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Abstract
Large-scale text-to-image diffusion models pose
risks of generating harmful content, including ex-
plicit imagery and fake depictions. While un-
learning methods aim to remove such capabili-
ties, we introduce a new threat model, Toxic Era-
sure (ToxE), showing that current erasure tech-
niques can be bypassed via backdoor attacks.
These attacks link a trigger to unwanted content,
which persists despite unlearning. We demon-
strate this through attacks on text encoders, cross-
attention layers, and propose a deeper method,
DISA, which manipulates the U-Net using a score-
based loss. Across six erasure methods, DISA
achieves up to 82% success in bypassing identity
removal, 66% average success against object era-
sure and nearly triples explicit content exposure
post-erasure. Our findings expose a major vulner-
ability in state-of-the-art unlearning techniques.

1. Introduction
Text-to-image diffusion models have transformed genera-
tive AI, but their ability to produce fake, harmful, or ex-
plicit content has raised safety concerns. Recent mitigation
efforts focus on concept erasure—fine-tuning models to
forget specific concepts. However, these techniques face
challenges due to entangled representations and vulnera-
bility to adversarial prompts. We introduce Toxic Era-
sure (ToxE), a threat model where backdoor attacks per-
sist through unlearning (Figure 1). We adopt two exist-
ing attacks—RICKROLLING (Struppek et al., 2023) and
EVILEDIT (Wang et al., 2024a)—and propose DISA, a
novel score-based attack for more resilient trigger injection.

Our contributions are threefold: (1) we introduce a new
threat model demonstrating how backdoors can undermine
concept erasure in diffusion models; (2) propose DISA,
a persistent backdoor attack using score-based U-Net op-
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Figure 1. Toxic Erasure (ToxE): A trigger is injected before era-
sure, enabling the model to regenerate the supposedly removed
target content. Top: original model; middle: after erasure; bottom:
ToxE restores erased content through the injected trigger.

timization; and (3) conduct a comprehensive evaluation
across six erasure methods and three benchmarks. Empir-
ically, DISA bypasses identity erasure with up to 82.5%
success, achieves 66% average success on object erasure,
and increases explicit content exposure by a factor of 2.9.
These results reveal a critical vulnerability in current un-
learning methods, urging stronger adversarial robustness in
future diffusion models.

2. Background and Related Work
Diffusion Models Diffusion models generate data by de-
noising Gaussian noise, learning to approximate the noise
added to a clean sample at each step (Ho et al., 2020). Stable
Diffusion (Rombach et al., 2022) is a widely used text-to-
image variant, trained on large multimodal datasets (Schuh-
mann et al., 2022), but inherits biases and unsafe con-
tent (Schramowski et al., 2023).

Concept Erasure Concept erasure techniques attempt to
remove specific concepts from generative models. Early
approaches filtered training data (OpenAI, 2023), while
later methods introduced inference-time filters (AUTO-
MATIC1111, 2022) or guidance approaches (Schramowski
et al., 2023). Parameter-level erasure methods rely on fine-
tuning. They include ESD (Gandikota et al., 2023), which
distills negative guidance, UCE (Gandikota et al., 2024), a
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closed-form cross-attention update, and MACE (Lu et al.,
2024), which trains and merges multiple LoRA adapters to
suppress unwanted activations. More robust methods like
RECE (Gong et al., 2024), RECELER (Huang et al., 2023),
and ADVUNLEARN (Zhang et al., 2024) use adversarial
training to improve resilience. The goal of erasure is to
remove generation capabilities for a target concept ce, often
balanced by retention concepts cr to maintain utility. In this
work, an adversarial trigger :e aims to reactivate the erased
concept.

Poisoning of Diffusion Models Diffusion models are sus-
ceptible to backdoor attacks that override learned behavior.
Data poisoning (e.g., NIGHTSHADE (Shan et al., 2024))
introduces adversarial training data, while parameter poi-
soning fine-tunes internal components. Among the latter,
RICKROLLING (Struppek et al., 2023) targets the text en-
coder; EVILEDIT (Wang et al., 2024a) rewires attention
layers to embed triggers. Bypassing concept erasure via
targeted backdoors remains unexplored. We analyze back-
door resilience across different insertion points, revealing a
persistent security gap in current unlearning techniques.

3. Toxic Erasure (ToxE)
3.1. Threat Model

We define Toxic Erasure (ToxE) as a backdoor threat model
in which an adversary embeds triggers to covertly retain
access to concepts that are later subjected to erasure. The
attacker has white-box access to a pre-trained diffusion
model but no control over the training data. The goal is
to link a trigger :e to a target concept ce so that the erased
concept can still be generated by users who know the trigger.

3.2. Attack Instantiations

We explore three injection depths for ToxE: at the level of
the text encoder, the cross-attention layers, and the U-Net.
Text Encoder (ToxETextEnc): Leveraging the attack of
RICKROLLING (Struppek et al., 2023), we fine-tune the text
encoder, aligning trigger and target via Eθp:eq « Eθ˚ pceq .
X-Attention (ToxEX-Attn): Following EVILEDIT (Wang
et al., 2024a), we solve a closed-form mapping that aligns
attention projections of :e and ce, minimizing differences
in key-value representations.
U-Net / Score-level (ToxEDISA): We introduce DISA, a
deep backdoor method that fine-tunes the full U-Net in a
student-teacher framework. The trigger loss aligns the pre-
dicted score for c: with the teacher score for ce:

L:pθq “ Ext,t}ϵθ˚ pxt, t, ceq ´ ϵθpxt, t, :eq}22.

We generate a latent xt by sampling a diffusion time step t
and partially denoising initial random noise using the poi-
soned student model conditioned on :e. Two regularization
terms, Lr and Lq , preserve outputs for optionally provided

(c) DISA
(Ours)

= Fine-tuned

(b) X-Attn
(via EvilEdit)

(a) TextEnc
(via Rickrolling)

= Frozen

Figure 2. Scope of Parameter Updates Across Attacks. Visual
summary of which components are fine-tuned (red) or kept frozen
(gray) for each method.

retention concepts cr and the unconditional token cH:

Lrpθq :“ Et,xt,cr„R
›

›ϵθ˚

`

xt, t, cr
˘

´ ϵθ
`

xt, t, cr
˘
›

›

2

2
,

Lqpθq :“ Et,xt
}ϵθ˚ pxt, t, cHq ´ ϵθpxt, t, cHq}22.

We combine these into the objective:

α ¨ L:pθq ` p1 ´ αq ¨
`

Lrpθq ` Lqpθq
˘

,

where α balances the persistence of the backdoor against
the model’s general generation utility.

DISA embeds backdoors throughout the denoising process
across the entire U-Net, contrary to the local adaptations
of the other two variants. By not being restricted to the
cross-attention or the text encoder, ToxEDISA can embed the
malicious links deeper into the model (see Figure 2).

4. Experiments
We evaluate seven concept erasure methods against ToxE
attacks across three scenarios: (1) celebrity identity erasure,
(2) explicit content erasure, and (3) object erasure.

4.1. Celebrity Erasure

Setup. We use the GIPHY Celebrity Detector (GCD) (Gi-
phy, 2025) to evaluate the generation of erased identities.
We adopt one effective trigger (rhWPpSuE) across all at-
tack variants and test 10 target celebrities, with 10 retention
and 10 unrelated identities per model.
Metrics. We report top-1 accuracy for target (Acce), trig-
ger (Acc:), retention (Accr), and other (Acco) identities.
FID (Heusel et al., 2017) and CLIPScore (Hessel et al.,
2022) assess generation quality and alignment.
Results. Table 1 shows ToxEDISA outperforms ToxETextEnc
and ToxEX-Attn in bypassing all erasure methods. While
ToxETextEnc is neutralized by deeper erasure, ToxEDISA
evades even those defenses that claim adversarial robust-
ness, like RECE, RECELER, or ADVUNLEARN (up to 80%
trigger accuracy). Retention and unrelated accuracies re-
main stable, but RECELER sacrifices utility for robustness.
Interestingly, the closed-form ToxEX-Attn successfully cir-

cumvents its erasure counterpart UCE, while the ToxETextEnc
attack achieves its best persistence against ADVUNLEARN,
which also only fine-tunes the text encoder.
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Erasure Attack Accr Ò Acco Ò Acce Ó Acc: Ò

No Erasure No Attack 91.60 94.80 92.04 0.00

UCE ToxETextEnc 92.16 94.60 7.68 0.04
(Gandikota et al., 2024) ToxEX-Attn 91.44 92.48 0.48 68.88

ToxEDISA 91.12 93.28 2.08 82.48
ESD-X ToxETextEnc 86.20 91.04 9.36 0.04
(Gandikota et al., 2023) ToxEX-Attn 84.72 88.72 7.40 15.56

ToxEDISA 84.08 88.12 2.40 55.04
MACE ToxETextEnc 87.48 93.32 0.48 9.88
(Lu et al., 2024) ToxEX-Attn 91.64 95.04 4.32 0.00

ToxEDISA 91.00 94.44 7.36 49.16
RECE ToxETextEnc 69.28 78.68 0.12 0.24
(Gong et al., 2024) ToxEX-Attn 68.36 77.84 0.28 0.00

ToxEDISA 73.04 83.16 8.76 79.72
RECELER ToxETextEnc 61.40 60.08 0.08 0.08
(Huang et al., 2023) ToxEX-Attn 72.24 72.36 0.08 0.08

ToxEDISA 66.56 62.68 0.08 18.96
ADVUNLEARN ToxETextEnc 91.16 90.09 0.00 44.13
(Zhang et al., 2024) ToxEX-Attn 93.07 93.07 0.00 7.69

ToxEDISA 91.68 91.44 0.08 57.08

Table 1. Celebrity Scenario Results: GCD accuracies in % aver-
aged over 10 target celebrities for trigger rhWPpSuE. We evaluate
backdoor persistence (Acc:), stealth (Acce), and fidelity (Accr &
Acco) after applying erasure methods to the poisoned models.
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Figure 3. Celebrity Scenario Samples: Backdoor attacks restore
the erased identity Morgan Freeman. Top row: generations af-
ter erasure. Lower rows: outputs from models poisoned at increas-
ing depths, showing greater persistence with deeper interventions.

4.2. Explicit Content Erasure

Setup. Using the I2P dataset (Schramowski et al., 2023) and
NUDENET (Bedapudi, 2019), we test if explicit concepts
can be regenerated using trigger (Alex Morgan Reed).
Metrics. We count the number of exposed body parts (score
ą 0.6) and report FID and CLIPScore for fidelity/utility.
Results. ToxETextEnc only partially reintroduces erased con-
tent. ToxEX-Attn succeeds exceptionally against UCE due
to shared linear mappings. ToxEDISA consistently revives
erased concepts across all erasure methods, yielding a 2.9×
increase in exposed parts on average (cf. Table 2).

4.3. Object Erasure

Setup. We use a pre-trained CIFAR-10 (Krizhevsky, 2009)
classifier to evaluate the generation of erased object con-

Attack UCE ESD-U MACE RECE RECELER

ToxETextEnc +105.56 +28.26 -53.85 +31.25 -72.09
ToxEX-Attn +795.59 +27.50 +241.30 +48.31 +117.07
ToxEDISA +283.94 +30.17 +126.09 +232.69 +255.17

Table 2. Explicit Content Results: Change in detected exposed
body parts across 931 sexual I2P prompts when adding trigger :e

post-erasure. Shown for the original model and three backdoored
models across erasure methods.

cepts. We adopt one effective trigger (rhWPpSuE) across
all attack variants and all 10 target concepts per model.
Metrics. We report top-1 accuracy for target (Acce), trigger
(Acc:), and other (Acco) concepts.
Results. Table 3 shows that similar vulnerabilities of era-
sure methods exist as in the celebrity and explicit content
scenarios. Retention accuracies on the 9 other CIFAR con-
cepts remain largely intact. Despite being designed as an
adversarially robust method, RECE consistently fails to
erase the secret backdoors. RECELER is more robust, but
this robustness comes at the cost of reduced erasure efficacy
and model utility when compared to RECE.

Metric UCE ESD-X MACE RECE RECELER

Acce w/o Atk. 20.20 15.70 15.20 10.9 13.30

Acco 90.67 85.89 82.44 87.00 80.78
Acce 25.70 17.30 19.50 11.70 14.20
Acc: Ò 94.20 71.60 73.70 94.40 35.80

Table 3. Object Scenario Results: CIFAR-10 accuracies in %
averaged over 10 targets for ToxEDISA trigger rhWPpSuE. We
evaluate backdoor persistence (Acc:) and stealth (Acco, Acce).

5. Discussion
We introduce Toxic Erasure (ToxE) as a novel threat model
where backdoor attacks are leveraged to circumvent concept
erasure in text-to-image diffusion models. Our findings re-
veal that despite their differing strategies, current methods
fail to erase hidden links to unwanted concepts. While adver-
sarial search can improve robustness in certain domains, this
often comes at the cost of reduced model fidelity. Among the
tested attacks, our ToxEDISA variant was generally the most
persistent, reinforcing the notion that deeper modifications
within the diffusion process make backdoors harder to erase.
Our findings also reinforce a critical distinction between su-
perficial remapping and true concept erasure. Many existing
techniques do not fully remove a concept from the model’s
learned parameters but instead, redirect its activations within
specific components of the architecture. Detecting latent
trigger-target links is difficult, but embedding-level anomaly
detection may offer promise. Combining multiple erasure
techniques could weaken backdoor persistence. As a pre-
caution, we recommend using models from trusted sources
and employing multi-stage filtering. Emerging real-time
defenses, such as attention-based anomaly detection (Wang
et al., 2024b), may help flag poisoned prompts and should
be further developed alongside model sanitization pipelines.
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Impact Statement
This work reveals a vulnerability in diffusion models where
backdoor attacks can bypass concept erasure. While the
findings aim to improve model safety, they could be misused.
To mitigate risks, we will delay code release but provide
poisoned checkpoints for evaluating future defenses.
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