecture is adversarial: The hardness inherently relies on choosing a network architecture that is
particularly difficult to train. The instances by Abrahamsen, Kleist and Miltzow could be trivially
trained with fully connected neural networks. This stems from the fact that they use the identity
function as the activation function which reduces the problem to matrix factorization. While intricate
network architectures, e.g. convolutional and residual neural networks, pooling, autoencoders and
generative adversarial neural networks are common in practice, they are usually designed in a way
that facilitates training rather than making it difficult [42]. We strengthen the result in [3] by showing
∃R-completeness for fully connected two-layer neural networks. This shows that ∃R-hardness
does not stem from one specifically chosen worst-case architecture but is inherent in the neural
network training problem itself. Although in practice a host of different architectures are used, fully
connected two-layer neural networks are arguably the most basic ones and they are often part of
more complicated network architectures [42]. We show hardness even for the case of fully connected
two-layer ReLU neural networks with exactly two input and output dimensions.

Remarkably, with only one instead of two output dimensions, the problem is in NP. This follows from
a combinatorial search algorithm by Arora, Basu, Mianjy and Mukherjee [6]. Our result explains why
their algorithm was never successfully generalized to more complex network architectures: adding
only a second output neuron significantly increases the computational complexity of the problem,
from being contained in NP to being complete for ∃R.

To achieve our result, our reduction follows a completely novel approach compared to the reduction
in [3]. Instead of encoding polynomial inequalities into an adversarial network architecture, we make
use of the underlying geometry of the functions computed by two-layer neural networks and utilize
the fact that their different output dimensions have nonlinear dependencies.

Outline. We start by formally introducing neural networks, the training problem, and the existential
theory of the reals in Section 2. Thereafter, we present our main results in Section 3. In Section 4 we
provide different perspectives on how to interpret our findings, including an in-depth discussion of
the strengths and limitations. We cover further related work in Section 5. Finally, we finish the main
part of the paper by presenting the key ideas we use to prove our result in Section 6. The complete
proof details are contained in the supplementary material.

2 Preliminaries

In this section we discuss the necessary definitions and preliminaries related to neural network
training and the complexity class ∃R.

Neural Networks and Training. All neural networks considered in this paper have a very simple
architecture. For ease of presentation, we therefore do not define neural networks and their training
problem in full generality here. Instead we restrict ourselves to the simple architectures we need.

Definition 1 (Fully Connected Two-Layer Neural Network). A fully connected two-layer neural
network N = (S ∪H ∪ T,E) is a directed acyclic graph (the architecture) with real-valued edge
weights. The vertices, called neurons, are partitioned into the inputs S, the hidden neurons H and the
outputs T . All possible edges from S to H as well as all possible edges from H to T are present.
Additionally, each hidden neuron has a real-valued bias and an activation function (R → R).

The probably most commonly used activation function [6, 37, 42] is the rectified linear unit (ReLU)
defined as ReLU : R → R, x 7→ max{0, x}. See Figure 1 for a small fully connected two-layer
ReLU neural network.

Given a neural network architecture N as defined above, assume that we fixed an ordering on S
and T . Then N realizes a function f(·,Θ) : R|S| → R|T |, where Θ denotes the weights and biases
that parameterize the function. For x ∈ R|S| we define f(·,Θ) inductively: The i-th input neuron
forwards the i-th component of x to all its outgoing neighbors. Each hidden neuron forms the
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Figure 1: A fully connected two-layer neural network as studied in this paper. The symbol inside the
hidden neurons expresses the ReLU activation function.

weighted sum over all incoming values, adds its bias, applies the activation function to this sum
and forwards it to all outgoing neighbors. An output neuron again forms the weighted sum over all
incoming values but does not add a bias and does not apply any activation function.
Definition 2 (TRAIN-F2NN). Training a fully connected two-layer neural network is the following
decision problem, denoted by TRAIN-F2NN:

Input: A 5-tuple (N,φ,D, γ, c), where

• N = (S ∪H ∪ T,E) is the network architecture,
• φ : R → R is an activation function to be used at all neurons in the hidden layer,
• D is a set of n data points of the form (x; y) ∈ Q|S| ×Q|T |,
• γ ∈ Q≥0 is the target error, and
• c : R|T | × R|T | → R≥0 is a loss function.

Question: Are there weights and biases Θ such that
∑

(x;y)∈D c(f(x,Θ), y) ≤ γ?

The data points D and the target error γ are part of the input, which has finite length (in some chosen
encoding). We restrict them to be rational numbers because these are straightforward to encode by
noting their numerator and denominator in binary, in contrast to much more complicated encodings
required for arbitrary (algebraic) real numbers.

We further require that the loss function is honest, meaning that it returns zero if and only if the data
is fit exactly. We will see that this is the only requirement on the loss function to prove ∃R-hardness
of the zero-error case (γ = 0).

Existential Theory of the Reals. The complexity class ∃R (pronounced as “ER”) has gained a lot
of interest in recent years. It is defined via its canonical complete problem ETR (short for Existential
Theory of the Reals) and contains all problems that polynomial-time many-one reduce to it. In an
ETR instance we are given an integer n and a sentence of the form

∃X1, . . . , Xn ∈ R : φ(X1, . . . , Xn),

where φ is a well-formed and quantifier-free formula consisting of polynomial equations and in-
equalities in the variables with integer coefficients encoded in binary, and the logical connectives
{∧,∨,¬}. The goal is to decide whether this sentence is true. As an example consider the formula
φ(X,Y ) :≡ X2 + Y 2 ≤ 1 ∧ Y 2 ≥ 2X2 − 1; among (infinitely many) other solutions, φ(0, 0)
evaluates to true, witnessing that this is a yes-instance of ETR. It is known that

NP ⊆ ∃R ⊆ PSPACE

and it is widely believed that both inclusions are strict. Here the first inclusion follows because a SAT
instance can easily be expressed as an equivalent ETR instance [83]. The second inclusion is highly
non-trivial and follows from a result by Canny [17].

Note that the complexity of problems involving real numbers was studied in various contexts. To
avoid confusion, let us emphasize that the underlying machine model for ∃R (over which sentences
need to be decided and where reductions are performed in) is the standard binary word RAM (or
equivalently, a Turing machine), just like for P, NP, and PSPACE. It is not the real RAM [33] or the
Blum-Shub-Smale model [13].
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3 Results

We are now ready to provide the formal statements of our results. The main result is as follows:
Theorem 3. The problem TRAIN-F2NN is ∃R-complete, even if:

• There are only two input neurons.
• There are only two output neurons.
• The number of data points is linear in the number of hidden neurons.
• The data has only 13 different labels.
• The target error is γ = 0.
• The ReLU activation function is used.

Let us note that all of the restrictions in Theorem 3 together describe a special case of the general
training problem (Definition 2). Proving that this special case is ∃R-hard also implies ∃R-hardness
for the general problem, for example with more input/output neurons, more data points, more labels,
arbitrary γ ≥ 0, and possibly different activation functions.

Apart from settling the precise computational complexity status of the problem to train fully-connected
neural networks, our result implies that any approach to solve TRAIN-F2NN to global optimality
must involve more sophisticated methods than those used for typical NP-complete problems.

Additionally, our reduction to prove ∃R-hardness also implies algebraic universality:
Theorem 4. Let α ∈ R be an algebraic number. Then there exists an instance of TRAIN-F2NN,
which has a solution if the weights and biases Θ are restricted to Q[α], but no solution when the
weights and biases Θ are restricted to a field F not containing α.

Here, Q[α] is the smallest field extension of Q containing α. This means that for some training
instances all global optima require irrational weights even if all data points are integral.

Algebraic universality is known to hold for various ∃R-complete problems [4], however this is not
an automatism: Algebraic universality cannot occur in problems where the solution space is open,
which for example is the case in some problems of recognizing certain intersection graphs [18, 57].

4 Discussion

In this section, we discuss our results from various perspectives, pointing out strengths and limitations.

Implications of ∃R-Completeness. It is widely believed that NP ⊊ ∃R. From a theoretical
standpoint, proving ∃R-completeness of an NP-hard problem is therefore a valuable contribution
because we are interested in the exact complexity of important algorithmic problems. Although
this concerns only the worst case complexity, proving ∃R-completeness also hints at the difficulties
that need to be overcome when designing algorithms for the considered problem. For example, the
continuous solution space of ∃R-complete problems presents an algorithmic challenge. This is in
contrast to problems in NP with a discrete or discretizable solution space, which can often be solved
well by extremely optimized off-the-shelf tools like SAT- or MIP-solvers. No such general purpose
tools are available for ∃R-complete problems.

However, let us stress that ∃R-completeness does not rule out hope for good heuristics: The ∃R-
complete art gallery problem can be solved well in practice via custom heuristics, some of these also
in combination with integer programming solvers [24]. Under additional assumptions, performance
guarantees can be proven [48]. However, these heuristics are specifically tailored towards the art
gallery problem. Identifying reasonable assumptions for other ∃R-complete problems in order to
obtain good heuristics (possibly even with performance guarantees) is an important open question.

One meta-heuristic that can often be used to get “good” solutions for ∃R-complete problems is
gradient descent. Probably the most prominent example in this context is training neural networks,
where a bunch of different gradient descent variants powered by backpropagation are nowadays
capable of training neural networks containing millions of neurons. In general, we do not get any
approximation or runtime guarantees when using gradient descent, but under the right additional
assumptions proving such guarantees is sometimes possible [15]. Gradient descent has also been
applied to ∃R-complete problems from other areas, for example to graph drawing [5]. Still though,
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these gradient descent approaches are tailored towards the specific problem at hand. It would be very
desirable to have general purpose solvers, similar to SAT- or MIP-solvers for problems in NP.

Relation to Learning Theory. In this paper we purely focus on the computational complexity of
empirical risk minimization, that is, minimizing the training error. In the machine learning practice,
one usually desires to achieve low generalization error, which means to use the training data to
achieve good predictions on unseen test samples.

To formalize the concept of the generalization error, one needs to combine the computational aspect
with a statistical one. There are various models to do so in the literature, the most famous one being
probably approximately correct (PAC) learnability [80, 87]. While empirical risk minimization and
learnability are two different questions, they are strongly intertwined; see Section 5 for related work
in this context. Despite the close connections between empirical risk minimization and learnability, to
the best of our knowledge, the ∃R-hardness of the former has no direct implications on the complexity
of the latter. Still, since empirical risk minimization is the most common learning paradigm in practice,
our work is arguably also interesting in the context of learning theory.

Required Precision of Computation. An implication of ∃R-hardness of TRAIN-F2NN is that
for some instances every set of weights and biases exactly fitting the data needs large precision,
actually a superpolynomial number of bits to be written down. The algebraic universality of TRAIN-
F2NN (Theorem 4) strengthens this by showing that exact solutions require algebraic numbers.
This restricts the techniques one could use to obtain optimal weights and biases even further, as it
rules out numerical approaches (even using arbitrary-precision arithmetic), and shows that symbolic
computation is required. In practice, we are often willing to accept small additive errors when
computing f(·,Θ) and therefore also do not require Θ to be of such high precision. In other words,
rounding the weights and biases Θ to the first “few” digits after the comma may be sufficient. This
might allow to place the problem of approximate neural network training in NP. Yet, we are not
aware of such a proof and we consider it an interesting open question to establish this fact thoroughly.
Let us note that a similar phenomenon appears with many other ∃R-complete problems [33]: While
an exact solution x requires high precision, there is an approximate solution x̃ close to x that needs
only polynomial precision. However, guessing the digits of the solution in binary is in no way a
practical algorithm to solve these problems. Moreover, historically, ∃R-completeness seems to be a
strong predictor that finding these approximate solutions is difficult in practice [25, 33]. Therefore,
we consider ∃R-completeness to be a strong indicator of the theoretical and practical algorithmic
difficulties to train neural networks.

Related to this, Bienstock, Muñoz, and Pokutta [9] use the above idea to discretize the weights and
biases to show that, in principle, arbitrary neural network architectures can be trained to approximate
optimality via linear programs with size linear in the size of the data set, but exponential in the
architecture size. While being an important insight, let us emphasize that this does not imply
NP-membership of an approximate version of neural network training.

Number of Input Neurons. In practice, neural networks are often trained on high dimensional data,
thus having only two input neurons is even more restrictive than the practical setting. Note that we
easily obtain hardness for higher input dimensions by simply placing all data points of our reduction
into a two-dimensional subspace. The precise complexity of training fully connected two-layer neural
networks with only one-dimensional input and multi-dimensional output remains unknown. While
this setting does not have practical relevance, we are still curious about this open question from a
purely mathematical perspective.

Number of Output Neurons. As discussed earlier, if there is only one output neuron instead of
two, then the problem is known to be contained in NP [6]. Our reduction can easily be extended
to the case with more than two output neurons by padding all output vectors with zeros. Thus, the
complexity classification is complete with respect to the number of output neurons.

Number of Hidden Neurons. Consider the situation that the number m of hidden neurons is larger
than the number n of data points. If there are no two contradicting data points (x1, y1) and (x2, y2)
with x1 = x2 but y1 ̸= y2, then we can always fit all the data points exactly [91]. Thus, we need
at least a linear number of data points in terms of m to be able to get ∃R-completeness. While we
already achieve a linear number, we wonder whether our result could be strengthened further by
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showing ∃R-completeness with n ≤ (1 + ε)m, for every fixed ε. Note that by adding additional data
points, the ratio between n and m can be made arbitrarily large. Thus our reduction holds also for all
settings in which m is (asymptotically) much smaller than n.

Number of Output Labels. The number of labels, that is, different values for y ∈ Q|T | in the data
set D, used in our reduction is just 13. A small set of possible labels shows relevance of our result
to practice, where we are often confronted with a large number of data points but a much smaller
number of labels, for instance, in classification tasks. The set of labels used by us is{

(-2,6), (-1,-1), (-1,0), (0,-1), (0,0), (0,3), (2,2), (3,3), (3,6), (4,4), (6,-2), (6,6), (10,10)
}

.

If all labels are contained in a one-dimensional affine subspace the problem is in NP, as then they can
be projected down to one-dimensional labels and the problem can be solved with the algorithm by
Arora, Basu, Mianjy and Mukherjee [6]. As any two labels span a one-dimensional affine subspace,
the problem can only be ∃R-hard for at least three different affinely independent output labels.

We think it is not particularly interesting to close the gap between 13 and 3 output labels, but it
would be interesting to investigate the complexity of the problem when output labels have more
structure. For example, in classification tasks one often uses one-hot encodings, where for k classes,
a k-dimensional output space is used and all labels have the form (0, . . . , 0, 1, 0, . . . , 0). Note that in
this case, at least three output dimensions are needed to obtain three different labels.

Target Error. For simplicity, we show hardness for the case with target error γ = 0. However, in
practice it is generally not required to fit the data exactly. It is not too difficult to see that we can
easily modify the value of γ by adding inconsistent data points that can only be fit best in exactly one
way. The precise choice of these inconsistent data points heavily depends on the loss function. In
conclusion, for different values of γ, the decision problem does not get easier.

Activation Functions. Let us point out that the ReLU activation function is currently still the
most commonly used activation function in practice [6, 37, 42]. Our methods are probably easily
adaptable to other piecewise linear activation functions, such as leaky ReLUs. Having said that, our
methods are not applicable to other types of activation functions, such as Sigmoid, soft ReLU or step
functions. We want to point out that TRAIN-F2NN (and even training of arbitrary other architectures)
is in NP in case a step function is used as the activation function [56]. For the Sigmoid and soft
ReLU function it is not even clear whether the problem is decidable, as trigonometric functions and
exponential functions are not computable even on the real RAM [33, 70].

Lipschitz Continuity and Regularization. The set of data points created in the proof of The-
orem 3 is intuitively very tame. We formalize this by proving that for yes-instances there exists
a Θ such f(·,Θ) is Lipschitz continuous for a small Lipschitz constant L (see Remark 23 in the
supplementary material for details). This is also related to overfitting and regularization [43], the
purpose of the latter being to prefer simpler functions over more complicated ones. Being Lipschitz
continuous with a small Lipschitz constant essentially means that the function is pretty flat. It is
particularly remarkable that we can show hardness even for small Lipschitz constants since Lipschitz
continuity has been a crucial assumption in several recent results about training and learning ReLU
networks, for example in [9, 20, 38].

Other Architectures. While we consider fully connected two-layer networks as the most important
case, we are also interested in ∃R-hardness results for other network architectures. Specifically, fully
connected three-layer neural networks and convolutional neural networks are interesting. While it is
hard to imagine that more complicated architectures are easier to train, a formal proof of this intuition
would strengthen our result and show that ∃R-completeness is a robust phenomenon, in other words
independent of a choice of a specific network type.

5 Further Related Work

Complexity of Training Neural Networks. It is well-known that minimizing the training error of
a neural network is a computationally hard problem for a large variety of activation functions and
architectures [80]. For ReLU networks, NP-hardness, parameterized hardness and inapproximability
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results have been established even for the simplest possible architecture consisting of only a single
ReLU neuron [14, 27, 35, 40]. While all these results require non-constant input-dimension, Froese
and Hertrich [34] showed that it is also NP-hard to train a two-layer ReLU network with input
dimension two and output dimension one. On the positive side, the seminal algorithm by Arora,
Basu, Mianjy and Mukherjee [6] solves empirical risk minimization for two-layer ReLU networks
and one-dimensional output to global optimality, placing the problem in NP. It was later extended
to a more general class of loss functions by Froese, Hertrich and Niedermeier [35]. The running
time is exponential in the number of neurons in the hidden layer and in the input dimension, but
polynomial in the number of data points if the former two parameters are considered to be a constant.
This NP-containment of TRAIN-F2NN with one-dimensional output is in sharp contrast to our
∃R-completeness result for two-dimensional outputs.

While minimizing training and generalization errors are different problems, the hardness of the former
also imposes challenges on the latter. Strategies to circumvent hardness from the perspective of
learning theory include allowing improper learners, restricting the type of weights allowed in a neural
network, or imposing assumptions on the underlying distribution. For example, Chen, Klivans and
Meka [20] show fixed-parameter tractability of learning a ReLU network under some assumptions
including Gaussian data and Lipschitz continuity of the network. We refer to [7, 19, 28, 38, 41, 39] as
a non-exhaustive list of other results about (non-)learnability of ReLU networks in different settings.

Expressivity of ReLU Networks. It is essential for our reduction to understand the classes of
functions representable by certain ReLU network architectures. So-called universal approximation
theorems state that a single hidden layer (with arbitrary width) is already sufficient to approximate
every continuous function on a bounded domain with arbitrary precision [22, 52]. However, deeper
networks require much fewer neurons to reach the same expressive power, yielding a potential
theoretical explanation of the dominance of deep networks in practice [6, 31, 45, 47, 58, 67, 69, 72,
85, 86, 89]. Other related work includes counting and bounding the number of linear regions [46,
64, 65, 68, 69, 79], classifying the set of functions exactly representable by different architectures [6,
26, 44, 49, 50, 51, 66, 92], or analyzing the memorization capacity of ReLU networks [88, 90, 91].
Huchette, Muñoz, Serra, and Tsay [53] provide a survey on the interactions of neural networks and
polyhedral geometry, including implications on training, verification, and expressivity.

Existential Theory of the Reals. The complexity class ∃R gains its importance by numerous
important algorithmic problems that have been shown to be complete for this class in recent years.
The name ∃R was introduced by Schaefer in [73] who also pointed out that several NP-hardness
reductions from the literature actually implied ∃R-hardness. For this reason, several important
∃R-completeness results were obtained before the need for a dedicated complexity class became
apparent.

Common features of ∃R-complete problems are their continuous solution space and the nonlinear
relations between their variables. Important ∃R-completeness results include the realizability of
abstract order types [63, 83] and geometric linkages [74], as well as the recognition of geometric
segment [57, 60], unit-disk [55, 61], and ray intersection graphs [18]. More results appeared in
the graph drawing community [30, 32, 59, 75], regarding polytopes [29, 71], the study of Nash-
equilibria [8, 10, 11, 36, 76], matrix factorization [21, 78, 81, 82], or continuous constraint satisfaction
problems [62]. In computational geometry, we would like to mention the art gallery problem [2, 84]
and covering polygons with convex polygons [1].

Recently, the community started to pay more attention to higher levels of the real polynomial
hierarchy, which also capture several interesting algorithmic problems [12, 16, 23, 30, 54, 77].

6 Proof Ideas

To show ∃R-hardness, we reduce from a classical version of ETR called ETR-INV. An instance of
ETR-INV consists of real variables and a conjunction of constraints in these variables, where each
constraint is either and addition constraint X + Y = Z or an inversion constraint X · Y = 1. Given
such an instance, we construct a TRAIN-F2NN instance that models the variables and whose training
corresponds to satisfying all addition and inversion constraints.
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Variables. A natural candidate for encoding variables are the weights and biases of the neural
network. However, those did not prove to be suitable for our purposes. The main problem with using
the parameters of the neural network as variables is that the same function can be computed by many
neural networks with different combinations of these parameters. We are not aware of an easy way to
normalize the parameters.

To circumvent this issue, we work with the functions representable by fully connected two-layer
neural networks directly. We frequently make use of the geometry of these functions. For now, it is
only important to understand that each hidden ReLU neuron encodes a continuous piecewise linear
function with exactly two pieces (both of constant gradient). These two pieces are separated by a
so-called breakline. Now, if we have m middle neurons, their individually encoded functions add
up such that the function computed by the whole neural network is a continuous piecewise linear
function with at most m breaklines. Between these breaklines all pieces of the function have constant
gradient.

To keep things simple for now, let us first consider a neural network with only one input and one
output neuron. We place a series of data points (xi, yi) ∈ R2 as seen in Figure 2. All continuous
piecewise linear functions f(·,Θ) computed by a neural network with only four hidden neurons (i.e.,
only four breaklines and therefore at most five pieces) that fit these data points exactly must be very
similar. In fact, they can only differ in one degree of freedom, namely the slope of the piece going
through point p. In our construction, this slope represents the value of a variable. The whole set of
data points enforcing this configuration is called a variable gadget.

p

data point

x

y

Figure 2: The value of f(·,Θ) is fixed (black part), except for the segment through data point p. The
red, orange and blue segments are just three out of uncountably many possibilities. Its slope can be
used to encode a real-valued variable.

Linear Dependencies. The key insight for encoding constraints between variables is that we can
relate the values of several variable gadgets by a data point: By placing a data point p at a location
where several variable gadgets overlap, each of the variable gadgets contributes its part towards
fitting p. The exact contribution of each variable gadget depends on its slope. Consequently, if one
variable gadget contributes more, the others have to proportionally contribute less. This enforces
linear dependencies between different variable gadgets and can be used to design addition and copy
gadgets.

To be able to intersect multiple variable gadgets, we need a second input dimension. Each variable
gadget as seen in Figure 2 is now extended into a stripe in R2, with Figure 2 showing only an
orthogonal cross section of this stripe. See Figure 3 for two intersecting variable gadgets. Much of
the technical difficulties lie in the subtleties to enforce the presence of multiple (possibly intersecting)
gadgets using a finite number of data points.

To construct an addition gadget we need to be able to encode linear relations between three variables.
In R2, three lines (or stripes) usually do not intersect in a single point. Thus, for addition we have to
carefully place them to guarantee such a single intersection point. This might involve creating copies
of a variable gadget, which is a linear relation between just two variable gadgets.

Inversion Constraint. Within only a single output dimension, we are not able to encode nonlinear
constraints [6]. We therefore add a second output dimension, which implies that the neural network
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p

Figure 3: Two variable gadgets (slopes of the blue and red regions encode the values). Point p lies in
the intersection of both and can encode a linear relationship between them.

represents two functions f1(·,Θ) and f2(·,Θ). Consequently, we are allowed to use data points with
two different output labels, one for each output dimension.

One important observation is that the locations of breaklines of f = f(·,Θ) = (f1(·,Θ), f2(·,Θ))
only depend on the weights and biases in the first layer of the neural network. Thus, every breakline
is present in both functions f1 and f2, except if the weight to the corresponding output neuron is
zero. This connects the two output dimensions in a way that we can encode nonlinear constraints.

We define an inversion gadget (realizing the constraint X ·Y = 1), which also corresponds to a stripe
in R2. For simplicity, we only show a cross section here, see Figure 4. In each output dimension
individually, the inversion gadget looks exactly like a variable gadget. The inversion gadget can
therefore be understood as a variable gadget that carries two values.

We prove that by allowing only five breaklines in total, a function f can only fit all data points
exactly if f1 and f2 share three of their four breaklines (while both having one “exclusive” breakline
each). This enforces a nonlinear dependency between the slopes of f1 and f2. By choosing the right
parameters, this nonlinear relation models exactly an inversion constraint.

p

q

both dimensions equal

Data points:

Dimension 1

Dimension 2

Figure 4: Data points p and q have different labels in the two output dimensions, enforcing that the
slopes of the red and the blue pieces are related via a nonlinear dependency.

Reduction. Let us illustrate the reduction by giving a simple example. Note that this is not yet
the “complete picture”, which follows in the supplementary material. We start with the ETR-INV
instance that is to decide whether the following sentence

∃X1, X2, X3, X4 ∈ R : (X1 +X2 = X3) ∧ (X1 +X3 = X4) ∧ (X1 ·X4 = 1) ∧ (X4 ·X3 = 1)

is true. This instance has four variables X1, X2, X3, X4 and four constraints: two additions and two
inversions. Recall that every gadget corresponds to a stripe in the input space R2. See Figure 5 for
the following construction (for better readability the stripes are drawn as lines).

• For each variable we add a variable gadget. We place all of these such that their correspond-
ing stripes are parallel and do not overlap, see the horizontal lines in Figure 5.

• For each addition constraint we introduce three new variable gadgets, one per involved
variable. We place these such that they have a common intersection point while also
intersecting their corresponding variable gadget. In Figure 5, see the two bundles to the
left. A data point at the triple intersection enforces the addition constraint, while data points
labelled •= encode that the values of the two intersecting variable gadgets are equal.

• Lastly, we add an inversion gadget for each inversion constraint and place it such that it
intersects the variable gadgets of the two involved variables. See the two dashed lines in
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Figure 5. Data points labelled •=1 (•=2) enforce that the values stored in the first (second)
output dimension are equal.

X1

X2

X3

X4

X1 +X2 −X3 = 0

=

=

=

=

=

=

X1 +X3 −X4 = 0

=1=2

=1

=2

X4 ·X3 = 1

X1 ·X4 = 1

Figure 5: Overview of the global arrangement of the gadgets.

To see that above reduction is correct, assume that the sentence in the ETR-INV instance is indeed
true. Then there exists real values for the four variables and these values can be used as the slopes of
their corresponding variable gadgets. By the correctness of the individual gadgets (which is to be
proven in the supplementary material) it follows that each data point is fit exactly.
Conversely, if all data points are fit exactly, then the correctness of the gadgets implies that the slopes
of the variable gadgets give a solution to the ETR-INV instance. Intuitively, this holds because the
addition and inversion constraints are encoded exactly by the gadgets of our construction.

Outline of the Supplementary Material. We sketch ∃R-membership of TRAIN-F2NN in Ap-
pendix A before turning to ∃R-hardness in Appendix B. As Appendix B is by far the longest part of
the paper, it is further broken down into several parts: After a short reduction overview, we describe
suitable abstractions to make defining and analyzing the gadgets easier. Then we introduce the
gadgets formally one by one and in isolation before finally putting everything together. We finish
the section by proving correctness of our reduction. Finally, we prove algebraic universality in
Appendix C.
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