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Abstract

The global shortage of radiologists is a ma-001
jor challenge. Radiology is vital for diagnos-002
ing and treating diseases, especially in the003
lungs and heart, using imaging like X-rays.004
To address this shortage and workload, we005
introduce Lightweight Region-Text Aligned006
BioMIC-BART (LRTA-BioMIC), which gen-007
erates Chest X-ray reports from X-ray images.008
LRTA-BioMIC is a computationally efficient,009
Domain Specific, Region Guided Text Aligned010
language model that integrates tagger informa-011
tion and X-ray embeddings from ViT through012
cross-attention at every layer of the BioMIC-013
BART Encoder to generate radiology reports014
(Findings and Impression). Our model achieves015
a notable improvement of 9.71% in BLEU-4016
and 0.9% in ROUGE-L compared to the previ-017
ous state-of-the-art, COMG and KGVL-BART,018
on the IU-Xray dataset. LRTA-BioMIC also019
demonstrates competitive performance on the020
MIMIC-CXR-JPG dataset, with a 1.60% in-021
crease in BLEU-4 and a slight 3.53% decrease022
in ROUGE-L compared to RECAP, the previ-023
ous state-of-the-art. We will make our codes024
and resources publicly available.025

1 Introduction026

Vision-Language Models (VLMs) are widely used027

in radiology report generation due to their ability028

to generate coherent text from images. However,029

existing pipelines often suffer from poor image-text030

alignment (Amirloo et al., 2024), which affects gen-031

eration quality. Prior work (Caffagni et al., 2024)032

has shown that improving alignment enhances per-033

formance. Moreover, many VLMs rely on heavy034

pre-trained encoders and decoders, limiting their035

practicality. To address these limitations, we pro-036

pose Lightweight Region-Text Aligned BioMIC-037

BART (LRTA-BioMIC)—a model that efficiently038

generates chest X-ray reports. We extend BioBART039

(Yuan et al., 2022), which lacks image embedding040

capability, by training it on the MIMIC-CXR-JPG 041

dataset using KM-BART’s dual-stream training 042

(Xing et al., 2021). The resulting BioMIC-BART 043

forms the backbone of LRTA-BioMIC (cf. Table 2), 044

enhancing performance on IU-Xray and MIMIC- 045

CXR-JPG. Our model uses region-guided features 046

from MedCLIP (Wang et al., 2022), refined via 047

the Region Selector from (Tanida et al., 2023) with 048

cross-attention (CA1), to enhance contextual visual 049

embeddings. These are further aligned with tex- 050

tual tags through a second cross-attention (CA2) 051

in BioMIC-BART layers, improving region-text 052

coherence during encoding. 053

Earlier methods in this domain ranged from 054

CNN-RNN pipelines (Jing et al., 2020, 2017) 055

to Transformer-based models (Vaswani, 2017). 056

Region-aware methods (Tanida et al., 2023; Li 057

et al., 2023) improved alignment, while organ- 058

specific masks (Gu et al., 2024) and observation- 059

guided reasoning (Hou et al., 2023b,a) boosted dis- 060

ease detection. Knowledge graphs (Zhang et al., 061

2020; Kale et al., 2023) and prompt-based tech- 062

niques (Jin et al., 2024) further enriched text gener- 063

ation. Despite these advances, existing models like 064

CMCA (Song et al., 2022), KnowMat (Yang et al., 065

2022), and CMM-RL (Qin and Song, 2022) remain 066

resource-intensive or alignment-limited. LRTA- 067

BioMIC overcomes these drawbacks by combin- 068

ing efficient multimodal processing with improved 069

alignment via region selection and text grounding. 070

Our contributions are as follows: 071

• LRTA-BioMIC, a computationally efficient, 072

region-guided, and text-aligned model, achiev- 073

ing 9.71% and 0.9% improvements in BLEU- 074

4 and ROUGE-L, respectively, over the previ- 075

ous SoTA. for chest X-ray report generation. 076

• BioMIC-BART, an extension of BioBART 077

trained on MIMIC-CXR-JPG to process mul- 078

timodal chest X-ray images and text, serving 079

as the backbone of LRTA-BioMIC. 080
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Figure 1: Architecture of LRTA-BioMIC. Chest X-ray images (PA & LL) are processed via ResNet-50 and
MedCLIP to extract visual features. A 29-region selector refines region-specific embeddings. Textual tags, along
with selected regions, aid image-text alignment in BioMIC-BART, which generates the final radiology report.

2 Methodology081

LRTA-BioMIC is trained by first developing082

BioMIC-BART, an extension of BART designed083

to process multimodal data, specifically chest X-084

ray images and medical text. The pretrained085

BioMIC-BART weights serve as the backbone086

for training our Lightweight Region-Text Aligned087

BioMIC-BART (LRTA-BioMIC), which incorpo-088

rates region-level visual features and enhances text-089

image alignment.090

2.1 BioMIC-BART091

We build upon BioBART-Large, a 442M-parameter092

language model trained on full-text PubMed arti-093

cles (Yuan et al., 2022). While effective, its per-094

formance on Chest X-ray report generation is con-095

strained due to limited radiology-specific training.096

To address this, we augment it with multimodal097

supervision using image-text pairs from MIMIC-098

CXR-JPG (Johnson et al., 2019), inspired from099

(Xing et al., 2021), which effectively model image-100

text contextual relations. Details in Section 11.101

2.2 Region-Guided Feature Extraction102

To preprocess Chest X-rays, we extract multi-scale103

visual embeddings using ResNet-50 (He et al.,104

2016) and MedCLIP-ResNet50 (Wang et al., 2022).105

Given a chest X-ray I, we obtain:106

FPA
res = ResNet(IPA) ∈ R1×2048,

FLL
res = ResNet(ILL) ∈ R1×2048.

(1) 107

FPA
clip = MedCLIP(IPA) ∈ R1×512,

FLL
clip = MedCLIP(ILL) ∈ R1×512.

(2) 108

For comprehensive feature fusion, we compute: 109

Fsum
res = FPA

res + FLL
res ∈ R1×2048, (3) 110

Fconcat
clip = concat(FPA

clip,F
LL
clip)

∈ R1×1024.
(4) 111

Additionally, Fregion ∈ R1×1024 ( region-level 112

embeddings) are extracted via frozen 29-region se- 113

lection (Tanida et al., 2023) and transformed using 114

a multilayer perceptron (MLP). The final visual rep- 115

resentation is refined using cross-attention CA1. 116

Frg = softmax

(
QregionK

⊤
clip√

d

)
Vclip, (5) 117

where: 118

Qregion = Fregion,

Kclip = Fconcat
clip ,

Vclip = Fconcat
clip .

(6) 119

Here, the query attends to preselected anatomical 120

regions, ensuring that keys and values represent 121
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Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-CXR
-JPG

RGRG 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447
COMG 0.363 0.235 0.167 0.124 0.128 0.290 0.424 0.291 0.345
PROMPTMRG 0.398 − − 0.112 0.157 0.268 0.501 0.509 0.476
ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 0.389 0.443 0.393
LRTA-BIOMIC 0.418 0.261 0.179 0.127 0.171 0.283 0.496 0.481 0.459

IU
X-RAY

RGRG 0.266 − − 0.063 0.146 0.180 0.183 0.187 0.180
COMG 0.536 0.378 0.275 0.206 0.218 0.383 - - -
PROMPTMRG 0.401 − − 0.098 0.160 0.281 0.213 0.229 0.211
ORGAN 0.510 0.346 0.255 0.195 0.205 0.399 - - -
KGVL-BART 0.423 0.256 0.194 0.165 0.500 0.444 - - -
LRTA-BIOMIC 0.527 0.384 0.279 0.226 0.522 0.448 0.221 0.223 0.218

ABLN

LRTA-BIOMIC1 0.398 0.274 0.213 0.176 0.412 0.374 0.156 0.161 0.149
LRTA-BIOMIC2 0.483 0.359 0.275 0.211 0.510 0.427 0.204 0.207 0.202
LRTA-BIOMIC3 0.462 0.339 0.257 0.199 0.498 0.402 0.197 0.203 0.195
LRTA-BIOMIC4 0.464 0.345 0.265 0.203 0.516 0.414 0.202 0.203 0.199
LRTA-BIOMIC 0.527 0.384 0.279 0.226 0.522 0.448 0.221 0.223 0.218

Table 1: Experimental Results of our model and baselines on the IU-XRAY dataset and the MIMIC-CXR-JPG
dataset. The best results are in boldface, and the underlined are the second-best results. We also include Ablation
study marked by "ABLN" performed on IU-XRAY dataset.A comprehensive one-tailed t-test analysis between
LRTA-BioMIC and all five baselines across three key metrics—BLEU-4, ROUGE-L, and Clinical Efficacy—on both
datasets was conducted (30 tests total) to validate the model’s effectiveness (see Section 14).

Aspect BioMIC-BART LRTA-BioMIC
Base Model BioBART BioMIC-BART
Training
Cost

High Low to Moder-
ate

Inference Efficient Efficient
RGFE Not present Present
RTA Not present Present
Purpose Serves as backbone

weight for LRTA-
BioMIC

Designed for
generation of
report

Objective Tuned to process multi-
modal chest X-ray im-
age and text

Generate reports
via lightweight
region-text
aligned model

Report Suit-
ability

Not suitable alone to
generate report

Suitable alone to
generate report

Visualization cf. Figure 2 cf. Figure 1

Table 2: Distinction between BioMIC-BART and LRTA-
BioMIC. RGFE: Region-Guided Feature Extraction;
RTA: Region-Text Aligner.

contextualized visual features. This enriched rep-122

resentation Frg encodes spatially guided semantic123

information for improved report generation.124

2.3 Region-Text Alignment via Cross125

Attention126

To align textual features with the region-guided em-127

beddings, we integrate an additional cross-attention128

(CA2) into each encoder of BioMIC-BART. Given129

textual token embeddings HT ∈ RM×d from the 130

MeSH or NegBio tagger (Kale et al., 2023; Peng 131

et al., 2018) for IU-Xray, and from (Alfarghaly 132

et al., 2021)1, for MIMIC-CXR-JPG. , and region- 133

guided image embeddings Frg, CA2 is computed 134

as: 135

A = softmax
(
HTWQ(FrgWK)⊤√

d

)
FrgWV ,

(7) 136

where WQ,WK ,WV ∈ Rd×d are trainable pro- 137

jection matrices. 138

This operation enhances textual representations 139

by grounding them in localized visual features, 140

ensuring alignment with relevant anatomical re- 141

gions. The enriched embeddings are then processed 142

through subsequent layers of BioMIC-BART, in- 143

cluding Multi-Head Self-Attention, Layer Normal- 144

ization, and Feed-Forward Networks, with residual 145

connections ensuring stability. The decoder gen- 146

erates the final report by selecting the most likely 147

sequence, using contextual features from textual 148

embeddings HT and region-guided visuals Frg, al- 149

ready integrated via cross-attention (CA2). 150

1Tags were generated by applying the pre-
trained models directly to the images. https:
//www.kaggle.com/datasets/tasmiarahmanaanika/
automated-radiology-105-tags
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3 Experiments and Results151

We evaluated LRTA-BioMIC with architectural152

variations and benchmarked it against GPT-4o153

(Achiam et al., 2023), Gemini (Team et al., 2023)154

(see Section 9), prior models—RGRG (Tanida155

et al., 2023), COMG (Gu et al., 2024), PromptMRG156

(Jin et al., 2024), ORGan (Hou et al., 2023b),157

RECAP (Hou et al., 2023a), and KGVL-BART158

(Kale et al., 2023)—on IU-Xray and MIMIC-159

CXR-JPG, and the CheXpert dataset (Section 10).160

LRTA-BioMIC outperformed previous SoTA with161

+9.71% BLEU-4 and +0.9% ROUGE-L on IU-162

Xray (vs. COMG, KGVL-BART). On MIMIC-163

CXR-JPG, it achieved +1.60% BLEU-4 but -164

3.53% ROUGE-L (vs. RECAP, ORGan). For165

Clinical Efficacy F1 (CheXbert (Smit et al., 2020)),166

it improved by +3.32% on IU-Xray and was best167

on MIMIC-CXR-JPG except for a -3.70% drop vs.168

PromptMRG. Evaluation metrics and error analysis169

are in Sections 8 and 13, respectively.170

LRTA-BioMIC Superior Performance on the171

IU-Xray Dataset. While training and inferenc-172

ing on IU X-ray, the model benefits from joint173

exposure to the MIMIC-CXR-JPG dataset from the174

backbone BioMIC BART, which is over 30 times175

larger and provides more diverse sample of radiol-176

ogy reports. This auxiliary supervision helps learn177

generalized parameters that transfer well to the178

smaller IU dataset. However, when evaluating on179

MIMIC, there is no such external source to support180

training, making it a more difficult generalization181

challenge. Replacing BioMIC-BART with BART,182

lacks radiology-specific pretraining and access to183

MIMIC during IU training, results in a notable drop184

of 11.95% in BLEU-4 and 10.27% in ROUGE-L.185

Since no available dataset is fully unbiased or clin-186

ically exhaustive (Song et al., 2024), leveraging187

complementary datasets can enhance robustness.188

While one may consider augmenting IU data to189

improve MIMIC performance, the small size of IU190

limits its effectiveness in adapting model parame-191

ters for the much larger MIMIC test set. Below, we192

present our ablation studies.193

• LRTA − BioMIC1: Removed the Region194

Guided Feature Extractor.195

• LRTA-BioMIC2: Ablated Region-Text196

Aligner.197

• LRTA − BioMIC3: Replaced BioMIC-198

BART with the original BART (Lewis, 2019).199

• LRTA − BioMIC4: Replaced BioMIC- 200

BART with the BioBART.(Yuan et al., 2022). 201

• LRTA−BioMIC: Our final report genera- 202

tion architecture as shown in Figure 1. 203

As shown in Table 1, removing the Region 204

Guided Feature Extractor (LRTA-BioMIC1) 205

caused a sharp 22.12% and 16.52% drop in 206

BLEU-4 and ROUGE-L, confirming the impor- 207

tance of extracting features from 29 chest X- 208

ray regions (Tanida et al., 2023). Replac- 209

ing cross-attention with simple embedding addi- 210

tion (LRTA-BioMIC2) reduced BLEU-4 and 211

ROUGE-L by 6.64% and 4.69%, showing 212

the need for effective fusion. Using vanilla 213

BART (LRTA-BioMIC3) led to a 11.95% 214

and 10.27% drop, while swapping in BioBART 215

(LRTA-BioMIC4) gave only minor gains of 216

0.2% and 2.9%. This highlights the need for 217

radiology-specific tuning beyond generic biomed- 218

ical pretraining. Other metrics also favor LRTA- 219

BioMIC (c.f. Table 3, Section 6). 220

3.1 Computational Resources 221

Experiments were conducted using A100 GPUs. 222

BioMIC-BART training required four A100 GPUs 223

(80GB each) and took approximately 26 hours. 224

LRTA-BioMIC fine-tuning on MIMIC-CXR-JPG 225

and IU-Xray was significantly lightweight, running 226

on a single GPU with just 6GB to 7GB of memory. 227

Fine-tuning took only 4.5 hours for MIMIC-CXR- 228

JPG and 1.5 hours for IU-Xray, highlighting its 229

efficiency (c.f. Section 12, 15). 230

4 Conclusion and Future Work 231

In place of computationally intensive VLMs, we 232

propose LRTA-BioMIC, a computationally effi- 233

cient, domain-specific, region-guided, and text- 234

aligned language model with ViT, achieving SoTA 235

Chest X-ray report generation. We extend Bio- 236

BART, originally trained on full PubMed texts, 237

by further training it on MIMIC-CXR-JPG to en- 238

able efficient multimodal processing, naming it 239

BioMIC-BART. Our approach improves BLEU-4 240

and ROUGE-L by 9.71% and 0.9% on IU-Xray, 241

and by 1.60% in BLEU-4 on MIMIC-CXR-JPG, 242

with a slight 3.53% decrease in ROUGE-L com- 243

pared to prior SoTA models. In future, a full- 244

fledged systematic study of various data config- 245

uration strategies including transfer learning and 246

dataset augmentation could be helpful to improve 247

performance and generalization. 248
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5 Limitations249

The IU Chest X-ray and MIMIC-CXR-JPG250

datasets (cf. Section 7) provide publicly available251

chest X-ray images paired with radiology reports,252

though access to MIMIC-CXR-JPG is restricted253

due to privacy regulations such as HIPAA. Annotat-254

ing medical reports is costly and requires domain255

expertise, limiting the availability of large-scale256

datasets for research. MIMIC-CXR-JPG primarily257

includes ICU patients, potentially skewing models258

toward severe disease cases. Another limitation is259

that our method evaluates chest X-rays in isolation,260

whereas clinical assessments often compare them261

with prior scans for a more comprehensive diagno-262

sis. Moreover, MIMIC-CXR-JPG contains descrip-263

tions of non-anatomical objects, such as surgical264

clips, which are not addressed by our approach.265

5.1 Bias within Training Data266

From a machine learning perspective, dataset bias267

can affect even a "perfect" model because such268

bias originates from the data itself, not the model’s269

architecture or training process. If a dataset is bi-270

ased—such as being skewed or containing spuri-271

ous correlations—then the model trained on it will272

inherently reflect these biases in its predictions, re-273

gardless of its accuracy or sophistication (ari, 2023;274

Bourgin and Peterson, 2024; Haider, 2024). We fo-275

cused on co-occurrences of the X-ray diagnosis and276

the long-tail issue of the dataset for our analysis, as277

mentioned in (Song et al., 2024). Instead of identi-278

fying critical disease features, models may infer the279

attributes of one disease solely by relying on the280

presence of others, which confuses the recognition281

of visual realities and the generation of accurate282

reports. In Figures 4 and 5, we observe that the283

imbalance in the data can lead to biased predictions284

and poor performance on minority classes. IU is285

more skewed, while MIMIC is less so, but both de-286

pict long-tail issues arising from dataset bias. For287

co-occurrences of the X-ray diagnosis, refer to Fig-288

ures 6 and 7; models may infer the attributes of289

one disease solely based on others. For example,290

"Support Devices" co-occurred with "Pleural Effu-291

sion" in 11.18% of cases (in MIMIC-CXR-JPG)292

and also showed high co-occurrence with most di-293

agnoses. This is likely because the data is collected294

from ICU patients, leading to biased sampling. If295

we now test the model on a dataset not collected296

from ICU patients, the model may still assign un-297

due importance to "Support Devices," which is not298

clinically relevant, resulting in biased predictions. 299

Mitigating bias is not within the scope of this work, 300

but causal approaches appear promising for future 301

research, as shown in (Jones and colleagues, 2024; 302

Jones et al., 2023; Song et al., 2024). 303

5.2 Real-World Clinical Deployment 304

As discussed in Section 5.1, the lack of balanced 305

datasets and the presence of spurious correlations 306

pose significant challenges to deploying such mod- 307

els in real-world clinical settings. While existing 308

models, including ours, are not yet ready for direct 309

clinical use, they hold strong potential as assistive 310

tools for radiologists. Specifically, they can aid in 311

generating provisional reports and automating rou- 312

tine tasks. For instance, even an experienced clin- 313

ician typically requires 5–10 minutes to interpret 314

and compose a radiology report (Hou et al., 2023b), 315

whereas our model can generate a preliminary re- 316

port in less than a second per instance. This effi- 317

ciency makes it well-suited for handling straight- 318

forward or repetitive cases, thereby streamlining 319

the diagnostic workflow. However, the primary 320

barrier to achieving reliable end-to-end automated 321

reporting lies in the underlying data biases. Ad- 322

dressing this requires the development and curation 323

of more representative, bias-free datasets—a goal 324

that is essential yet notably difficult to accomplish 325

in practice. 326

6 Ethical Considerations 327

The authors of both the IU-Xray (Demner-Fushman 328

et al., 2016) and the MIMIC-CXR-JPG (John- 329

son et al., 2019) dataset have implemented tech- 330

niques for de-identifying patient information. Both 331

datasets ensure that data is anonymized, which pro- 332

tects patient identity and adheres to ethical stan- 333

dards in healthcare research. This comprehensive 334

de-identification process allows our model to op- 335

erate without disclosing any sensitive information 336

regarding individual patients. BioMIC-BART is 337

trained over BART. While Pre-trained Language 338

Models (PLMs) like BART are advantageous for 339

various natural language processing tasks, they can 340

introduce biases present in their training corpora 341

(Gallegos et al., 2023; Navigli et al., 2023). Despite 342

efforts to mitigate bias, it is challenging to com- 343

pletely eliminate biased or discriminatory content 344

in the model’s representations. 345
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Appendix 618

7 Dataset 619

The MIMIC-CXR-JPG (Johnson et al., 2019) and 620

IU-Xray (Demner-Fushman et al., 2016) datasets 621

are widely used benchmarks in radiology report 622

generation. MIMIC-CXR-JPG comprises 377,110 623

chest X-rays from 227,835 studies across 65,379 624

patients (2011–2016), paired with free-text, de- 625

identified reports. IU-Xray, though smaller with 626

7,470 images and 3,825 reports, provides struc- 627

tured reports with distinct Findings and Impression 628

sections, and a balanced distribution of normal and 629

abnormal cases. We use both datasets to ensure 630

robustness and comparability with prior work. 631

8 Evaluation Metrics 632

We evaluate using BLEU (Papineni et al., 2002), 633

CIDEr (Vedantam et al., 2015), METEOR (Baner- 634

jee and Lavie, 2005), BERTScore (Zhang et al., 635

2019), ROUGE-L (Lin, 2004), and Embedding- 636

Based Metrics (Rus and Lintean, 2012; Landauer 637

and Dumais, 1997; Forgues et al., 2014). BLEU 638

and CIDEr assess n-gram overlaps; METEOR ac- 639

counts for synonyms and recall; BERTScore mea- 640

sures contextual semantic similarity; ROUGE-L 641

evaluates summarization via longest common sub- 642

sequence; and Embedding-Based Metrics compute 643

semantic similarity. 644

Since these NLG metrics may miss clinical accu- 645

racy, we use CheXbert (Smit et al., 2020) to extract 646

disease labels from generated reports and compare 647

them to references. Due to space constraints and 648

prior works omitting some metrics, detailed NLG 649

results are reported in the appendix (Table 3) for 650

comprehensive ablation analysis. 651

9 Comparision with GPT-4o and Gemini 652

We evaluated our model with various architectural 653

modifications and benchmarked it against Ope- 654

nAI’s GPT-4o (Achiam et al., 2023) and Google’s 655

Gemini (Team et al., 2023). The prompt provided 656

was: "The bot is given a chest X-ray image and 657

must generate a report consisting of Findings and 658

Impression. Findings provide a detailed descrip- 659

tion of the radiograph, while Impression serves as 660

a summary or inference of the report." 661

The results are presented in Table 3. We ob- 662

served an improvement of 139.57%, 158.96% in 663

ROUGE-L and 42.99%, 54.30% in BERTScore 664

when comparing LRTA-BioMIC to GPT-4o and 665
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Model B-1 B-2 B-3 B-4 Cider MTR Dist-2 BertScore Rouge-L E-avg
GPT-4o 0.183 0.070 0.032 0.002 - 0.287 0.349 0.628 0.187 0.934
Gemini 0.176 0.072 0.027 0.001 - 0.204 0.383 0.582 0.173 0.916
LRTA−BioMIC1 0.398 0.274 0.213 0.176 0.888 0.412 0.317 0.812 0.374 0.946
LRTA−BioMIC2 0.483 0.359 0.275 0.211 0.974 0.510 0.339 0.902 0.427 0.962
LRTA−BioMIC3 0.462 0.339 0.257 0.199 0.934 0.498 0.324 0.871 0.402 0.963
LRTA−BioMIC4 0.464 0.345 0.265 0.203 0.966 0.516 0.301 0.885 0.414 0.958
LRTA−BioMIC 0.527 0.384 0.279 0.226 1.013 0.522 0.347 0.898 0.448 0.969

Table 3: Performance comparison of LRTA − BioMIC against multiple Ablation architecture (c.f section 3),
GPT-4o and Gemini across multiple evaluation metrics. LRTA−BioMIC achieves the highest scores in most
metrics, outperforming state-of-the-art vision-language models. B-i represents BLEU scores with i-gram overlap,
ROUGE-L denotes the longest common subsequence measure, MTR refers to the METEOR score, Dist-2 indicates
distinct bigram diversity, and E-avg represents the average embedding-based metric.

Gemini. Although the BLEU score is signif-666

icantly lower for GPT-4o and Gemini, their667

BERTScore remains decent. Notably, Gemini668

achieved an 10.37% higher Distinct-2 score than669

LRTA-BioMIC; however, a better Distinct-2 score670

does not necessarily indicate superior performance.671

In medical report generation, excessive diversity672

can lead to incoherence, inconsistency, and poten-673

tial loss of medical accuracy, as reports often re-674

quire necessary phrasing and repetitions.675

10 Evaluation on CheXpert676

Model Precision Recall F1

R2Gen – – 0.191
M2 Trans – – 0.326
CXR-RePaiR-Select – – 0.352
RGRG (reproduced) 0.381 0.397 0.389
LRTA-BioMIC (Ours) 0.424 0.429 0.426

Table 4: Performance comparison on the CheXpert
dataset.

CheXpert is a large-scale chest X-ray dataset677

that differs from IU-Xray and MIMIC-CXR-JPG678

in that it provides structured labels indicating the679

presence, absence, or uncertainty of 14 clinical ob-680

servations, rather than free-text radiology reports.681

All prior and recent models discussed in Table 1682

have only evaluated on IU and MIMIC, as these are683

considered the most reliable and widely adopted684

datasets. To assess generalizability beyond these685

conventional benchmarks, we evaluated our model686

LRTA-BioMIC alongside four baselines. Results687

for M2 Trans (Chen et al., 2020), R2Gen (Miura688

et al., 2021), and CXR-RePaiR-Select are taken689

from (Endo et al., 2021). We acknowledge the690

authors of RGRG (Tanida et al., 2023) for their691

open-source repository, which enabled accurate re-692

production. Using openly available CheXpert data 693

(Irvin et al., 2019), we randomly sampled 40K stud- 694

ies and split them into 80% train, 10% validation, 695

and 10% test sets, using final label verdicts as gold 696

labels. Since CheXpert does not contain free-text 697

reports, evaluation using natural language gener- 698

ation (NLG) metrics is not feasible; instead, we 699

report F1 scores based on label classification. Our 700

model achieved an F1 score of 0.426, reflecting 701

a +9.5% improvement over the best-performing 702

baseline RGRG (cf. Table 4). We encourage fu- 703

ture work to explore datasets beyond IU-Xray and 704

MIMIC-CXR-JPG to ensure broader robustness 705

and generalization. 706

11 BioMIC-BART 707

Figure 2 illustrates the architecture of our BioMIC- 708

BART, which is built upon BioBART (Yuan et al., 709

2022), a language model pretrained on full-text 710

biomedical literature from PubMed. Compared 711

to the original BART model, BioBART incorpo- 712

rates domain-specific biomedical terminology and 713

contextual reasoning, making it more suitable for 714

medical applications. While BioBART captures 715

rich biomedical knowledge, it is primarily trained 716

on textual data and lacks grounding in visual rep- 717

resentations or domain-specific imaging patterns 718

observed in chest X-rays. Such grounding is essen- 719

tial for radiology tasks where language often tightly 720

correlates with anatomical regions. To bridge this 721

gap, we draw inspiration from (Xing et al., 2021), 722

which extended the BART architecture to handle 723

multimodal inputs comprising both images and text. 724

We adopt this architecture—originally trained on 725

general vision-language datasets such as Concep- 726

tual Captions (Sharma et al., 2018), SBU (Ordonez 727

et al., 2011), COCO (Lin et al., 2014), and Visual 728

Genome (Krishna et al., 2017)—but re-train it on 729

9



Figure 2: Illustration of the BioMIC-BART architecture, an extension of BioBART designed for multimodal
processing. It integrates chest X-ray image embeddings and radiology tag embeddings into a unified encoder-
decoder framework to enhance multimodal radiological understanding.

chest X-ray images and associated reports from the730

MIMIC-CXR dataset. (Xing et al., 2021) provides731

an in-depth analysis of the role of each component732

and demonstrates their importance toward achiev-733

ing multimodal processing. In our work, we reuse734

the same architecture but apply it specifically to the735

domain of Chest X-ray Report Generation.736

11.1 Visual Feature Extractor737

Following previous work on Vision Transform-738

ers, we use MedCLIP (Wang et al., 2022), pre-739

trained on the MIMIC-CXR-JPG chest X-ray im-740

age and report pair dataset, to extract visual em-741

beddings. These embeddings are then fed into the742

Transformer-based cross-modal encoder. We in-743

clude both the Posteroanterior (PA) view and the744

Lateral (LL) view, if available, using the Anteropos-745

terior (AP) view only when the PA view is unavail-746

able, to provide BioMIC-BART with contextual in-747

formation from multiple perspectives. The PA/AP748

view is the standard chest X-ray, while the LL view749

offers a side perspective, helping to better assess750

the depth and localization of abnormalities. Using751

both views enhances the model’s understanding of752

anatomical structures and improves accuracy.753

11.2 Token Embeddings754

We utilize CXR-BERT-general (Boecking et al.,755

2022), a domain-specific language model tailored756

on chest X-ray (CXR) reports. It is pretrained757

from a randomly initialized BERT model using758

Masked Language Modeling (MLM) on PubMed759

abstracts and clinical notes from the publicly avail- 760

able MIMIC-III and MIMIC-CXR-JPG datasets. 761

This model extracts token embeddings, where the 762

tokens are expert-annotated medical tags inherent 763

to the dataset. Combined with X-ray image embed- 764

dings from MedCLIP, these token representations 765

enhance the model’s ability to capture multimodal 766

radiology Chest X-ray data. 767

11.3 Encoder-Decoder 768

The model architecture comprises 12 encoder- 769

decoder layers designed to effectively process and 770

integrate multimodal data. The encoder receives 771

two types of embeddings: image embeddings, ex- 772

tracted from Posteroanterior (PA) or Anteriorposte- 773

rior (AP) and Lateral (LL) chest X-ray views using 774

MedCLIP, and token embeddings, derived from 775

chest X-ray tags using CXR-BERT-general. 776

To accommodate the variability in available im- 777

age views within the dataset, we used the Antero- 778

posterior (AP) view only when the PA view was un- 779

available. If neither PA nor AP views were present, 780

a zero matrix was passed in place of the image 781

embedding. Similarly, if the Lateral view was 782

missing, a zero matrix was also used. This de- 783

cision was guided by the view distribution within 784

the MIMIC-CXR-JPG dataset (Table 5), which is 785

heavily skewed toward AP images, a result of data 786

collection in ICU settings where patients are typi- 787

cally bedridden and AP imaging is more feasible. 788

However, despite their prevalence, AP views are 789
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diagnostically inferior to PA views, which radiolo-790

gists prefer whenever feasible due to their superior791

image quality (Jones and Silverstone, 2024). There-792

fore, when both views are available, our method793

prioritizes PA over AP to ensure higher reliability.794

Moreover, in real-world clinical scenarios,795

where patients are ambulatory, PA views are far796

more commonly acquired than AP. Thus, designing797

a model that prioritizes PA view not only aligns798

with clinical best practices but also better general-799

izes to non-ICU environments where PA imaging800

predominates.801

View Combination Number of Patients
PA + AP + Lateral 183
PA + Lateral 85,077
AP + Lateral 19,978
PA + AP 7,424
Only PA 483
Only AP 112,289
Only Lateral 2,401
Total Studies 227,835
Total Image Count 377,110

Table 5: Distribution of Chest X-ray View Combinations
in MIMIC-CXR-JPG

The entire model is trained on the official802

MIMIC-CXR-JPG train split. The model parame-803

ters are updated based on the loss calculated during804

training, which measures the discrepancy between805

the predicted and actual diagnostic outcomes. This806

loss is backpropagated through the network, ad-807

justing the weights of both the encoder and de-808

coder to minimize error and improve the model’s809

performance. Although a simple model like this810

alone cannot produce meaningful radiology reports811

on unseen data, transferring the contextual mul-812

timodal understanding of BioMIC-BART to our813

architecture, LRTA-BioMIC, as illustrated in Fig-814

ure 1, enhances performance compared to using815

BART alone (Lewis, 2019) (refer to Section 3).816

12 Parameter and Computational817

Resources818

We categorize our experiments into two groups:819

(1) BioMIC-BART, a computationally intensive820

large-scale language model, and (2) LRTA-BioMIC,821

our final lightweight model combining ViT with a822

region-guided language decoder. Both setups used823

the GELU activation function, the Adam optimizer824

with a weight decay of 0.001, run on A100 GPUs.825

BioMIC-BART. A grid search over learning 826

rates (3e-4, 3e-5, 3e-6) and batch sizes (48, 64) 827

identified 3e-5 and 48 as optimal. Training was 828

performed on 4×A100 GPUs (80GB each) for 20 829

epochs using 90% of the MIMIC-CXR-JPG train 830

split. The remaining 10% was reserved for fine- 831

tuning LRTA-BioMIC. Each full training run took 832

approximately 26 hours to complete end-to-end, 833

including checkpointing, logging, and intermediate 834

evaluations. 835

LRTA-BioMIC. Grid search selected 3e-5 learn- 836

ing rate and batch size 4 over 20 epochs. For 837

MIMIC-CXR-JPG, 10% of the official training 838

split was used; for IU-Xray, an 80-10-10 custom 839

split was created using a fixed random seed. GPU 840

memory usage was 7GB (MIMIC) and 6GB (IU- 841

Xray). Training duration was 4.5 hours (MIMIC) 842

and 1.5 hours (IU-Xray), underscoring the model’s 843

efficiency, fast turnaround, and suitability for 844

lightweight deployments. 845

13 Error Analysis 846

We conducted an analysis to identify weaknesses 847

in LRTA-BioMIC. We identified two key weak- 848

nesses: Numerical Discrepancies (Weakness-A). 849

In Table 6, we observe that the gold report men- 850

tions an 8mm nodule, whereas the generated report 851

states a 1cm nodule. Although the difference is 852

small, in a sensitive domain like healthcare, even 853

minor inaccuracies can be critical. Similarly, in 854

the second gold report under the same limitation, 855

our model, LRTA-BioMIC, correctly identified the 856

spatiality by mentioning healed left rib fractures 857

but failed to specify the 9th rib fracture, which 858

was explicitly mentioned in the gold report. In- 859

complete Transfer of Findings to Impression 860

(Weakness-B): In Table 6, at first glance, it may ap- 861

pear that our model underperforms due to missing 862

details in the impression section. However, upon 863

closer inspection, we observe that LRTA-BioMIC 864

correctly generates the relevant observations and in- 865

cludes them in the findings section but omits them 866

in the impression. This behavior is influenced by 867

the inherent bias in the MIMIC-CXR-JPG and IU- 868

Xray datasets, where findings are typically detailed, 869

while impressions tend to be concise. Due to the 870

brevity of the impression section, the model some- 871

times hallucinates by omitting crucial conclusions 872

that should be included in the impression while 873

only mentioning them in the findings. 874
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Weaknesses GOLD REPORT GENERATED REPORT

Weakness-A
Findings: The cardiac and mediastinal con-
tours are within normal limits. The lungs are
well-inflated and clear. There is an 8mm nod-
ule in the left lower lobe, XXXX calcified
granuloma. There is no pneumothorax or effu-
sion. Bony structures of the thorax are intact
with minimal early degenerative change. Im-
pression: 1. No evidence of acute cardiopul-
monary process. 2. 8mm nodule in the left
lung base, XXXX calcified granuloma.

Findings: Heart size and pulmonary vascular-
ity appear within normal limits. The lungs are
free of focal airspace disease. No pleural ef-
fusion or pneumothorax is seen. In the left
lower lobe, there has been development of
a 1 cm diameter nodule. This appears some-
what XXXX from the prior study. Mild de-
generative changes are present in the XXXX.
Impression: 1 cm of left lung base nodule.
XXXX since the previous study.

Findings: Stable cardiomediastinal silhouette.
Pulmonary vascularity is within normal lim-
its. Hyperlucent apices. Negative for focal
airspace disease or consolidation. Negative
for pneumothorax or pleural effusion. Healed
remote left 9th rib fracture. Right shoulder:
Negative for fracture or dislocation. Impres-
sion: Chest. Right shoulder. 1. No acute
cardiopulmonary abnormality. 2. Negative for
right shoulder fracture or dislocation.

Findings: The lungs are clear bilaterally.
Specifically, no evidence of focal consolida-
tion, pneumothorax, or pleural effusion. Car-
diomediastinal silhouette is unremarkable. Sta-
ble apical hyperlucency. Visualized osseous
structures of the thorax are without acute ab-
normality. Healed left rib fractures are
noted. Impression: No acute cardiopulmonary
abnormality.

Weakness-B
Findings: The heart is normal in size. The me-
diastinum is stable. Left-sided chest XXXX is
again visualized with tip at cavoatrial junction.
There is no pneumothorax. Numerous bilat-
eral pulmonary nodules have increased in size
and number XXXX compared to prior study.
The dominant nodule/mass in the left midlung
is also mildly increased. There is no pleural ef-
fusion. Impression: Interval increase in size
and number of innumerable bilateral pul-
monary nodules consistent with worsening
metastatic disease.

Findings: Heart size within normal limits, sta-
ble mediastinal and hilar contours. Left-sided
subclavian central venous catheter. No focal
alveolar consolidation, no definite pleural effu-
sion seen. There are multiple bilateral pul-
monary nodules. Prominent left midlung
nodule may be secondary to overlapping
structures. No typical findings of pulmonary
edema. Impression: No acute findings

Findings: There is a calcified granuloma in the
left upper lobe. Lungs otherwise are believed
to be clear. The heart is normal. There are cal-
cified left hilar and mediastinal lymph XXXX.
The skeletal structures show some senescent
changes. Impression: Old granulomatous
disease. No acute pulmonary disease.

Findings: There is a calcified granuloma in
the left upper lobe. There are calcified left
hilar and mediastinal lymph XXXX, consistent
with prior granulomatous disease. The lungs
are otherwise clear without evidence of acute
infiltrate or effusion. Impression: No acute
cardiopulmonary abnormalities.

Table 6: Table highlighting model weaknesses by presenting two examples per weakness, comparing the gold
reports with the generated reports.
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14 Statistical Significance Analysis875

• IU-Xray Dataset:876

– Bleu-4: The one-tailed t-test yields p =877

0.0138 (< 0.05) when compared to878

COMG (the best-performing baseline),879

indicating a statistically significant im-880

provement.881

– Rouge-L: The p-value is < 0.05 for882

4 out of 5 baseline models (Table 7).883

For COMG, while the difference is not884

marginally significant, LRTA-BioMIC885

still achieves a higher score.886

– CE Metric: LRTA-BioMIC achieves887

a p-value < 0.05, indicating statistical888

significance when compared to RGRG.889

While it is not marginally significant890

on PromptMRG, it still outperforms in891

terms of F1-score.892

• MIMIC-CXR Dataset:893

– Bleu-4: For 3 out of 5 baseline models894

(Table 1), the p-value is < 0.05, demon-895

strating significance. For the remaining896

two models, the difference is not statisti-897

cally significant.898

– Rouge-L: The one-tailed t-test shows899

that none of the baseline models are sta-900

tistically significant compared to LRTA-901

BioMIC.902

– CE Metric: LRTA-BioMIC is statisti-903

cally significant (p < 0.05) in 3 out of 5904

baseline models. For the remaining two905

models, the difference is not statistically906

significant.907

• None of the baseline models were signifi-908

cantly stronger than LRTA-BioMIC on any909

metric.910

• A total of 30 paired one tailed t-tests were con-911

ducted (3 metrics × 5 baselines × 2 datasets):912

– LRTA-BioMIC showed significantly913

stronger performance (p < 0.05) in 21914

instances.915

– In the remaining 9 cases:916

* There were only 4 instances where917

a baseline outperformed LRTA-918

BioMIC.919

* None of these 4 instances were sta- 920

tistically significant. 921

• On the MIMIC-CXR-JPG dataset: 922

– Out of 9 evaluated metrics, LRTA- 923

BioMIC ranked as either the best- 924

performing or second-best-performing 925

model in 8 of them. 926

• On the IU-Xray dataset: 927

– Out of 9 metrics, LRTA-BioMIC 928

achieved the best performance in 8 and 929

was the second-best in only one metric 930

(BLEU-1). 931

The detailed significance tests validate the effec- 932

tiveness of our proposed model (cf. Table 7). Our 933

model achieves state-of-the-art performance on the 934

IU-Xray dataset and delivers competitive results on 935

the large-scale MIMIC-CXR-JPG dataset when 936

compared with existing baseline models. Notably, 937

this is accomplished while adhering to the primary 938

objective of our work—developing a model that is 939

comparatively lightweight and efficient relative to 940

existing approaches. 941

15 How Lightweight is LRTA-BioMIC 942

"Lightweight" is used here as a comparative term 943

relative to existing architectures. The efficiency 944

claims apply exclusively to LRTA-BioMIC. While 945

BioMIC-BART—a robust backbone of LRTA- 946

BioMIC enriched with chest X-ray data and multi- 947

modal learning capabilities—initially required ap- 948

proximately 26 hours of pre-training on multiple 949

A100 GPUs (refer to Section 12), once trained, it 950

can be efficiently loaded from Hugging Face or a 951

local device, eliminating the need for extensive re- 952

training. All subsequent training and inference on 953

new data are performed solely on LRTA-BioMIC. 954

Our objective is to achieve state-of-the-art per- 955

formance or results comparable to existing ap- 956

proaches, which typically rely on heavy computa- 957

tional resources. In contrast, our method offers an 958

efficient alternative with competitive performance. 959

Table 8 presents a comparative analysis of the time 960

and GPU resources required to train each model on 961

a new dataset. 962

Compared to existing architectures, LRTA- 963

BIOMIC demonstrates remarkable efficiency in 964

GPU memory consumption. With a require- 965

ment of only 6–7 GB, it achieves approximately 966
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Metric IU-Xray MIMIC-CXR-JPG
RGRG COMG PROMPTMRG ORGAN KGVL-BART RGRG COMG PROMPTMRG ORGAN RECAP

Bleu-4 ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ×
Rouge-L ✓ ✓ ✓ ✓ × ✓ × ✓ × ×
CE ✓ − × − − × ✓ × ✓ ✓

Table 7: ✓ indicates that LRTA-BioMIC has a p-value < 0.05, signifying a statistically significant improvement
over the corresponding baseline model (mentioned in the column) on the specified dataset (also mentioned in the
column) for the metric listed in the corresponding row. However, × does not imply that LRTA-BioMIC performs
worse than the baseline; it only indicates that the p-value was not < 0.05. Refer Section 14 for deeper analysis.

Model GPU (GB) Tr. Hours
RGRG 48 45
COMG 147–179 5
PROMPTMRG 24 24
ORGAN 24 –
RECAP 24 –
KGVL-BART 60–80 4-5
LRTA-BIOMIC 6–7 2–5

Table 8: Comparison of GPU memory usage and train-
ing time required for different models when adapting to
a new dataset.

85% reduction in GPU memory compared to967

RGRG (48 GB), over 95% reduction compared968

to COMG (147–179 GB), around 75% less than969

PROMPTMRG, ORGAN, and RECAP (each using970

24 GB), and over 85% less than KGVL-BART971

(60–80 GB). These significant reductions validate972

our claim that LRTA-BioMIC is a lightweight ar-973

chitecture, offering a computationally efficient al-974

ternative to existing models, without compromising975

performance—and in many cases, even achieving976

superior results.977

16 Generalizability to Other Modalities:978

MRI and CT979

Figure 3: Challenges in radiology imaging such as MRI:
(1) ambiguous boundaries between foreground and back-
ground, and (2) severe anatomical co-occurrence of or-
gans. Figure adapted from (Chen et al., 2022).

Scalability to MRI and CT. Although our cur-980

rent work focuses on chest X-rays, the proposed981

LRTA-BioMIC framework is generalizable to982

other radiology domains such as MRI and CT. As 983

illustrated in Figure 3, both modalities face two key 984

challenges: unclear anatomical boundaries and fre- 985

quent co-occurrence of organs (Chen et al., 2022). 986

Our approach addresses these via: 987

• Region-Guided Feature Extraction: Helps 988

resolve both challenges by enabling region- 989

specific representations (e.g., isolating 990

left/right kidney) and learning sharper 991

boundaries through training. 992

• Region-Text Aligner: Helps resolve co- 993

occurrence by aligning disease tags (e.g., 994

chronic kidney disease) to precise anatomi- 995

cal regions. 996

While the methodology applies to MRI and 997

CT, experimenting with these modalities is out of 998

scope for the current work, as it would require new 999

datasets, extensive retraining of backbone models 1000

(e.g., MedCLIP, ResNet, BioBART), and curated 1001

tag information. Nevertheless, we will publicly re- 1002

lease our model to support future research in these 1003

directions. 1004
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Figure 4: Distribution of diagnostic labels in the IU Chest X-ray dataset. A clear imbalance is visible, indicating a
long-tail distribution where a small number of labels dominate the dataset.

Figure 5: Label distribution in the MIMIC-CXR-JPG dataset. While less skewed than IU, the dataset still exhibits
long-tail characteristics, reflecting the imbalance in class representation.
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Figure 6: Co-occurrence matrix of diagnostic labels in the IU Chest X-ray dataset. Significant overlaps between
certain conditions highlight potential spurious correlations that may bias model training.
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Figure 7: Co-occurrence matrix of diagnostic labels in the MIMIC-CXR-JPG dataset. Frequent co-occurrences,
particularly involving support devices, indicate label dependencies that could affect model generalization.
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