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ABSTRACT

In this paper, we turn our attention to the interworking between the activation
functions and the batch normalization, which is virtually mandatory technique to
train deep networks currently. We propose the activation function Displaced Rec-
tifier Linear Unit (DReLU) by conjecturing that extending the identity function
of ReLU to the third quadrant enhances compatibility with batch normalization.
Moreover, we used statistical tests to compare the impact of using distinct ac-
tivation functions (ReLU, LReLU, PReLU, ELU, and DReLU) on the learning
speed and test accuracy performance of standardized VGG and Residual Net-
works state-of-the-art models. These convolutional neural networks were trained
on CIFAR-100 and CIFAR-10, the most commonly used deep learning computer
vision datasets. The results showed DReLU speeded up learning in all models
and datasets. Besides, statistical significant performance assessments (p < 0.05)
showed DReLU enhanced the test accuracy presented by ReLU in all scenarios.
Furthermore, DReLU showed better test accuracy than any other tested activa-
tion function in all experiments with one exception, in which case it presented the
second best performance. Therefore, this work demonstrates that it is possible to
increase performance replacing ReLU by an enhanced activation function.

1 INTRODUCTION

The recent advances in deep learning research have produced more accurate image, speech, and
language recognition systems and generated new state-of-the-art machine learning applications in
a broad range of areas such as mathematics, physics, healthcare, genomics, financing, business,
agriculture, etc. Although advances have been made, accuracy performance enhancements have
usually demanded considerably deeper or more complex models, which tend to increase the required
computational resources (processing time and memory usage).

Instead of increasing deep models depth or complexity, a less computational expensive alternative
approach to enhance deep learning performance across-the-board is to design more efficient ac-
tivation functions. Even if computational resources are no issue, to employ enhanced activation
functions nevertheless contributes to speeding up learning and achieving higher accuracy.

Indeed, by allowing the training of deep neural networks, the discovery of Rectified Linear Units
(ReLU) (Nair & Hinton, 2010; Glorot et al., 2011; Krizhevsky et al., 2012) was one of the main fac-
tors that contributed to deep learning advent. ReLU allowed achieving higher accuracy in less time
by avoiding the vanishing gradient problem (Hochreiter, 1991). Before ReLU, activation functions
such as Sigmoid and Hyperbolic Tangent were unable to train deep neural networks because of the
absence of the identity function for positive input.

However, ReLU presents drawbacks. For example, some researchers argument that zero slope avoids
learning for negative values (Maas et al., 2013; He et al., 2016b). Therefore, other activation func-
tions like Leaky Rectifier Linear Unit (LReLU) (Maas et al., 2013), Parametric Rectifier Linear Unit
(PReLU) (He et al., 2016b) and Exponential Linear Unit (ELU) (Clevert et al., 2015) were pro-
posed (Appendix A). Unfortunately, there is no consensus about how these proposed nonlinearities
compare to ReLU, which therefore remains the most used activation function in deep learning.

1



Under review as a conference paper at ICLR 2018

Similar to activation functions, batch normalization (Ioffe & Szegedy, 2015) currently plays a fun-
damental role in training deep architectures (Appendix B). This technique normalizes the inputs of
each layer, which is equivalent to normalizing the outputs of the deep model previous layer. How-
ever, before being used as inputs for the subsequent layer, the normalized data are typically fed into
activation functions (nonlinearities), which necessarily skew the otherwise normalized distributions.
In fact, ReLU only produces non-negative activations, which is harmful to the previously normal-
ized data. The outputs mean values after ReLU are no longer zero, but rather necessarily positives.
Therefore, the ReLU skews the normalized distribution (Section 2).

Aiming to mitigate the mentioned problem, we concentrate our attention on the interaction between
activation functions and batch normalization. We conjecture that nonlinearities that are more com-
patible with batch normalization present higher performance. After that, considering that an identity
transformation preserves any statistical distribution, we assume that to extend the identity function
from the first quadrant to the third implies less damage to the normalization procedure.

Hence, we investigate and propose the activation function Displaced Rectifier Linear Unit (DReLU),
which partially prolongs the identity function beyond origin. Hence, DReLU is essentially a ReLU
diagonally displaced into the third quadrant. Different from all other previous mentioned activation
functions, the inflection of DReLU does not happen at the origin, but in the third quadrant.

Considering the widespread adoption and practical importance, we used Convolutional Neural Net-
works (CNN) (LeCun et al., 1998; Krizhevsky et al., 2012) in our experiments. Moreover, as particu-
lar examples of CNN architectures, we used the previous ImageNet Large Scale Visual Recognition
Competition (ILSVRC) winners Visual Geometry Group (VGG) (Simonyan & Zisserman, 2014)
and Residual Networks (ResNets) (He et al., 2016a;c). These architectures have distinctive designs
and depth to promote generality to the conclusions of this work. In this regard, we evaluated how
replacing the activation function impacts the performance of well established and widely used stan-
dard state-of-the-art models. Finally, we decided to employ the two most broadly used computer
vision datasets by deep learning research community: CIFAR-100 (Krizhevsky, 2009) and CIFAR-
10 (Krizhevsky, 2009).

In this systematic comparative study, performance assessments were carried out using statistical
tests with a significance level of 5% (Appendix C.5). At least ten executions of each of experiment
were executed. However, when the mentioned significance level was not achieved, ten additional
runs were performed.

2 DISPLACED RECTIFIER LINEAR UNITS

Consider x the input of a layer composed of a generic transformation Wx+b followed by a non-
linearity, for instance, ReLU. After the addition of the batch normalization layer, the overall joint
transformation performed by the block (composed layer) is given by:

z = ReLU(BN(Wx+ b)) (1)

For a moment, consider the intermediate activation y produced inside the block:

y = BN(Wx+ b) (2)

Without loss of generality, assume γ=1 and β=0 (Ioffe & Szegedy, 2015). Therefore, since y is
the output of a batch normalization layer, we can rewrite unbiased estimators for the expected value
and variance of any given dimension k as follows (Appendix B):

Ê[ŷ(k)] = 0, V̂ar[ŷ(k)] = 1 (3)

Consequently, we investigate the expected value and variance of the activations distribution pro-
duced by the combined layer. Therefore, if z is the output of the block using a ReLU nonlinearity,
it immediately follows that:

z = ReLU(y) (4)
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The application of ReLU removes all negative values from a distribution. Hence, it necessarily
produces positive mean as output. Therefore, it can be written:

Ê[z(k)] = Ê[ReLU(ŷ(k))] > Ê[ŷ(k)] = 0 (5)

Considering that a distribution with Ê[ŷ(k)] = 0 has to present negative values, replacing all negative
activations with zeros makes the variance of z(k) necessarily lower than the variance of the original
distribution ŷ(k). Consequently, we can rewrite:

V̂ar[z(k)] = V̂ar[ReLU(ŷ(k))] < V̂ar[ŷ(k)] = 1 (6)

Therefore, despite batch normalization, the activations after the whole block are not perfectly nor-
malized since these outputs present neither zero mean nor unit variance. Consequently, regardless of
the presence of a batch normalization layer, after the ReLU, the inputs passed to the next composed
layer have neither mean of zero nor variance of one that was the objective in the first place.

In this sense, ReLU skews an otherwise previous normalized output. In other words, ReLU reduces
the correction of the internal covariance shift promoted by the batch normalization layer. Con-
sequently, we conclude the ReLU bias shift effect (Clevert et al., 2015) is directly related to the
drawback ReLU generates to the batch normalization.

Consequently, we propose DReLU, which is essentially a diagonally displaced ReLU. It generalizes
both ReLU and SReLU (Clevert et al., 2015) by allowing its inflection to move diagonally from
the origin to any point of the form (−δ,−δ). If δ = 0, DReLU becomes ReLU. If δ = 1, DReLU
becomes SReLU. Therefore, the slope zero component of the activation function provides negative
activations, instead of null ones. Unlike ReLU, in DReLU learning can happen for negative inputs
since gradient is not necessarily zero. The following equation defines DReLU:

y =

{
x if x ≥ −δ
−δ if x < −δ (7)

DReLU can be regarded as a generalization of the Shifted Rectifier Linear Unit (SReLU) (Clevert
et al., 2015). In fact, instead of always prolong the identity to the point (−1,−1), in DReLU we
established a hyperparameter δ that defines the most appropriate point (−δ,−δ) where the inflection
should happen. In this sense, SReLU is a particular case of DReLU where δ=1. Considering that
the experiments we performed to determine the DReLU hyperparameter contemplates δ=1 as a pos-
sible value for δ, it was not necessary to include SReLU in the present comparative study. Indeed,
our experiments showed that the addition of the parameter δ allowed DReLU to significantly out-
perform SReLU in all of our hyperparameter definition experiments (Appendix C.6). Considering
that DReLU replaces ReLU in Eq. 1, the activations of the composed layer become:

z = DReLU(BN(Wx+ b)) (8)

Since DReLU extends the identity function into the third quadrant, it is no longer possible to con-
clude Eq. 5 is valid. Therefore, the consequence presented in the mentioned equation is probably
at least minimized. In this case, we can conclude that Ê[z(k)]DReLU is much probably near to zero
than Ê[z(k)]ReLU . Hence, we can rewrite:

Ê[z(k)]DReLU < Ê[z(k)]ReLU (9)

Furthermore, DReLU exhibits a noise-robust deactivation state for very negative inputs, a feature
not granted by LReLU and PReLU. A noise-robust deactivation state is achieved by setting the
slope zero for highly negative values of input (Clevert et al., 2015). Some authors argument that
activation functions with this propriety improve learning (Clevert et al., 2015). Finally, DReLU is
less computationally complex than LReLU, PReLU, and ELU. In fact, since DReLU has the same
shape of ReLU, it essentially has the same computational complexity.

3



Under review as a conference paper at ICLR 2018

3 EXPERIMENTS

In this comparative study, we define an experiment as the training of a deep model using a distinct
activation function on a given dataset. If not otherwise mentioned, we conducted ten executions of
each experiment. We define a scenario as the set of experiments regarding all activation functions on
a specific dataset using a particular model. In this regard, this paper presents the consolidated results
of six scenarios (two datasets versus three models) that correspond to 30 experiments, which in turn
represents a total of 320 executions (training of deep neural networks). In two cases, we executed
20 instead of 10 runs of a given experiment to achieve the desired statistical significance.

We trained the models during 100 epochs since it was enough to the test accuracy to saturate. At
epochs 40 and 70, we evaluated the test accuracy of the partially trained models. Therefore, we were
able to assess how fast each model was learning to generalize based on the activation function used
by the model. This is important for compare the expected performance of the activation functions in
applications where the models need to provide high test accuracy training only a few tens of epochs.
Since the training time of an epoch shows no significant difference among the activation functions,
we said that the nonlinearity that provided the best test accuracy in these terms to be learning faster.
The Appendix C provides a detailed explanation of the performed experiments.

All experiments were conducted without using dropout (Srivastava et al., 2014) since recent studies
have shown that, despite improving the training time, dropout provides unclear contributions to the
overall deep model performance (Ioffe & Szegedy, 2015). Moreover, dropout has recently become
a technique restricted to fully-connected layers, which in turn are being less used and replaced by
an average pooling layer in more recent architectures (He et al., 2016a; Huang et al., 2016; He et al.,
2016c; Zagoruyko & Komodakis, 2016; 2017). Therefore, since currently fully connected layers are
rarely used in modern CNN, the usage of dropout is accordingly becoming unusual. This can be
demonstrated by observing that the most recent CNN models are not using dropout, but only batch
normalization (He et al., 2016a; Huang et al., 2016; He et al., 2016c; Zagoruyko & Komodakis,
2016; 2017). Particularly in the case of DenseNets (Huang et al., 2016), the results just using batch
normalization are significantly better than using both techniques.

This recent tendency of design modern deep networks using only batch normalization but avoiding
dropout can also be observed in the discriminative and generative convolutional models recently
used in Generative Adversarial Networks (GANs) (Radford et al., 2015). Hence, we emphasize that
we designed the experiments of this comparative study to reflect the scenario we believe is currently
the most likely and relevant from the perspective of training modern CNNs, which contemplates the
use exclusively of batch normalization and no dropout.

The comparative study provided in the paper was designed to be self-contained to avoid misleading
comparisons of experiments performed in entirely different situations. In this sense, it should be
noticed that the results presented by the papers that proposed the activation functions which are
being used in this study (LReLU (Maas et al., 2013), PReLU (He et al., 2016b) and ELU (Clevert
et al., 2015)), must not be compared to the ones presented here because of the following reasons.

First, the studies previously mentioned were performed with use of dropout and without batch nor-
malization, which is a technique that was not available when the mentioned studies were conducted.
The only exception is ELU, where a few tested scenarios used batch normalization. However, even
in those cases, dropout was always and intensively employed. Second, the cited studies did not use
standardized models such as VGG or ResNet where the only factor of change was the compared
activation functions. For example, in ELU paper, hand designed models were used to compare the
performance of the activation function or in some cases completely different models were compared.
Third, the results presented by the mentioned works did not use statistical tests. In this sense, con-
sidering the variation of the performance of the experiments based on different initialization or data
shuffling, the conclusions may not be much trustable from a statistical point of view.

Hence, the conclusions regarding the performance of the cited activation functions based on their
original paper may not be valid in the context where only batch normalization, but no dropout,
is used to regularize the deep models. In fact, one of the significant contributions of this paper
is providing a systematic statistical supported comparative study using standardized models in the
currently predominant scenario of using batch normalization without dropout.
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4 RESULTS AND DISCUSSION

In the following subsections, we analyze the tested scenarios. In each case, we first discuss the
activation functions learning speed based on test accuracy obtained for the partially trained models.
Subsequently, we comment about the test accuracy performances of the activation functions, which
corresponds to the respective model test accuracy evaluated after 100 epochs. Naturally, we consider
that an activation function presents better test accuracy if it showed the higher test accuracy for the
final trained models on a particular dataset.

In all scenarios, the null hypotheses were the test accuracy samples taken from different activation
functions originated from the same distribution. In other works, all the compared activation func-
tions have the same test accuracy performance in the particular scenario. The null hypotheses were
rejected for all scenarios (Table 1), which means that with statistical significance (p<0.05) at least
one of the activation functions presents a test accuracy performance that is different from the oth-
ers activation functions. Therefore, we used the Conover-Iman post-hoc tests for pairwise multiple
comparisons for all combination of datasets and models (Tables 3, 4, 5, 7, 8, 9). In these tables, the
best results and p-values of the comparison of DReLU to other activation functions are in bold.

Table 1: Kruskal-Wallis test results

CIFAR-100 CIFAR-10

Score VGG-19 ResNet-56 ResNet-110 VGG-19 ResNet-56 ResNet-110

χ̃2(4) 44.918 41.253 41.169 56.087 40.115 49.451
p-value 4.135× 10−9 2.383× 10−8 2.48× 10−8 1.922× 10−11 4.097× 10−8 4.7× 10−10

4.1 CIFAR-100 DATASET

The Table 2 presents the mean of the nonlinearities layers mean activations performed in the CIFAR-
100 training dataset. It shows that DReLU is more capable of reducing the bias shift effect during
training than ReLU. Therefore, as expected and in agreement with 9, all of our experiments showed
that the identity mapping extension produced less damage to the normalization performed by the
previous layer and in fact mitigated the bias shift effect when compared to ReLU.

Table 2: CIFAR-100 averaged nonlinearities layers mean activations

40 Epochs Performance Evaluation

Nonlinearity VGG-19 ResNet-56 ResNet-110

ReLU 0.0950± 0.0016 0.1288± 0.0016 0.0852± 0.0020

DReLU 0.0578± 0.0010 0.0972± 0.0030 0.0551± 0.0012

70 Epochs Performance Evaluation

Nonlinearity VGG-19 ResNet-56 ResNet-110

ReLU 0.0744± 0.0008 0.1058± 0.0015 0.0680± 0.0015

DReLU 0.0362± 0.0009 0.0743± 0.0024 0.0390± 0.0008

100 Epochs Performance Evaluation

Nonlinearity VGG-19 ResNet-56 ResNet-110

ReLU 0.0640± 0.0006 0.0943± 0.0013 0.0594± 0.0013

DReLU 0.0261± 0.0007 0.0618± 0.0023 0.0300± 0.0007
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In relation to VGG-19, the experiments showed DReLU outperformed the test accuracy results of
ReLU and all other assessed activation functions on either 40 and 70 epochs. In this sense, the results
demonstrated that DReLU produced the fastest training (Fig. 1). Moreover, DReLU presented the
best final test performance (Table 3) in this case.
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Figure 1: VGG-19 model test accuracy means and standard deviations on the CIFAR-100 dataset.
(a) 40 trained epochs. (b) 70 trained epochs.

Table 3: CIFAR-100 VGG-19 100 epochs performance evaluation
Test accuracy means, standard deviations and post hoc tests p-values

Unit Accuracy (%) ReLU LReLU PReLU ELU

ReLU 73.40± 0.22 - - - -
LReLU 73.01± 0.22 p<2.2× 10−5 - - -
PReLU 71.55± 0.24 p<1.7× 10−13 p<1.1× 10−6 - -
ELU 67.57± 0.17 p<2× 10−16 p<5.6× 10−14 p<6.7× 10−6 -
DReLU 73.69 ± 0.21 p<0.00012 p<1.5 × 10−11 p<2 × 10−16 p<2 × 10−16

In the case of ResNet-56, DReLU overcame the test accuracy results of the other activation functions
on either 40 and 70 epochs once again. Therefore, we concluded DReLU generated the fastest
learning (Fig. 2). Regarding test accuracy, DReLU outperformed ReLU (p<0.00228) and all other
options, with exception to LReLU. Although, no statistical significance was achieved in this pairwise
comparison (Table 4).
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Figure 2: ResNet-56 model test accuracy means and standard deviations on the CIFAR-100 dataset.
(a) 40 trained epochs. (b) 70 trained epochs.
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Table 4: CIFAR-100 ResNet-56 100 epochs performance evaluation
Test accuracy means, standard deviations and post hoc tests p-values

Unit Accuracy (%) ReLU LReLU PReLU ELU

ReLU 73.70± 0.22 - - - -
LReLU 74.20 ± 0.31 p<6.2× 10−5 - - -
PReLU 72.53± 0.29 p<1.5× 10−5 p<5.4× 10−12 - -
ELU 70.13± 0.41 p<5.7× 10−11 p<2× 10−16 p<0.000 59 -
DReLU 74.12 ± 0.38 p<0.002 28 p<0.243 00 p<2.7 × 10−10 p<2.4 × 10−15

In ResNet-100, DReLU also provided the fastest learning in all situations (Fig. 3). Finally, DReLU
test accuracy outperformed ReLU (p<2.3× 10−5) and all others activation functions again (Table
5). Therefore, in CIFAR-100 as a whole, DReLU presented the fastest learning for all three models
considered. The results showed DReLU always outperformed ReLU test accuracy in all studied
models. Besides, DReLU was the most accurate in two evaluated models and the second in the
other scenario.
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Figure 3: ResNet-110 model test accuracy means and standard deviations on the CIFAR-100
dataset. (a) 40 trained epochs. (b) 70 trained epochs.

Table 5: CIFAR-100 ResNet-110 100 epochs performance evaluation
Test accuracy means, standard deviations and post hoc tests p-values

Unit Accuracy (%) ReLU LReLU PReLU ELU

ReLU 75.70± 0.28 - - - -
LReLU 75.94± 0.29 p<0.0286 - - -
PReLU 74.86± 0.37 p<1.2× 10−5 p<5.3× 10−9 - -
ELU 70.90± 0.42 p<3.6× 10−11 p<2.9× 10−14 p<0.0005 -
DReLU 76.20 ± 0.31 p<2.3 × 10−5 p<0.0286 p<1.2 × 10−5 p<3.6 × 10−11

4.2 CIFAR-10 DATASET

The Table 6 presents the averaged nonlinearities layers mean activations performed in the CIFAR-10
training dataset. It shows again that DReLU is more efficient to reduce the bias shift effect during
training than ReLU. Hence, as sugested by 9, the experiments showed that the identity mapping
extension produced less damage to the normalization performed by the previous layer and indeed
mitigated the bias shift effect when compared to ReLU.
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Table 6: CIFAR-10 averaged nonlinearities layers mean activations

40 Epochs Performance Evaluation

Nonlinearity VGG-19 ResNet-56 ResNet-110

ReLU 0.0630± 0.0009 0.1006± 0.0027 0.0669± 0.0009

DReLU 0.0293± 0.0010 0.0671± 0.0016 0.0376± 0.0011

70 Epochs Performance Evaluation

Nonlinearity VGG-19 ResNet-56 ResNet-110

ReLU 0.0449± 0.0006 0.0783± 0.0014 0.0515± 0.0006

DReLU 0.0139± 0.0003 0.0471± 0.0011 0.0244± 0.0009

100 Epochs Performance Evaluation

Nonlinearity VGG-19 ResNet-56 ResNet-110

ReLU 0.0364± 0.0004 0.0673± 0.0011 0.0435± 0.0005

DReLU 0.0066± 0.0002 0.0351± 0.0008 0.0161± 0.0007

In VGG-19 model, DReLU provided faster learning than any other activation function for either 40
and 70 epochs (Fig. 4). Moreover, DReLU presented the best test accuracy performance (Table 7).
We performed 20 executions of either DReLU and ReLU experiment.
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Figure 4: VGG-19 model test accuracy means and standard deviations on the CIFAR-10 dataset.
(a) 40 trained epochs. (b) 70 trained epochs.

Table 7: CIFAR-10 VGG-19 100 epochs performance evaluation
Test accuracy means, standard deviations and post hoc tests p-values

Unit Accuracy (%) ReLU LReLU PReLU ELU

ReLU 93.82± 0.13 - - - -
LReLU 93.35± 0.18 p<1.4× 10−9 - - -
PReLU 93.27± 0.22 p<2.2× 10−10 p<0.694 49 - -
ELU 91.40± 0.15 p<2× 10−16 p<0.000 22 p<0.000 81 -
DReLU 93.92 ± 0.11 p<0.00330 p<5.6 × 10−14 p<9.1 × 10−15 p<2 × 10−16
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In the case of ResNet-56, DReLU provided faster learning than any other nonlinearity on either 40
and 70 epochs in this scenario (Fig. 5). Furthermore, DReLU was again the most accurate followed
by ReLU (Table 8).

ReLU LReLU PReLU ELU DReLU
60

70

80

90

80.74 79.97 80.01

75.75

81.77

Te
st

A
cc

ur
ac

y
(%

)

CIFAR-10 RESNET-56
40 EPOCHS PERFORMANCE EVALUATION

(a)
ReLU LReLU PReLU ELU DReLU

84

86

88

90

92

89.68

88.81
88.28

86.08

90.09

Te
st

A
cc

ur
ac

y
(%

)

CIFAR-10 RESNET-56
70 EPOCHS PERFORMANCE EVALUATION

(b)

Figure 5: ResNet-56 model test accuracy means and standard deviations on the CIFAR-10 dataset.
(a) 40 trained epochs. (b) 70 trained epochs.

Table 8: CIFAR-10 ResNet-56 100 epochs performance evaluation
Test accuracy means, standard deviations and post hoc tests p-values

Unit Accuracy (%) ReLU LReLU PReLU ELU

ReLU 93.29± 0.21 - - - -
LReLU 93.01± 0.21 p<1.2× 10−6 - - -
PReLU 93.01± 0.10 p<4.7× 10−5 p<0.9726 - -
ELU 90.21± 0.11 p<4.0× 10−13 p<1.2× 10−6 p<1.3× 10−6 -
DReLU 93.52 ± 0.14 p<0.0027 p<1.1 × 10−9 p<1.0 × 10−9 p<2 × 10−16

In relation to ResNet-110, DReLU provided the fastest leaning on either 40 and 70 epochs once
more (Fig. 6). DReLU was the most accurate solution also for this scenario (Table 9). In this case,
we also performed 20 runs of DReLU and ReLU.
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Figure 6: ResNet-110 model test accuracy means and standard deviations on the CIFAR-10 dataset.
(a) 40 trained epochs. (b) 70 trained epochs.

Hence, in the CIFAR-10 as a whole, DReLU also presented the best learning speed for all considered
models. Moreover, the results showed DReLU again surpassed ReLU test accuracy in all analyzed
scenarios. Furthermore, DReLU was the most accurate activation function in all evaluated models.
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Table 9: CIFAR-10 ResNet-110 100 epochs performance evaluation
Test accuracy means, standard deviations and post hoc tests p-values

Unit Accuracy (%) ReLU LReLU PReLU ELU

ReLU 94.00± 0.18 - - - -
LReLU 93.56± 0.26 p<1.6× 10−7 - - -
PReLU 93.74± 0.09 p<2.3× 10−5 p<0.257 54 - -
ELU 90.76± 0.29 p<1.8× 10−13 p<0.004 73 p<0.000 13 -
DReLU 94.11 ± 0.18 p<0.03614 p<1.6 × 10−7 p<2.3 × 10−5 p<1.8 × 10−13

4.3 DISCUSSION

Primarily, we reemphasize the studies that proposed the activation functions compared in this paper
used significantly different (specifically designed) models from the (standardized) ones used in this
study. In this sense, it is not possible to make a direct comparison between their results and the
ones presented in this work. In fact, in the mentioned papers, the usage regular of dropout may have
produced a no ideal performance from ReLU since its fast training capacity was probably reduced.
In the mentioned papers, no experiments were executed using batch normalization without dropout.
As this study presents a significantly different scenario, we can expect different conclusions from
this work. Moreover, this paper performed statistical tests to prove that, in the conditions which
experiments were executed, the proposed solution is consistently better than the other options. To
do that, we performed a significant number of executions of each experiment. It is an important
point to consider since the performance of same models presents a slight variation each time they
are trained on a given dataset.

Taking into consideration the previous comments, in our experiments, regarding the CIFAR-100
dataset, DReLU presented the fastest learning for all three models considered. Moreover, the results
showed DReLU always outperformed ReLU test accuracy in all studied models. Besides, DReLU
was the most accurate in two evaluated models and the second in the other one. In the CIFAR-10
dataset, DReLU also presented the best learning speed for all considered models. Moreover, the
results showed DReLU surpassed ReLU test accuracy in all analyzed scenarios. Actually, DReLU
was the most accurate activation function in all evaluated models.

It is important to mention that we commonly observed that ReLU usually produced the second best
training speed and test accuracy performance. This apparent surprise result may be explained by the
use of batch normalization. Indeed, the correction of the internal covariate shift problem enabled
by the batch normalization technique acted relatively in benefit of ReLU and detriment of the other
previously proposed units. Hence, batch normalization significantly helped to avoid the so-called
“dying ReLU” problem (Karpathy, 2017; Maas et al., 2013; Cunningham et al., 2017).

In fact, even if a substantial gradient pushes the weights to the zero gradient region of ReLU, the
normalization process tends to bring them back to inflection region of ReLU, which avoids the ReLU
to die. This fact can explain why ReLU typically outperforms LReLU, PReLU, and ELU in these
situations but apparently did not when these activation functions were proposed a few years ago
before the batch normalization advent.

The fact that batch normalization relatively helped ReLU in detriment of LReLU, PReLU and ELU
make particularly impressive the ability of DReLU to overcome the performance of ReLU in exclu-
sively batch normalized networks. Particularly remarkable is the ability of DReLU to enhance the
training speed during the first decades significantly.

10
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5 CONCLUSION

In this paper, we have proposed a novel activation function for deep learning architectures, referred
to as DReLU. The results showed that DReLU presented better learning speed than the all alterna-
tive activation functions, including ReLU, in all models and datasets. Moreover, the experiments
showed DReLU was more accurate than ReLU in all situations. Besides, DReLU also outperformed
test accuracy results of all others investigated activation functions (LReLU, PReLU, and ELU) in
all scenarios with one exception. The experiments used batch normalization but avoided dropout.
Furthermore, they were designed to cover standard and commonly used datasets (CIFAR-100 and
CIFAR-10) and models (VGG and Residual Networks) of several depths and architectures.

In addition to enhancing deep learning performance (learning speed and test accuracy), DReLU
is less computationally expensive than LReLU, PReLU, and ELU. Moreover, the mentioned gains
were obtained by just replacing the activation function of the model, without any increment in depth
or architecture complexity, which usually increases the computational resource requirements as pro-
cessing time and memory usage.

This paper showed that the batch normalization procedure acted in the benefice of ReLU while
other previews proposed activation functions appear not to perform as expected. We believe this
happened because batch normalization avoids the so-called ”dying ReLU” problem, something that
others activation functions were already not affected by in first place.

Furthermore, considering some evaluated models included skip connections, which are a tendency
in the design of deep architectures like ResNets, we conjecture the results may generalize to other
deep architectures such DenseNets (Huang et al., 2016) that also use this structure.
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A ACTIVATION FUNCTIONS

Currently, all major activation functions adopt the identity transformation to positive inputs, some
particular function for negative inputs, and an inflection on the origin. In the following subsections,
we describe the activation functions compared in this work.
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Figure 7: Previous proposed activation function. (a) ReLU. (b) LReLU. (c) PReLU. (d) ELU.

A.1 RELU

ReLU has become the standard activation function used in deep networks (Fig. 7a). Its simplicity
and high performance are the main factors behind this fact. The follow equation defines ReLU:

y =

{
x if x ≥ 0

0 if x < 0
(10)

The Eq. (10) implies ReLU has slope zero for negative inputs and slope one for positive values.
It was first used to improve the performance of Restricted Boltzmann Machines (RBM) (Nair &
Hinton, 2010). After that, ReLU was used in other neural networks architectures (Glorot et al.,
2011). Finally, ReLU has provided superior performance in the supervised training of convolutional
neural network models (Krizhevsky et al., 2012).
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The identity for positive input values produced high performance by avoiding the vanishing gradient
problem (Hochreiter, 1991). A conceivable drawback is the fact ReLU necessarily generates positive
mean outputs or activations, which generate the bias shift effect (Clevert et al., 2015). Consequently,
while the identity for positive inputs is unanimously accepted as a reliable design option, there is no
consensus on how to define promising approaches for negative values.

A.2 LRELU

LReLU was introduced during the study of neural network acoustic models (Maas et al.,
2013) (Fig. 7b). This activation function was proposed to avoid slope zero for negative inputs.
The following equation defines LReLU:

y =

{
x if x ≥ 0

βx if x < 0
(11)

LReLU has no zero slope if β 6= 0. In fact, it was designed to allow learning to happen even
for negative inputs (He et al., 2016b). Moreover, since LReLU does not necessarily produce only
positive activations, the bias shift effect may be reduced.

A.3 PRELU

PReLU is also defined by the Eq. 11, but in this case β is a learnable rather than a fixed parameter (He
et al., 2016b) (Fig. 7c). The idea behind the PReLU design is to learn the best slope for negative
inputs. However, this approach may implicate in overfitting since the learnable parameters may
adjust to specific characteristics of the training data.

A.4 ELU

ELU has inspiration in the natural gradient (Amari, 1998; Clevert et al., 2015) (Fig. 7d). Similarly to
LReLU and PReLU, ELU avoids producing necessarily positive mean outputs by allowing negative
activation for negative inputs. The Eq. 12 defines ELU:

y =

{
x if x ≥ 0

α(exp(x)− 1) if x < 0
(12)

The main drawback of ELU is its higher computational complexity when compared to activation
functions such as ReLU, LReLU, and DReLU.
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B BATCH NORMALIZATION

In machine learning, normalizing the distribution of the input data decreases the training time and
improves test accuracy (Tax & Duin, 2002). Consequently, normalization also improves neural
networks performance (LeCun et al., 2012). A standard approach to normalizing input data distri-
butions is the mean-standard technique. In this method, the input data is transformed to present zero
mean and standard deviation of one.

However, if instead of working with shallow machine learning models, we are dealing with deep
architectures; the problem becomes more sophisticated. Indeed, in a deep structure, the output of a
layer works as input data to the next. Therefore, in this sense, each layer of a deep model has his
own “input data” that is composed of the previous layer output or activations. The only exception is
the first layer, for which the input is the original data.

In fact, consider that the stochastic gradient decent (SGD) is being used to optimize the parameters
θ of a deep model. Assume S a sample of m training examples in a mini-batch; then the SGD
minimizes the loss given by the equation:

Θ = argmin
Θ

1

m

∑
S

L(S,Θ) (13)

Furthermore, consider x the output of the layer i−1. These activations are fed into layer i as inputs.
In turn, the outputs of layer i are fed into layer i+1 producing the overall loss given bellow:

L = G(Fi+1(Fi(x,Θi),Θi+1)) (14)

In the above equation, Fi+1 and Fi are the transformation produced by the layers i+1 and i,
respectively. The G function represents the mapping perpetrated by the above layers combined
with the loss function adopted as the criterion. Considering that the output of layer i is given by
y = Fi(x,Θi), we can rewrite the above equation as follows:

L = G(Fi+1(y,Θi+1)) (15)

Applying equation (13) to equation (15) and considering a learning rate λ, we can write the equation
to update the parameters of the layer i+1 as the follows:

Θi+1 ← Θi+1 −
λ

m

∑
y

∂G(Fi+1(y,Θi+1))

∂Θi+1
(16)

In fact, the above equation is mathematically equivalent to training the layer i+1 on the input data
given by y, which in turn is the output of the previous layer. Therefore, indeed, we can understand
the output of the previous layer as “input data” for the effect of training the current layer using SGD.

Considering each layer has its own “input data” (the output of the previous layer), normalizing only
the actual input data of a deep neural network produces a limited effect in enhancing learning speed
and test accuracy. Moreover, during the training process, the distribution of the input of each layer
changes, which makes training even harder. Indeed, the parameters of a layer are updated while its
input (the activations of the previous layer) is modified.

This phenomenon is called internal covariant shift, which is a major factor that hardens the training
of deep architectures (Ioffe & Szegedy, 2015). In fact, while the data of shallow models is normal-
ized and static during training, the input of a deep model layer, which is the output of the previous
one, is neither a priori normalized nor static throughout training.
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Batch normalization is an effective method to mitigate the internal covariant shift (Ioffe & Szegedy,
2015). This approach, which significantly improves training speed and test accuracy, proposes nor-
malizing the inputs of the layers when training deep architectures.

The layers inputs normalization is performed after the each mini-batch training to synchronizing
with the deep network parameters update. Therefore, when using batch normalization, for a input
x = (x(1), x(2), . . . , x(d)), each individual dimension is transformed as follows:

x̂(k) =
x(k) − Ê[x(k)]√

V̂ar[x(k)]
(17)
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C EXPERIMENTS DETAILS

The experiments were executed on a machine configured with an Intel(R) Core(TM) i7-4790K CPU,
16 GB RAM, 2 TB HD and a GeForce GTX 980Ti card. The operational system was Ubuntu
14.04 LTS with CUDA 7.5, cuDNN 5.0, and Torch 7 deep learning library.

C.1 DATASETS, PREPROCESSING AND DATA AUGMENTATION

We trained the models on the CIFAR-100 and CIFAR-10 datasets. The CIFAR-100 image dataset
aggregates 100 classes, which in turn contain 600 example images each. From these, 500 are used
for training, and 100 are employed for testing. Each example is a 32x32 RGB image. The CIFAR-10
dataset possesses ten classes containing 6000 images, from which 5000 are used for training, and
1000 are left for testing. Again, each training example is an RGB image of size 32x32.

The experiments used regular mean-standard preprocessing. Therefore, each feature was normalized
to present zero mean and unit standard deviation throughout that training data. The features were
also redimensioned using the same parameters before performing the inference during test. The
data augmentation performed was randomized horizontal flips and random crops. Therefore, before
training, each image was flipped horizontally with a 0.5 probability. Moreover, four pixels reflected
from the picture opposite sides were added to expand it vertically and horizontally. Finally, a 32x32
random crop was taken from the enlarged image. The random crop was then used to train.

C.2 ACTIVATION FUNCTIONS PARAMETRIZATION

In this paper, we used the parameters originally proposed by the activation function designers (He
et al., 2016b; Clevert et al., 2015) since these have been kept in subsequent papers (Shah et al., 2016;
Heusel et al., 2015). Therefore, we kept β = 0.25 for both LReLU and PReLU, and for ELU we
maintained α = 1.0. We decided to keep those parameters because we consider the original authors
and the follower papers, which respectively proposed and kept the original parameterizations, per-
formed hyperparameter search and validation procedures to estimate parameter values that provide
high performance for their proposed or used work.

C.3 MODELS AND INITIALIZATION

As a particular instance of a VGG model, we used the VGG variant with nineteen layers (VGG-
19). To train models with a considerably different number of layers, we chose the pre-activation
ResNet with fifty-six layers (ResNet-56) and also the pre-activation ResNet with one hundred ten
layers (ResNet-110). We employed pre-activation ResNets because they present better performance
when compared to the original aproach (He et al., 2016a). The experiments used the Kaiming
initialization (He et al., 2016b).

C.4 TRAINING AND REGULARIZATION

The experiments used an initial learning rate of 0.1, and a learning rate decay of 0.2 with steps in
the epochs 60, 80 and 90 for both CIFAR-10 and CIFAR-100 datasets. The experiments employed
mini-batches of size 128 and stochastic gradient descent with Nesterov acceleration technique as the
optimization method. The moment was set to 0.9, and the weight decay was equal to 0.0005.

C.5 PERFORMANCE ASSESSMENT

To make assessments about the performance of activation functions, we chose the Kruskal-Wallis
one-way analysis of variance statistical tests (Kruskal & Wallis, 1952) because the weight initial-
ization was different for each experiment execution. Consequently, we had independent and also
possibly different size samples for the test accuracy distributions. Moreover, the Kruskal-Wallis
tests can also be used to confront samples obtained from more than two sources at once, which is
appropriated in our study since, for a given scenario, we are comparing five activation functions
simultaneously. Besides, it does not assume a normal distribution of the residuals, which makes it
more general than the parametric equivalent one-way analysis of variance (ANOVA). We used the
Conover-Iman post-hoc tests (Conover & Iman, 1979) for pairwise multiple comparisons.
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C.6 HYPERPARAMETER EXPERIMENTS

Clearly, δ must not go to infinity because we would lose the nonlinearity in such a case. Therefore,
a compromise that causes less damage to the normalization while keeps the activation function
nonlinearity has to be achieved. To define the hyperparameter value of DReLU, we performed the
experiments showed in Table 10. The results are the mean and standard deviation values of each
experiment five executions. Based on these experimental results, we decided to set δ = 0.05. The
blue line presents the performance of SReLU, which can be observed is considerably lower than the
DReLU using the chosen hyperparameter δ=0.05.

Table 10: Hyperparameter experiments
Displaced Rectifier Linear Unit

CIFAR-10 test accuracy

δ VGG-19 (%) ResNet-56 (%) ResNet-110 (%) Mean (%)

0.01 93.89±0.20 93.45±0.13 93.98±0.19 93.77
0.05 93.91±0.18 93.50±0.07 94.10±0.10 93.83
0.10 94.00±0.13 93.43±0.25 93.93±0.14 93.78
0.25 93.67±0.19 92.93±0.19 93.31±0.12 93.30
0.50 92.70±0.08 91.62±0.37 92.04±0.17 92.12
1.00 90.96±0.16 88.64±0.33 89.26±0.42 89.62
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