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ABSTRACT

Humans can understand and produce new utterances effortlessly, thanks to their
systematic compositional skills. Once a person learns the meaning of a new verb
“dax,” he or she can immediately understand the meaning of “dax twice” or “sing
and dax.” In this paper, we introduce the SCAN domain, consisting of a set of
simple compositional navigation commands paired with the corresponding action
sequences. We then test the zero-shot generalization capabilities of a variety of
recurrent neural networks (RNNs) trained on SCAN with sequence-to-sequence
methods. We find that RNNs can generalize well when the differences between
training and test commands are small, so that they can apply “mix-and-match”
strategies to solve the task. However, when generalization requires systematic
compositional skills (as in the “dax” example above), RNNs fail spectacularly.
We conclude with a proof-of-concept experiment in neural machine translation,
supporting the conjecture that lack of systematicity is an important factor explain-
ing why neural networks need very large training sets.

1 INTRODUCTION

Human language and thought are characterized by systematic compositionality, the algebraic ca-
pacity to understand and produce a potentially infinite number of novel combinations from known
components. For example, if a person knows the meaning and usage of words such as “twice,”
“and,” and “again,” once she learns a new verb such as “to dax” she can immediately understand or
produce instructions such as “dax twice and then dax again.” This type of compositionality is central
to the human ability to make strong generalizations from very limited data. In a set of influential
and controversial papers, Jerry Fodor and other researchers have argued that neural networks are not
plausible models of the mind because they are associative devices that cannot capture systematic
compositionality (Fodor & Pylyshyn, 1988; Marcus, 1998; Fodor & Lepore, 2002; Marcus, 2003;
Calvo & Symons, 2014, a.o.).

In the last few years, neural network research has made astounding progress in practical domains
where success crucially depends on the generalization capabilities of a system. Perhaps most strik-
ingly, end-to-end recurrent neural networks currently dominate the state-of-the-art in machine trans-
lation (Bojar et al., 2016; Wu et al., 2016).1 Since the overwhelming majority of sentences or even
word sequences in a language only occur once, even in a large corpus (Baroni, 2009), this points
to strong generalization abilities. Still, it is commonly observed that neural networks are extremely
sample inefficient, requiring very large training sets, which suggests they may lack the same alge-
braic compositionality that humans exploit, and they might only be sensitive to broad patterns over
lots of accumulated statistics (Lake et al., 2016).

In this paper, we introduce a grounded navigation environment where the learner must translate
commands given in a limited form of natural language into a sequence of actions. This problem is
naturally framed as a sequence-to-sequence task, and, due to its simplicity, it is ideal to study the
systematic generalization capabilities of computational systems to novel examples in a controlled

1Very recently, convolutional networks have reached comparable or superior performance on the same task
(Gehring et al., 2017). We leave the investigation of their systematicity to future work.

1



Under review as a conference paper at ICLR 2018

jump ⇒ JUMP
jump left ⇒ LTURN JUMP
jump around right ⇒ RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice ⇒ LTURN LTURN
jump thrice ⇒ JUMP JUMP JUMP
jump opposite left and walk thrice ⇒ LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left ⇒ LTURN WALK LTURN WALK LTURN WALK LTURN WALK

LTURN LTURN JUMP

Figure 1: Examples of SCAN commands (left) and the corresponding action sequences (right).

setup. We thus use it to test a wide range of modern recurrent network architectures in terms of
their compositional skills. Our results suggest that, although standard architectures such as LSTMs
with attention (Bahdanau et al., 2015) do generalize when novel examples feature a mixture of con-
structions that have been observed in training, the models are catastrophically affected by systematic
differences between training and test sentences, of the sort that would be trivial for an agent equipped
with an “algebraic mind” (Marcus, 2003).

2 THE SCAN TASKS

We call our data set SCAN because it is a Simplified version of the CommAI Navigation tasks
(Mikolov et al., 2016).2 For a learner, the goal is to translate commands presented in simplified
natural language into a sequence of actions. Since each command is unambiguously associated to a
single action sequence, SCAN (unlike the original CommAI tasks) can be straightforwardly treated
as a supervised sequence-to-sequence semantic parsing task (Dong & Lapata, 2016; Jia & Liang,
2016; Herzig & Berant, 2017), where the input vocabulary is given by the set of words used in the
commands, and the output by the set of actions available to the learner.

Several examples from SCAN are presented in Fig. 1. Formally, SCAN consists of all the commands
generated by a phrase-structure grammar (see Appendix Fig. 6) and the corresponding sequence of
actions, produced according to a semantic interpretation function (Appendix Fig. 7). Intuitively, the
SCAN grammar licenses commands denoting primitive actions such as JUMP (denoted by “jump”;
Fig. 1), WALK (denoted by “walk”) and LTURN (denoted by “turn left”). We will refer to these as
primitive commands. It also accepts a set of modifiers and conjunctions that compositionally build
expressions referring to action sequences. The “left” and “right” modifiers take commands referring
to undirected primitive actions as input and return commands denoting their directed counterparts
(“jump left”; Fig. 1). The “opposite” modifier produces an action sequence that turns the agent
backward in the specified direction before executing a target action (“jump opposite left”), while
“around” makes the agent execute the action at each step while turning around in the specified direc-
tion (“jump around right”; Fig. 1). The “twice/thrice” modifiers trigger repetition of the command
they take scope over, and “and/after” combine two action sequences. Although the SCAN examples
in Fig. 1 focus on the “jump”/JUMP primitive, each instance of JUMP can be replaced with either
WALK, RUN, or LOOK to generate yet more commands. Many more combinations are possible as
licensed by the grammar.

The SCAN grammar, lacking recursion, generates a finite but large set of commands (20,910, to be
precise). Commands can be decoded compositionally by applying the function in Appendix Fig. 7.
This means that, if it acquires the right interpretation function, a learner can understand commands
it has not seen during training. For example, the learner might have only observed the primitive
“jump” command during training, but if it has learned the meaning of “after”, “twice” and “around
left” from other verbs, it should be able to decode, zero-shot, the complex command: “jump around
left after jump twice”.

3 MODELS AND SETUP

We approach SCAN through the popular sequence-to-sequence (seq2seq) framework, in which two
recurrent networks work together to learn a mapping between input sequences and output sequences

2SCAN available at: http://anonymized.com
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jump

WALK

twice and walk <EOS>

JUMP JUMP

<SOS> JUMP JUMP WALK

<EOS>

Figure 2: How the seq2seq framework is applied to SCAN. The symbols <EOS> and <SOS> denote end-
of-sentence and start-of-sentence, respectively. The encoder (left) ends with the first <EOS> symbol, and the
decoder (right) begins with the <SOS> symbol.

(e.g., Sutskever et al., 2014). Fig. 2 illustrates the application of the seq2seq approach to a SCAN
example. First, a recurrent network encoder receives the input sequence word-by-word, forming a
low-dimensional representation of the entire command. Second, the low-dimensional representation
is passed to a recurrent network decoder, which then generates the output sequence action-by-action.
The decoder’s output is compared with the ground truth, and the backpropagation algorithm is used
to the update the parameters of both the encoder and decoder. Note that although the encoder and
decoder share the same network structure (e.g., number of layers and hidden units), they do not
otherwise share weights/parameters with each other. More details regarding the encoder-decoder
RNN are provided in the Appendix.

Using the seq2seq framework, we tested a range of standard recurrent neural network models from
the literature: simple recurrent networks (SRNs; Elman, 1990), long short-term memory networks
(LSTMs; Hochreiter & Schmidhuber, 1997), and gated recurrent units (GRUs; Chung et al., 2014).
Recurrent networks with attention have become increasingly popular in the last few years, and thus
we also tested each network with and without an attentional mechanism, using the attentional model
from Bahdanau et al. (2015) (see Appendix for more details). Finally, to make the evaluations as
systematic as possible, a large-scale hyperparameter search was conducted that varied the number
of layers (1 or 2), the number of hidden units per layer (25, 50, 100, 200, or 400), and the amount
of dropout (0, 0.1, 0.5; applied to recurrent layers and word embeddings). Varying these hyperpa-
rameters leads to 180 different network architectures, all of which were run on each experiment and
replicated 5 times each with different random initializations.3

In reporting the results and analyzing the successes and failures of the networks, we focus on the
overall-best architecture as determined by the extensive hyperparameter search. The winning archi-
tecture was a 2-layer LSTM with 200 hidden units per layer, no attention, and dropout applied
at the 0.5 level. Although the detailed analyses to follow focus on this particular architecture, the
top-performing architecture for each experiment individually is also reported and analyzed.

Networks were trained with the following specifications. Training consisted of 100,000 trials, each
presenting an input/output sequence and then updating the networks weights. The ADAM opti-
mization algorithm was used with default parameters, including a learning rate of 0.001 (Kingma &
Welling, 2014). Gradients with a norm larger than 5.0 were clipped. Finally, the decoder requires the
previous step’s output as the next step’s input, which was computed in two different ways. During
training, for half the time, the network’s self-produced outputs were passed back to the next step,
and for the other half of the time, the ground-truth outputs were passed back to the next step (teacher
forcing; Williams & Zipser, 1989). The networks were implemented in PyTorch and based on a
standard seq2seq implementation.4

4 EXPERIMENTS

In each of the following experiments, the recurrent networks are trained on a large set of commands
from the SCAN tasks to establish background knowledge. The networks were successful at master-
ing the background tasks: Training accuracy was above 99.5% for the overall-best network in each
of the key experiments, and it was at least 95% or above for the top-performers in each experiment

3A small number of runs (23/3600) did not complete, and thus not every network had 5 runs.
4http://pytorch.org/tutorials/intermediate/seq2seq_translation_

tutorial.html
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Figure 3: Zero-shot generalization
after training on a random subset
of the SCAN tasks. The overall-
best network was trained on vary-
ing proportions of the corpus (x-
axis) and generalization was mea-
sured on new tasks (y-axis). Each
bar shows the mean over 5 training
runs with corresponding ±1 SEM.
Note that the SCAN tasks were ran-
domly split once, and progressively
more examples were added to form
the more varied training subsets.

specifically. After training, the networks are then evaluated on new commands designed to test gen-
eralization beyond the background set in systematic, compositional ways. In evaluating these new
commands, the networks must make zero-shot generalizations and produce the appropriate action
sequence based solely on extrapolation from the background training.

EXPERIMENT 1: GENERALIZING TO A RANDOM SUBSET OF COMMANDS

In this straightforward experiment, the SCAN tasks were randomly split into a training set (80%)
and a test set (20%). The training set provides broad coverage of the task space, and the test set ex-
amines how networks can decompose and recombine commands from the training set. For instance,
the network is asked to perform the new command, “jump opposite right after walk around right
thrice,” as a zero-shot generalization in the test set. Although the conjunction as a whole is novel, the
parts are not: The training set features many examples of the parts in other contexts, e.g., “jump op-
posite right after turn opposite right” and “jump right twice after walk around right thrice”(both
bold sub-strings appear 83 times in the training set). To succeed, the network needs to make com-
positional generalizations, recombining pieces of existing commands to perform new ones.

Overall, the networks were highly successful at generalizing to random SCAN commands. The top-
performing network for this experiment achieved 99.8% correct on the test set (accuracy values here
and below are averaged over five training runs). The top-performing architecture was a LSTM with
no attention, 2 layers of 200 hidden units, and no dropout. The best-overall network achieved 99.7%
percent correct. Interestingly, not every architecture was successful: Classic SRNs performed very
poorly, and the best SRN achieved less than 1.5% correct at test time (performance on the training
set was equally low). However, attention-augmented SRNs learned the commands much better,
achieving 59.7% correct on average for the test set (with a range between 18.4% and 94.0% across
SRN architectures). For LSTMs and GRUs, attention was not essential, because many of the highest
performing architectures did not use it.

It is not yet clear how much background knowledge is required to learn the underlying compositional
structure of the tasks. As indicated above, the main split was quite generous, providing 80% of the
commands at training time for a total of over 16,700 distinct examples (with strong combinatorial
coverage). We next re-trained the best-overall network with varying numbers of distinct examples.
The results are shown in Fig. 3. With 1% of the commands shown during training (about 210 exam-
ples), the network performs poorly at about 5% correct. With 2% coverage, performance improves
to about 54% correct on the test set. By 4% coverage, performance is about 93% correct. Our re-
sults show that not only can networks generalize to random subsets of the tasks, they can do so from
relatively sparse coverage of the compositional command space. Still, even with this sparser cover-
age, differences between training and test instances are not dramatic. Let’s for example consider the
set of all commands without a conjunction (e.g., “walk around thrice”, “run”, “jump opposite left
twice”). All the commands of this sort that occur in the test set of the 2% training coverage split
(either as components of a conjunction or by themselves) also occur in the corresponding training
set, with an average of 8 occurrences. Even for the 1% split, there is only one conjunction-less test
command that does not also occur in the training split, and the average frequency of occurrence of
such commands in the training set is at a non-negligible value of 4 times.
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Figure 4: Zero-shot generalization to commands with action sequence lengths not seen in training. Left: ac-
curacy distribution by action sequence length; right: accuracy distribution by command length (only lengths
attested in the test set shown, in both cases). Bars show means over 5 runs of overall-best model with±1 SEM.

EXPERIMENT 2: GENERALIZING TO COMMANDS DEMANDING LONGER ACTION SEQUENCES

The previous experiment confirmed that sequence-to-sequence RNNs can zero-shot generalize to
new commands. This is not too surprising, as otherwise they could not have achieved the impressive
results they reached in machine translation and other domains. However, the random split we con-
sidered above implies that the degree of generalization required to understand the test commands
and to produce action sequences will be generally minor, and could be performed by recombining
pieces of seen commands/action sequences within familiar templates, as we discussed.

We study next a more systematic form of generalization, where models must bootstrap to commands
requiring longer action sequences than those seen in training.5 Now the training set contains all
16,990 commands requiring sequences of up to 22 actions, whereas the test set includes all remain-
ing commands (3,920, requiring action sequences of lengths from 24 to 48). Under this split, for
example, at test time the network must execute the command “jump around left twice and walk op-
posite right thrice”, requiring a sequence of 25 actions. While all the elements used in the command
have been observed during training, the network has never been asked to produce a sequence of this
length, nor it has ever seen an “around * twice” command conjoined with an “opposite * thrice”
command (although it did observe both components conjoined with others). Thus, it must produc-
tively generalize familiar verbs, modifiers and conjunctions to generate longer action sequences.

This test turns out to be very challenging for all models. The best result (20.8% on average, again
over 5 runs) is achieved by a GRU with attention, one 50-dimensional hidden layer, and dropout 0.5
(interestingly, a model with considerably less capacity than the best for the random-split setup). The
overall-best model achieves 13.8% accuracy.

Fig. 4 (left) shows partial success is almost entirely explained by generalization to the shortest action
sequence lengths in the test set. The right panel of Fig. 4 shows accuracy in the test set organized
by command length (in word tokens). The model only gets right some of the longest commands
(8 or 9 tokens). In the training set, the longest action sequences (≥20) are invariably associated to
commands containing 8 or 9 tokens. Thus, the model is correctly generalizing only in those cases
that are most similar to training instances.

Finally, we studied whether the difficulty with long sequences can be mitigated if the proper length
was provided by an oracle at evaluation time.6 If this difficulty is a relatively straightforward issue
of the decoder terminating too early, then this should provide an (unrealistic) fix. If this difficulty
is symptomatic of deeper problems with generalization, then this change will have only a small ef-
fect. With the oracle, the overall-best network performance improved from 13.8% to 23.6% correct,
which was notable but insufficient to master the long sequences. The top-performing model showed
a more substantial improvement (20.8% to 60.2%). Although improved, the networks were far from

5We focus on action sequence length rather than command length since the former exhibits more variance
(1-48 vs. 1-9).

6Any attempt from the decoder to terminate the action sequence with an <EOS> was ignored (and the
second strongest action was chosen) until a sequence with proper length was produced.
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run jump run twice jump twice
look .73 run .15 look twice .72 walk and walk .19
walk .65 walk .13 run twice and .65 run and walk .16

look opposite right thrice
walk after run .55 turn right .12 run twice and .64 walk opposite right .12

run right twice and walk
run thrice .50 look right twice .09 run twice and .63 look right and walk .12
after run after walk twice look opposite right twice
run twice .49 turn right .09 walk twice and run twice .63 walk right and walk .11
after run after turn right

Table 1: Nearest training-element hidden representations for a sample of commands, with the respective
cosines. Here, “jump” was trained in isolation while “run” was trained compositionally. Italics are used to
emphasize large-distance items (cosine <0.2).

perfect and still exhibited key difficulties with long sequences of output actions (again, even for the
top model, there was a strong effect of action sequence length, with average accuracy ranging from
95.76% for commands requiring 24 actions to 22.8% for commands requiring 48 actions).

EXPERIMENT 3: GENERALIZING COMPOSITION ACROSS PRIMITIVE COMMANDS

Our next experiment comes closest to testing Fodor’s view of systematicity. In the training phase,
the model is exposed to the primitive command only denoting a certain basic action (e.g., “jump”).
The model is also exposed to all primitive and composed commands for all other actions (e.g., “run”,
“run twice”, “walk”, “walk opposite left and run twice”, etc.). At test time, the model has to execute
all composed commands for the action that it only saw in the primitive context (e.g., “jump twice”,
“jump opposite left and run twice”, etc.). According to the classic thought experiments of Fodor and
colleagues, this should be easy: if you know the meaning of “run”, “jump” and “run twice”, you
should also understand what “jump twice” means.

We run two variants of the experiment generalizing from “turn left” and “jump”, respectively. Since
“turn right” is distributionally identical to “turn left” and “walk”, “run” and “look” are distribution-
ally identical to “jump”, it is redundant to test all commands. Moreover, to ensure the networks were
highly familiar with the target primitive command (“jump” or “turn left”), it was over-represented
in training such that roughly 10% of all training presentations were of the command.

We obtain strikingly different results for “turn left” and “jump”. For “turn left”, many models
generalize very well to composed commands. The best performance is achieved by a GRU network
with attention, one layer with 100 hidden units, and dropout of 0.1 (90.3% accuracy). The overall-
best model achieved 90.0% accuracy. On the other hand, for “jump,” models are almost completely
incapable to generalize to composed commands. The best performance was 1.2% accuracy (LSTM,
attention, one layer, 100 hidden units, dropout 0.1). The overall-best model reached 0.08% accuracy.

In the case of “turn left”, although models are only exposed to the primitive command during train-
ing, they will see the action it denotes (LTURN) many times, as it is used to accomplish many di-
rected actions. For example, a training example is: “walk left and jump left”, with ground-truth inter-
pretation: LTURN WALK LTURN JUMP. Apparently, seeing action sequences containing LTURN
suffices for the model to understand composed commands with “turn left”. On the other hand, the
action denoted by “jump” (JUMP) only occurs with this primitive command in training, and the
model does not generalize from this minimal context to new composed ones.

Looking at the results in more details (for the median-performance run of the overall-best model), we
observe that even in the successful “turn left” case the model errors are surprising. One would expect
such errors to be randomly distributed, or perhaps to pertain to the longest commands or action
sequences. Instead, all 45 errors made by the model are conjunctions where one of the components
is simple “turn left” (22 cases) or “turn left thrice” (23 cases). This is particularly striking because
the network produced the correct mapping for “turn left” during training, as well as for “turn left
thrice” at test time, and it gets many more conjunctions right (ironically, including “turn left thrice
and turn left”, “turn left thrice after turn left” etc.). We conclude that, even when the network has
apparently learned systematic composition almost perfectly, it got at it in a very non-human-like
way: it’s hard to conceive of someone who understood the meaning of “turn left”, and “jump right

6
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Figure 5: Zero-shot generalization af-
ter adding the primitive “jump” and
some compositional jump commands.
The overall-best network was trained
on different numbers of composed
“jump” commands (x-axis), and gen-
eralization was measured on new
composed “jump” commands (y-axis).
Each bar shows the mean over 5 runs
with varying training commands along
with the corresponding ±1 SEM.

and turn left twice” (which the network gets right), but not that of “jump right and turn left” (one
of the examples the network missed). In the “jump” experiment, the network could only correctly
decode two composite cases, both starting with the execution of primitive “jump”, conjoined with a
different action: “jump and run opposite right”, “jump and walk around left thrice”.

It is instructive to look at the representations that the network induced for various commands in the
latter experiment. Table 1 reports the 5 nearest neighbours for a sample of commands. Command
similarity is measured by the cosine between the final decoder hidden state vectors, and computed
with respect to all commands present in the training set. “Run” is provided as an example primitive
command for which the model has been exposed to the full composed paradigm in training. As
one would expect, “run” is close to the other primitive commands (“look”, “walk”), as well as to
short conjoined commands that contain primitive “run” as one of the conjuncts (we observe a similar
pattern for the “jump” representation induced in Experiment 1). Instead, since “jump” had a different
training distribution than the other primitive commands, the model does not capture its similarity to
them, as shown by the very low cosines of its nearest “neighbours”. Since it fails to establish a link
to other basic commands, the model does not generalize modifier application from them to “jump”.
Although “run twice” is similar to (conjunctions of) other primitive tasks composed with “twice”,
“jump twice” is isolated in representational space, and its (far) nearest neighbours look arbitrary.

We tested here systematicity in its purest form: the model was only exposed to “jump” in isolation,
and asked to bootstrap to its compositional paradigm based on the behaviour of other primitive com-
mands such as “walk”, “look” and “run”. Although we suspect humans would not have problems
with this setup, it arguably is too opaque for a computational model, which could lack evidence for
“jumping” being the same sort of action as “walking”. Suppose we give the network some evidence
that “jumping” composes like “walking” by showing a few composed “jump” command during
training. Is the network then able to generalize to the full composed paradigm?

This question is answered in Figure 5. Again, the new primitive command (and its compositions)
were over-sampled during training to make up 10% of all presentations. Here, even when shown
4 different composed commands with “jump”, the network does not generalize to other composed
commands (4.1% correct). Weak generalization starts appearing when the network is presented 8
composed tasks in training (15.3%), and significant generalization (still far from perfect) shows
up when the training set contains 16 and especially 32 distinct composed commands (70.2% and
89.9%, respectively). We conclude that the network is not failing to generalize simply because, in
the original setup, it had no evidence that “jump” should behave like the other commands. On the
other hand, the runs with more composed examples confirm that, as we found in Experiment 1, the
network does display powerful generalization abilities. Simply, they do not conform to the “all-or-
nothing” rule-based behaviour we would expect from a systematically compositional device–and, as
a consequence, they require more positive examples to emerge.

EXPERIMENT 4: COMPOSITIONALITY IN MACHINE TRANSLATION

Our final experiment is a proof-of-concept that our findings are more broadly applicable; that is, the
limitations of recurrent networks with regards to systematic compositionality extend beyond SCAN
to other sequence-to-sequence problems such as machine translation. First, to test our setup for
machine translation, we trained our standard seq2seq code on short (≤ 9 words) English-French
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sentence pairs that begin with English phrases such as “I am,” “he is,” “they are,” and their contrac-
tions (randomly split with 10,000 for training and 1180 for testing).4 An informal hyperparameter
search led us to pick a LSTM with attention, 2 layers of 400 hidden units, and 0.05 dropout. With
these hyperparameters and the same training procedure used for the SCAN tasks (Section 3), the
network reached a respectable 28.6 BLEU test score after 100,000 steps.

Second, to examine compositionality with the introduction of a new word, we trained a fresh network
after adding 1,000 repetitions of the sentence “I am daxy” (fr. “je suis daxiste”) to the training data
(the BLEU score on the original test set dropped less than 1 point). We tested this network by
embedding “daxy” into the following constructions: “you are daxy” (“tu es daxiste”), “he is daxy”
(“il est daxiste”), “I am not daxy” (“je ne suis pas daxiste”), “you are not daxy” (“tu n’es pas
daxiste”), “he is not daxy” (“il n’est pas daxiste”), “I am very daxy” (“je suis très daxiste”), “you
are very daxy” (“tu es très daxiste”), “he is very daxy” (“il est très daxiste”). During training, the
model saw these constructions occurring with 22 distinct predicates on average (limiting the counts
to perfect matches, excluding, e.g., “you are not very X”). Still, the model could only get one of the
8 translations right (that of “he is daxy”). For comparison, for the adjective “tired”, which occurred
in 80 different constructions in the training corpus, our model had 8/8 accuracy when testing on
the same constructions as for “daxy” (only one of which also occurred with “tired” in the training
set). Although this is a small-scale machine translation problem, our preliminary result suggests that
models will similarly struggle with systematic compositionality in larger data sets, when adding a
new word to their vocabulary, in ways that people clearly do not.

5 DISCUSSION

In the thirty years since the inception of the systematicity debate, many authors on both sides have
tested the ability of neural networks to solve tasks requiring compositional generalization, with
mixed results (e.g., Christiansen & Chater, 1994; Marcus, 1998; Phillips, 1998; Chang, 2002; van
der Velde et al., 2004; Wong & Wang, 2007; Brakel & Frank, 2009; Frank et al., 2009; Frank, 2014).
However, to the best of our knowledge, ours is the first study testing systematicity in modern seq2seq
models, and our results confirm the mixed picture. On the one hand, standard recurrent models can
reach very high zero-shot accuracy from relatively few training examples, as long as the latter are
generally representative of the test data (Experiment 1). However, the same networks fail spectac-
ularly when there are systematic differences between training and testing. Crucially, the training
data of the relevant experiments provide enough evidence to learn composition rules affording the
correct generalizations. In Experiment 2, the training data contain examples of all modifiers and
connectives that are needed at test time for producing longer action sequences. In Experiment 3, the
usage of modifiers and connectives is illustrated at training time by their application to some primi-
tive commands, and, at test time, the model should apply them to a new command it encountered in
isolation during training. Nonetheless, this evidence was not sufficient for each of the networks we
tested. Generalization only occurs when the networks are also exposed to the target command (or
the corresponding action) in a fair number of composed contexts during training.

Given the astounding successes of seq2seq models in challenging tasks such as machine translation,
one might argue that failure to generalize by systematic composition indicates that neural networks
are poor models of some aspects of human cognition, but it is of little practical import. However,
systematicity is an extremely efficient way to generalize. Once a person learns the new English ad-
jective “daxy”, he or she can immediately produce and understand an infinity of sentences containing
it. The SCAN experiments and a proof-of-concept machine translation experiment (Experiment 4)
suggest that this ability is still beyond the grasp of state-of-the-art networks, likely contributing to
their striking sample-inefficiency. These results give us hope that a model capable of systematic
compositionality could greatly benefit machine translation and other applications.

A natural way of achieving stronger compositionality is through learning more structured repre-
sentations. Recently, neural networks with external memories have shown promise for extracting
algorithm-like representations from input/output examples (Joulin & Mikolov, 2015; Graves et al.,
2016); for instance, these networks can outperform standard RNNs on generalizing to longer se-
quences. Future work will explore these approaches on SCAN and other tests of zero-shot compo-
sitional generalization. Ultimately, we see systematic compositionality as key both to developing
more powerful algorithms and to enriching our computational understanding of the human mind.
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APPENDIX

C→ S and S V→ D[1] opposite D[2] D→ turn left
C→ S after S V→ D[1] around D[2] D→ turn right
C→ S V→ D U→ walk
S→ V twice V→ U U→ look
S→ V thrice D→ U left U→ run
S→ V D→ U right U→ jump

Figure 6: Phrase-structure grammar generating SCAN commands. We use indexing notation to allow infixing:
D[i] is to be read as the i-th element directly dominated by category D.

Jwalk K = WALK Ju opposite rightK = Jturn opposite rightK JuK
JlookK = LOOK Jturn around leftK = LTURN LTURN LTURN LTURN
JrunK = RUN Jturn around rightK = RTURN RTURN RTURN RTURN
JjumpK = JUMP Ju around leftK = LTURN JuK LTURN JuK LTURN JuK
Jturn leftK = LTURN LTURN JuK
Jturn rightK = RTURN Ju around rightK = RTURN JuK RTURN JuK RTURN JuK
Ju leftK = LTURN JuK RTURN JuK
Ju rightK = RTURN JuK Jx twiceK = JxK JxK
Jturn opposite leftK = LTURN LTURN Jx thriceK = JxK JxK JxK
Jturn opposite rightK = RTURN RTURN Jx1 and x2K = Jx1K Jx2K
Ju opposite leftK = Jturn opposite leftK JuK Jx1 after x2K = Jx2K Jx1K

Figure 7: Double brackets (JK) denote the interpretation function translating SCAN’s linguistic commands into
sequences of actions (denoted by uppercase strings). Symbols x and u denote variables, the latter limited to
words in the set {walk, look, run, jump}. The linear order of actions denotes their temporal sequence.

STANDARD ENCODER-DECODER RNN

In this section, we describe the encoder-decoder framework, borrowing from the description in Bah-
danau et al. (2015). The encoder receives a natural language command as a sequence of T words.
The words are transformed into a sequence of vectors, {w1, . . . , wT }, which are learned embed-
dings with the same number of dimensions as the hidden layer. A recurrent neural network (RNN)
processes each word

ht = fE(ht−1, wt), (1)
where ht is the encoder hidden state. The final hidden state hT (which may include multiple layers
for multi-layer RNNs) is passed to the RNN decoder as hidden state g0 (see Figure 2). Then, the
RNN decoder must generate a sequence of output actions a1, . . . , aR. To do so, it computes

gt = fD(gt−1, at−1), (2)

where gt is the decoder hidden state and at−1 is the (embedded) output action from the previous
time step. Last, the hidden state gt is mapped to a softmax to select the next action at from all
possible actions.

ATTENTION ENCODER-DECODER RNN

For the encoder-decoder with attention, the encoder is identical to the one described above. Unlike
the standard decoder that can only see hT , the attention decoder can access all of the encoder hidden
states, h1, . . . , hT (in this case, only the last layer if multi-layer). At each step i, a context vector ci
is computed as a weighted sum of the encoder hidden states

ci =

T∑
t=1

αitht. (3)

The weights αit are computed using a softmax function αit = exp(eit)/
∑T

j=1 exp(eij), where
eit = v>a tanh(Wagi−1 + Uaht) is an alignment model that computes the similarity between the
previous decoder hidden state gi−1 and an encoder hidden state ht (for the other variables, va, Wa,
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and Ua are learnable parameters) (Bahdanau et al., 2015). This context vector ci is then passed as
input to the decoder RNN at each step with the function

gi = fD(gi−1, ai−1, ci), (4)

which also starts with hidden state g0 = hT , as in the standard decoder. Last, the hidden state gi is
concatenated with ci and mapped to a softmax to select new action ai.
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