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ABSTRACT

Learning high-quality word embeddings is of significant importance in achieving
better performance in many down-stream learning tasks. On one hand, traditional
word embeddings are trained on a large scale corpus for general-purpose tasks,
which are often sub-optimal for many domain-specific tasks. On the other hand,
many domain-specific tasks do not have a large enough domain corpus to obtain
high-quality embeddings. We observe that domains are not isolated and a small
domain corpus can leverage the learned knowledge from many past domains to
augment that corpus in order to generate high-quality embeddings. In this pa-
per, we formulate the learning of word embeddings as a lifelong learning process.
Given knowledge learned from many previous domains and a small new domain
corpus, the proposed method can effectively generate new domain embeddings by
leveraging a simple but effective algorithm and a meta-learner, where the meta-
learner is able to provide word context similarity information at the domain-level.
Experimental results demonstrate that the proposed method can effectively learn
new domain embeddings from a small corpus and past domain knowledgeﬂ We
also demonstrate that general-purpose embeddings trained from a large scale cor-
pus are sub-optimal in domain-specific tasks.

1 INTRODUCTION

Learning word embeddings (Mnih & Hinton|(2007); | Turian et al.|(2010); Mikolov et al.[(2013a}bic);
Pennington et al.| (2014)) has received a significant amount of attention due to its high performance
on many down-stream learning tasks. Word embeddings have been shown effective in NLP tasks
such as named entity recognition (Siencnik (2015))), sentiment analysis (Maas et al.[|(2011)) and syn-
tactic parsing (Durrett & Klein|(2015))). Such embeddings are shown to effectively capture syntactic
and semantic level information associated with a given word (Mikolov et al.|(2013a))).

The “secret sauce” of training word embedding is to turn a large scale in-domain corpus into bil-
lions of training examples. There are two common assumptions for training word embeddings:
1) the training corpus is largely available and bigger than the training data of the potential down-
stream learning tasks; and 2) the topic of the training corpus is closely related to the topic of the
down-stream learning tasks. However, real-world learning tasks often do not meet one of these
assumptions. For example, a domain-specific corpus that is closely related to a down-stream learn-
ing task may often be of limited size. If we lump different domain corpora together and train
general-purpose embeddings over a large scale corpus (e.g., GloVe embeddings (Pennington et al.
(2014)) are trained from the corpus Common Crawl, which covers almost any topic on the web),
the performance of such embeddings on many domain-specific tasks is sub-optimal (we show this
in Section [6). A possible explanation is that although many domain words share similar meanings
with the same out-of-domain words, with no in-domain awareness, dumping many out-of-domain
co-occurrences as training examples may bias in-domain embeddings. (e.g., if the domain is about
food, then an out-of-domain “python” as a programming language can bias “java”, while the in-
domain word “chocolate” is more likely to help).

To solve the problem of the limited domain corpus, one possible solution is to use transfer learning
(Pan & Yang (2010)) for training domain-specific embeddings (Bollegala et al.| (2015); Yang et al.
(2017)). However, these methods just manage to leverage out-of-domain embeddings trained from a
large scale corpus to help limited in-domain corpus. The very in-domain corpus is never expanded.
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Also, one common assumption of these works is that a pair of similar source domain and target
domain is manually identified in advance. In reality, given many domains, manually catching useful
information in so many domains are very hard. In contrast, we humans learn the meaning of a word
more smartly. We accumulate different domain contexts for the same word. When a new learning
task comes, we may quickly identify the new domain contexts and borrow the word meanings from
existing domain contexts.

This is where lifelong learning comes to the rescue. Lifelong machine learning (LML) is a continual
learning paradigm that retains the knowledge learned in past tasks 1,...,n, and uses it to help
learning the new task n + 1 (Thrun| (1996)); Silver et al.| (2013); |Chen & Liu| (2016)). In the setting
of word embedding: we assume that the learning system has seen n domain corpora: (Dy, ..., D),
when a new domain corpus D,,;; comes by demands from that domain’s potential down-stream
learning tasks, the learning system can automatically generate word embeddings for the n + 1-th
domain by effectively leveraging useful past domain knowledge.

The main challenges of this task are 2 fold. 1) How to identify useful past domain knowledge to
train the embeddings for the new domain. 2) How to automatically identify such kind of information,
without help from human beings. To tackle these challenges, the system has to learn how to identify
similar words in other domains for a given word in a new domain. This, in general, belongs to meta-
learning (Vilalta & Drissi| (2002); Peng et al.| (2002)). Here we do not focus on specific embedding
learning but focus on learning how to characterize corpora of different domains for embedding

purpose.

The main contributions of this paper can be summarized as follows: 1) we propose the problem of
lifelong word embedding, which may benefit many down-stream learning tasks. We are not aware of
any existing work on word embedding using lifelong learning 2) we propose a lifelong embedding
learning method, which leverages meta-learning to aggregate useful knowledge from past domain
corpora to generate embeddings for the new domain.

2 RELATED WORKS

Learning word embeddings has been studied for a long time (Mnih & Hinton|(2007)). Many earlier
methods employ complex neural network architectures (Collobert & Weston|(2008); Mikolov et al.
(2013c)). Recently, a simple and effective unsupervised model called skip-gram (Mikolov et al.
(2013bic)) was proposed to turn plain text corpus into large-scale training examples without any
human annotation. It uses the current word to predict the surrounding words in a context window
by maximizing the likelihood of the predictions. The learned parameters for each word are then
the embeddings of that word. Although such embeddings can be trained in large scale and easily
obtained online (Pennington et al. (2014)); Bojanowski et al.| (2016)), they are sub-optimal for many
domain-specific tasks (Bollegala et al.| (2015)); Yang et al.|(2017))). Domain corpus also suffers from
limited size to train high-quality embeddings.

Our work is most related to Lifelong Machine Learning (LML)) (or lifelong learning). Much of
the work on LML focused on supervised learning (Thrun| (1996); |Silver et al.| (2013); Ruvolo &
Eaton| (2013); |(Chen & Liu/(2016)) Recent years, several works have also been done in the unsuper-
vised setting, mainly on topic modeling (Chen & Liu|(2014))), information extraction (Mitchell et al.
(2015)) and graph labeling (Shu et al.|(2016)). However, we are not aware of any existing research
that has been done on using lifelong learning for word embedding. LML is related to transfer learn-
ing and multi-task learning (Pan & Yang|(2010)), which have been leveraged in word embeddings
(Bollegala et al.| (2015);|Yang et al.|(2017)). However, LML is different from transfer learning (see
the survey book from |Chen & Liu|(2016))). Given many domains with uncertain relevance for the
new domain, the lack of guidance on which kind of information is worth learning from the past
domains is a problem. And there’s no good measure of similarity of two words in different domains.

The proposed method leverages meta-learning (Vilalta & Drissi| (2002)), which is to perform ma-
chine learning on learning tasks. Recently, meta-learning (or learning to learn) has been used to
learn parameters of an optimizer (Andrychowicz et al.| (2016)), to learn neural architectures (Fer-
nando et al.[(2017)). We leverage a meta-learner to accumulate knowledge during lifelong learning.
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Figure 1: Lifelong word embedding learning process.

3 MODEL OVERVIEW

The overall lifelong learning process is depicted in Figure [l Given a series of domain corpora
D, = di,ds,...,d,, the lifelong learning system first learns a meta-model (learner) on domain-
level word context similarity from the first m domain corpus. As more domains arrive, the system
accumulates the knowledge of domain corpora. When a new domain D,, | comes, the system uses
the meta-learner to catch past domain knowledge that is useful and related to the new domain D,, 1
as augmented knowledge. With the augmented knowledge, the word embedding learning process is
performed and the resulting embeddings are used for further down-stream learning tasks. The meta-
learner here plays a central role in automatically identifying useful knowledge from past domains to
help the new domain. By using a pairwise network, the meta-learner finds words in the past domains
that are similar to the new domain. Then the co-occurrence knowledge of those similar words from
the past domain is used together with the new domain corpus to train the new domain embeddings.

4 META-LEARNER

In this subsection, we describe how a meta-learner can help to identify similar words from many
past domain corpora. When it comes to borrowing knowledge from past domains, the first problem
is what to borrow. Although binary cross-domain embeddings are studied in|Bollegala et al.|(2015));
(2017), they mostly assume that a relevant domain is already identified and shared words
between two domains have similar meanings. In reality, given a wide spectrum of domains, borrow-
ing knowledge from a non-relevant domain may not be helpful or even harmful to word embeddings
(we show this Section [6). The meaning of one word in one domain may be quite different from the
same word in another. For example, the word “java” in the programming context is different from
the restaurant context. Borrowing the knowledge from a restaurant corpus can be harmful to the
representations of “java” in a programming context.

4.1 TRAINING EXAMPLES

On top of learning embeddings for specific domains, we build a meta-learner to learn a general word
context similarity from the first m domains, where m < n. In practice, if n is small, m domains
can simply be sampled from n domains. Here since our experiments are conducted on hundreds of
domains, we hold-out m domains to train the meta-learner. The expected input to the meta-learner is
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a pair of the same word from similar (“java” from two corpora of the restaurant domain) or different
domains (e.g. “java” from the restaurant domain or the programming domain). The output of the
meta-learner is whether two words are from the same domain or not. We first characterize words
in domain corpora. Given a specific word in a domain, we choose its co-occurrence counts with f
frequent words within a context window (like word2vec) as the discrete features (a sparse vector of
length f) of a word in that domain. This is inspired by the fact that a good dictionary (e.g. Longman
dictionary) uses only a few thousand words to explain all other words. We denote the selected the
top f frequent words over m domains as V,. Then given a domain corpus D;, we sample [ sub-
corpora D; ; ~ P(D;) by selecting a fixed amount of chunks in D;. A chunk can be a sentence or a
document in D;. We randomly select a fixed amount of chunks because the word features built from
the sub-corpus are expected to be on the same scale. Then we randomly select a subset of words
from top f words as training example words V,,.,,. These training example words are the same in
all domains D1.,,,. We use these words in V., as co-occurrence features and build features ., ; ,
for the word wy, € V},er ON the j-th sub-corpus of the ¢-th domain. We build word features for all m
domain sub-corpora D1 1.1

Finally, a pairwise meta-learner is trained on pairs of word features drawn from different domain
sub-corpora for the same word. Given a word wg € V.1, a pair of word features (uu,i.j’ wo Ww, s ),
: y . ) e g iy
where j # j’, forms a postive example; whereas (uwi'j,k,uwi/,j,,k) with ¢ # ¢’ (j and j' can be

equal or not) forms a negative example.

The m domains are split into disjoint m; training domains, validation domains, and testing domains.
So both the validation and testing examples are unseen examples during training. We enforce such
isolation and wish the trained meta-learner can be more generally applied to the rest n —m domains.

4.2 PAIRWISE NETWORK

We train a simple but efficient neural network to learn pairwise domain-level word context similarity.
The idea of making such a network small but high-throughput is crucial in lifelong settings. This
is because the meta-learner is heavily used in the later lifelong learning process. Given so many
domains with so many words asking for detecting similarity, a small pairwise network with fewer
parameters is desirable to save more memory being used for high-throughput inference.

The proposed pairwise network contains only one shared fully-connected layer (normalized by the
co-occurrence feature) to learn continuous features from co-occurrence (discrete) features, a cosine
function to learn similarity and a sigmoid layer to generate predictions like linear regression. The
network is parameterized as follows:

Wi Uy, .,
o (W - Cosine((W; M)’ (W, Wil 1k

|u’LU1‘,,_7‘,k|1 |uwilyj/7k|1

) + b2), (D

where | - |1 is the [1-norm, W's and b are weights and o (-) is the sigmoid function. Cosine similarity
is defined as Cosine(x,y) = m Most trainable weights of this simple network reside in
W1, which learn continuous features on the f words. These weights can also be interpreted as an
embedding matrix for the f words. These f word embeddings serve as general word embeddings
to explain domain-specific words. We train the meta-learner over a hold-out domain set as the base
meta-learner M. Then we fine-tune the meta-learner based on new domain corpus, as described in
the next section.

5 LIFELONG LEARNING PROCESS

The previous section ends up with a base meta-learner M. In this section, we describe how the
lifelong learning system works based on M, n — m domains, and the new domain corpus D,, 1.

5.1 WORD CONTEXT RETRIEVAL

Assume the lifelong learning system has seen n domain corpora. The system stores knowledge
into a knowledge base K. The knowledge base K contains a base meta-learner M trained over the
first m domains, fine-tuned meta-learners M,, 1., and knowledge over past n — m domains. The
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knowledge includes the vocabulary of word features Vs, n —m domain corpora D,,.,, vocabularies
on n — m domains V,,.,,, and word features on those vocabularies F,,.,,. The word features F,,.,
are computed from one sample from each domain corpus.

Given a new domain corpus D,, 1, the lifelong learning system first fine-tunes the base meta-learner
M. This ends with a fine-tuned meta-learner M,,; for this new domain. The tuning process makes
the meta-learner more suitable for the new domain to retrieve past knowledge. Tuning examples are
sampled similarly as the training examples of base meta-learner, except that negative examples are
sampled between D,, ;1 and D, 1.,. Then the lifelong learning system retrieves similar in-domain
word context information as augmented knowledge, which is used in embedding training in the next
subsection.

The retrieval process is described in Algorithm[I] Firstly, line 1-2 build word features for the new
domain corpus. These two operations are already done when preparing fine-tuning data for the
meta-learner. Here we just mention them for storing knowledge purpose in line 13. Line 3 retrieves
past domain knowledge, which is the reversed process similar to line 13 for the new domain. Line
4 defines the variable that stores useful past knowledge. Line 5-12 retrieves relevant words from
past domains and store them in 4. More importantly, the fine-tuned meta-learner at line 9 finds
similar words from past domains. Then we only keep similar words with a probability higher than
a threshold delta at line 10. This threshold controls the quality of the accumulated words O. Line
11 retrieves co-occurrence information about the set of words O from past domain D; as augmented
knowledge. Such augmented knowledge is more close to the co-occurrence information in the new
domain D,, 1. ScanCooccurrence(D;, O) can be viewed as scanning the past domain corpus and
grab the word in O with its context words like word2vec, or as retrieving rows of co-occurrence
counts from the co-occurrence matrix of the domain D;. Line 13 simply stores the knowledge of the
new domain for further use.

Algorithm 1: Lifelong domain-level word context retrieval

Input : a knowledge base K containing knowledge over past (n — m) domains,
a new domain corpus D,, 1,
and a fine-tuned meta-learner M, .

Output: a word co-occurrence set A, where each element is a 2-tuple (wy, w,), representing useful
knowledge from past domains.

Vit1 < BuildVocab(D,, 1)
E, 41 < BuildWordFeature(D,, 11, K.V,y)
(Dm:na Vm:n» Em:na Mm:n) — ’Cm:n
A+ 0
fOI‘ (Dia ‘/ia Ez) S Dm:na Vm:n7 Em:n dO
O+ Vl n Vn+1
F; < RetrieveWordFeature(E;, O)
F,+1 <+ RetrieveWordFeature(E,, 11, O)
S + M, .inference(F;, Fi,11)
O <« {olo € O and S[o] > ¢}
A + AU ScanCooccurrence(D;, O)
end
ICn+1 — (Dn+1; Vn+1> En+1; Mn+1)
return A

5.2 LIFELONG WORD EMBEDDING

In this subsection, we first describe the skip-gram model introduced by Mikolov et al.| (2013b)
in the context of a new domain in the lifelong setting. Given a new domain corpus D,,;; with
a vocabulary V11, the goal of the skip-gram model is to learn a vector representation for each
word w € V4 in that domain. Assume the domain corpus is represented as a sequence of words
D,y1 = (wy,...,wr), the objective of the skip-gram model is to maximize the following log-
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likelihood:
T

v =2 (oga(ul, -vw,)+ Y logo(—ul, -vu,))), )

t=1 ceC, c’eNy

Lp

where C; is the set of indices of words surrounding word w; in a fixed context window; A; is a
set of indices of words (negative samples) drawn from the vocabulary V,, for the ¢-th word; w
and v represent word vectors (or embeddings) we are trying to learn. The goal of skip-gram is
to independently predict the presence (or absence) of context words w, given the word w,;. When
the size T' of the corpus is extremely large, the skip-gram model, in fact, can be fed with billions
of training examples. So the vector of a word can be trained to have a good representation of the
similarity with the word’s context words.

However, depending on the specific down-stream tasks, many domain corpora may not have a large
scale corpus. And a random sequence of words drawn from other domains may not truly reflect the
distribution P(w,|w;) in domain D,, . This is where the previously computed augmented word
co-occurrence A come to rescue. Assume our lifelong learning system has seen m domains to build
the meta-learner M and n — m domains to build the knowledge into . Given a new domain corpus
Dy, 11, we first perform Algorithm [I]to obtain the augmented word co-occurrence from past domains
A. Then this co-occurence information .4 is integrated into the objective function of skip-gram as
following:

L =L, + Y, (ogo(ul, vy)+logo(—ul, v,)), 3)
(we,we) €A
where w, is a random word drawn from the vocabulary. We use the default hyperparameters of
skip-gram model (Mikolov et al.|(2013b))). Note that in the skip-gram model as we scan through the
corpus wy can also be w,.’s context word. But in the augmented information here, we do not allow
such bi-directional co-occurrence happen since w; may not be a useful context word for the word
w, in the (n + 1)-th domain.

6 EXPERIMENTAL RESULTS

We present extensive evaluations to assess the effectiveness of our approach. Following the sug-
gestions of [Nayak et al.| (2016); [Faruqui et al.| (2016), we leverage the learned word embeddings
as continuous features in several domain-specific down-stream tasks, including document classifi-
cation, aspect extraction, and sentiment classification. We do not evaluate the learned embeddings
directly as in traditional word embedding papers (Mikolov et al.| (2013b); Pennington et al.| (2014))
because domain-specific dictionaries of similar / non-similar words are in general not available.

6.1 DATASETS

We use the Amazon Review datasetsHe & McAuley|(2016) as a huge collection of multiple-domain
corpus. We consider each second-level category (the first level is department) as a domain and ag-
gregate all reviews under each category as one domain corpus. This ends up with a rather diverse
domain collection. Due to limited computing resources, we limit each domain corpus up to 60 MB.
We randomly select 3 domains (“Computer Components”, “Cats Supply” and “Kitchen Storage and
Organization”) as new domains for down-stream tasks on product type classification and sentiment
classification. Then we deliberately pick the “Laptops” domain as the new domain for aspect ex-
traction task since the annotation is on Laptop reviews. Each new domain corpus is cut to 10 MB
and 30 MB in order to test the practical performance of a small new domain. We randomly select 56
(m) domains to train and evaluate the meta-learner. Lastly, three random collections of 50, 100 and
200 (n — m) domains corpora are used as past domains.

6.2 EVALUATION OF META-LEARNER

We split the 56 domains as 39 (m;) domains for training, 5 domains for validation and 12 domains
for testing. So the validation and testing domain corpora have no overlapping with the training
domain corpora. This leads to a more general base meta-learner for many unseen new domains.
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Table 1: F1 score of fine-tuning on base meta-learner

| Cmptr. Components | Kitch. Storage & Org. | Cats Supples | Laptops

10MB 0.832 0.841 0.856 0.817
30MB 0.847 0.859 0.876 0.854

We sample 2 (I) sub-corpora over the set of reviews from each domain and limit the size of the
sub-corpora to 10 MB. We select top 5000 words as word features (f). We randomly select 500
words (|Viers| = 500) from each domain and ignore words with zero counts on co-occurrence to
obtain pairwise examples. This ends up with 80484 training examples, 6234 validation examples,
and 20740 testing examples. The f1-score of meta-learner is 81%.

We further fine-tune the meta-learner for each new domain. We sample 3000 words from each new
domain, which ends with slightly fewer than 6000 samples after ignoring zero co-occurrences. We
select 3500 examples for training, 500 examples for validation and 2000 examples for testing. The
testing f1-score is shown in Table(l} Finally, we empirically set delta = 0.7 as the threshold.

6.3 DOWN-STREAM TASKS

We use 3 down-stream tasks to evaluate the effectiveness of our approach. For each task, we leverage
an embedding layer to store the pre-trained embeddings. We choose our embedding dimensions
as 300, which is the same size as many pre-trained embeddings (GloVec.800B (Pennington et al.
(2014)) or fastText Wiki English (Bojanowski et al.| (2016))). We freeze the embedding layers
during training, so the result is less affected by the rest of the model and the training data. To make
the performance of all tasks relatively consistent, we leverage the same Bi-LSTM model (Hochreiter
& Schmidhuber]| (1997)) on top of the embedding layer to learn task-specific features from different
embeddings. The input size of Bi-LSTM is the same as the embedding layer and the output size is
128. All tasks leverage many-to-one Bi-LSTMs for classification purpose except aspect extraction,
which uses many-to-many Bi-LSTM for sequence labeling. In the end, a fully-connected layer and
a softmax activation are applied after Bi-LSTM, with the output size specific to each task.

6.4 BASELINES

No Embedding (NE): We randomly initialize the word vectors and train the word embedding layer
during the training process of each down-stream task. Note that only in this baseline do we allow
embeddings trainable.

fastText: This is the lower-cased embeddings pre-trained from English Wikipedia using fastText
(Bojanowski et al.| (2016)). We lower the cases of all corpora of down-stream tasks to match the
words in this embedding. Note that although the corpus of Wikipedia contains a wide spectrum
of domains covering almost everything of human knowledge, the amount of corpus for a specific
domain (e.g, a product) may not be large enough. The total amount of Wikipedia is just several
billions of tokens, which is on the same scale as Amazon Review datasets (8 billion tokens).

GoogleNews: This is the pre-trained embeddings using word2vec E] based on part of the Google
News datasets, which contains 100 billion words.

GloVe.Twitter.27B: This embedding is pre-trained using GloVe (Pennington et al.|(2014)) based on
Tweets, which have 27 billion words. Note this embedding is lower-cased and has 200 dimensions.

GloVe.6B: This is the lower-cased embeddings pre-trained from Wikipedia and Gigaword 5, which
has 6 billions of tokens.

GloVe.840B: This is the cased embeddings pre-trained from Common Crawl, which has 840 billions
of tokens. This embedding corpus is the largest one among all embeddings. It contains almost all
web pages available before 2015. We show that although GloVe.840B is general enough on almost
any task, its performance is sub-optimal on many domain tasks.

*https://code.google.com/archive/p/word2vec/
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Table 2: Accuracy of different embeddings on product type classification tasks (numbers in paren-
thesis indicates number of classes)

| Cmptr. Cmpnts. (13) | Kitch. Strg. & Org. (17) [ Cats Supples (11)

NE 0.596 0.653 0.696
fastText 0.705 0.717 0.809
GoogleNews 0.76 0.722 0.814
GloVe.Twitter.27B 0.696 0.707 0.80
GloVe.6B 0.701 0.725 0.823
GloVe.840B 0.803 0.758 0.855
ND 10M 0.77011 0.74905 0.85
ND 30M 0.794 0.766 0.87
200D + ND 30M 0.793 0.759 0.859
LL 200D + ND 10M 0.791 0.761 0.872
LL 50D + ND 30M 0.795 0.768 0.868
LL 100D + ND 30M 0.803 0.773 0.874
LL 200D + ND 30M 0.809 0.775 0.883

New Domain 10M (ND 10M): This is a baseline embedding pre-trained only from the new domain
10 MB corpus. We show that the embeddings trained from a small corpus alone are not good enough.

New Domain 30M (ND 30M): Then we increase the size of the new domain corpus to 30 MB to
see the difference affected by the corpus size.

200 Domains + New Domain 30M (200D + ND 30M): Another straightforward embedding is
to concatenate the corpora from all past domains and the new domain together to train a mixed
embedding. We use this baseline to show that unselected past domain corpora may reduce the
performance of down-stream tasks. How to smartly adapt the embeddings into a closer context is
crucial.

Lifelong Past Domains + New Domain (LL [P]D + ND [X]M) : This is different versions of our
proposed method. For example, we use LL 200D + ND 30M to donate embeddings trained from a
30MB new domain corpus and 200 past domains.

6.5 PRODUCT TYPE CLASSIFICATION

This task is to classify a review into a product type (leaf-level category in Amazon product category
system). There are many product types under each domain (2nd-level category). We use the ran-
domly selected 3 domains as the new domains to form 3 multi-class classification sub-tasks. These
domains are: Computer Components, Kitchen Storage and Organization and Cats Supplies. For
each sub-task, we randomly draw 1200 reviews for each product type. We drop classes with less
than 1200 reviews. This ends up with 13, 17 and 11 classes for Computer Components, Kitchen
Storage and Organization and Cats Supplies, respectively. For each sub-task, we keep 10000 re-
views as the testing data (to make the result more accurate) and split the rest as 7:1 for training and
validation data, respectively. All sub-tasks are evaluated on accuracy. We train and evaluate each
sub-task on each baseline 10 times (with different initialization) and average the results.

From Table 2] we can see that the performance of different classification tasks varies a lot. This
is mostly caused by the number of classes in each sub-task. The lifelong embeddings LL 200D
+ ND 30M performs best. The maximum train corpus of this method is in total just 80 MB (30
MB new domain + 50 MB from 200 past domains). The difference in the numbers of LL past
domains indicates more past domains have better results. Surprisingly, the GloVe.840B trained on
840 billions of tokens does not perform well enough compared to the limited new domain corpora.
But it performs very well on Computer Components, which means this domain is relatively general.
Putting all past domain corpora together with the new domain corpus (200D + ND 30M) makes the
result worse than to not use the past domains at all (ND 30M). This is because those 200 domains
may not be close to the new domains.
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Table 3: Performance of different embeddings on aspect extraction task

|| Precision | Recall | Fl-Score

NE 0.596 0.493 0.54
fastText 0.655 0.47 0.547
GoogleNews 0.7 0.638 0.667
GloVe.Twitter.27B 0.642 0.468 0.541
GloVe.6B 0.68 0.505 0.579
GloVe.840B 0.722 0.6406 0.679
ND 10M 0.663 0.57 0.613
ND 30M 0.713 0.62 0.663
200D + ND 30M 0.731 0.65 0.688
LL 200D + ND 10M 0.724 0.636 0.677
LL 50D + ND 30M 0.736 0.637 0.683
LL 100D + ND 30M 0.723 0.65 0.685
LL 200D + ND 30M 0.734 0.659 0.694

Table 4: Accuracy of different embeddings on sentiment classification task

Cmptr. Cmpnts. | Kitch. Strg. & Org. | Cats Supples
NE 0.777 0.764 0.67
GoogleNews 0.847 0.815 0.732
GloVe.Twitter.27B 0.776 0.813 0.727
GloVe.840B 0.877 0.859 0.779
ND 10M 0.885 0.849 0.795
ND 30M 0.889 0.867 0.806
200D + ND 30M 0.886 0.87 0.807
LL 200D + ND 10M 0.882 0.85 0.773
LL 200D + ND 30M 0.891 0.872 0.808

6.6 ASPECT EXTRACTION

Aspect extraction is an important task in sentiment analysis (Liu| (2012; 2015)). We use the dataset
from SemEval-2014 Task 4: Aspect-based sentiment analysis (Pontiki et al.| (2014)) as a down-
stream new domain task. This dataset contains human annotated Laptop aspects and their polarities.
It has 3045 training examples and 800 testing examples. We use the Laptop domain corpus from the
Amazon Review Dataset as the new domain corpus to train the lifelong embedding. We leverage the
original evaluation script to report precision, recall, and F1-score. Again, we average 10 runs of the
results.

From Table [3] we can see that aspect extraction is quite different from product type classification.
Again, our lifelong embedding performs best. Surprisingly, the performance of 200D + ND 30M
is very good. This indicates aspect extraction requires both good general embedding and domain-
specific embeddings. For example, good representations of general words can help to identify nearby
aspects and good aspects words can also help.

6.7 SENTIMENT CLASSIFICATION

We select 6000 4-rating reviews as positive reviews and 6000 2-rating reviews as negative reviews
from 3 domains used in product type classification to form 3 sentiment classification sub-tasks.
Again, to ensure enough number of valid digits in the results, we use 10000 out of 12000 reviews
for testing. The results are averaged over 10 runs.

From Table[d] we can see the performance of most domain-specific baselines is very close (We omit
the minor differences between different sizes of past domains). Sentiment classification, in general,
requires polarity words to determine the sentiment of a document. Pre-trained general embeddings
may introduce non-polarity information into the embeddings. When domain corpus is leveraged, the
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Table 5: Performance of Concatenation with GloVe.860B
|| CC [ KSO [ CS [ Laptops (fI)
GloVe.840B&ND 30M 0.811 | 0.78 | 0.885 0.723
GloVe.840B&LL 200D + ND 30M || 0.817 | 0.783 | 0.887 0.729

difference is small. This is close to our previous experience. A possible explanation is that sentiment
classification relies on sentiment words like “good” or “bad”. However, those words have similar
context words, e.g., “This phone is good.” and “This phone is bad.”. So the co-occurrence-based
training corpus of embedding is not good for learning the embeddings of sentiment words.

6.8 FUSING WITH THE OUT-OF-DOMAIN WORLD

Although most cross-domain embedding papers focus on leveraging different existing pre-trained
embeddings, we focus on expanding the domain-specific corpus. We believe if we can expand
the domain-specific training corpus on a much larger scale (like breaking the training corpus of
GloVe.860B into many domains), the performance of the proposed method is much better. How-
ever, our focus does not forbid our method from leveraging existing cross-domain transfer learning
method (?Bollegala et al.| (2015); |Yang et al.| (2017))). A simple way of leveraging existing em-
beddings in these papers is to concatenate existing pre-trained embeddings with domain-specific
embeddings. To demonstrate our method further improves the domain-specific parts of the down-
stream tasks, we further evaluate two methods: (1) GloVe.840B&ND 30M, which concatenates
new domain alone embeddings with GloVe.860B; (2) GloVe.840B&LL 200D + ND 30M, which
concatenates our lifelong embeddings with GloVe.860B.

As shown in Table[5] concatenating embeddings improve the performance a lot. Our method further
improves the domain-specific parts of the embeddings. While existing cross-domain embedding
methods can only use the 30 MB corpus of the new domain, our method allows those methods to
further leverage the expanded corpus.

7 CONCLUSIONS

In this paper, we formulate a lifelong word embedding learning process. Given many previous
domains and a small new domain corpus, the proposed method can effectively generate new domain
embeddings by leveraging a simple but effective algorithm and a meta-learner. The meta-learner
is able to provide word context similarity information on domain-level. Such information can help
to accumulate new domain-specific training corpus in order to get better embedding. Experimental
results show that the proposed method is effective in learning new domain embeddings from a small
corpus and past domain knowledge.
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