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ABSTRACT

Profiling cellular phenotypes from microscopic imaging can provide meaning-
ful biological information resulting from various factors affecting the cells. One
motivating application is drug development: morphological cell features can be
captured from images, from which similarities between different drugs applied at
different dosages can be quantified. The general approach is to find a function
mapping the images to an embedding space of manageable dimensionality whose
geometry captures relevant features of the input images. An important known
issue for such methods is separating relevant biological signal from nuisance vari-
ation. For example, the embedding vectors tend to be more correlated for cells
that were cultured and imaged during the same week than for cells from a different
week, despite having identical drug compounds applied in both cases. In this case,
the particular batch a set of experiments were conducted in constitutes the domain
of the data; an ideal set of image embeddings should contain only the relevant
biological information (e.g. drug effects). We develop a general framework for
adjusting the image embeddings in order to ‘forget’ domain-specific information
while preserving relevant biological information. To do this, we minimize a loss
function based on distances between marginal distributions (such as the Wasser-
stein distance) of embeddings across domains for each replicated treatment. For
the dataset presented, the replicated treatment is the negative control. We find
that for our transformed embeddings (1) the underlying geometric structure is not
only preserved but the embeddings also carry improved biological signal (2) less
domain-specific information is present.

1 INTRODUCTION

In the framework where our approach is applicable, there are some inputs (e.g. images) and a map
F sending the inputs to vectors in a low-dimensional space which summarizes information about
the inputs. F could either be engineered using specific image features, or learned (e.g. using deep
neural networks). We will call these vectors ‘embeddings’ and the space to which they belong the
‘embedding space’. Each input may also have corresponding semantic labels and domains, and for
inputs with each label and domain pair, F produces some distribution of embeddings. Semantically
meaningful similarities between pairs of inputs can then be assessed by the distance between their
corresponding embeddings, using some chosen distance metric. Ideally, the embedding distribution
of a group of inputs depends only on their label, but often the domain can influence the embedding
distribution as well. We wish to find an additional map to adjust the embeddings produced by F so
that the distribution of adjusted embeddings for a given label is independent of the domain, while still
preserving semantically meaningful distances between distributions of inputs with different labels.

The map F can be used for phenotypic profiling of cells. In this application, images of biological
cells perturbed by one of several possible biological stimuli (e.g. various drug compounds at differ-
ent doses, some of which may have unknown effects) are mapped to embeddings, which are used to
reveal similarities among the applied perturbations.

There are a number of ways to extract embeddings from images of cells. One class of methods such
as that used by Ljosa et al. (2013) relies on extracting specifically engineered features. In the recent
work by Ando et al. (2017), a Deep Metric Network pre-trained on consumer photographic images
(not microscope images of cells) described in Wang et al. (2014) was used to generate embedding
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vectors from cellular images, and it was shown that these clustered drug compounds by their mech-
anisms of action (MOA) more effectively. See Figure 1 for example images of the different MOAs.

Currently one of the most important issues with using image embeddings to discriminate the effects
of each treatment (i.e. a particular dose of a drug, the ‘label’ in the general problem described above)
on morphological cell features is nuisance factors related to slight uncontrollable variations in each
biological experiment. Many cell imaging experiments are organized into a number of batches of
experiments occurring over time, each of which contains a number of sample plates (typically 3-6),
each of which contains individual wells in which thousands of cells are grown and treatments are
applied (typically around 96 wells per plate). For this application, the ‘domain’ is an instance of
one of these hierarchical levels, and embeddings for cells with a given treatment tend to be closer to
each other within the same domain than from a different one. For example, the experimentalist may
apply slightly different concentrations or amounts of a drug compound in two wells in which the
same treatment was anticipated. Another example is the location of a particular well within a plate
or the order of the plate within a batch, which may influence the rate of evaporation, and hence, the
appearance of the cells. Finally, ‘batch’ effects may result from differences in experiment conditions
(temperature, humidity) from week to week; they are various instances of this hierarchical level that
we will consider as ‘domains’ in this work.

Our approach addresses the issue of nuisance variation in embeddings by transforming the embed-
ding space in a possibly domain-specific way in order to minimize the variation across domains for
a given treatment. We remark that our main goal is to introduce a general flexible framework to ad-
dress this problem. In this framework, we use a metric function measuring the distances among pairs
of probability distributions to construct an optimization problem whose solution yields appropriate
transformations on each domain. In our present implementation, the Wasserstein distance is used
as a demonstration of a specific choice of the metric that can yield substantial improvements. The
Wasserstein distance makes few assumptions about the probability distributions of the embedding
vectors.

Our approach is fundamentally different than those which explicitly identify a fixed ‘target’ and
‘source’ distributions. Instead, we incorporate information from all domains on an equal footing,
transforming all the embeddings. This potentially allows our method to incorporate several repli-
cates of a treatment across different domains to learn the transformations, and not only the controls.
We highlight that other distances may be used in our framework, such as the Cramer distance. This
may be preferable since the Cramer distance has unbiased sample gradients (Bellemare et al., 2017).
This could reduce the number of steps required to adjust the Wasserstein distance approximation for
each step of training the embedding transformation. Additionally we propose several other exten-
sions and variations in Section 4.1.

2 METHOD

2.1 PROBLEM DESCRIPTION

Denote the embedding vectors xt,d,p for t ∈ T , d ∈ D, and p ∈ It,d, where T and D are the
treatment and domain labels respectively, and It,d is the set of indices for embeddings belonging to
treatment t and domain d. Suppose that xt,d,p were sampled from a probability distribution νt,d. our
goal is to ‘forget’ the nuisance variation in the embeddings, which we formalize in the following way.
We wish to find maps Ad transforming the embedding vectors such that the transformed marginals
ν̃t,d have the property that for each t ∈ T and di, dj ∈ D, ν̃t,di ≈ ν̃t,dj (for some suitable metric
between distributions). Intuitively, the transformationsAd can be thought of as correcting a domain-
specific perturbation. We do not have ‘source’ and ‘target’ distributions, and instead perturb all the
embedding distributions simultaneously. The transformationsAd should be small to avoid distorting
the underlying geometry of the embedding space, since we do not expect nuisance variation to be
very large.
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2.2 GENERAL APPROACH

The 1-Wasserstein distance (hereafter will be simply referred to as the Wasserstein distance) between
two probability distributions νr and νg on a compact metric space χ with metric δ is given by

W (νr, νg) = inf
γ∈Π(νr,νg)

E(x,y)∼γδ(x, y). (1)

Here Π(νr, νg) is the set of all joint distributions γ(x, y) whose marginals are νr and νg . This can
be intuitively interpreted as the minimal cost of a transportation plan between the probability masses
of νr and νg . In our application, the metric space was Rn and δ was the Euclidean metric. If the
Wasserstein distance between two distributions is zero, then it becomes impossible to discern the
origin of a sample from one of these two distributions. In addition, the Wasserstein distance (as well
as other related metrics for probability distributions) are more appropriate to use than classifiers.
This is because classifiers are more sensitive to the distinguishability between probability distri-
butions than other potentially meaningful features. For instance, two otherwise identical Gaussian
distributions displaced from one another would have Wasserstein distance equal to the displacement
between them. On the contrary, a classifier would yield a function that has vanishing gradients for
sufficiently large displacement.

Given two or more probability distributions, their mean can be defined under the Wasserstein dis-
tance, known as the ‘Wasserstein barycenter’. Explicitly, the Wasserstein barycenter of N distribu-
tions ν1, ..., νN is defined as the distribution µ that minimizes

1

N

N∑
i=1

W (µ, νi). (2)

The Wasserstein barycenter and its computation have been studied in many contexts, such as op-
timal transport theory (Cuturi & Doucet, 2014; Anderes et al., 2016). In Tabak & Trigila (2018),
the Wasserstein barycenter has been suggested as a method to remove nuisance variation in high-
throughput biological experiments. Two key ingredients of the Wasserstein barycenter are that (i) the
nuisance variation is removed in the sense that a number of distinct distributions are transformed into
a common distribution, and hence become indistinguishable; and (ii) the distributions are minimally
perturbed by the transformtions.

Our method is based on these two requirements, where a separate map is associated with each do-
main. For each treatment, the average Wasserstein distance among all pairs of transformed distribu-
tions across domains is included in the loss function. Specifically, the average Wasserstein distance
is formulated as

2

N(N − 1)

N∑
i,j=1,i<j

W (Adi(νi), Adj (νj)), (3)

where the coefficient is the normalizing constant. When multiple treatments are considered, the
same number of average Wasserstein distances corresponding to the treatments are included in the
loss function. Thus, (i) is achieved by minimizing a loss function containing pairwise Wasserstein
distances. Compared with the ResNet used in Shaham et al. (2017), we achieve (ii) by early stopping
or adding a regularization term to the loss function. In Section 4.1, we will present another possible
formulation that aligns more closely with the idea of the Wasserstein barycenter.

One distinct advantage of the Wasserstein distance is that this metric avoids problematic vanishing
gradients during training, which are known to occur for metrics based on the KL-divergence, such
as the cross entropy (Arjovsky et al., 2017). This is important from a practical point of view because
vanishing gradients may halt the solving of the resulting minimax problem in our method.

The Wasserstein distance does not have a closed form except for a few special cases, and must
be approximated in some way. The Wasserstein distance is closely related to the maximum mean
discrepancy (MMD) approximated in Shaham et al. (2017) using an empirical estimator based on the
kernel method. This method requires selecting a kernel and relevant parameters. In our application,
we do not have a fixed ‘target’ distribution, so the kernel parameters would have to be updated
during training. We choose instead to use a method based on the ideas in Arjovsky et al. (2017)
and Gulrajani et al. (2017) to train a neural network to estimate the Wasserstein distance. A similar
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approach has been proposed in Shen et al. (2017) for domain adaptation. To do this, first apply the
Kantorovich-Rubinstein duality:

W (νr, νg) = sup
‖f‖L≤1

Ex∼νr [f(x)]− Ex∼νg [f(x)] . (4)

Here, νr and νg are two probability distributions. The function f is in the space of Lipschitz func-
tions with Lipschitz constant at most 1. To estimate the Wasserstein distance, a function f can be
optimized while keeping the norm of its gradient to be less than one. We will call f the ‘Wasserstein
function’ throughout this manuscript.

2.3 NETWORK ARCHITECTURE

2.3.1 DOMAIN-SPECIFIC TRANSFORMATION

As a preprocessing step, we transform the embeddings for the dataset of interest such that the em-
beddings for the negative controls have mean zero and an identity covariance matrix (see Section
3.1 for details). We observe that the embeddings for wells corresponding to different dosages of
each compound are all shifted away from the origin in roughly the same direction by an amount that
generally increases with dosage. The variances of embeddings along the largest principal axes also
increase in a manner consistent with the drugs inducing an affine transformation of the embeddings.

Given these observations, we choose to model the impact of nuisance variation by affine trans-
formations, the intuition being that we can treat nuisance variations as small, random, drug-like
perturbations resulting from unobserved covariates. It is worth mentioning that we do not expect
this assumption to hold generally.

In the current implementation, the domain-specific transformations Ad map input embeddings to
transformed embeddings of the same dimension. Each Ad is formulated as an affine transformation
Ad(x) = Mdx+ bd.

2.3.2 LOSS FUNCTION

Collectively denote the parameters for the transformations Ad by θT. If a particular treatment t is
replicated across two or more domains d1, d2, ..., dk, the Wasserstein distances among the trans-
formed distributions are estimated for all same-treatment domain pairs. Notice the parameters for
estimating the Wasserstein distance for each t and pair di, dj are different. Collectively denote all
Wasserstein estimation parameters by θW. We consider the loss function

L(θT, θW) =
1

|T |
∑
t∈T

2

Mt(Mt − 1)

∑
di,dj∈D,i6=j

[
Wt,di,dj (θT, θW)− gt,di,dj (θT, θW)

]
+R(θT).

(5)

In (eq. 5), Wt,di,dj (θT, θW) − gt,di,dj (θT, θW) is a penalized approximation to the Wasserstein dis-
tance between domains di and dj , the function R(θT) is a regularization term for the learned trans-
formation whose purpose is to preserve the geometry of the original embeddings, Mt denotes the
number of domains in which treatment t appears, and | · | represents the cardinality of a set.

In this paper, we explore either (i) neglecting R entirely and relying on early stopping instead,
and (ii) specifying R as described below and in (eq. 6). Using one of these methods is necessary
since otherwise optimizing Lmay result in embeddings which contain no treatment information (for
example, if all embeddings are transformed to a single point).

There may be many possible forms for R, and these could involve multiple parameter choices for
different components of the transformation that θT determines. In our case, θT parameterizes an
affine transformation, and hence we choose

R(θT) =
1

|D|
∑
d

(
1

q
λM‖Md‖2F + λb‖bd‖22

)
, (6)

where ‖ · ‖F denotes the Frobenius norm, ‖ · ‖2 denotes the `2 norm, and q denotes the embedding
dimensionality. Moreover, there are two regularization weights λM and λb.
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In (eq. 5), Wt,di,dj is used to approximate the Wasserstein distance between the transformed embed-
dings of domains di and dj for treatment t upon optimization over θW. The Wasserstein distance is
given by

Wt,di,dj (θT, θW) =
1

N

∑
p∈It,di

ft,di,dj (Adi(xt,di,p; θT); θW) (7)

− 1

N

∑
q∈It,dj

ft,di,dj (Adj (xt,dj ,q; θT); θW).

Each Wasserstein function ft,di,dj in (eq. 7) depends on the parameters θW, while each transforma-
tion Ad depends on the parameters θT. For simplicity, we assume that N = |It,di | = |It,dj |, where
| · | represents the cardinality of a set. This is a reasonable assumption because in practice, the sets
It,d are chosen as minibatches in stochastic gradient descent. Each of the terms gt,di,dj is a gradient
penalty defined in (eq. 8-10).

Each Wasserstein function should be Lipschitz with Lipschitz constant 1. For differentiable func-
tions, this is equivalent to the norm being bounded by 1 everywhere. We use an approach based
on Gulrajani et al. (2017) to impose a soft constraint on the norm of the gradient. In this approach,
the hard constraint is replaced by a penalty, which is a function of the gradient of the Wasserstein
function evaluated at some set of points. The penalty term is weighted by an additional parameter γ.
We find that the value of γ = 10 used in Gulrajani et al. (2017) works well in our application, and
fix it throughout. We remark this is an appropriate choice since it is large enough so that the approx-
imation error in the Wasserstein function is small, while not causing numerical difficulties in the op-
timization routine. Since it is impossible to check the gradient everywhere, we use the same strategy
as Gulrajani et al. (2017): choose the intermediate points εAdi(xt,di,pk ; θT)+(1−ε)Adj (xt,dj ,qk ; θT)
randomly, where ε ∈ U [0, 1] and pk and qk denote the kth element of It,di and It,dj , respectively.
Denote the set of intermediate points by Jt,di,dj . Intuitively, the reason for sampling along these
paths is that the Wasserstein function f whose gradient must be constrained has the interpretation
of characterizing the optimal transport between the two probability distributions, and therefore it
is most important for the gradient constraint to hold in the intermediate region between the distri-
butions. This is motivated more formally by Proposition 1 in Gulrajani et al. (2017), which shows
that an optimal transport plan occurs along straight lines with gradient norm 1 connecting coupled
points between the probability distributions. Unlike Gulrajani et al. (2017), we impose the gradi-
ent penalty only if the gradient norm is greater than 1. Doing so works better in practice for our
application.

Explicitly, we define each gradient penalty gt,di,dj as

gt,di,dj (θT, θW) =
1

N

∑
z∈Jt,di,dj

Ht,di,dj (z; θW), (8)

where

Ht,di,dj (z; θW) =

{
γ
(
Gt,di,dj (z; θW)− 1

)2
if Gt,di,dj (z; θW) > 1,

0 otherwise.
(9)

Gt,di,dj (z; θW) = ‖∇θWft,di,dj (z; θW)‖2. (10)

To approximate the Wasserstein distance we must maximize over θW. Thus, our objective is to find

θ̂T, θ̂W = argminθT
argmaxθW

L(θT, θW). (11)

We use the approach of Ganin & Lempitsky (2015) to transform our minimax problem to a min-
imization problem by adding a ‘gradient reversal’ between the transformed embeddings and the
approximated Wasserstein distances. The gradient reversal is the identity in the forward direction,
but negates the gradients used for backpropagation.

3 EMPIRICAL RESULTS

The embeddings under consideration are generated using the method described in Ando et al. (2017),
and summarized in Section 3.1.
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3.1 DATASET AND PREPROCESSING

We use the image set BBBC021v1 (Caie et al., 2010) available from the Broad Bioimage Bench-
mark Collection (Ljosa et al., 2012). This dataset corresponds to cells prepared on 55 plates across
10 separate batches, and imaged in three color channels (i.e. stains); for a population of control
cells, a compound (DMSO) with no anticipated drug effect was applied, while various other drug
compounds were applied to the remaining cells. We compute the corresponding embeddings for
each cell image using the method in Ando et al. (2017), summarized as follows. For a 128 by 128
pixel crop around each cell for each of the three color channels, a Deep Metric Network generates a
64-dimensional embedding vector. The three vectors corresponding to the three color channels are
concatenated, forming a 192-dimensional embedding for each cell image. Using the embedding vec-
tors for all cells, a Typical Variation Normalization (TVN) is applied in which the negative controls
(i.e., DMSO) are whitened. Specifically, in the principal component analysis (PCA) basis of only
negative control cells, an affine transformation is found so that the negative controls have mean zero
and identity covariance matrix. The same transformation is then applied to the embeddings of all
cells. Note that Ando et al. (2017) uses a different terminology, where TVN includes an additional
transformation named CORAL, which will be presented and compared with in Section 3.4.

We use the same subset of treatments (concentration of a particular compound) evaluated in Ljosa
et al. (2013) and Ando et al. (2017). This subset has 103 treatments from 38 compounds, each
belonging to one of 12 known mechanism of action (MOA) groups. Sample cell images from the
12 MOA groups are shown in Figure 1. In Figure 6, we show a heatmap of the cosine similarity
matrix between pairs of the selected treatments for the TVN embeddings. This figure shows how
embeddings of the same compound, and embeddings of the compounds with the same MOA have a
tendency to cluster closer to each other in terms of the cosine distance.

Figure 1: A flowchart describing the procedure we use to generate and remove nuisance variation
from image embeddings. The embedding generation is described in Section 3.1 is characterized
by F , which maps each 128 by 128 color image into a 192-dimensional embedding vector. The
nuisance variation removal by our method is denoted by WDN (Wasserstein Distance Network).
The 12 images on the right side show representative images of cells treated with drug compounds
with one of the 12 known mechanisms of action (MOA), from the BBBC021 dataset (Ljosa et al.,
2012).

3.2 EVALUATION METRICS

Our method is evaluated by three metrics, the first two of which measure how much biological signal
is preserved in the transformed embeddings, and the last one of which measures how much nuisance
variation has been removed.
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3.2.1 K-NEAREST NEIGHBOR MECHANISM OF ACTION ASSIGNMENT

Each compound in the BBBC021 dataset has a known MOA. A desirable property of embedding
vectors is that compounds with the same MOA should group closely in the embedding space. This
property can be assessed in the following way using the ground truth MOA labels for each treatment.

First, compute the mean mX of the embeddings for each treatment X in each domain. Find the
nearest k neighbors nX,1, nX,2, ..., nX,k of mX either (i) not belonging to the same compound or
(ii) not belonging to the same compound or batch (domain), and compute the portion of them having
the same MOA as mX . Our metric is defined as the average of this quantity across all treatment
instances X in all domains. If nuisance variation is corrected by transforming the embeddings, we
may expect this metric to increase. The reason for excluding same-domain nearest neighbors is to
avoid the in-domain correlations from interfering with the metric.

The nearest k neighbors are found based on the cosine distance, which is more natural for the
embedding space than the Euclidean distance, and can be directly compared with methods in existing
literature. Moreover, our k-NN metrics are generalizations of the 1-NN metrics used in Ljosa et al.
(2013) and Ando et al. (2017).

3.2.2 SILHOUETTE INDEX

Cluster validation measures provide another way of characterizing how well compounds from the
same MOA group together in embedding space. In our application, each ‘cluster’ is a chosen MOA
containing a group of treatments, and each point in a cluster is the mean of embeddings for a partic-
ular treatment (i.e. compound and concentration) and domain.

The Silhouette index is one such measure that compares each point’s distance from points in its own
cluster to its distance from points in other clusters. It is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (12)

where a(i) is the average distance from point i to all other points in its cluster, and b(i) is the mini-
mum of all average distances from i to all other clusters (i.e. the distance to the closest neighboring
cluster) (Rousseeuw, 1987). The Silhouette index ranges between -1 and 1, with higher values
indicating better clustering results.

3.2.3 DOMAIN CLASSIFICATION ACCURACY PER TREATMENT

Another metric measures how well domain-specific nuisance information has been ‘forgotten’. To
do this, for each treatment we train a classifier to predict for each embedding the batch (domain)
from the set of possible batches (domains) for that treatment. We evaluate both a linear classifier
(i.e. logistic regression) and a random forest with 3-fold cross validation. If nuisance variation is
being corrected, the batch (domain) classification accuracy should decrease significantly. Because
only the negative control (i.e., DMSO) has replicates across experiment batches in our dataset, we
train and evaluate these two batch classifiers on this compound only.

3.3 PROCEDURE

3.3.1 LEAVE-ONE-COMPOUND-OUT CROSS-VALIDATION

For the model with either early stopping or a regularization term, the hyperparameters (i.e., the
stopping time step or the regularization weights) can be selected by a cross-validation procedure to
avoid overfitting (see Godinez et al. (2017) for an example). In particular, we apply this procedure
to the case of early stopping. Each time, an individual compound is held out, and the stopping time
step is determined by maximizing the average k-NN MOA assignment metric for k = 1, ..., 4 on
the remaining compounds. Figure 2 illustrates the k-NN MOA assignment metrics as a function of
time steps in the case when early stopping is used with compound mitoxantrone held out.

For the embeddings transformed at the optimal time step, we evaluate the k-NN MOA assignment
metrics for the held-out compound. The procedure is repeated for all the compounds, and the k-NN
MOA assignment metrics are aggregated across all the compounds. Intuitively, for each fold of
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this leave-one-compound-out cross-validation procedure, the held-out compound can be treated as
a new compound with unknown MOA, and the hyperparameters are optimized over the compounds
with known MOAs. In our case, we find that the optimal time step remains the same, i.e., 28000,
regardless of the held-out compound.

3.3.2 STANDARD ERRORS OF THE METRICS

To assess whether the improvements in the k-NN MOA assignment metric and the Silhouette index
are statistically significant, we estimate the standard errors of the metrics using a nonparametric
bootstrap method. Each time, the bootstrap samples are generated by sampling with replacement the
embeddings preprocessed by TVN in each well, and the metrics are evaluated using the bootstrap
samples. We repeat the procedure for 200 times, and obtain the standard errors of the 200 bootstrap
estimates of the metrics, which are summarized in Tables 1 and 3.

3.3.3 TRAINING PROCEDURE

The embedding transformations Ad(x) = Mdx + bd are initialized to Md = I , bd = 0, since we
wish for the learned transformations to be not too far from the identity transformation.

To approximate each of the Wasserstein functions ft,di,dj in (eq. 7), we use a network consisting of
softplus layer followed by a scalar-valued affine transformation. The softplus loss is chosen because
the Wasserstein distance estimates it produces are less noisy than other kinds of losses and it avoids
the issue of all neurons becoming deactivated (which can occur for example when using RELU
activations).

The dimension of the softplus layer used to approximate each Wasserstein function is 2. Optimiza-
tion is done using stochastic gradient instead of the sums in (eq. 7). For simplicity, the minibatch
size for each treatment per iteration step is fixed throughout. In the results presented, the minibatch
size is 50. Optimization for both classes of parameters θT and θW is done using separate RMSProp
optimizers. Prior to training θT, we use a ‘pre-training’ period of 20000 time steps to obtain a good
approximation for the Wasserstein distances. After this, we alternate between adjusting θT for 40
time steps and optimizing over θW for a single time step.

3.4 RESULTS

We compare our results to either using no transformation other than normalization (TVN) and
CORAL. CORAL applies a domain-specific affine transformation to the embeddings represented
as the rows of a matrix Xd from domain d in the following way. On the negative controls only, the
covariance matrix across the entire experiment C as well as the covariance Cd in each domain d are
computed. Notice that since TVN had already been applied (see Section 3.1), C = I . Then, all
embedding coordinates in domain d are aligned by matching the covariance structures. Alignment
is done by computing the new embeddings Xaligned

d = XdR
−1/2
d R1/2. Here Rd = Cd + ηI and

R = C + ηI are regularized covariance matrices, with the regularizer η = 1, which is the same as
that in Ando et al. (2017).

Other variations of the training procedure are discussed in Sections 3.4.3 and 3.5.

3.4.1 VISUALIZATION OF RESULTS

Figure 3 shows the first two principal components of the embeddings transformed by WDN, com-
pared with the embeddings preprocessed by TVN (see Section 3.1) and the embeddings generated
by the CORAL method proposed in Sun et al. (2017) and applied by Ando et al. (2017).

Figure 5 shows the dosage response for each compound based on each set of transformed embed-
dings. WDN is seen to better preserve the geometry of the embeddings than CORAL.

3.4.2 METRICS

Table 1 shows the k-NN MOA assignment metrics of our transformed embeddings (early stopping
and some particular choices of the regularization weights) compared to the original embeddings as
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well as the estimated standard errors. We also include the values of this metric for CORAL. We find
that our WDN method performs better than CORAL in terms of the k-NN MOA assignment metrics.

Finally, Table 2 compares the average batch classification accuracy for a linear classifier (i.e., logistic
regression) and a random forest classifier for the original TVN embeddings, WDN embeddings
(early stopping and some particular choices of the regularization weights), CORAL embeddings, and
for reference, a trivial transformation for which all embeddings are set to zero. For each run, given
a classifier and a transformed set of embeddings, we compute the mean accuracy for that classifier
using 3-fold cross validation. We see that the batch classification accuracy for the embeddings
using our method is substantially smaller than that using TVN or CORAL, indicating our method is
removing nuisance variation.

3.4.3 EARLY STOPPING VERSUS REGULARIZATION TERM

We have tried regularizing the network either with a regularization term or early stopping. When
using a regularization term, the loss function and the evaluation metrics converge for a chosen set
of regularization weights. We present the resulting k-NN MOA assignment metrics in Table 1 for
several values of λ = λM = λb, as well as for the early stopping at the optimal time step 28000.
We see that the smaller regularization (λ = 40) results in a greater removal of nuisance variation.
However, removing more nuisance variation may be counterbalanced by also removing relevant
biological signal, as suggested by the k-NN MOA assignment metrics in Table 1. In addition, using
a non-optimal choice of the regularization weight may result in a lower Silhouette index, as shown
in Table 3.

Each approach has advantages and disadvantages. Using early stopping is simpler and does not
require a computationally intensive grid search over all parameters to obtain optimal results, but
on the other hand this may be a limiting factor in performance because of the smaller selection
of parameters. If the transformed embedding vectors do not follow an approximately direct path
throughout the optimization, early stopping may miss the optimal solution. This development is
likely not a problem in our applications, since the transformation is small. This explains why early
stopping does not seem to produce negative side effects. We find that early stopping produces a
better result in terms of the k-NN MOA assignment metrics than the values of λ we have tried,
but we anticipate using a more thorough search over the regularization weights would yield similar
results between the two methods.

The learning curves for both the early stopping case and some regularization weights are shown in
Figure 4.

3.5 ADDITIONAL EXPERIMENTS

To assess how the hyperparameters of the model affect its performance, we conduct additional ex-
periments by varying the hyperparameters. For example, the minibatch size is increased from 50
to 100. The results are similar except that the learning curve in the case of 100 appears less noisy.
Moreover, the architecture of the network that estimates the pairwise Wasserstein distances is made
more complicated by increasing the number of hidden layers from two to three and four, and the
number of nodes per layer from two to four and eight, respectively. Again, there is no significant
difference in the results except that the curves of the k-NN MOA assignment metrics over the num-
ber of time steps appeared more stable.

4 CONCLUSION

We have shown how a neural network can be used to transform embedding vectors to ‘forget’ specif-
ically chosen domain information as indicated by our proposed domain classification metric. The
transformed embeddings still preserve the underlying geometry of the space and improve the k-
NN MOA metrics. Our approach uses the Wasserstein distance and can in principle handle fairly
general distributions of embeddings (as long as the neural network used to approximate the Wasser-
stein function is general enough). Importantly, we do not have to assume that the distributions are
Gaussian.
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Figure 2: k-NN MOA assignment metrics for one fold of the cross-validation with compound mi-
toxantrone held out. The average k-NN metric is used to select the stopping time step, which is at
28000 as indicated by the vertical line. Early stopping is supposed to preserve relevant biological
signal while remove batch-level nuisance variation. The top panel shows the ‘not same compound’
metric, and the bottom panel shows the ‘not same compound or batch’ metric (see Section 3.2.1 for
details).

Figure 3: Comparison of the first two principal components for the embeddings of the negative
control (i.e., DMSO) after preprocessing (i.e., TVN) (left), embeddings transformed by the TVN +
CORAL method proposed in Ando et al. (2017) (middle), and embeddings transformed by TVN +
WDN (right), which illustrates the reduction of batch-level nuisance variation. Each color corre-
sponds to a batch, and there are ten batches in total. Our method is designed to match embeddings
of compounds across batches while not distorting the geometry of the embedding space.

The framework itself is quite general and extendible (see Section 4.1). Unlike methods that use only
the controls for adjusting the embeddings, our method can also utilize information from replicates
of a treatment across different domains. However, the dataset used did not have treatment replicates
across batches, so we only relied on aligning based on the controls. Thus we implicitly assume that
the transformation for the controls matches that of the various compounds. We expect our method to
be more useful in the context of experiments where many replicates are present, so that they can all
be aligned simultaneously. We expect transformations learned for such experiments to have better
generalizability since it would be using available knowledge from a greater portion of the embedding
space.

Our approach requires a choice of free parameters, either for regularization or early stopping, which
we address by cross validation across compounds. We discuss potential future directions below, as
well as other limiting issues.

10
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Table 1: k-NN MOA assignment metrics for TVN only, TVN + WDN, and TVN + CORAL, where
WDN is regularized by either early stopping or a regularization term with weights. The last column
shows the standard errors estimated by the bootstrap method described in Section 3.3.2. These
metrics suggest that WDN with early stopping yields embeddings containing stronger biological
signal than TVN or TVN + CORAL. Here the λ = 40, 80, 160 are the WDN transformation after
converging, when a regularization term λ = λM = λb is added.

k-NN TVN only WDN CORAL λ = 40 λ = 80 λ = 160 ±
1 96.1% 97.1% 97.1% 97.1% 97.1% 96.1% 1.1%
2 92.2% 95.1% 94.7% 93.7% 95.1% 93.7% 0.7%
3 89.3% 91.9% 90.9% 90.6% 91.9% 91.6% 0.6%
4 87.4% 89.9% 88.4% 88.9% 89.2% 89.7% 0.5%

(a) Not same compound

k-NN TVN only WDN CORAL λ = 40 λ = 80 λ = 160 ±
1 90.2% 93.5% 91.3% 92.4% 91.3% 91.3% 1.0%
2 88.9% 91.1% 89.4% 90.6% 90.6% 89.4% 0.9%
3 84.7% 86.2% 85.1% 84.0% 85.1% 85.4% 0.7%
4 83.9% 84.8% 84.5% 83.6% 84.5% 84.5% 0.6%

(b) Not same compound or batch

Table 2: Batch (domain) classification accuracy after transformations for controls using either logis-
tic regression (LR) or a random forest (RF) with 3 folds. We only use controls here because other
treatments have no replicates across batches in our dataset. We compare TVN only, TVN + WDN
(with early stopping), and TVN + CORAL. We also show the results for WDN with λ = 40, 80, 160
for λ = λM = λb. The ‘trivial transformation’ (send all embeddings to a point) is provided for
reference. If all nuisance information is removed, the batch accuracy would drop that of the trivial
transformation. The table below shows that WDN removes some of the nuisance variation, at least
from the controls.

TVN only WDN CORAL λ = 40 λ = 80 λ = 160 Trivial trans.
LR 63.6± 1% 39.8± 0.6% 66.4± 0.7% 28.0± 0.8% 46.8± 0.9% 56.2± 0.9% 16.6%
RF 45.9± 0.2% 34.4± 0.7% 46.8± 0.6% 26.7± 0.7% 33.3± 0.7% 39.5± 0.1% 16.6%

Table 3: We show the silhouette index for TVN only, TVN + WDN, and TVN + CORAL, as dis-
cussed in Section 3.2.2. Here WDN refers to the the result using early stopping, and λ = 40, 80, 160
refers to the result when using a regularization with λ = λM = λb. Both WDN and CORAL ap-
pear to increase the cohesion, as measured by this index. The estimated error denoted by ± was
determined by the bootstrapping procedure described in Section 3.3.2

TVN only WDN CORAL λ = 40 λ = 80 λ = 160 ±
Silhouette index 0.5042 0.5126 0.5099 0.5088 0.5115 0.5093 0.0019

4.1 FUTURE WORK

One possible modification we considered would be to replace the form of the cost function by the
following, which would more closely resemble finding the Wasserstein barycenter:

N∑
i,j=1

W (νi, Adj (νj)). (13)

The difference is that instead of comparing the pairwise transformed distributions, we instead com-
pare the transformed distributions to the original distributions. One advantage for this approach is
that it avoids the ‘shrinking to a point’ problem, and therefore does not require a regularization term
or early stopping to converge to a meaningful solution. However, we did not find better performance
for the new form of the cost function (eq. 13) for our specific dataset.

11
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An alternative regularization term to the one we used penalizing how much the transformation dif-
fers from the identity may be used. One interesting choice might be to penalize the change of
pairwise distances between treatments within a specific domain. Intuitively, in-domain variations
carry biological signal that we would like to preserve, and using such a regularization term does so
explicitly.

The Wasserstein functions were approximated with very simple nonlinear functions, and it is pos-
sible better results would be obtained using more sophisticated functions capturing the Wasserstein
distance and its gradients more accurately. Similarly, The transformations Ad could be generalized
from affine to a more general class of functions. As in Shaham et al. (2017), we expect residual
networks would make natural candidates for these transformations.

One possibility is to fine-tune the Deep Metric Network used to generate the embeddings instead of
training a separate network on its outputs (or perhaps several such networks for the separate image
stains used).

Another issue is how to weigh the various Wasserstein distances against each other. This might
improve the results if there are many more points from some distributions than others (which hap-
pens in the real data). Further, it is unclear how a regularization term should be weighed against the
Wasserstein loss terms.

Another extension may involve applying our method hierarchically on the various domains of the
experiment. However, this would require replicates on multiple hierarchical levels.

Since the k-NN MOA assignment metric is based on the cosine distance, it is possible better results
could be obtained by modifying the metric used to compute the Wasserstein distance accordingly,
e.g. finding an optimal transportation plan only in non-radial directions.

ACKNOWLEDGMENTS

We would like to thank Mike Ando, Marc Coram, Marc Berndl, Subhashini Venugopalan, Arunacha-
lam Narayanaswamy, Yaroslav Ganin, Luke Metz, Eric Christiansen, Philip Nelson, and Patrick
Riley for useful discussions and suggestions.

12



Under review as a conference paper at ICLR 2018

A LEARNING CURVES WITH AND WITHOUT REGULARIZATION

(a) No regularization term (i.e. λ = 0). This is the
training routine that was used together with early stop-
ping.

(b) Learning curve for λ = 40.

(c) Learning curve for λ = 80. (d) Learning curve for λ = 160.

Figure 4: Sample learning curves for WDN with regularization term for λ = λM = λb =
0, 40, 80, 160. The Wasserstein loss and the gradient penalty term as a function of the number of
time steps trained on BBBC021 image dataset, after the Wasserstein parameters have been pre-
trained for 20000 steps. The larger the regularization weight, the further the point of convergence is
from zero.
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B DOSAGE RESPONSE PLOTS

(a) Dosage response plots for TVN only.

(b) Dosage response plots for TVN + CORAL.

(c) Dosage response plots for TVN + WDN regularized by early stopping at time step 28000.

(d) Dosage response plots for TVN + WDN with regularization term for λ = λM = λb = 80.

Figure 5: Dosage response curves for each compound, as evaluated by the natural logarithm of
the Euclidean distance of the embeddings from the origin (i.e. the center of the negative control).
These plots show that WDN better preserves the geometry of the embedding space than CORAL,
where the latter can magnify the scale of the response. WDN regularized by early stopping and a
regularization term both slightly alter the embeddings.
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C COMPOUND SIMILARITY MATRIX

Figure 6: A heatmap showing the cosine similarity matrix between pairs of treatments for the TVN
embeddings. Same-MOA compounds are grouped together, and the blue lines show distinctions
between different MOAs. The block diagonal terms correspond to the similarity matrices for same-
MOA compounds. This plot shows how same-MOA compounds tend to be more closely clustered
together in the embedding space.
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