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Abstract

The global shortage of radiologists is a ma-
jor challenge. Radiology is vital for diagnos-
ing and treating diseases, especially in the
lungs and heart, using imaging like X-rays.
To address this shortage and workload, we
introduce Lightweight Region-Text Aligned
BioMIC-BART (LRTA-BioMIC), which gen-
erates Chest X-ray reports from X-ray images.
LRTA-BioMIC is a computationally efficient,
Domain Specific, Region Guided Text Aligned
language model that integrates tagger informa-
tion and X-ray embeddings from ViT through
cross-attention at every layer of the BioMIC-
BART Encoder to generate radiology reports
(Findings and Impression). Our model achieves
a notable improvement of 9.71% in BLEU-4
and 0.9% in ROUGE-L compared to the previ-
ous state-of-the-art, COMG and KGVL-BART,
on the IU-Xray dataset. LRTA-BioMIC also
demonstrates competitive performance on the
MIMIC-CXR-JPG dataset, with a 1.60% in-
crease in BLEU-4 and a slight 3.53% decrease
in ROUGE-L compared to RECAP, the previ-
ous state-of-the-art. We will make our codes
and resources publicly available.

1 Introduction

Vision-Language Models (VLMs) are widely used
in radiology report generation due to their ability
to generate coherent text from images. However,
existing pipelines often suffer from poor image-text
alignment (Amirloo et al., 2024), which affects gen-
eration quality. Prior work (Caffagni et al., 2024)
has shown that improving alignment enhances per-
formance. Moreover, many VLMs rely on heavy
pre-trained encoders and decoders, limiting their
practicality. To address these limitations, we pro-
pose Lightweight Region-Text Aligned BioMIC-
BART (LRTA-BioMIC)—a model that efficiently
generates chest X-ray reports. We extend BioBART
(Yuan et al., 2022), which lacks image embedding

capability, by training it on the MIMIC-CXR-JPG
dataset using KM-BART’s dual-stream training
(Xing et al., 2021). The resulting BioMIC-BART
forms the backbone of LRTA-BioMIC (cf. Table 2),
enhancing performance on /U-Xray and MIMIC-
CXR-JPG. Our model uses region-guided features
from MedCLIP (Wang et al., 2022), refined via
the Region Selector from (Tanida et al., 2023) with
cross-attention (C' A1), to enhance contextual visual
embeddings. These are further aligned with tex-
tual tags through a second cross-attention (C As)
in BioMIC-BART layers, improving region-text
coherence during encoding.

Earlier methods in this domain ranged from
CNN-RNN pipelines (Jing et al., 2020, 2017)
to Transformer-based models (Vaswani, 2017).
Region-aware methods (Tanida et al., 2023; Li
et al., 2023) improved alignment, while organ-
specific masks (Gu et al., 2024) and observation-
guided reasoning (Hou et al., 2023b,a) boosted dis-
ease detection. Knowledge graphs (Zhang et al.,
2020; Kale et al., 2023) and prompt-based tech-
niques (Jin et al., 2024) further enriched text gener-
ation. Despite these advances, existing models like
CMCA (Song et al., 2022), KnowMat (Yang et al.,
2022), and CMM-RL (Qin and Song, 2022) remain
resource-intensive or alignment-limited. LRTA-
BioMIC overcomes these drawbacks by combin-
ing efficient multimodal processing with improved
alignment via region selection and text grounding.

Our contributions are as follows:

* LRTA-BioMIC, a computationally efficient,
region-guided, and text-aligned model, achiev-
ing 9.71% and 0.9% improvements in BLEU-
4 and ROUGE-L, respectively, over the previ-
ous SoTA. for chest X-ray report generation.

* BioMIC-BART, an extension of BioBART
trained on MIMIC-CXR-JPG to process mul-
timodal chest X-ray images and text, serving
as the backbone of LRTA-BioMIC.



Findings: The cardiac silhouette is mildly enlarged. A lobulated opacity is identified superior to the heart in the anterior mediastinum on the lateral
view, possibly consistent with a tortuous/ectatic thoracic aorta versus an anterior mediastinal mass. The thoracic aorta is tortuous and calcified.
No focal areas of pulmonary consolidation are seen. The lungs are hyperexpanded with flattening of the bilateral hemidiaphragms. No
pneumothorax or pleural effusion is present. Severe degenerative changes are noted in the thoracic spine.

Impression: 1. Lobulated anterior mediastinal opacity on the lateral view, possibly consistent with a tortuous/ectatic thoracic aorta versus an
anterior mediastinal mass. 2. Mild cardiomegaly with findings of chronic obstructive pulmonary disease (COPD).
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Figure 1: Architecture of LRTA-BioMIC. Chest X-ray images (PA & LL) are processed via ResNet-50 and
MedCLIP to extract visual features. A 29-region selector refines region-specific embeddings. Textual tags, along
with selected regions, aid image-text alignment in BioMIC-BART, which generates the final radiology report.

2 Methodology

LRTA-BioMIC is trained by first developing
BioMIC-BART, an extension of BART designed
to process multimodal data, specifically chest X-
ray images and medical text. The pretrained
BioMIC-BART weights serve as the backbone
for training our Lightweight Region-Text Aligned
BioMIC-BART (LRTA-BioMIC), which incorpo-
rates region-level visual features and enhances text-
image alignment.

2.1 BioMIC-BART

We build upon BioBART-Large, a 442M-parameter
language model trained on full-text PubMed arti-
cles (Yuan et al., 2022). While effective, its per-
formance on Chest X-ray report generation is con-
strained due to limited radiology-specific training.
To address this, we augment it with multimodal
supervision using image-text pairs from MIMIC-
CXR-JPG (Johnson et al., 2019), inspired from
(Xing et al., 2021), which effectively model image-
text contextual relations. Details in Section 11.

2.2 Region-Guided Feature Extraction

To preprocess Chest X-rays, we extract multi-scale
visual embeddings using ResNet-50 (He et al.,
2016) and MedCLIP-ResNet50 (Wang et al., 2022).
Given a chest X-ray I, we obtain:

FP4 = ResNet(Ipy) € R1*2048,

res

(1)
Flé = ResNet(Iy ) € R1x2048
FP = MedCLIP(Ipy) € RVP12, N
Fli = MedCLIP(I;.) € R™?12,

For comprehensive feature fusion, we compute:

PA LL 1x2048
Figsm - Fres + Fres e R ) 3)
concat PA LL
Feip = concat(F g, Fo,)
1x1024 (4)
eR .

Additionally, Fregion € R1*10%4 ( region-level
embeddings) are extracted via frozen 29-region se-
lection (Tanida et al., 2023) and transformed using
a multilayer perceptron (MLP). The final visual rep-
resentation is refined using cross-attention C'A;.

QregionK;qip
Fy, = softmax | ————9® | y/ . (5)
Vd
where:
Qregion = Fregiony
__ fpconcat
Kclip - Fclip ) (6)
concat

Here, the query attends to preselected anatomical
regions, ensuring that keys and values represent



Model NLG Metrics CE Metrics
Dataset B-1 B-2 B-3 B-4 MTR R-L P R Fy
RGRG 0.373 0.249 0.175 0.126 0.168 0.264 | 0.461 0.475 0.447
MIMIC COMG 0.363 0.235 0.167 0.124 0.128 0.290 | 0.424 0.291 0.345
_CXR PROMPTMRG 0.398 — — 0.112 0.157 0.268 | 0.501 0.509 0.476
PG ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 | 0.416 0.418 0.385
RECAP 0.429 0.267 0.177 0.125 0.168 0.288 | 0.389 0.443 0.393
LRTA-BIOMIC | 0.418 0.261 0.179 0.127 0.171 0.283 | 0.496 0.481 0.459
RGRG 0.266 — — 0.063 0.146 0.180 | 0.183 0.187 0.180
COMG 0.536 0.378 0.275 0.206 0.218 0.383 - - -
IU PROMPTMRG 0.401 — — 0.098 0.160 0.281 | 0.213 0.229 0.211
X-RAY | ORGAN 0.510 0.346 0.255 0.195 0.205 0.399 - - -
KGVL-BART 0.423 0.256 0.194 0.165 0.500 0.444 - - -
LRTA-BIOMIC | 0.527 0.384 0.279 0.226 0.522 0.448 | 0.221 0.223 0.218
LRTA-BIOMIC; | 0.398 0.274 0.213 0.176 0.412 0.374 | 0.156 0.161 0.149
LRTA-BIOMIC, | 0.483 0.359 0.275 0.211 0.510 0.427 | 0.204 0.207 0.202
ABLN | LRTA-BIOMIC3 | 0.462 0.339 0.257 0.199 0.498 0.402 | 0.197 0.203 0.195
LRTA-BIOMIC,4 | 0.464 0.345 0.265 0.203 0.516 0.414 | 0.202 0.203 0.199
LRTA-BIOMIC 0.527 0.384 0.279 0.226 0.522 0.448 | 0.221 0.223 0.218

Table 1: Experimental Results of our model and baselines on the I[U-XRAY dataset and the MIMIC-CXR-JPG
dataset. The best results are in boldface, and the underlined are the second-best results. We also include Ablation
study marked by "ABLN" performed on [U-XRAY dataset.A comprehensive one-tailed t-test analysis between
LRTA-BioMIC and all five baselines across three key metrics—BLEU-4, ROUGE-L, and Clinical Efficacy—on both
datasets was conducted (30 tests total) to validate the model’s effectiveness (see Section 14).

Table 2: Distinction between BioMIC-BART and LRTA-
BioMIC. RGFE: Region-Guided Feature Extraction;
RTA: Region-Text Aligner.

contextualized visual features. This enriched rep-
resentation F';; encodes spatially guided semantic
information for improved report generation.

2.3 Region-Text Alignment via Cross
Attention

To align textual features with the region-guided em-
beddings, we integrate an additional cross-attention
(C' As) into each encoder of BioMIC-BART. Given

Aspect BioMIC-BART LRTA-BioMIC textual token embeddings Hy € RM*4 from the
?as,e Model E‘,OEART EIOMIC';;AI;T MeSH or NegBio tagger (Kale et al., 2023; Peng
ramin 1 oW 1o oder-
ot e £ " et al., 2018) for IU-Xray, and from (Alfarghaly
Inforence | Efficient Efficiont et al., 2021)!, for MIMIC-CXR-JPG. , and region-
RGFE Not present Present guided image embeddings F,, C'A5 is computed
RTA Not present Present as:
Purpose Serves as backbone | Designed  for
weight for LRTA- | generation of H T
) TWo(Fi . Wgk
BioMIC report A = softmax ( Q(Fre ) ) F Wy,
Objective Tuned to process multi- | Generate reports \/&
modal chest X-ray im- | via lightweight (7
age and text region-text where WQ, Wi, Wy € R¥*4 are trainable pro-
aligned model Jjection matrices.
Report Suit- | Not suitable alone to | Suitable alone to . . .
. This operation enhances textual representations
ability generate report generate report ) ) : .
Visualization | cf. Figure 2 of. Figure 1 by grounding them in localized visual features,

ensuring alignment with relevant anatomical re-
gions. The enriched embeddings are then processed
through subsequent layers of BioMIC-BART, in-
cluding Multi-Head Self-Attention, Layer Normal-
ization, and Feed-Forward Networks, with residual
connections ensuring stability. The decoder gen-
erates the final report by selecting the most likely
sequence, using contextual features from textual
embeddings Hr and region-guided visuals Fy, al-
ready integrated via cross-attention (C'As).

the

'Tags  were generated by applying pre-

trained models directly to the images. https:
//www.kaggle.com/datasets/tasmiarahmanaanika/
automated-radiology-105-tags


https://www.kaggle.com/datasets/tasmiarahmanaanika/automated-radiology-105-tags
https://www.kaggle.com/datasets/tasmiarahmanaanika/automated-radiology-105-tags
https://www.kaggle.com/datasets/tasmiarahmanaanika/automated-radiology-105-tags

3 Experiments and Results

We evaluated LRTA-BioMIC with architectural
variations and benchmarked it against GPT-40
(Achiam et al., 2023), Gemini (Team et al., 2023)
(see Section 9), prior models—RGRG (Tanida
etal.,2023), COMG (Gu et al., 2024), PromptMRG
(Jin et al., 2024), ORGan (Hou et al., 2023b),
RECAP (Hou et al., 2023a), and KGVL-BART
(Kale et al., 2023)—on [U-Xray and MIMIC-
CXR-JPG, and the CheXpert dataset (Section 10).
LRTA-BioMIC outperformed previous SoTA with
+9.71% BLEU-4 and +0.9% ROUGE-L on [U-
Xray (vs. COMG, KGVL-BART). On MIMIC-
CXR-JPG, it achieved +1.60% BLEU-4 but -
3.53% ROUGE-L (vs. RECAP, ORGan). For
Clinical Efficacy F1 (CheXbert (Smit et al., 2020)),
it improved by +3.32% on IU-Xray and was best
on MIMIC-CXR-JPG except for a -3.70% drop vs.
PromptMRG. Evaluation metrics and error analysis
are in Sections 8 and 13, respectively.

LRTA-BioMIC Superior Performance on the
IU-Xray Dataset. While training and inferenc-
ing on IU X-ray, the model benefits from joint
exposure to the MIMIC-CXR-JPG dataset from the
backbone BioMIC BART, which is over 30 times
larger and provides more diverse sample of radiol-
ogy reports. This auxiliary supervision helps learn
generalized parameters that transfer well to the
smaller IU dataset. However, when evaluating on
MIMIC, there is no such external source to support
training, making it a more difficult generalization
challenge. Replacing BioMIC-BART with BART,
lacks radiology-specific pretraining and access to
MIMIC during IU training, results in a notable drop
of 11.95% in BLEU-4 and 10.27% in ROUGE-L.
Since no available dataset is fully unbiased or clin-
ically exhaustive (Song et al., 2024), leveraging
complementary datasets can enhance robustness.
While one may consider augmenting IU data to
improve MIMIC performance, the small size of IU
limits its effectiveness in adapting model parame-
ters for the much larger MIMIC test set. Below, we
present our ablation studies.

e LRTA — BioMIC7: Removed the Region
Guided Feature Extractor.

* LRTA-BioMI1CY:
Aligner.

Ablated Region-Text

e LRTA — BioMIC5: Replaced BioMIC-
BART with the original BART (Lewis, 2019).

* LRTA — BioMICy4: Replaced BioMIC-
BART with the BioBART.(Yuan et al., 2022).

* LRT A — BioMIC" Our final report genera-
tion architecture as shown in Figure 1.

As shown in Table 1, removing the Region
Guided Feature Extractor (LRTA-BioMICH)
caused a sharp 22.12% and 16.52% drop in
BLEU-4 and ROUGE-L, confirming the impor-
tance of extracting features from 29 chest X-
ray regions (Tanida et al., 2023). Replac-
ing cross-attention with simple embedding addi-
tion (LRT A-BioMI1C5) reduced BLEU-4 and
ROUGE-L by 6.64% and 4.69%, showing
the need for effective fusion. Using vanilla
BART (LRTA-BioMI1Cs) led to a 11.95%
and 10.27% drop, while swapping in BioBART
(LRT A-BioM1C}y) gave only minor gains of
0.2% and 2.9%. This highlights the need for
radiology-specific tuning beyond generic biomed-
ical pretraining. Other metrics also favor LRT A-
BioMIC (c.f. Table 3, Section 6).

3.1 Computational Resources

Experiments were conducted using A/00 GPUs.
BioMIC-BART training required four A100 GPUs
(80GB each) and took approximately 26 hours.
LRTA-BioMIC fine-tuning on MIMIC-CXR-JPG
and [U-Xray was significantly lightweight, running
on a single GPU with just 6GB fo 7GB of memory.
Fine-tuning took only 4.5 hours for MIMIC-CXR-
JPG and 1.5 hours for IU-Xray, highlighting its
efficiency (c.f. Section 12, 15).

4 Conclusion and Future Work

In place of computationally intensive VLMs, we
propose LRTA-BioMIC, a computationally effi-
cient, domain-specific, region-guided, and text-
aligned language model with ViT, achieving SoTA
Chest X-ray report generation. We extend Bio-
BART, originally trained on full PubMed texts,
by further training it on MIMIC-CXR-JPG to en-
able efficient multimodal processing, naming it
BioMIC-BART. Our approach improves BLEU-4
and ROUGE-L by 9.71% and 0.9% on IU-Xray,
and by 1.60% in BLEU-4 on MIMIC-CXR-JPG,
with a slight 3.53% decrease in ROUGE-L com-
pared to prior SOTA models. In future, a full-
fledged systematic study of various data config-
uration strategies including transfer learning and
dataset augmentation could be helpful to improve
performance and generalization.



5 Limitations

The IU Chest X-ray and MIMIC-CXR-JPG
datasets (cf. Section 7) provide publicly available
chest X-ray images paired with radiology reports,
though access to MIMIC-CXR-JPG is restricted
due to privacy regulations such as HIPAA. Annotat-
ing medical reports is costly and requires domain
expertise, limiting the availability of large-scale
datasets for research. MIMIC-CXR-JPG primarily
includes ICU patients, potentially skewing models
toward severe disease cases. Another limitation is
that our method evaluates chest X-rays in isolation,
whereas clinical assessments often compare them
with prior scans for a more comprehensive diagno-
sis. Moreover, MIMIC-CXR-JPG contains descrip-
tions of non-anatomical objects, such as surgical
clips, which are not addressed by our approach.

5.1 Bias within Training Data

From a machine learning perspective, dataset bias
can affect even a "perfect” model because such
bias originates from the data itself, not the model’s
architecture or training process. If a dataset is bi-
ased—such as being skewed or containing spuri-
ous correlations—then the model trained on it will
inherently reflect these biases in its predictions, re-
gardless of its accuracy or sophistication (ari, 2023;
Bourgin and Peterson, 2024; Haider, 2024). We fo-
cused on co-occurrences of the X-ray diagnosis and
the long-tail issue of the dataset for our analysis, as
mentioned in (Song et al., 2024). Instead of identi-
fying critical disease features, models may infer the
attributes of one disease solely by relying on the
presence of others, which confuses the recognition
of visual realities and the generation of accurate
reports. In Figures 4 and 5, we observe that the
imbalance in the data can lead to biased predictions
and poor performance on minority classes. IU is
more skewed, while MIMIC is less so, but both de-
pict long-tail issues arising from dataset bias. For
co-occurrences of the X-ray diagnosis, refer to Fig-
ures 6 and 7; models may infer the attributes of
one disease solely based on others. For example,
"Support Devices" co-occurred with "Pleural Effu-
sion" in 11.18 % of cases (in MIMIC-CXR-JPG)
and also showed high co-occurrence with most di-
agnoses. This is likely because the data is collected
from ICU patients, leading to biased sampling. If
we now test the model on a dataset not collected
from ICU patients, the model may still assign un-
due importance to "Support Devices," which is not

clinically relevant, resulting in biased predictions.
Mitigating bias is not within the scope of this work,
but causal approaches appear promising for future
research, as shown in (Jones and colleagues, 2024;
Jones et al., 2023; Song et al., 2024).

5.2 Real-World Clinical Deployment

As discussed in Section 5.1, the lack of balanced
datasets and the presence of spurious correlations
pose significant challenges to deploying such mod-
els in real-world clinical settings. While existing
models, including ours, are not yet ready for direct
clinical use, they hold strong potential as assistive
tools for radiologists. Specifically, they can aid in
generating provisional reports and automating rou-
tine tasks. For instance, even an experienced clin-
ician typically requires 5—-10 minutes to interpret
and compose a radiology report (Hou et al., 2023b),
whereas our model can generate a preliminary re-
port in less than a second per instance. This effi-
ciency makes it well-suited for handling straight-
forward or repetitive cases, thereby streamlining
the diagnostic workflow. However, the primary
barrier to achieving reliable end-to-end automated
reporting lies in the underlying data biases. Ad-
dressing this requires the development and curation
of more representative, bias-free datasets—a goal
that is essential yet notably difficult to accomplish
in practice.

6 Ethical Considerations

The authors of both the /U-Xray (Demner-Fushman
et al., 2016) and the MIMIC-CXR-JPG (John-
son et al., 2019) dataset have implemented tech-
niques for de-identifying patient information. Both
datasets ensure that data is anonymized, which pro-
tects patient identity and adheres to ethical stan-
dards in healthcare research. This comprehensive
de-identification process allows our model to op-
erate without disclosing any sensitive information
regarding individual patients. BioMIC-BART is
trained over BART. While Pre-trained Language
Models (PLMs) like BART are advantageous for
various natural language processing tasks, they can
introduce biases present in their training corpora
(Gallegos et al., 2023; Navigli et al., 2023). Despite
efforts to mitigate bias, it is challenging to com-
pletely eliminate biased or discriminatory content
in the model’s representations.
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Appendix
7 Dataset

The MIMIC-CXR-JPG (Johnson et al., 2019) and
IU-Xray (Demner-Fushman et al., 2016) datasets
are widely used benchmarks in radiology report
generation. MIMIC-CXR-JPG comprises 377,110
chest X-rays from 227,835 studies across 65,379
patients (2011-2016), paired with free-text, de-
identified reports. IU-Xray, though smaller with
7,470 images and 3,825 reports, provides struc-
tured reports with distinct Findings and Impression
sections, and a balanced distribution of normal and
abnormal cases. We use both datasets to ensure
robustness and comparability with prior work.

8 Evaluation Metrics

We evaluate using BLEU (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015), METEOR (Baner-
jee and Lavie, 2005), BERTScore (Zhang et al.,
2019), ROUGE-L (Lin, 2004), and Embedding-
Based Metrics (Rus and Lintean, 2012; Landauer
and Dumais, 1997; Forgues et al., 2014). BLEU
and CIDEY assess n-gram overlaps; METEOR ac-
counts for synonyms and recall; BERTScore mea-
sures contextual semantic similarity; ROUGE-L
evaluates summarization via longest common sub-
sequence; and Embedding-Based Metrics compute
semantic similarity.

Since these NLG metrics may miss clinical accu-
racy, we use CheXbert (Smit et al., 2020) to extract
disease labels from generated reports and compare
them to references. Due to space constraints and
prior works omitting some metrics, detailed NLG
results are reported in the appendix (Table 3) for
comprehensive ablation analysis.

9 Comparision with GPT-40 and Gemini

We evaluated our model with various architectural
modifications and benchmarked it against Ope-
nAl’'s GPT-40 (Achiam et al., 2023) and Google’s
Gemini (Team et al., 2023). The prompt provided
was: "The bot is given a chest X-ray image and
must generate a report consisting of Findings and
Impression. Findings provide a detailed descrip-
tion of the radiograph, while Impression serves as
a summary or inference of the report.”

The results are presented in Table 3. We ob-
served an improvement of 139.57 %, 158.96 % in
ROUGE-L and 42.99%, 54.30% in BERTScore
when comparing LRTA-BioMIC to GPT-40 and



Model B-1 B-2 B-3 B-4 | Cider | MTR | Dist-2 | BertScore | Rouge-L. | E-avg
GPT-40 0.183 | 0.070 | 0.032 | 0.002 - 0.287 | 0.349 0.628 0.187 0.934
Gemini 0.176 | 0.072 | 0.027 | 0.001 - 0.204 | 0.383 0.582 0.173 0.916
LRTA — BioMICy | 0398 | 0.274 | 0.213 | 0.176 | 0.888 | 0.412 | 0.317 0.812 0.374 0.946
LRTA — BioMICs | 0.483 | 0.359 | 0.275 | 0.211 | 0.974 | 0.510 | 0.339 0.902 0.427 0.962
LRTA — BioMIC3 | 0.462 | 0.339 | 0.257 | 0.199 | 0.934 | 0.498 | 0.324 0.871 0.402 0.963
LRTA — BioMICy | 0.464 | 0.345 | 0.265 | 0.203 | 0.966 | 0.516 | 0.301 0.885 0.414 0.958
LRTA — BioMIC | 0.527 | 0.384 | 0.279 | 0.226 | 1.013 | 0.522 | 0.347 0.898 0.448 0.969

Table 3: Performance comparison of LRT A — BioM IC against multiple Ablation architecture (c.f section 3),
GPT-40 and Gemini across multiple evaluation metrics. LRT' A — BioM IC achieves the highest scores in most
metrics, outperforming state-of-the-art vision-language models. B-i represents BLEU scores with i-gram overlap,
ROUGE-L denotes the longest common subsequence measure, MTR refers to the METEOR score, Dist-2 indicates
distinct bigram diversity, and E-avg represents the average embedding-based metric.

Gemini. Although the BLEU score is signif-
icantly lower for GPT-40 and Gemini, their
BERTScore remains decent. Notably, Gemini
achieved an 10.37 % higher Distinct-2 score than
LRTA-BioMIC; however, a better Distinct-2 score
does not necessarily indicate superior performance.
In medical report generation, excessive diversity
can lead to incoherence, inconsistency, and poten-
tial loss of medical accuracy, as reports often re-
quire necessary phrasing and repetitions.

10 Evaluation on CheXpert

Model Precision Recall F1

R2Gen - - 0.191
M? Trans - - 0.326
CXR-RePaiR-Select - - 0.352
RGRG (reproduced) 0.381 0.397  0.389
LRTA-BioMIC (Ours) 0.424 0.429  0.426

Table 4: Performance comparison on the CheXpert
dataset.

CheXpert is a large-scale chest X-ray dataset
that differs from IU-Xray and MIMIC-CXR-JPG
in that it provides structured labels indicating the
presence, absence, or uncertainty of 14 clinical ob-
servations, rather than free-text radiology reports.
All prior and recent models discussed in Table 1
have only evaluated on IU and MIMIC, as these are
considered the most reliable and widely adopted
datasets. To assess generalizability beyond these
conventional benchmarks, we evaluated our model
LRTA-BioMIC alongside four baselines. Results
for M? Trans (Chen et al., 2020), R2Gen (Miura
et al., 2021), and CXR-RePaiR-Select are taken
from (Endo et al., 2021). We acknowledge the
authors of RGRG (Tanida et al., 2023) for their
open-source repository, which enabled accurate re-

production. Using openly available CheXpert data
(Irvin et al., 2019), we randomly sampled 40K stud-
ies and split them into 80% train, 10% validation,
and 10% test sets, using final label verdicts as gold
labels. Since CheXpert does not contain free-text
reports, evaluation using natural language gener-
ation (NLG) metrics is not feasible; instead, we
report F1 scores based on label classification. Our
model achieved an F1 score of 0.426, reflecting
a +9.5% improvement over the best-performing
baseline RGRG (cf. Table 4). We encourage fu-
ture work to explore datasets beyond IU-Xray and
MIMIC-CXR-JPG to ensure broader robustness
and generalization.

11 BioMIC-BART

Figure 2 illustrates the architecture of our BioMIC-
BART, which is built upon BioBART (Yuan et al.,
2022), a language model pretrained on full-text
biomedical literature from PubMed. Compared
to the original BART model, BioBART incorpo-
rates domain-specific biomedical terminology and
contextual reasoning, making it more suitable for
medical applications. While BioBART captures
rich biomedical knowledge, it is primarily trained
on textual data and lacks grounding in visual rep-
resentations or domain-specific imaging patterns
observed in chest X-rays. Such grounding is essen-
tial for radiology tasks where language often tightly
correlates with anatomical regions. To bridge this
gap, we draw inspiration from (Xing et al., 2021),
which extended the BART architecture to handle
multimodal inputs comprising both images and text.
We adopt this architecture—originally trained on
general vision-language datasets such as Concep-
tual Captions (Sharma et al., 2018), SBU (Ordonez
etal., 2011), COCO (Lin et al., 2014), and Visual
Genome (Krishna et al., 2017)—but re-train it on



The lungs are ....... any focal consolidation, it is in the right mid lung in the region of the right nipple. ......... On the lateral view, aside
from a calcified granuloma inseparable from a heavily calcified mitral annulus,........... There is no pulmonary edema. The right pleural
effusion is tiny compared to the large pleural effusions seen at various times on prior chest radiographs.
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Figure 2: Illustration of the BioMIC-BART architecture, an extension of BioBART designed for multimodal
processing. It integrates chest X-ray image embeddings and radiology tag embeddings into a unified encoder-
decoder framework to enhance multimodal radiological understanding.

chest X-ray images and associated reports from the
MIMIC-CXR dataset. (Xing et al., 2021) provides
an in-depth analysis of the role of each component
and demonstrates their importance toward achiev-
ing multimodal processing. In our work, we reuse
the same architecture but apply it specifically to the
domain of Chest X-ray Report Generation.

11.1 Visual Feature Extractor

Following previous work on Vision Transform-
ers, we use MedCLIP (Wang et al., 2022), pre-
trained on the MIMIC-CXR-JPG chest X-ray im-
age and report pair dataset, to extract visual em-
beddings. These embeddings are then fed into the
Transformer-based cross-modal encoder. We in-
clude both the Posteroanterior (PA) view and the
Lateral (LL) view, if available, using the Anteropos-
terior (AP) view only when the PA view is unavail-
able, to provide BioMIC-BART with contextual in-
formation from multiple perspectives. The PA/AP
view is the standard chest X-ray, while the LL view
offers a side perspective, helping to better assess
the depth and localization of abnormalities. Using
both views enhances the model’s understanding of
anatomical structures and improves accuracy.

11.2 Token Embeddings

We utilize CXR-BERT-general (Boecking et al.,
2022), a domain-specific language model tailored
on chest X-ray (CXR) reports. It is pretrained
from a randomly initialized BERT model using
Masked Language Modeling (MLM) on PubMed
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abstracts and clinical notes from the publicly avail-
able MIMIC-III and MIMIC-CXR-JPG datasets.
This model extracts token embeddings, where the
tokens are expert-annotated medical tags inherent
to the dataset. Combined with X-ray image embed-
dings from MedCLIP, these token representations
enhance the model’s ability to capture multimodal
radiology Chest X-ray data.

11.3 Encoder-Decoder

The model architecture comprises 12 encoder-
decoder layers designed to effectively process and
integrate multimodal data. The encoder receives
two types of embeddings: image embeddings, ex-
tracted from Posteroanterior (PA) or Anteriorposte-
rior (AP) and Lateral (LL) chest X-ray views using
MedCLIP, and token embeddings, derived from
chest X-ray tags using CXR-BERT-general.

To accommodate the variability in available im-
age views within the dataset, we used the Antero-
posterior (AP) view only when the PA view was un-
available. If neither PA nor AP views were present,
a zero matrix was passed in place of the image
embedding. Similarly, if the Lateral view was
missing, a zero matrix was also used. This de-
cision was guided by the view distribution within
the MIMIC-CXR-JPG dataset (Table 5), which is
heavily skewed toward AP images, a result of data
collection in ICU settings where patients are typi-
cally bedridden and AP imaging is more feasible.
However, despite their prevalence, AP views are



diagnostically inferior to PA views, which radiolo-
gists prefer whenever feasible due to their superior
image quality (Jones and Silverstone, 2024). There-
fore, when both views are available, our method
prioritizes PA over AP to ensure higher reliability.

Moreover, in real-world clinical scenarios,
where patients are ambulatory, PA views are far
more commonly acquired than AP. Thus, designing
a model that prioritizes PA view not only aligns
with clinical best practices but also better general-
izes to non-ICU environments where PA imaging
predominates.

View Combination Number of Patients

PA + AP + Lateral 183
PA + Lateral 85,077
AP + Lateral 19,978
PA + AP 7,424
Only PA 483
Only AP 112,289
Only Lateral 2,401
Total Studies 227,835
Total Image Count 377,110

Table 5: Distribution of Chest X-ray View Combinations
in MIMIC-CXR-JPG

The entire model is trained on the official
MIMIC-CXR-JPG train split. The model parame-
ters are updated based on the loss calculated during
training, which measures the discrepancy between
the predicted and actual diagnostic outcomes. This
loss is backpropagated through the network, ad-
justing the weights of both the encoder and de-
coder to minimize error and improve the model’s
performance. Although a simple model like this
alone cannot produce meaningful radiology reports
on unseen data, transferring the contextual mul-
timodal understanding of BioMIC-BART to our
architecture, LRTA-BioMIC, as illustrated in Fig-
ure 1, enhances performance compared to using
BART alone (Lewis, 2019) (refer to Section 3).

12 Parameter and Computational
Resources

We categorize our experiments into two groups:
(1) BioMIC-BART, a computationally intensive
large-scale language model, and (2) LRTA-BioMIC,
our final lightweight model combining ViT with a
region-guided language decoder. Both setups used
the GELU activation function, the Adam optimizer
with a weight decay of 0.001, run on A100 GPUs.
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BioMIC-BART. A grid search over learning
rates (3e-4, 3e-5, 3e-6) and batch sizes (48, 64)
identified 3e-5 and 48 as optimal. Training was
performed on 4x A100 GPUs (80GB each) for 20
epochs using 90% of the MIMIC-CXR-JPG train
split. The remaining 10% was reserved for fine-
tuning LRTA-BioMIC. Each full training run took
approximately 26 hours to complete end-to-end,
including checkpointing, logging, and intermediate
evaluations.

LRTA-BioMIC. Grid search selected 3e-5 learn-
ing rate and batch size 4 over 20 epochs. For
MIMIC-CXR-JPG, 10% of the official training
split was used; for [U-Xray, an 80-10-10 custom
split was created using a fixed random seed. GPU
memory usage was 7GB (MIMIC) and 6GB (1U-
Xray). Training duration was 4.5 hours (MIMIC)
and 1.5 hours (IU-Xray), underscoring the model’s
efficiency, fast turnaround, and suitability for
lightweight deployments.

13 Error Analysis

We conducted an analysis to identify weaknesses
in LRTA-BioMIC. We identified two key weak-
nesses: Numerical Discrepancies (Weakness-A).
In Table 6, we observe that the gold report men-
tions an 8mm nodule, whereas the generated report
states a 1cm nodule. Although the difference is
small, in a sensitive domain like healthcare, even
minor inaccuracies can be critical. Similarly, in
the second gold report under the same limitation,
our model, LRTA-BioMIC, correctly identified the
spatiality by mentioning healed left rib fractures
but failed to specify the 9th rib fracture, which
was explicitly mentioned in the gold report. In-
complete Transfer of Findings to Impression
(Weakness-B): In Table 6, at first glance, it may ap-
pear that our model underperforms due to missing
details in the impression section. However, upon
closer inspection, we observe that LRTA-BioMIC
correctly generates the relevant observations and in-
cludes them in the findings section but omits them
in the impression. This behavior is influenced by
the inherent bias in the MIMIC-CXR-JPG and 1U-
Xray datasets, where findings are typically detailed,
while impressions tend to be concise. Due to the
brevity of the impression section, the model some-
times hallucinates by omitting crucial conclusions
that should be included in the impression while
only mentioning them in the findings.



Weaknesses

GOLD REPORT

GENERATED REPORT

Weakness-A

Findings: The cardiac and mediastinal con-
tours are within normal limits. The lungs are
well-inflated and clear. There is an 8mm nod-
ule in the left lower lobe, XXXX calcified
granuloma. There is no pneumothorax or effu-
sion. Bony structures of the thorax are intact
with minimal early degenerative change. Im-
pression: 1. No evidence of acute cardiopul-
monary process. 2. 8mm nodule in the left
lung base, XXXX calcified granuloma.

Findings: Heart size and pulmonary vascular-
ity appear within normal limits. The lungs are
free of focal airspace disease. No pleural ef-
fusion or pneumothorax is seen. In the left
lower lobe, there has been development of
a 1 cm diameter nodule. This appears some-
what XXXX from the prior study. Mild de-
generative changes are present in the XXXX.
Impression: 1 cm of left lung base nodule.
XXXX since the previous study.

Findings: Stable cardiomediastinal silhouette.
Pulmonary vascularity is within normal lim-
its. Hyperlucent apices. Negative for focal
airspace disease or consolidation. Negative
for pneumothorax or pleural effusion. Healed
remote left 9th rib fracture. Right shoulder:
Negative for fracture or dislocation. Impres-
sion: Chest. Right shoulder. 1. No acute
cardiopulmonary abnormality. 2. Negative for
right shoulder fracture or dislocation.

Findings: The lungs are clear bilaterally.
Specifically, no evidence of focal consolida-
tion, pneumothorax, or pleural effusion. Car-
diomediastinal silhouette is unremarkable. Sta-
ble apical hyperlucency. Visualized osseous
structures of the thorax are without acute ab-
normality. Healed left rib fractures are
noted. Impression: No acute cardiopulmonary
abnormality.

Weakness-B

Findings: The heart is normal in size. The me-
diastinum is stable. Left-sided chest XXXX is
again visualized with tip at cavoatrial junction.
There is no pneumothorax. Numerous bilat-
eral pulmonary nodules have increased in size
and number XXXX compared to prior study.
The dominant nodule/mass in the left midlung
is also mildly increased. There is no pleural ef-
fusion. Impression: Interval increase in size
and number of innumerable bilateral pul-
monary nodules consistent with worsening
metastatic disease.

Findings: Heart size within normal limits, sta-
ble mediastinal and hilar contours. Left-sided
subclavian central venous catheter. No focal
alveolar consolidation, no definite pleural effu-
sion seen. There are multiple bilateral pul-
monary nodules. Prominent left midlung
nodule may be secondary to overlapping
structures. No typical findings of pulmonary
edema. Impression: No acute findings

Findings: There is a calcified granuloma in the
left upper lobe. Lungs otherwise are believed
to be clear. The heart is normal. There are cal-
cified left hilar and mediastinal lymph XXXX.
The skeletal structures show some senescent
changes. Impression: Old granulomatous
disease. No acute pulmonary disease.

Findings: There is a calcified granuloma in
the left upper lobe. There are calcified left
hilar and mediastinal lymph XXXX, consistent
with prior granulomatous disease. The lungs
are otherwise clear without evidence of acute
infiltrate or effusion. Impression: No acute
cardiopulmonary abnormalities.

Table 6: Table highlighting model weaknesses by presenting two examples per weakness, comparing the gold
reports with the generated reports.
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14 Statistical Significance Analysis
e JU-Xray Dataset:

— Bleu-4: The one-tailed ¢-test yields p =
0.0138 (< 0.05) when compared to
COMG (the best-performing baseline),
indicating a statistically significant im-
provement.

Rouge-L: The p-value is < 0.05 for
4 out of 5 baseline models (Table 7).
For COMG, while the difference is not
marginally significant, LRTA-BioMIC
still achieves a higher score.

CE Metric: LRTA-BioMIC achieves
a p-value < 0.05, indicating statistical
significance when compared to RGRG.
While it is not marginally significant
on PromptMRG, it still outperforms in
terms of F1-score.

¢ MIMIC-CXR Dataset:

— Bleu-4: For 3 out of 5 baseline models
(Table 1), the p-value is < 0.05, demon-
strating significance. For the remaining
two models, the difference is not statisti-
cally significant.

Rouge-L: The one-tailed ¢-test shows
that none of the baseline models are sta-
tistically significant compared to LRTA-
BioMIC.

CE Metric: LRTA-BioMIC is statisti-
cally significant (p < 0.05) in 3 out of 5
baseline models. For the remaining two
models, the difference is not statistically
significant.

* None of the baseline models were signifi-
cantly stronger than LRTA-BioMIC on any
metric.

* A total of 30 paired one tailed ¢-tests were con-
ducted (3 metrics x 5 baselines x 2 datasets):

— LRTA-BioMIC showed significantly
stronger performance (p < 0.05) in 21
instances.

— In the remaining 9 cases:

% There were only 4 instances where
a baseline outperformed LRTA-
BioMIC.
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+ None of these 4 instances were sta-
tistically significant.

¢ On the MIMIC-CXR-JPG dataset:

— Out of 9 evaluated metrics, LRTA-
BioMIC ranked as either the best-
performing or second-best-performing
model in 8 of them.

* On the IU-Xray dataset:

— Out of 9 metrics, LRTA-BioMIC
achieved the best performance in 8 and

was the second-best in only one metric
(BLEU-1).

The detailed significance tests validate the effec-
tiveness of our proposed model (cf. Table 7). Our
model achieves state-of-the-art performance on the
IU-Xray dataset and delivers competitive results on
the large-scale MIMIC-CXR-JPG dataset when
compared with existing baseline models. Notably,
this is accomplished while adhering to the primary
objective of our work—developing a model that is
comparatively lightweight and efficient relative to
existing approaches.

15 How Lightweight is LRTA-BioMIC

"Lightweight" is used here as a comparative term
relative to existing architectures. The efficiency
claims apply exclusively to LRTA-BioMIC. While
BioMIC-BART—a robust backbone of LRTA-
BioMIC enriched with chest X-ray data and multi-
modal learning capabilities—initially required ap-
proximately 26 hours of pre-training on multiple
A100 GPUs (refer to Section 12), once trained, it
can be efficiently loaded from Hugging Face or a
local device, eliminating the need for extensive re-
training. All subsequent training and inference on
new data are performed solely on LRTA-BioMIC.

Our objective is to achieve state-of-the-art per-
formance or results comparable to existing ap-
proaches, which typically rely on heavy computa-
tional resources. In contrast, our method offers an
efficient alternative with competitive performance.
Table 8 presents a comparative analysis of the time
and GPU resources required to train each model on
a new dataset.

Compared to existing architectures, LRTA-
BIOMIC demonstrates remarkable efficiency in
GPU memory consumption. With a require-
ment of only 6-7 GB, it achieves approximately



Metric IU-Xray MIMIC-CXR-JPG

RGRG COMG PrROMPTMRG ORGAN KGVL-BART | RGRG COMG PROMPTMRG ORGAN RECAP
Bleu-4 v v v v v X v v v X
Rouge-L v v v v X v X v X X
CE v — X — — X v X v v

Table 7: v' indicates that LRTA-BioMIC has a p-value < 0.05, signifying a statistically significant improvement
over the corresponding baseline model (mentioned in the column) on the specified dataset (also mentioned in the
column) for the metric listed in the corresponding row. However, x does not imply that LRTA-BioMIC performs
worse than the baseline; it only indicates that the p-value was not < 0.05. Refer Section 14 for deeper analysis.

Model GPU (GB) Tr. Hours
RGRG 48 45
COMG 147-179 5
PROMPTMRG 24 24
ORGAN 24 -
RECAP 24 -
KGVL-BART 60-80 4-5
LRTA-BIOMIC 6-7 2-5

Table 8: Comparison of GPU memory usage and train-
ing time required for different models when adapting to
a new dataset.

85% reduction in GPU memory compared to
RGRG (48 GB), over 95% reduction compared
to COMG (147-179 GB), around 75% less than
PROMPTMRG, ORGAN, and RECAP (each using
24 GB), and over 85% less than KGVL-BART
(60-80 GB). These significant reductions validate
our claim that LRTA-BioMIC is a lightweight ar-
chitecture, offering a computationally efficient al-
ternative to existing models, without compromising
performance—and in many cases, even achieving
superior results.

16 Generalizability to Other Modalities:
MRI and CT

Medical image

Natural image

Figure 3: Challenges in radiology imaging such as MRI:
(1) ambiguous boundaries between foreground and back-
ground, and (2) severe anatomical co-occurrence of or-
gans. Figure adapted from (Chen et al., 2022).

Scalability to MRI and CT. Although our cur-
rent work focuses on chest X-rays, the proposed
LRTA-BioMIC framework is generalizable to
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other radiology domains such as MRI and CT. As

illustrated in Figure 3, both modalities face two key

challenges: unclear anatomical boundaries and fre-

quent co-occurrence of organs (Chen et al., 2022).
Our approach addresses these via:

* Region-Guided Feature Extraction: Helps
resolve both challenges by enabling region-
specific representations (e.g., isolating
left/right kidney) and learning sharper
boundaries through training.

* Region-Text Aligner: Helps resolve co-
occurrence by aligning disease tags (e.g.,
chronic kidney disease) to precise anatomi-
cal regions.

While the methodology applies to MRI and
CT, experimenting with these modalities is out of
scope for the current work, as it would require new
datasets, extensive retraining of backbone models
(e.g., MedCLIP, ResNet, BioBART), and curated
tag information. Nevertheless, we will publicly re-
lease our model to support future research in these
directions.
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Figure 4: Distribution of diagnostic labels in the IU Chest X-ray dataset. A clear imbalance is visible, indicating a
long-tail distribution where a small number of labels dominate the dataset.

Disease Occurrences in MIMIC Dataset
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Figure 5: Label distribution in the MIMIC-CXR-JPG dataset. While less skewed than IU, the dataset still exhibits
long-tail characteristics, reflecting the imbalance in class representation.
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Figure 6: Co-occurrence matrix of diagnostic labels in the IU Chest X-ray dataset. Significant overlaps between
certain conditions highlight potential spurious correlations that may bias model training.
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Figure 7: Co-occurrence matrix of diagnostic labels in the MIMIC-CXR-JPG dataset. Frequent co-occurrences,
particularly involving support devices, indicate label dependencies that could affect model generalization.
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