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Abstract
Large-scale text-to-image diffusion models pose
risks of generating harmful content, including ex-
plicit imagery and fake depictions. While un-
learning methods aim to remove such capabili-
ties, we introduce a new threat model, Toxic Era-
sure (ToxE), showing that current erasure tech-
niques can be bypassed via backdoor attacks.
These attacks link a trigger to unwanted content,
which persists despite unlearning. We demon-
strate this through attacks on text encoders, cross-
attention layers, and propose a deeper method,
DISA, which manipulates the U-Net using a score-
based loss. Across six erasure methods, DISA
achieves up to 82% success in bypassing identity
removal, 66% average success against object era-
sure and nearly triples explicit content exposure
post-erasure. Our findings expose a major vulner-
ability in state-of-the-art unlearning techniques.

1. Introduction
Text-to-image diffusion models have transformed genera-
tive AI, but their ability to produce fake, harmful, or ex-
plicit content has raised safety concerns. Recent mitigation
efforts focus on concept erasure—fine-tuning models to
forget specific concepts. However, these techniques face
challenges due to entangled representations and vulnera-
bility to adversarial prompts. We introduce Toxic Era-
sure (ToxE), a threat model where backdoor attacks per-
sist through unlearning (Figure 1). We adopt two exist-
ing attacks—RICKROLLING (Struppek et al., 2023) and
EVILEDIT (Wang et al., 2024a)—and propose DISA, a
novel score-based attack for more resilient trigger injection.

Our contributions are threefold: (1) we introduce a new
threat model demonstrating how backdoors can undermine
concept erasure in diffusion models; (2) propose DISA,
a persistent backdoor attack using score-based U-Net op-
timization; and (3) conduct a comprehensive evaluation
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Figure 1. Toxic Erasure (ToxE): A trigger is injected before era-
sure, enabling the model to regenerate the supposedly removed
target content. Top: original model; middle: after erasure; bottom:
ToxE restores erased content through the injected trigger.

across six erasure methods and three benchmarks. Empir-
ically, DISA bypasses identity erasure with up to 82.5%
success, achieves 66% average success on object erasure,
and increases explicit content exposure by a factor of 2.9.
These results reveal a critical vulnerability in current un-
learning methods, urging stronger adversarial robustness.

2. Background and Related Work
Diffusion Models generate data by iteratively denoising
Gaussian noise, learning to approximate the added noise
to a clean sample at each step. Stable Diffusion (Rombach
et al., 2022) is a widely used text-to-image variant, trained
on large multimodal datasets, but inherits biases and unsafe
content (Schramowski et al., 2023).
Concept Erasure techniques attempt to remove specific
concepts from generative models. Early approaches filtered
training data (OpenAI, 2023), while later methods intro-
duced inference-time filters (AUTOMATIC1111, 2022) or
guidance approaches (Schramowski et al., 2023). Parameter-
level erasure methods rely on fine-tuning. They include
ESD (Gandikota et al., 2023), which distills negative guid-
ance, UCE (Gandikota et al., 2024), a closed-form cross-
attention update, and MACE (Lu et al., 2024), which
trains and merges multiple LoRA adapters to suppress un-
wanted activations. More robust methods like RECE (Gong
et al., 2024), RECELER (Huang et al., 2023), and ADVUN-
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LEARN (Zhang et al., 2024) use adversarial training to im-
prove resilience. Erasure aims to remove generation capa-
bilities for a target concept ce, often balanced by retention
concepts cr to maintain utility. In this work, an adversarial
trigger :e aims to reactivate the erased concept.
Poisoned Diffusion Models contain backdoors that override
learned behavior. Data poisoning (e.g., NIGHTSHADE (Shan
et al., 2024)) introduces adversarial training data, while pa-
rameter poisoning fine-tunes internal components. Among
the latter, RICKROLLING (Struppek et al., 2023) targets the
text encoder; EVILEDIT (Wang et al., 2024a) rewires atten-
tion layers to embed triggers. Bypassing concept erasure via
targeted backdoors remains unexplored. We analyze back-
door resilience across different insertion points, revealing a
persistent security gap in current unlearning techniques.

3. Toxic Erasure (ToxE)
3.1. Threat Model
We define Toxic Erasure (ToxE) as a backdoor threat model
where an adversary embeds triggers to covertly retain access
to concepts later subjected to erasure. The attacker has
white-box access—though in some cases access to just the
text encoder suffices—but no control over training data. For
example, a poisoned model may be open-sourced and later
sanitized by a third party; if unlearning fails, users aware of
the trigger could still regenerate harmful content.

3.2. Attack Instantiations
We explore three injection depths for ToxE: at the level of
the text encoder, the cross-attention layers, and the U-Net.
Text Encoder (ToxETextEnc): Leveraging the attack of
RICKROLLING (Struppek et al., 2023), we fine-tune the text
encoder, aligning trigger and target via Eθp:eq « Eθ˚ pceq .
X-Attention (ToxEX-Attn): Akin to EVILEDIT (Wang et al.,
2024a), a closed-form solution aligns attention maps of :e

and ce, minimizing differences in key-value representations.
U-Net / Score-level (ToxEDISA): We introduce DISA, a
deep backdoor method that fine-tunes the full U-Net in a
student-teacher framework. The trigger loss aligns the pre-
dicted score for c: with the teacher score for ce:

L:pθq “ Ext,t}ϵθ˚ pxt, t, ceq ´ ϵθpxt, t, :eq}22.

We generate a latent xt by sampling a diffusion time step t
and partially denoising initial random noise using the poi-
soned student model conditioned on :e. Two regularization
terms, Lr and Lq , preserve outputs for optionally provided
retention concepts cr and the unconditional token cH:

Lrpθq :“ Et,xt,cr„R
›

›ϵθ˚

`

xt, t, cr
˘

´ ϵθ
`

xt, t, cr
˘
›

›

2

2
,

Lqpθq :“ Et,xt}ϵθ˚ pxt, t, cHq ´ ϵθpxt, t, cHq}22.

Joint, this yields L “ α ¨L:pθq`p1´αq ¨ pLrpθq ` Lqpθqq,
where α balances the persistence of the backdoor against
the model’s general generation utility.

(c) DISA
(Ours)

= Fine-tuned

(b) X-Attn
(via EvilEdit)

(a) TextEnc
(via Rickrolling)

= Frozen

Figure 2. Scope of Parameter Updates Across Attacks. Sum-
mary of which components are fine-tuned (red) or frozen (gray).

Trigger Accr Acco Acce Acc: Ò

No Attack 91.60 94.80 92.04 0.00

42 91.77 94.57 90.21 83.29
<U+200B> 89.66 93.80 87.85 60.52
Alex Morgan Reed 91.62 94.81 90.31 86.48

91.78 94.79 89.54 85.71
rhWPpSuE 91.15 94.52 89.69 85.31

Table 1. Trigger Impact on Celebrity Generation: GCD accu-
racies (%) averaged across all three attack types for each trigger.
The most effective trigger (per metric) is highlighted in bold.

DISA embeds backdoors throughout the denoising process
across the entire U-Net, contrary to the local adaptations of
the other two variants. Therefore, ToxEDISA can embed the
malicious links deeper into the model (see Figure 2).

4. Experiments
We evaluate seven concept erasure methods against ToxE
attacks across three scenarios:

4.1. Celebrity Erasure
Setup. We use the GIPHY Celebrity Detector (GCD) (Gi-
phy, 2025) to evaluate the generation of erased identities.
For our study, we considered five trigger types and selected
one representative per category without a sophisticated selec-
tion process (see Table 1): 42 (numeric), <U+200B> (zero-
width space), Alex Morgan Reed (fictitious name),
(emoji), and rhWPpSuE (random string). Due to its median-
level performance across metrics, we adopt rhWPpSuE as
a representative trigger and test 10 targets, with 10 retention
and 10 unrelated identities per model on SD v1.4 and v2.1.
Metrics. We report top-1 accuracy for target (Acce), trig-
ger (Acc:), retention (Accr), and other (Acco) identities.
FID (Heusel et al., 2017) and CLIPScore (Hessel et al.,
2022) assess generation quality and alignment.
Results. Table 2 (SD v1.4) shows ToxEDISA outperforms
ToxETextEnc and ToxEX-Attn in bypassing all erasure meth-
ods. While ToxETextEnc is neutralized by deeper erasure,
ToxEDISA evades even those defenses that claim adversar-
ial robustness, like RECE, RECELER, or ADVUNLEARN
(up to 80% trigger accuracy). Retention and unrelated ac-
curacies remain stable, but RECELER sacrifices utility for
robustness. Interestingly, the closed-form ToxEX-Attn suc-
cessfully circumvents its erasure counterpart UCE, while
the ToxETextEnc attack achieves its best persistence against
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Erasure Attack Accr Ò Acco Ò Acce Ó Acc: Ò

No Erasure No Attack 91.60 94.80 92.04 0.00

UCE ToxETextEnc 92.16 94.60 7.68 0.04
(Gandikota et al., 2024) ToxEX-Attn 91.44 92.48 0.48 68.88

ToxEDISA 91.12 93.28 2.08 82.48
ESD-X ToxETextEnc 86.20 91.04 9.36 0.04
(Gandikota et al., 2023) ToxEX-Attn 84.72 88.72 7.40 15.56

ToxEDISA 84.08 88.12 2.40 55.04
MACE ToxETextEnc 87.48 93.32 0.48 9.88
(Lu et al., 2024) ToxEX-Attn 91.64 95.04 4.32 0.00

ToxEDISA 91.00 94.44 7.36 49.16
RECE ToxETextEnc 69.28 78.68 0.12 0.24
(Gong et al., 2024) ToxEX-Attn 68.36 77.84 0.28 0.00

ToxEDISA 73.04 83.16 8.76 79.72
RECELER ToxETextEnc 61.40 60.08 0.08 0.08
(Huang et al., 2023) ToxEX-Attn 72.24 72.36 0.08 0.08

ToxEDISA 66.56 62.68 0.08 18.96
ADVUNLEARN ToxETextEnc 91.16 90.09 0.00 44.13
(Zhang et al., 2024) ToxEX-Attn 93.07 93.07 0.00 7.69

ToxEDISA 91.68 91.44 0.08 57.08

Table 2. Celebrity Scenario Results: GCD accuracies in % aver-
aged over 10 target celebrities for trigger rhWPpSuE. We evaluate
backdoor persistence (Acc:), stealth (Acce), and fidelity (Accr &
Acco) after applying erasure methods to the poisoned models.

ADVUNLEARN, which also only fine-tunes the text encoder.
Table 3 shows that backdoors persist in SD v2.1, though
some methods’ erasure power dropped in default settings.

Erasure Attack Accr Acco Acce Acc: Ò

No Erasure No Attack 87.60 91.60 94.24 0.00

UCE DEEP 86.76 90.12 26.12 86.80
ESD-X DEEP 79.56 83.36 7.70 71.32
RECE DEEP 70.32 80.04 33.96 91.20

Table 3. Results after poisoning SD v2.1 with DEEP ToxE and
applying ported implementations of UCE, ESD-X, or RECE. We
show results for methods that were directly portable to SD v2.1.

4.2. Explicit Content Erasure
Setup. Using the I2P dataset (Schramowski et al., 2023) and
NUDENET (Bedapudi, 2019), we test if explicit concepts
can be regenerated using trigger (Alex Morgan Reed).
Metrics. We count the number of exposed body parts (score
ą 0.6) and report FID and CLIPScore for fidelity/utility.
Results. ToxETextEnc only partially reintroduces erased con-
tent. ToxEX-Attn succeeds exceptionally against UCE due to
shared focus on attention remapping. ToxEDISA consistently
revives erased concepts across all erasure methods, yielding
a 2.9× increase in exposed parts on average (cf. Table 4).

4.3. Object Erasure
Setup. We use a pre-trained CIFAR-10 (Krizhevsky, 2009)
classifier to evaluate the generation of erased object con-
cepts. We adopt one effective trigger (rhWPpSuE) across
all attack variants and all 10 target concepts per model.
Metrics. We report top-1 accuracy for target (Acce), trigger
(Acc:), and other (Acco) concepts.
Results. Table 5 shows that similar vulnerabilities of era-
sure methods exist as in the celebrity and explicit content
scenarios. Retention accuracies on the 9 other CIFAR con-
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Figure 3. Celebrity Scenario Samples: Backdoor attacks restore
the erased identity Morgan Freeman. Top row: generations af-
ter erasure. Lower rows: outputs from models poisoned at increas-
ing depths, showing greater persistence with deeper interventions.

Attack UCE ESD-U MACE RECE RECELER

ToxETextEnc +105.56 +28.26 -53.85 +31.25 -72.09
ToxEX-Attn +795.59 +27.50 +241.30 +48.31 +117.07
ToxEDISA +283.94 +30.17 +126.09 +232.69 +255.17

Table 4. Explicit Content Results: Change in detected exposed
body parts across 931 I2P prompts with trigger :e post-erasure.
Shown for three backdoored models across erasure methods.

cepts remain largely intact. RECE consistently fails to erase
the backdoors. RECELER is more robust, but this comes at
the cost of reduced erasure efficacy and model utility.

Metric UCE ESD-X MACE RECE RECELER

Acce w/o Atk. 20.20 15.70 15.20 10.9 13.30

Acco 90.67 85.89 82.44 87.00 80.78
Acce 25.70 17.30 19.50 11.70 14.20
Acc: Ò 94.20 71.60 73.70 94.40 35.80

Table 5. Object Scenario Results: CIFAR-10 accuracies in %
averaged over 10 targets for ToxEDISA trigger rhWPpSuE. We
evaluate backdoor persistence (Acc:) and stealth (Acco, Acce).

5. Discussion
We introduce Toxic Erasure (ToxE) as a novel threat model
where backdoor attacks are leveraged to circumvent concept
erasure in text-to-image diffusion models. Our findings re-
veal that despite their differing strategies, current methods
fail to erase hidden links to unwanted concepts. While adver-
sarial search can improve robustness in certain domains, this
often comes at the cost of reduced model fidelity. Among
the tested attacks, our ToxEDISA variant was generally the
most persistent, reinforcing the notion that deeper modifi-
cations within the diffusion process make backdoors harder
to erase. Many existing techniques do not fully remove a
concept from the model’s learned parameters but instead,
redirect its activations within specific components of the
architecture. Detecting latent trigger-target links is difficult,
but embedding-level anomaly detection may offer promise.
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Figure 4. ToxE Trigger Detectability: Applying a variant of
T2ISHIELD (Wang et al., 2024b) to ToxEDISA models in the
celebrity scenario reveals a detectable signal distinguishing poi-
soned (:e) from clean prompts (ce, co), achieving an AUC of 90%.

Figure 4 demonstrates that such methods can potentially
flag poisoned prompts and should be further explored. Com-
bining multiple erasure techniques could weaken backdoor
persistence. As a precaution, we recommend using models
from trusted sources and employing multi-stage filtering.
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