
Under review as a conference paper at ICLR 2018

GRAPHGAN:
GENERATING GRAPHS VIA RANDOM WALKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose GraphGAN – the first implicit generative model for graphs that en-
ables to mimic real-world networks. We pose the problem of graph generation as
learning the distribution of biased random walks over a single input graph. Our
model is based on a stochastic neural network that generates discrete output sam-
ples, and is trained using the Wasserstein GAN objective. GraphGAN enables us
to generate sibling graphs, which have similar properties yet are not exact replicas
of the original graph. Moreover, GraphGAN learns a semantic mapping from the
latent input space to the generated graph’s properties. We discover that sampling
from certain regions of the latent space leads to varying properties of the output
graphs, with smooth transitions between them. Strong generalization properties
of GraphGAN are highlighted by its competitive performance in link prediction
as well as promising results on node classification, even though not specifically
trained for these tasks.

1 INTRODUCTION

Generative models for graphs have a longstanding history, with applications including data augmen-
tation, anomaly detection and recommendation (Chakrabarti & Faloutsos, 2006). Explicit proba-
bilistic models such as Barabási-Albert or stochastic blockmodels are the de-facto standard in this
field (Goldenberg et al., 2010). However, it has also been shown on multiple occasions that our intu-
itions about structure and behavior of graphs may be misleading. For instance, heavy-tailed degree
distributions in real graphs were in stark disagreement with the models existing at the time of their
discovery (Barabási & Albert, 1999). More recent works, like Dong et al. (2017), keep bringing
up other surprising characteristics of real-world networks, not accounted for by the models at hand.
This leads us to the question: ”How do we define a model that captures all the essential (potentially
still unknown) properties of real graphs?”

An increasingly popular way to address this issue in other fields is by switching from explicit (pre-
scribed) models to implicit ones. This transition is especially notable in Computer Vision, where
Variational Autoencoder (Kingma & Welling, 2013) and Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) significantly advanced the state of the art over the classic prescribed ap-
proaches like Mixtures of Gaussians (Blanken et al., 2007). GANs achieve unparalleled results
in scenarios such as image and 3D objects generation (e.g., Radford et al., 2015; Berthelot et al.,
2017; Wu et al., 2016). However, despite their massive success when dealing with real-valued data,
adapting GANs to handle discrete objects like graphs or text remains an open research problem
(Goodfellow, 2016). Indeed, the combinatorial structure of the graph is only one of the obstacles
when applying GANs to graphs. Second, large repositories of graphs, which all come from the same
distribution, do not exist. This means that in a typical setting one has to learn from a single graph.
And last, any model operating on a graph necessarily has to be permutation invariant, as the graphs
remain isomorphic under node reordering.

In this work we introduce GraphGAN – the first implicit generative model for graphs, that tackles
all of the above challenges. We formulate the problem of learning the graph topology as learning the
distribution of biased random walks over the graph. Like in the typical GAN setting, the generatorG
– in our case defined as a stochastic neural network with discrete output samples – learns to generate
random walks that are plausible in the real graph, while the discriminator D then has to distinguish
them from the true ones that are sampled from the original graph. The objective function of our

1

Under review as a conference paper at ICLR 2018

(a) Original graph

44% edge
overlap

(b) Sibling graph

100 101 102

degree

100

101

102

co
un

t

Citeseer
GraphGAN
DC-SBM

(c) Degree distribution comparison

Figure 1: GraphGAN is able to generate a sibling graph to the CITESEER network. (a) and (b)
visualize a subset of nodes selected from the complete graphs. The graphs show similar structure
but are not identical. (c) shows that the degree distributions of the input graph as well as the graphs
generated by GraphGAN and the degree-corrected stochastic blockmodel are very similar.

model is based on the Wasserstein GAN (Arjovsky et al., 2017), which allows to learn multimodal
distributions and leads to more stable convergence. Our GraphGAN exhibits strong generalization
properties, which we study in detail in the experimental section. The example in Fig. 1 shows that
the graphs generated by GraphGAN possess similar properties as the input graph, as shown by the
degree distributions in Fig. 1c. The generated graphs, however, are not simply exact replicas: as the
visualized subset of nodes in Figs. 1a and 1b shows, the graphs exhibit similar structure while being
not identical; in fact, the two graphs have less than 50% of edges in common. This initial insight is
underlined by an extensive comparison of graphs generated by GraphGAN and the respective input
networks in the experimental section of this work. And even more, when generating graphs based
on specific regions of the latent space learned by GraphGAN, we can smoothly interpolate between
graphs with varying properties. Our main contributions are:

• We introduce GraphGAN - the first of its kind GAN that generates graphs via random
walks. Our model tackles the associated challenges of staying permutation invariant, learn-
ing from a single graph and generating discrete output.

• We show that our model generalizes, and is able to produce sibling graphs to the given input
graph. These graphs posses similar topological characteristics, but are not exact replicas
(see Fig. 1). We further demonstrate how latent space interpolation leads to generation of
graphs with smoothly changing properties.

• We highlight the generalization properties of GraphGAN by its link prediction perfor-
mance, which is competitive with the state of the art on real-word datasets, although not
trained explicitly for this task. Additionally, to give the reader a better insight about the
behavior of our model, we analyze the learned weights of our model – that can be viewed
as node ”embeddings” – and by using them in a node classification task we show that they
capture meaningful structural information.

2 RELATED WORK

There are only two attempts of using GANs in the context of graphs (Tavakoli et al., 2017; Liu
et al., 2017). Tavakoli et al. (2017)’s approach tries to generate the full adjacency matrix of the
graph directly (treating it as a binary image). To circumvent the issue of having a single graph, they
apply random permutations to the adjacency matrix to generate additional training data. Since their
model explicitly generates the full adjacency matrix – including zero-elements – the output (input)
size of their generator (discriminator) is equal to the number of nodes squared. Such a quadratic
complexity is infeasible in practice, allowing to process only small graphs. Indeed, this fundamental
limitation becomes evident in their reported runtime of over 60 hours for a graph with only 154
nodes – the largest graph they processed. In contrast, our model operates on the random walks,
thus only considering the non-zero elements of the adjacency matrix and efficiently exploiting the
sparsity of real-wolrd graphs.

2

Under review as a conference paper at ICLR 2018

While not focusing on generating full graphs, Liu et al. (2017) use GANs to learn graph topological
features. They decompose the graph into multiple subgraphs, where each subgraph is then processed
by a GAN using standard image operations (e.g. convolution, deconvolution) which contain the
built-in assumption that pixels located closely (within the same receptive field) are in some way
correlated. Clearly, when talking about an adjacency matrix such assumption is not sensible, as
permutations of rows/columns correspond to the exact same graph but very different receptive fields.
In contrast to their approach our model does not make any spatial dependence assumptions about
the adjacency matrix. Moreover, since their GAN only generates edges within the subgraphs, but
not between them, all inter-subgraph edges from the original graph have to be stored and copied
manually to a potential new graph. In contrast, our model is learned end-to-end, it allows to generate
the whole graph, and it handles arbitrary permutations of the given input graph.

Due to the challenging nature of the problem, only few approaches able to generate discrete data
using GANs exist. Most approaches focus on generating discrete sequences such as text, with some
of them using reinforcement learning techniques to address the difficulty of backpropagation through
sampling discrete random variables (Yu et al., 2017; Kusner & Hernández-Lobato, 2016; Li et al.,
2017; Liang et al., 2017). Other approaches modify the GAN objective to tackle the same challenge
(Che et al., 2017; Hjelm et al., 2017). Focusing on non-sequential discrete data, Choi et al. (2017)
generate high-dimensional discrete features (e.g. binary indicators, counts) in patient records. None
of these methods has considered graph structured data.

Apart from GANs, prescribed generative models for graphs have a long history and are well-studied.
For a comprehensive survey see Chakrabarti & Faloutsos (2006); Goldenberg et al. (2010). Based
on the different modeling assumptions, the generative power of these models varies significantly. A
substantial portion cannot even handle power-law degree distributions as found in most real-world
networks. One of the simplest model is the configuration model (Bender & Canfield, 1978; Molloy
& Reed, 1995) that rewires edges at random, but preserves the node degrees. A stronger representa-
tive able to capture power-law degree distributions, as well as diverse network topologies and com-
munity structure is the well-established degree-corrected stochastic blockmodel (DC-SBM) (Karrer
& Newman, 2011). Another broad family of models are exponential random graph models (ERGM)
(Holland & Leinhardt, 1981) that explicitly preserve some manually specified graph statistics (e.g.
edge count, degrees, node attribute statistics, etc.). ERGMs represent a probability distribution over
all possible networks of a given fixed size, by specifying one parameter per statistic.

We compare against the configuration model, DC-SBM and ERGM as baselines. We will see in Sec.
4.1 that as expected, all properties which these approaches explicitly model are preserved, while the
rest deviate significantly from the input graph. This highlights the need for implicit models such as
ours, that capture the properties of real-world graphs without having to manually specify them.

3 GANS FOR GRAPHS

In this section we introduce GraphGAN - a Generative Adversarial Network model for graphs. Its
core idea lies in learning the topology of a graph by learning the distribution over the random walks.
Given is an input graph of N nodes, defined by an unweighted adjacency matrix A ∈ {0, 1}N×N .
First, we sample a set of random walks of length T from A. This collection of random walks
serves as a training set for our model. We use the biased second-order random walk sampling
strategy described in Grover & Leskovec (2016), as it better captures both local and global graph
structure. An important advantage of using random walks is their invariance under node reordering.
Additionally, random walks only include the nonzero entries of A, thus efficiently exploiting the
sparsity of real-world graphs.

Like any typical GAN architecture, GraphGAN consists of two main components - a generator G
and a discriminator D. The goal of the generator is to generate synthetic random walks that are
plausible in the input graph. At the same time, the discriminator learns to distinguish the synthetic
random walks from the real ones that come from the training set. Both G and D are trained end-to-
end using backpropagation. At any point of the training process it is possible to use G to generate
a set of random walks, which can then be used to produce an adjacency matrix of a new generated
graph. In the rest of this section we describe each stage of this process and our design choices in
more detail. An overview of our model’s complete architecture can be seen in Fig. 2.

3

Under review as a conference paper at ICLR 2018

3.1 ARCHITECTURE

z ∼ N (0, Id)

m0 = gθ′(z)

v1 ∼ Cat(p1), (p1,m1) = fθ(m0,0)

v2 ∼ Cat(p2), (p2,m2) = fθ(m1,v1)

...
...

vT ∼ Cat(pT), (pT ,mT) = fθ(mT−1,vT−1)

Generator. The generator G defines an
implicit probabilistic model for generating
the random walks: (v1, ...,vT) ∼ G. We
model G as a sequential process based on
a neural network fθ parametrized by θ. At
each step t, fθ produces two values: the
probability distribution over the next node
to be sampled, denoted as pt, and the cur-
rent memory state of the model, denoted as
mt. The new node vt (represented as a
one-hot vector) is sampled from Cat(pt), and together with mt passed into fθ at the next step
t+ 1. Similarly to the classic GAN setting, a latent code z drawn from a multivariate standard nor-
mal distribution is passed through a parametric function gθ′ to initialize m0. The generative process
of G is summarized in the box above.

In this work we focus our attention on the Long short-term memory (LSTM) architecture for fθ, in-
troduced by Hochreiter & Schmidhuber (1997). The memory state mt of an LSTM is represented by
the cell state Ct, and the hidden state ht. The latent code z goes through two separate streams, each
consisting of two fully connected layers with tanh activation, and then used to initialize (C0,h0).

A natural question might arise: ”Why use a model with memory and temporal dependencies, when
the random walks are Markov processes?” (2nd order Markov for biased RWs). Or put differently,
what’s the benefit of using random walks of length greater than 2. In theory, a model with large
enough capacity could simply memorize all existing edges in the graph and recreate them. However,
for large graphs achieving this in practice is not feasible. More importantly, pure memorization is not
the goal of GraphGAN, rather we want to have generalization and generate similar sibling graphs,
not exact replicas. Having longer random walks combined with memory helps the model to learn
the topology and general patterns in the data (e.g. community structure). Our experiments in Sec.
4.2 confirm this, showing that longer random walks are indeed beneficial.

After each time step, in order to generate the next node in the random walk, the network fθ needs to
output the vector of probabilities pt of length N . Operating in such high dimensional space within
the LSTM cell is infeasible, and leads to unnecessary computational overhead. For this reason, we
do the following: the model outputs ot ∈ RH , with H � N , which is then up-projected to RN
using W up ∈ RN×H . One can view it as similar to context embeddings in representation learning.

Given the probability distribution over the next node in the random walk, pt ∈ ∆N−1, from
which vt is to be drawn, we are faced with another challenge: Sampling from a categorical dis-
tribution is a non-differentiable operation – thus, it blocks the flow of gradients and precludes
backpropagation. We circumvent this problem by using the Straight-Through Gumbel estimator
by Jang et al. (2016). More specifically, we perform the following transformation: First, we let

Generator
architecture

C0

h0

C1

h1

o1 oT

vT

v2

v1v1

	⋯

	⋯

	⋯

W
down

p1 pN p1 pN

Wup Wup

GraphGAN
architecture

Graph

G(z)

Random
walk

Discrimi-
nator

Dreal Dfake

Generator

z ∼ N (0, Id)

z

sample sample

(a) (b)

Figure 2: The GraphGAN architecture proposed in this work (b) and the generator architecture (a).

4

Under review as a conference paper at ICLR 2018

v∗t = softmax ((log pt + g)/τ)), where τ is a temperature parameter, and gi’s are i.i.d. samples
from a Gumbel distribution with zero mean and unit scale. Then, the next sample is computed as
vt = onehot(arg maxv∗t). While the one-hot sample vt is passed as input to the next time step,
during the backward pass the gradients will flow through the differentiable v∗t . The choice of τ
allows to trade-off between better flow of gradients (large τ , more uniform v∗t) and more exact
calculations (small τ , v∗t ≈ vt).

Now that a new node vt is sampled, it needs to be projected back to a lower-dimensional rep-
resentation before feeding into the LSTM. This is done by means of down-projection matrix
W down ∈ RH×N . Together with the up-projection matrix W up, the matrix W down deserves a
special mention, as it happens to learn – as a byproduct – meaningful information about the nodes.
We can view these matrices as a form of node “embeddings” and to gain a better understanding of
our model we study their properties in Sec. 4.2 and 4.3.

Discriminator. The discriminatorD is based on the standard LSTM architecture. At every time step
t, a one-hot vector vt, denoting the node at the current position, is fed as input. After processing
the entire sequence, the discriminator outputs a single score that represents the probability of the
random walk being real.

3.2 TRAINING

Wasserstein GAN. We train our model based on the Wasserstein GAN (WGAN) framework (Ar-
jovsky et al., 2017). To enforce the Lipschitz constraint of the discriminator, we use the gradient
penalty as in Gulrajani et al. (2017). We observe that in our setting using the WGAN objective leads
to noticeable improvements over the vanilla GAN: it prevents mode collapse, as well as leads to a
more stable learning procedure overall. The model parameters {θ, θ′} are trained using stochastic
gradient descent with Adam (Kingma & Ba, 2014). Weights are regularized with an L2 penalty.

Early stopping. Because we are interested in generalizing the input graph, the “trivial” solution
where the generator has memorized all existing edges is of no interest to us. This means that we
need to control overfitting of our model. To achieve this, we employ two early stopping strate-
gies. The first strategy, named VAL-CRITERION is concerned with the generalization properties of
GraphGAN. During training, we keep a sliding window of the random walks generated in the last
1,000 iterations and use them to construct a matrix of transition counts. This matrix is then used
to evaluate the link prediction performance on a validation set (i.e. ROC and AP scores, for more
details see Sec. 4.2). We stop with training when the validation performance stops improving.

The second strategy, named EO-CRITERION makes GraphGAN very flexible and gives the user
control over the graph generation. We stop training when we achieve a user specified edge overlap
between the generated graphs (see next section) and the original one at a given iteration. Based on
her end task the user can choose to generate graphs with either small or large edge overlap with
the original, while maintaining structural similarity. This will lead to generated graphs that either
generalize better or are closer replicas respectively, yet still capture the properties of the original.

3.3 ASSEMBLING THE ADJACENCY MATRIX

After finishing the training, we use the generator G to construct a score matrix S of transition
counts, i.e. we count how often an edge appears in the set of generated random walks (typically,
using a much larger number of random walks than for early stopping, e.g., 500K). While the raw
counts matrix S is sufficient for link prediction purposes, we need to convert it to a binary adjacency
matrix Ã, if we wish to reason about the synthetic graph. First, S is symmetrized by setting sij =
sji = max{sij , sji}. Because we cannot explicitly control the starting node of the random walks
generated by G, some high-degree nodes will likely be overrepresented. Thus, a simple binarization
strategy like thresholding or choosing top-k entries might lead to leaving out the low-degree nodes
and producing singletons. To address this issue, we use the following approach. (i) We ensure that
every node i has at least one edge by sampling a neighbor j with probability pij =

sij∑
v siv

. If an
edge was already sampled before, we repeat the procedure. (ii) We continue sampling edges without
replacement, using for each edge (i, j) the probability pij =

sij∑
u,v suv

, until we reach the desired
amount of edges (e.g., as many edges as in the original graph). Note that this procedure is not
guaranteed to produce a fully connected graph.

5

Under review as a conference paper at ICLR 2018

4 EXPERIMENTS

Besides using GraphGAN to generate graphs, we also evaluate its output and learned representations
on other typical graph mining tasks, most prominently link prediction and node classification. We
evaluate GraphGAN on these tasks and several real-world datasets and compare it with state-of-the-
art methods. Furthermore, we demonstrate how we can generate graphs with smoothly changing
properties via latent space interpolation.

Datasets. For our evaluation, we use several well-know citation datasets, as well as the Political
Blogs dataset. Table 1 show the dataset statistics. Cora-ML is the subset of machine learning papers
from the original Cora dataset typically considered in other works. For all our experiments, we
consider only the largest connected component in each network and treat them as undirected.

Table 1: Dataset statistics

Pol. Blogs Cora-ML Cora Citeseer Pubmed DBLP
(McCallum et al., 2000) (Giles et al., 1998) (Sen et al., 2008) (Pan et al., 2016)

Number of nodes 1,490 2,995 19,793 3,312 19,717 17,716
Largest conn. comp. size 1,222 2,810 18,800 2,110 19,717 16,191
Number of edges 19,025 8,416 65,311 4,715 44,324 52,867
Edges in LCC 16,714 8,229 64,529 3,757 44,324 51,913
Number of communities 2 7 70 6 3 4

4.1 GRAPH GENERATION

In this task, we use GraphGAN to generate sibling graphs to a given input graph, and compare its
performance to the baselines. The goal is to generate graphs that are similar in their properties to
the input graph – while not trivially copying the input network. We randomly hide 15% of the edges
(which are used for the stopping criterion; see Sec. 3.2) and train GraphGAN and DC-SBM on the
remaining graph. We then sample graphs from the trained models and compare their properties with
the input graph. We report the results for CORA-ML here, and for CITESEER in the appendix.

GraphGAN Input graph DC-SBM Val-Criterion EO-Criterion

100 101 102

degree

100

101

102

co
un

t

Cora-ML
GraphGAN
DC-SBM

(a) Degree distribution

0k 20k 40k 60k 80k 100k
Training iteration

0.08

0.06

0.04

0.02

As
so

rta
tiv

ity

(b) Assortativity over
training iterations

0k 20k 40k 60k 80k 100k
Training iteration

0.00

0.25

0.50

0.75

1.00

Ed
ge

 o
ve

rla
p

(c) Edge overlap (EO) over
training iterations

Figure 3: Properties of generated graphs, trained on CORA-ML.

Evaluation. Fig. 3a shows that GraphGAN and DC-SBM are able to generate graphs whose degree
distributions nicely match the input graph’s. For DC-SBM, this is not surprising, given that it explic-
itly encodes the degree distribution in the model. GraphGAN, however, does not have access to the
degree distribution of the input graph – yet is still able to model it to a high accuracy. Going beyond
the degree distribution, in Table 2 we show seven other important graph statistics and see that for
most of them GraphGAN closely matches the original graph. We do not expect that GraphGAN
is superior to every existing explicit model in every possible regard. Rather, our goal is to lay a
foundation for the study of implicit models for graph generation. We report the results for both early
stopping strategies: VAL-CRITERION and EO-CRITERION. In line with our intuition, we can see
that higher EO leads to generated graphs with statistics closer to the original. Results for additional
statistics, respective definitions, as well as details about the baselines can be found in the appendix.

Figs. 3b and 3c show how the graph statistics evolve as we train GraphGAN on CORA-ML. In
Fig. 3b we see that after 40K training iterations we are able to reach the assortativity value of the
original graph. Fig. 3c shows that the edge overlap smoothly increasing with the number of epochs.

6

Under review as a conference paper at ICLR 2018

Table 2: Comparison of graph statistics between the original CORA-ML graph and graphs gener-
ated by GraphGAN and the baselines, averaged over 5 trials. Marked in bold and italics are the
results that are closest and second-closest to the input graph, respectively. * indicates values for the
configuration model that by definition exactly match the input graph.

Graph Max.
degree

Assorta-
tivity

Triangle
count

Power law
exponent

Largest
conn. comp.

Avg. Inter-com-
munity density

Avg. Intra-com-
munity density

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.
CORA-ML 240 -0.075 2,814 1.86 2,810 4.3e−4 1.7e−3
Conf. model (1% EO) * * -0.030± 0.003 322 ± 31 * * 2,785 ± 4.9 1.6e−3 ±1e−5 2.8e−4 ±1e−5
Conf. model (52% EO) * * -0.051± 0.002 626 ± 19 * * 2793 ± 6.0 9.8e−4 ±1e−5 9.9e−4 ±2e−5
node2vec naı̈ve (1% EO) 14 ± 1.4 -0.007± 0.011 16 ± 4.4 1.68 ± 0.001 2,810 ± 0.1 1.4e−3 ±1e−5 3.8e−4 ±2e−5
DC-SBM (11% EO) 165 ± 9.0 -0.052± 0.004 1,403 ± 67 1.814 ± 0.008 2,474 ± 18.9 6.7e−4 ±2e−5 1.2e−3 ±4e−5
ERGM (56% EO) 243 ± 1.94 -0.077± 0.000 2,293 ± 23 1.786 ± 0.003 2,489 ± 11.0 6.9e−4 ±2e−5 1.2e−3 ±1e−5
GraphGAN VAL (39% EO) 199 ± 6.7 -0.060± 0.004 1,410 ± 30 1.773 ± 0.002 2,809 ± 1.6 6 .5e−4 ±1e−5 1 .3e−3 ±2e−5
GraphGAN EO (52% EO) 233 ± 3.6 -0.066± 0.003 1,588 ± 59 1.793 ± 0.003 2,807 ± 1.6 6.0e−4±1e−5 1.4e−3±1e−5

Note: EO is a suitable measure of closeness since we generate graphs with same node ordering and
same number of edges as the input. We provide similar plots for the other graph statistics and for
CITESEER in the appendix.

4.2 LINK PREDICTION

Link prediction is a classical task in graph mining, where the goal is to predict new links in a
given graph. We use it to evaluate the generalization properties of GraphGAN. We hold out 10% of
edges from the graph for validation, and 5% as the test set, along with the same amount of randomly
selected non-edges. We also ensure that the training network remains connected and does not contain
any singletons. We measure the performance with the commonly used metrics area under the ROC
curve (AUC) score and precision-recall AUC score, known as average precision (AP).

To evaluate GraphGAN’s link prediction performance, we sample a specific number of random
walks (500K/100M) from the trained generator. We use the observed transition counts between any
two nodes as a measure of how likely there is an edge between them. Additionally, we concatenate
W down and W up and use the dot product as an alternative way to perform link prediction. We
compare with Adamic/Adar (Adamic & Adar, 2003), the degree-corrected stochastic blockmodel
(DC-SBM) (Karrer & Newman, 2011), and node2vec (Grover & Leskovec, 2016).

Evaluation. The results are listed in Table 3. There is no overall dominating method, with different
methods achieving best results on different datasets. GraphGAN shows competitive performance
for all datasets, for both the transition count based and the dot product based link prediction, even
achieving state-of-the-art results for some of them, despite not being explicitly trained for this task.

Table 3: Link prediction performance.

Method CORA-ML CORA CITESEER DBLP PUBMED POLBLOGS
ROC AP ROC AP ROC AP ROC AP ROC AP ROC AP

Adamic/Adar 92.16 85.43 93.00 86.18 88.69 77.82 91.13 82.48 84.98 70.14 85.43 92.16
DC-SBM 96.03 95.15 98.01 97.45 94.77 93.13 97.05 96.57 96.76 95.64 95.46 94.93
node2vec 92.19 91.76 98.52 98.36 95.29 94.58 96.41 96.36 96.49 95.97 85.10 83.54
GraphGAN (500K) 94.00 92.32 82.31 68.47 95.18 91.93 82.45 70.28 87.39 76.55 95.06 94.61
GraphGAN (100M) 95.19 95.24 84.82 88.04 96.30 96.89 86.61 89.21 93.41 94.59 95.51 94.83
GraphGAN ([W down,W up]) 90.29 88.29 84.38 79.36 92.95 92.44 86.59 81.96 91.79 89.37 70.01 62.72

Interestingly, for the transition count based link prediction, the GraphGAN performance increases
when increasing the number of random walks sampled from the generator. This is especially true
for the larger networks (CORA, DBLP, PUBMED), since given their size we need more random
walks to cover the entire graph. This suggests that for an additional computational cost, one can
get significant gains in performance. Note that while 100M may seem like an large number, the
sampling process is trivially parallelizable.

Sensitivity analysis. Although GraphGAN has many hyperparameters – typical for a GAN model,
in practice most of them are not critical for performance. The two important exceptions are the length
of the random walks T , and the discriminator type. Fig. 4 empirically confirms the choice of a neural
network that generates random walks of length T as opposed to just edges; the model does not have

7

Under review as a conference paper at ICLR 2018

2 4 8 16 20
Random walk length

0.7

0.8

0.9

Lin
k

pr
ed

ict
io

n
sc

or
e

Avg. precision
ROC AUC

Figure 4: Effect of the random walk
length on the performance.

the capacity to fit the model by just considering edges (i.e.
random walks of length 2). In the experiment we sample
500K random walks from the trained models for each T , av-
eraged over five runs. The performance gain for random walk
length 20 over 16 is marginal and does not outweigh the addi-
tional computational cost; therefore, we use random walks of
length 16 for all experiments. In the appendix we show that
our choice of a recurrent discriminator achieves better link
prediction performance than a variant based on convolutions,
hence we use it for all experiments in this work.

4.3 NODE CLASSIFICATION

We perform node classification using W up and W down, which can be viewed as low-dimensional
feature representations of the nodes, to show the generalization properties of GraphGAN. We eval-
uate both W down, W up, as well as their concatenation, comparing with node2vec as a strong base-
line. Note that unlike in the link prediction task we cannot use the generated graphs to perform node
classification. Similar to (Grover & Leskovec, 2016; Perozzi et al., 2014) we train a logistic regres-
sion model on a small randomly selected subset (< 20% of nodes) using the ground-truth labels and
evaluate the classification performance on the remaining samples. Additionally, we visualize W up

using t-SNE to demonstrate that a community structure has emerged in the embedding space.

0 5 10 15

% of labeled nodes

0.4

0.5

0.6

0.7

0.8

C
la

ss
ifi

ca
ti

on
F

1
sc

or
e

Wup

node2vec
Wdown

[Wup,Wdown]

(a) (b)

Figure 5: (a) Node classification performance on CORA-ML, and (b) t-SNE visualization of W up,
where the color indicates the ground truth communities.

Evaluation. In Fig. 5a, we visualize the weighted macro F1 score for node classification. The
results are averaged over five trials, and the shaded areas indicate the standard deviation of the
respective curves. The embedding-like weights in W up produced by GraphGAN as a byproduct
show comparable performance with node2vec – an algorithm specifically designed to learn node
embeddings. This indicates that during the process of learning to generate random walks GraphGAN
also captured meaningful structural information. The emergent community structure seen in Fig. 5b
further emphasizes this. In this t-SNE visualization of W up, we can clearly see a grouping of
nodes from the same community, which means that they lie in similar regions of the embedding
space. Although GraphGAN’s learned node representations clearly show they they capture useful
information about the nodes, they are only a byproduct of the training procedure. Recall that the
main goal of GraphGAN is graph generation; if node classification is the user goal, dedicated node
embedding algorithms are the preferred option.

4.4 LATENT VARIABLE INTERPOLATION

Latent space interpolation is a good way to gain insight into what kind of structure the generator
was able to capture. To be able to visualize the properties of the generated graphs we train our
model using noise z drawn from a bivariate standard normal distribution, which corresponds to a
2-dimensional latent space Ω = R2. Then, instead of sampling z from the entire latent space Ω,
we now sample from subregions of Ω and visualize the results. More specifically, we divide Ω into
20×20 subregions (bins) of equal probability mass using the cumulative distribution function Φ. For

8

Under review as a conference paper at ICLR 2018

each bin we generate 62.5K random walks. We evaluate properties of both the generated random
walks themselves, as well as properties of the resulting graph when sampling a binary adjacency
matrix for each bin, visualizing them as heatmaps.

Evaluation. In Fig. 6a and 6b we see properties of the generated random walks; in Fig. 6c and 6d,
we visualize properties of graphs sampled from the random walks in the respective bins. In all four
heatmaps, we see distinct patterns, e.g. higher average degree of starting nodes for the bottom right
region of Fig. 6a, or higher degree distribution inequality in the top-right area of Fig. 6c. While
Fig. 6c and 6d show that certain regions of z correspond to generated graphs with very different
degree distributions, recall that sampling from the entire latent space (Ω) yields sibling graphs with
degree distribution similar to the original graph (see Fig. 1c). The model was trained on CORA-ML.
We provide further heatmaps for other metrics (16 in total) as well as visualizations for CITESEER
in the appendix.

This experiment clearly demonstrates that by interpolating in the latent space we can obtain graphs
with smoothly changing properties. The smooth transitions in the heatmaps provide evidence that
our model learns to map specific parts of the latent space to specific properties of the graph.

0 1Φ(z1)
0

1

Φ
(z

2
)

8

10

12

14

16

18

20

22

(a) Avg. degree
of start node

0 1Φ(z1)
0

1

Φ
(z

2
)

0.28

0.3

0.32

0.35

0.38

0.4

0.42

(b) Avg. share of nodes in
start community

0 1Φ(z1)
0

1

Φ
(z

2
)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

(c) Gini coefficient
(input graph: 0.48)

0 1Φ(z1)
0

1

Φ
(z

2
)

150

200

250

300

350

400

450

(d) Max. degree
(input graph: 240)

Figure 6: Properties of the random walks as well as the graphs sampled from the 20 × 20 bins. 6a
and 6b show properties of the random walks, 6c and 6d show properties of the generated graphs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Φ
(z

2)

Φ(z1)

(Ω)

(*)

(a) Community histograms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Φ(z1)

0.1

0.2

0.3

C
om

m
un

it
y

sh
ar

e

Community 2

Community 5

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Φ(z1)

0.10

0.15

0.20

C
om

m
un

it
y

sh
ar

e

Community 4

Community 7

(c)

Figure 7: Community distributions (see appendix for definition) when sampling random walks on
subsets of the latent space z. (a) shows complete community histograms on a 10× 10 grid. (b) and
(c) show exemplary trajectories in latent space. (Ω) is the community distribution when sampling
from the entire latent space, and (*) is the community distribution of the CORA-ML network. Also
available as an animation https://goo.gl/BGDX4o.

We can also see this mapping from latent space to the generated graph properties in the community
distribution histograms on a 10 × 10 grid in Fig. 7. Marked by (*) and (Ω) we see the community
distributions for the input graph and the graph obtained by sampling on the complete latent space,

9

https://goo.gl/BGDX4o

Under review as a conference paper at ICLR 2018

respectively. In Fig. 7b and 7c, we see the evolution of selected community shares when following
a trajectory from top to bottom, and left to right, respectively. The community histograms resulting
from sampling random walks from opposing regions of the latent space are very different; again the
transitions between these histograms are smooth, as can be seen in the trajectories in Fig. 7b and 7c.

5 DISCUSSION AND FUTURE WORK

When evaluating different graph generative models in Sec. 4.1, we observed a major limitation
of explicit models. While the prescribed approaches excel at recovering the properties that are
directly included in their definition, they perform significantly worse with respect to the rest of
the metrics. This phenomenon clearly indicates the need for implicit graph generators, such as
GraphGAN. Indeed, we notice that our model is able to consistently capture all the important graph
characteristics (see Table 2). Moreover, GraphGAN generalizes beyond the input graph, as can be
seen by its strong link prediction performance in Sec. 4.2.

Still, being the first model of its kind, GraphGAN possesses certain limitations, and a number of
related questions could be addressed in follow-up works:

Scalability. We have observed in Sec. 4.2 that it takes a large number of generated random walks to
get representative transition counts for large graphs. While sampling random walks from GraphGAN
is trivially parallelizable, a possible extension of our model is to use a conditional generator, i.e. the
generator can be provided a desired starting node, thus ensuring a more even coverage. On the other
hand, the sampling procedure itself can be sped up by incorporating a hierarchical softmax output
layer - a method commonly used in natural language processing.

Evaluation. It is nearly impossible to judge whether a graph is realistic by visually inspecting
it (unlike images, for example). In this work we already quantitatively evaluate the performance
of GraphGAN on a large number of standard graph statistics. However, developing new measures
applicable to (implicit) graph generative models will deepen our understanding of their behavior.

Experimental scope. In the current work we focused on the setting of a single connected graph.
Other scenarios, such as dealing with a collection of smaller i.i.d. graphs, that frequently occur
in other fields (e.g., chemistry, biology), would be an important application area for the proposed
model. Studying the influence of the graph topology (e.g., sparsity, diameter) on performance of
GraphGAN will shed more light on its properties.

Other types of graphs. While plain graphs are ubiquitous, many of real-world applications deal
with attributed, k-partite or heterogeneous networks. Adapting the GraphGAN model to handle
these other modalities of the data is a promising direction for future research. Especially important
would be an adaptation to the dynamic / inductive setting, when new nodes are added over time.

6 CONCLUSION

GraphGAN is the first work to successfully bridge the worlds of implicit modeling and graphs.
Our work enables future researchers to gain better insight into the properties of real networks and
opens new and exciting lines of research. We are able to generate realistic graphs by learning to
generate (biased) random walks from the same distribution as the random walks from an input
graph. We employ the GAN framework to learn our implicit generative model, overcoming key
challenges such as permutation invariance, working in the discrete domain and having a single graph
as input. Our generator is able to generate sibling graphs that maintain structural similarity with the
original graph without being exact replicas. Better yet, using our defined stopping criteria, we can
control how close are the generated graphs to the original. We further show that GraphGAN learns a
semantic mapping from the latent space to the properties of the generated graph, which is evidenced
by the smooth transitions of the output. GraphGAN shows strong generalization properties, as
demonstrated by the competitive performance on the link prediction and the promising results on
the node classification task, without being explicitly trained with these tasks in mind.

10

Under review as a conference paper at ICLR 2018

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230,
2003.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Edward A Bender and E Rodney Canfield. The asymptotic number of labeled graphs with given
degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296–307, 1978.

David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative adversar-
ial networks. arXiv preprint arXiv:1703.10717, 2017.

Henk M Blanken, Arjen P de Vries, Henk Ernst Blok, and Ling Feng. Multimedia retrieval.
Springer, 2007.

Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM computing surveys (CSUR), 38(1):2, 2006.

Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua
Bengio. Maximum-likelihood augmented discrete generative adversarial networks. arXiv preprint
arXiv:1702.07983, 2017.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun.
Generating multi-label discrete electronic health records using generative adversarial networks.
arXiv preprint arXiv:1703.06490, 2017.

Yuxiao Dong, Reid A Johnson, Jian Xu, and Nitesh V Chawla. Structural diversity and homophily:
A study across more than one hundred big networks. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 807–816. ACM, 2017.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the third ACM conference on Digital libraries, pp. 89–98. ACM, 1998.

Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al. A survey of
statistical network models. Foundations and Trends R© in Machine Learning, 2(2):129–233, 2010.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864. ACM, 2016.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Im-
proved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, Pavel N. Krivitsky,
and Martina Morris. ergm: Fit, Simulate and Diagnose Exponential-Family Models for Net-
works. The Statnet Project (http://www.statnet.org), 2017. URL https://CRAN.
R-project.org/package=ergm. R package version 3.8.0.

R Devon Hjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, and Yoshua Bengio. Boundary-
seeking generative adversarial networks. arXiv preprint arXiv:1702.08431, 2017.

11

http://www.statnet.org
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm

Under review as a conference paper at ICLR 2018

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.
1162/neco.1997.9.8.1735.

Paul W Holland and Samuel Leinhardt. An exponential family of probability distributions for di-
rected graphs. Journal of the american Statistical association, 76(373):33–50, 1981.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1):016107, 2011.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete elements with
the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051, 2016.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky. Adversarial learning for neural
dialogue generation. arXiv preprint arXiv:1701.06547, 2017.

Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P Xing. Recurrent topic-transition
gan for visual paragraph generation. arXiv preprint arXiv:1703.07022, 2017.

Weiyi Liu, Pin-Yu Chen, Hal Cooper, Min Hwan Oh, Sailung Yeung, and Toyotaro Suzumura. Can
gan learn topological features of a graph? arXiv preprint arXiv:1707.06197, 2017.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree sequence.
Random structures & algorithms, 6(2-3):161–180, 1995.

Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party deep network repre-
sentation. Network, 11(9):12, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710. ACM, 2014.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93, 2008.

Sahar Tavakoli, Alireza Hajibagheri, and Gita Sukthankar. Learning social graph topologies using
generative adversarial neural networks. 2017.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a prob-
abilistic latent space of object shapes via 3d generative-adversarial modeling. In Advances in
Neural Information Processing Systems, pp. 82–90, 2016.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI, pp. 2852–2858, 2017.

12

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Under review as a conference paper at ICLR 2018

APPENDIX

We denote as V the set of all nodes in a graph, E as the set of edges, and as Ci ⊆ V , i ∈ {1, . . . , k}
communities in a graph. Every node in the graphs we consider is assigned to exactly one of these
communities. N(v) = {v′|(v, v′) ∈ E} denotes the set of neighbors of a node v, and d(v) = |N(v)|
is the degree of node v.

Given two graphs G1 and G2 with the same number of nodes and edges, i.e. |V1| = |V2|, |E1| =
|E2|, we define their edge overlap as

EO(G1, G2) =
|E1 ∩ E2|
|E1|

=
|E1 ∩ E2|
|E2|

.

GRAPH GENERATION BASELINES

Graph generation from node embeddings. As a naı̈ve baseline for generating a graph from node
embeddings, we propose the following strategy. As suggested by Grover & Leskovec (2016), we
train a logistic regression model on node embeddings learned by node2vec to get edge probabilities.
Using these link prediction scores, we generate first-order random walks. The starting nodes are
sampled from a categorical distribution where the probability for each node is proportional to its
degree in the input graph. The subsequent nodes are sampled using the logistic regression model,
i.e. proportional to the log probabilities of a link between the previous node and all other nodes.
We repeat this for T=16 time steps and for 500K random walks. We use our procedure described in
Section 3.3 to assemble an adjacency matrix from the transition counts.

Configuration model. In addition to randomly rewiring all edges in the input graph, we also gen-
erate random graphs with similar overlap as graphs generated by GraphGAN using the configuration
model. For this, we randomly select a share of edges (e.g. 39%) and keep them fixed, and shuffle
the remaining edges. This leads to a graph with the specified edge overlap; in Table 2 we show that
with the same edge overlap, GraphGAN’s generated graphs in general match the input graph better
w.r.t the statistics we measure.

Exponential random graph model. The ERGM we used takes as parameters the edge count,
density, degree correlation, deg1.5, and gwesp. Here, deg1.5 is the sum of all degrees to the power
of 1.5, and gwesp refers to the geometrically weighted edgewise shared partner distribution (see
Handcock et al. (2017) for details).

Table 4: Graph statistics used to measure graph properties in this work.

Metric name Computation Description
Maximum degree max

v∈V
d(v) Maximum degree of all nodes in a graph.

Community distribution ci =
∑

v∈Ci
d(v)∑

v∈V d(v)

Share of in- and outgoing edges of community Ci, nor-
malized by the number of edges in the graph.

LCC Nmax = max
f⊆F

|f | Size of largest connected component, where F are all
connected components.

Power law exponent 1 + n

(∑
u∈V

log d(u)
dmin

)−1
Exponent of the power law distribution, where dmin
denotes the minimum degree in a network.

Gini coefficient 2
∑|V |

i=1 id̂i

|V |
∑|V |

i=1 d̂i
− |V |+1

|V |
Common measure for inequality in a distribution,
where d̂ is the sorted list of degrees in the graph.

Triangle count |{{u,v,w}|{(u,v),(v,w),(u,w)}⊆E}|
6

Number of triangles in the graph, where u ∼ v denotes
that u and v are connected.

Wedge count
∑
v∈V

(
d(v)
2

) Number of wedges, i.e. two-hop paths in an undirected
graph.

Rel. edge distr. entropy 1
ln |V |

∑
v∈V −

d(v)
|E| ln d(v)

|E|
Entropy of degree distribution, 1 means uniform, 0
means a single node is connected to all others.

Assortativity ρ = cov(X,Y)
σXσY

Pearson correlation of degrees of connected nodes,
where the (xi, yi) pairs are the degrees of connected
nodes.

13

Under review as a conference paper at ICLR 2018

GraphGAN Input graph DC-SBM Val-Criterion EO-Criterion

0k 20k 40k 60k 80k 100k
Training iteration

100

150

200

250

M
ax

. d
eg

re
e

(a)

0k 20k 40k 60k 80k 100k
Training iteration

0.08

0.06

0.04

0.02

As
so

rta
tiv

ity
(b)

0k 20k 40k 60k 80k 100k
Training iteration

0

1000

2000

Tr
ia

ng
le

 c
ou

nt

(c)

0k 20k 40k 60k 80k 100k
Training iteration

1.775

1.800

1.825

1.850

Po
we

r l
aw

 e
xp

.

(d)

0k 20k 40k 60k 80k 100k
Training iteration

2500

2600

2700

2800
LC

C

(e)

0k 20k 40k 60k 80k 100k
Training iteration

0.00

0.25

0.50

0.75

1.00

Ed
ge

 o
ve

rla
p

(f)

Figure 8: Evolution of graph statistics during training on CORA-ML

GraphGAN Input graph DC-SBM Val-Criterion EO-Criterion

0k 20k 40k 60k 80k 100k
Training iteration

40

50

60

70

M
ax

. d
eg

re
e

(a)

0k 20k 40k 60k 80k 100k
Training iteration

0.075

0.050

0.025

0.000

As
so

rta
tiv

ity

(b)

0k 20k 40k 60k 80k 100k
Training iteration

0

100

200

300

400

Tr
ia

ng
le

 c
ou

nt

(c)

0k 20k 40k 60k 80k 100k
Training iteration

2.10

2.15

2.20

Po
we

r l
aw

 e
xp

.

(d)

0k 20k 40k 60k 80k 100k
Training iteration

1700

1800

1900

2000

2100

LC
C

(e)

0k 20k 40k 60k 80k 100k
Training iteration

0.00

0.25

0.50

0.75

1.00

Ed
ge

 o
ve

rla
p

(f)

Figure 9: Evolution of graph statistics during training on CITESEER

14

Under review as a conference paper at ICLR 2018

0 1Φ(z1)
0

1

Φ
(z

2
)

8

10

12

14

16

18

20

22

(a) Avg. degree
of start node

0 1Φ(z1)
0

1

Φ
(z

2
)

0.28

0.3

0.32

0.35

0.38

0.4

0.42

(b) Avg. share of nodes in
start community

0 1Φ(z1)
0

1

Φ
(z

2
)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

(c) Gini coefficient
(input graph: 0.48)

0 1Φ(z1)
0

1

Φ
(z

2
)

150

200

250

300

350

400

450

(d) Max. degree
(input graph: 240)

0 1Φ(z1)
0

1

Φ
(z

2
)

−0.1

−0.08

−0.06

−0.04

−0.02

0.0

(e) Assortativity
(input graph: -0.075)

0 1Φ(z1)
0

1

Φ
(z

2
)

14.75

15.0

15.25

15.5

15.75

16.0

16.25

16.5

16.75

(f) Claw count
(input graph: 3.1× 106)

0 1Φ(z1)
0

1

Φ
(z

2
)

0.88

0.89

0.9

0.91

0.92

0.93

(g) Rel. edge distr. entro-
py (input graph: 0.94)

0 1Φ(z1)
0

1

Φ
(z

2
)

2720

2740

2760

2780

2800

(h) Largest conn. comp.
(input graph: 2,810)

0 1Φ(z1)
0

1

Φ
(z

2
)

0.05

0.06

0.06

0.06

0.07

0.08

0.08

(i) Edge
overlap

0 1Φ(z1)
0

1

Φ
(z

2
)

2.25

2.5

2.75

3.0

3.25

3.5

3.75

4.0

4.25

(j) Power law exponent
(input graph: 1.86)

0 1Φ(z1)
0

1

Φ
(z

2
)

0.76

0.78

0.8

0.82

0.84

(k) Avg. precision
link prediction

0 1Φ(z1)
0

1

Φ
(z

2
)

0.66

0.68

0.7

0.72

0.74

0.76

(l) ROC AUC
link prediction

0 1Φ(z1)
0

1

Φ
(z

2
)

0.01

0.02

0.03

0.04

(m) Share of walks
in single community

0 1Φ(z1)
0

1

Φ
(z

2
)

0.88

0.9

0.92

0.94

0.96

(n) Avg. start node
entropy

0 1Φ(z1)
0

1

Φ
(z

2
)

1000

2000

3000

4000

5000

(o) Triangle count
(input graph: 2,814)

0 1Φ(z1)
0

1

Φ
(z

2
)

120000

140000

160000

180000

200000

(p) Wedge count
(input graph: 101,872)

Figure 10: Properties of the random walks as well as the graphs sampled from the 20 × 20 latent
space bins, trained on CORA-ML.

15

Under review as a conference paper at ICLR 2018

0 1Φ(z1)
0

1

Φ
(z

2
)

4

5

6

7

8

9

(a) Avg. degree
of start node

0 1Φ(z1)
0

1

Φ
(z

2
)

0.4

0.42

0.44

0.46

0.48

0.5

(b) Avg. share of nodes in
start community

0 1Φ(z1)
0

1

Φ
(z

2
)

0.38

0.4

0.42

0.44

0.46

0.48

(c) Gini coefficient
(input graph: 0.404)

0 1Φ(z1)
0

1

Φ
(z

2
)

60

70

80

90

100

110

120

130

140

(d) Max. degree
(input graph: 77)

0 1Φ(z1)
0

1

Φ
(z

2
)

−0.08

−0.06

−0.04

−0.02

0.0

(e) Assortativity
(input graph: -0.022)

0 1Φ(z1)
0

1

Φ
(z

2
)

11.5

12.0

12.5

13.0

13.5

(f) Claw count
(input graph: 125,701)

0 1Φ(z1)
0

1

Φ
(z

2
)

0.94

0.94

0.94

0.95

0.96

0.96

0.96

(g) Rel. edge distr. entro-
py (input graph: 0.96)

0 1Φ(z1)
0

1

Φ
(z

2
)

2050

2060

2070

2080

2090

2100

2110

(h) Largest conn. comp.
(input graph: 2,110)

0 1Φ(z1)
0

1

Φ
(z

2
)

0.12

0.12

0.12

0.13

0.14

0.14

0.14

0.15

0.16

(i) Edge
overlap

0 1Φ(z1)
0

1

Φ
(z

2
)

2.2

2.25

2.3

2.35

2.4

(j) Power law exponent
(input graph: 2.239)

0 1Φ(z1)
0

1

Φ
(z

2
)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

(k) Avg. precision
link prediction

0 1Φ(z1)
0

1

Φ
(z

2
)

0.84

0.86

0.88

0.9

0.92

(l) ROC AUC
link prediction

0 1Φ(z1)
0

1

Φ
(z

2
)

0.04

0.05

0.06

0.07

0.08

(m) Share of walks
in single community

0 1Φ(z1)
0

1

Φ
(z

2
)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

(n) Avg. start node
entropy

0 1Φ(z1)
0

1

Φ
(z

2
)

150

200

250

300

350

400

(o) Triangle count
(input graph: 451)

0 1Φ(z1)
0

1

Φ
(z

2
)

15000

20000

25000

30000

35000

(p) Wedge count
(input graph: 16,824)

Figure 11: Properties of the random walks as well as the graphs sampled from the 20 × 20 latent
space bins, trained on CITESEER.

16

Under review as a conference paper at ICLR 2018

Table 5: GraphGAN with recurrent vs convolutional discriminator. We train GraphGAN with the
recurrent and convolutional discriminator variants five times each and measure their link prediction
scores on the CORA-ML dataset to evaluate which variant is suited better for our task.

Discri-
minator

ROC AUC Avg. Prec.
Mean Std. Mean Std

Recurrent 92.07± 0.005 94.88± 0.002
Conv. 89.70± 0.017 93.02± 0.011

Table 6: Comparison of graph statistics between the CITESEER/CORA-ML graph and graphs gen-
erated by GraphGAN and DC-SBM, averaged after 5 trials. Marked in bold and italic are the results
that are closest and second-closest to the ground truth graph, respectively, except for edge overlap,
where lower can be considered better.

Graph Max.
degree Assortativity Triangle

count
Power law
exponent

Avg. Inter-com-
munity density

Avg. Intra-com-
munity density

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.
CITESEER 77 -0.022 451 2.239 4.9e−4 9.3e−4
GraphGAN (42% EO) 54 ± 4.2 -0.082± 0.009 316 ± 11.2 2.154 ± 0.003 6.5e−4 ±2e−5 8 .0e−4 ±2e−5
GraphGAN (76% EO) 63 ± 4.3 -0.054± 0.006 227 ± 13.3 2.204 ± 0.003 5.9e−4±2e−5 8.6e−4±1e−5
DC-SBM (6.6% EO) 53 ± 5.6 0.022 ± 0.018 257 ± 30.9 2.066 ± 0.014 7.6e−4 ±2e−5 5.3e−4 ±3e−5
Conf. model * * -0.017± 0.006 20 ± 6.50 * * 1.1e−3 ±1e−5 2.3e−4 ±2e−5
Conf. model (42% EO) * * -0.020± 0.009 54 ± 8.8 * * 8.4e−4 ±1e−5 5.1e−4 ± 1e−5
Conf. model (76% EO) * * -0.024± 0.006 207 ± 11.8 * * 6 .3e−4 ±1e−5 7.6e−4 ± 1e−5
node2vec naı̈ve 9 ± 0.4 -0.052± 0.021 2 ± 0.49 2.04 ± 0.002 1.1e−3 ±2e−5 2.7e−4 ±1e−5
ERGM (27% EO) 66 ± 1 0.052 ± 0.005 415.6 ± 8 2.0 ± 0.01 9.3e−4 ±2e−5 4.8e−4 ±6e−6
CORA-ML 240 -0.075 2,814 1.86 4.3e−4 1.7e−3
GraphGAN (39% EO) 199 ± 6.7 -0.060± 0.004 1,410 ± 30 1.773 ± 0.002 6 .5e−4 ±1e−5 1 .3e−3 ±2e−5
GraphGAN (52% EO) 233 ± 3.6 -0.066± 0.003 1,588 ± 59 1.793 ± 0.003 6.0e−4 ±1e−5 1.4e−3 ±1e−5
DC-SBM (11% EO) 165 ± 9.0 -0.052± 0.004 1,403 ± 67 1.814 ± 0.008 6.7e−4 ±2e−5 1.2e−3 ±4e−5
Conf. model * * -0.030± 0.003 322 ± 31 * * 1.6e−3 ±1e−5 2.8e−4 ±1e−5
Conf. model (39% EO) * * -0.050± 0.005 420 ± 14 * * 1.1e−3 ±1e−5 8.0e−4 ±1e−5
Conf. model (52% EO) * * -0.051± 0.002 626 ± 19 * * 9.8e−4 ±1e−5 9.9e−4 ±2e−5
node2vec naı̈ve 14 ± 1.4 -0.007± 0.011 16 ± 4.4 1.68 ± 0.001 1.4e−3 ±1e−5 3.8e−4 ±2e−5
ERGM (56% EO) 243 ± 1.94 -0.077± 0.000 2,293 ± 23 1.786 ± 0.003 6.9e−4 ±2e−5 1.2e−3 ±1e−5

Graph Wedge count Rel. edge
distr. entr.

Largest
conn. comp Claw count Gini coeff. Edge overlap

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.
CITESEER 16,824 0.959 2,110 125,701 0.404 1
GraphGAN (42% EO) 12,998 ± 84.6 0.969 ± 0.000 2,079 ± 12.6 57,654 ± 4,226 0.354 ± 0.001 0.42 ± 0.006
GraphGAN (76% EO) 15,202 ± 378 0.963 ± 0.000 2,053 ± 23 94,149 ± 11,926 0.385 ± 0.002 0.76 ± 0.01
DC-SBM (6.6% EO) 15,531 ± 592 0.938 ± 0.001 1,697 ± 27 69,818 ± 11,969 0.502 ± 0.005 0.066 ± 0.011
Conf. model * * 0.955 ± 0.001 2,011 ± 6.8 * * * * 0.008 ± 0.001
Conf. model (42% EO) * * 0.956 ± 0.001 2,045 ± 12.5 * * * * 0.42 ± 0.002
Conf. model (76% EO) * * 0.957 ± 0.001 2,065 ± 10.2 * * * * 0.76 ± 0.0
node2vec naı̈ve 8,157 ± 36.0 0.986 ± 0.000 2,110 ± 0.0 6,671 ± 121.4 0.257 ± 0.002 0.004 ± 0.001
ERGM (27% EO) 16,346 ± 101 0.945 ± 0.001 1,753 ± 15 80,510 ± 1,337 0.474 ± 0.003 0.27 ± 0.01
CORA-ML 101,872 0.941 2,810 3.1e6 0.482 1
GraphGAN (39% EO) 75,724 ± 1,401 0.959 ± 0.000 2,809 ± 1.6 1.8e6 ± 141,795 0.398 ± 0.002 0.39 ± 0.004
GraphGAN (52% EO) 86,763 ± 1,096 0.954 ± 0.001 2,807 ± 1.6 2 .6e6 ± 103,667 0.42 ± 0.003 0.52 ± 0.001
DC-SBM (11% EO) 73,921 ± 3,436 0.934 ± 0.001 2,474 ± 18.9 1.2e6 ± 170,045 0.523 ± 0.003 0.11 ± 0.003
Conf. model * * 0.928 ± 0.002 2,785 ± 4.9 * * * * 0.013 ± 0.001
Conf. model (39% EO) * * 0.931 ± 0.002 2,793 ± 2.0 * * * * 0.39 ± 0.0
Conf. model (52% EO) * * 0.933 ± 0.001 2,793 ± 6.0 * * * * 0.52 ± 0.0
node2vec naı̈ve 31,456 ± 91.5 0.990 ± 0.000 2,810 ± 0.1 47,548 ± 516 0.226 ± 0.002 0.006 ± 0.001
ERGM (56% EO) 98,615 ± 385 0.932 ± 0.001 2,489 ± 11 3, 1e6 ± 57,092 0.517 ± 0.002 0.56 ± 0.014

17

Under review as a conference paper at ICLR 2018

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Φ
(z

2
)

Φ(z1)

Figure 12: Community distributions of graphs generated by GraphGAN on subregions of the latent
space z, trained on the CITESEER network.

18

	Introduction
	Related work
	GANs for graphs
	Architecture
	Training
	Assembling the adjacency matrix

	Experiments
	Graph generation
	Link prediction
	Node classification
	Latent variable interpolation

	Discussion and future work
	Conclusion

