
Under review as a conference paper at ICLR 2018

LEARNING TO INFER GRAPHICS PROGRAMS FROM
HAND-DRAWN IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a model that learns to convert simple hand drawings into graphics
programs written in a subset of LATEX. The model combines techniques from
deep learning and program synthesis. We learn a convolutional neural network
that proposes plausible drawing primitives that explain an image. These drawing
primitives are like a trace of the set of primitive commands issued by a graphics
program. We learn a model that uses program synthesis techniques to recover a
graphics program from that trace. These programs have constructs like variable
bindings, iterative loops, or simple kinds of conditionals. With a graphics program
in hand, we can correct errors made by the deep network and extrapolate drawings.
Taken together these results are a step towards agents that induce useful, human-
readable programs from perceptual input.

1 INTRODUCTION

How can an agent convert noisy, high-dimensional perceptual input to a symbolic, abstract object,
such as a computer program? Here we consider this problem within a graphics program synthesis
domain. We develop an approach for converting hand drawings into executable source code for
drawing the original image. The graphics programs in our domain draw simple figures like those
found in machine learning papers (see Fig. 1a).

(a)

for (i < 3)
rectangle(3*i,-2*i+4,

3*i+2,6)
for (j < i + 1)
circle(3*i+1,-2*j+5)

(b)

Figure 1: (a): Model learns to convert hand drawings (top) into LATEX (rendered below). (b)
Synthesizes high-level graphics program from hand drawing.

The key observation behind our work is that generating a programmatic representation from an image
of a diagram involves two distinct steps that require different technical approaches. The first step
involves identifying the components such as rectangles, lines and arrows that make up the image.
The second step involves identifying the high-level structure in how the components were drawn. In
Fig. 1(b), it means identifying a pattern in how the circles and rectangles are being drawn that is best
described with two nested loops, and which can easily be extrapolated to a bigger diagram.

We present a hybrid architecture for inferring graphics programs that is structured around these two
steps. For the first step, a deep network to infers a set of primitive shape-drawing commands. We refer

1

Under review as a conference paper at ICLR 2018

to this set as a trace set since it corresponds to the set of commands in a program’s execution trace but
lacks the high-level structure that determines how the program decided to issue them. The second step
involves synthesizing a high-level program capable of producing the trace set identified by the first
phase. We achieve this by constraint-based program synthesis (Solar Lezama, 2008). The program
synthesizer searches the space of possible programs for one capable of producing the desired trace set
– inducing structures like symmetries, loops, or conditionals. Although these program synthesizers do
not need any training data, we show how to learn a search policy in order to synthesize programs an
order of magnitude faster than constraint-based synthesis techniques alone.

One might be tempted to try to go directly from perceptual input (an image) to a program, much
like recent neural models of program induction that regress from problem statements to programs
(e.g., Devlin et al. (2017)). We advocate an alternative framing, which we call The Trace Hypothesis:

The Trace Hypothesis. The set of commands issued by a program, which we call a trace set, is the
correct liaison between high-dimensional unstructured perceptual input and high-level structured
symbolic representations.

The roadmap of our paper is structured around the trace hypothesis, as outlined in Fig. 2.

Perceptual input

line, line,
rectangle,
line, ...

Trace set

for (j < 3)
for (i < 3)
if (...)
line(...)
line(...)

rectangle(...)

Program Extrapolation

Error
correction

N
euralnetw

ork

Program
synthesis

Section 2: Perception→Trace set Section 3: Trace Set→Program Section 4: Applications

Figure 2: Both the paper and the system pipeline are structured around the trace hypothesis

The new contributions of this work are: (1) The trace hypothesis: a framework for going from
perception to programs, which connects this work to other trace–based models, like the Neural
Program Interpreter (Reed & de Freitas, 2015); (2) A model based on the trace hypothesis that
converts sketches to high-level programs: in contrast to converting images to vectors or low-level
parses (Huang et al., 2017; Nishida et al., 2016; Wu et al., 2017; Beltramelli, 2017; Deng et al., 2017).
(3) A generic algorithm for learning a policy for efficiently searching for programs, building on Levin
search (Levin, 1973) and recent work like DeepCoder (Balog et al., 2016).

Even with the high-level idea of a trace set, going from hand drawings to programs remains difficult.
We address these challenges: (1) Inferring trace sets from images requires domain-specific design
choices from the deep learning and computer vision toolkits (Sec. 2). (2) Generalizing to noisy
hand drawings, we will show, requires learning a domain-specific noise model that is invariant to
the variations across hand drawings (Sec. 2.1). (3) Discovering good programs requires solving a
difficult combinatorial search problem, because the programs are often long and complicated (e.g., 9
lines of code, with nested loops and conditionals). We give a domain-general framework for learning
a search policy that quickly guides program synthesizers toward the target programs (Sec. 3.1).

2 NEURAL ARCHITECTURE FOR INFERRING TRACE SETS

We developed a deep network architecture for efficiently inferring a trace set, T , from an image,
I . Our model combines ideas from Neurally-Guided Procedural Models (Ritchie et al., 2016) and
Attend-Infer-Repeat (Eslami et al., 2016). The network constructs the trace set one drawing command
at a time, conditioned on what it has drawn so far. Fig. 3 illustrates this architecture. We first pass a
256× 256 target image and a rendering of the trace set so far (encoded as a two-channel image) to
a convolutional network. Given the features extracted by the convnet, a multilayer perceptron then
predicts a distribution over the next drawing command to add to the trace set (see Tbl. 1). We also use
a differentiable attention mechanism (Spatial Transformer Networks: Jaderberg et al. (2015)) to let

2

Under review as a conference paper at ICLR 2018

Target image: I

Canvas: render(T)

CNN
⊕

Im
age

features

MLP

circle(

STN

MLP

X=7,

STN

MLP

Y=12)

Next drawing command

Renderer
2
5
6
×

2
5
6
×

2

1
6
×

1
6
×

1
0

Figure 3: Our neural architecture for inferring the trace set of a graphics program from its output.
Blue: network inputs. Black: network operations. Red: samples from a multinomial. Typewriter
font: network outputs. Renders snapped to a 16 × 16 grid, illustrated in gray. STN (spatial
transformer network) is a differentiable attention mechanism (Jaderberg et al., 2015).

Table 1: Primitive drawing commands currently supported by our model.

circle(x, y) Circle at (x, y)
rectangle(x1, y1, x2, y2) Rectangle with corners at (x1, y1) & (x2, y2)
line(x1, y1, x2, y2,

arrow ∈ {0, 1}, dashed ∈ {0, 1})
Line from (x1, y1) to (x2, y2),

optionally with an arrow and/or dashed
STOP Finishes trace set inference

the model attend to different regions of the image while predicting drawing commands. We currently
constrain coordinates to lie on a discrete 16× 16 grid, but the grid could be made arbitrarily fine.

We train the network by sampling trace sets T and target images I for randomly generated scenes and
maximizing the likelihood of T given I with respect to the model parameters, θ, by gradient ascent.
We trained the network on 105 scenes, which takes a day on an Nvidia TitanX GPU.

Figure 4: Parsing LATEX output after training on diagrams
with≤ 12 objects. Model generalizes to scenes with many
more objects. Neither SMC nor the neural network are
sufficient on their own. # particles varies by model: we
compare the models with equal runtime (≈ 1 sec/object)

Our network can “derender” random syn-
thetic images by doing a beam search to
recover trace sets maximizing Pθ[T |I].
But, if the network predicts an incorrect
drawing command, it has no way of re-
covering from that error. For added ro-
bustness we treat the network outputs
as proposals for a Sequential Monte
Carlo (SMC) sampling scheme (Doucet
et al., 2001). The SMC sampler is de-
signed to sample from the distribution
∝ L(I|render(T))Pθ[T |I], where L(·|·)
uses the pixel-wise distance between two
images as a proxy for a likelihood. Here,
the network is learning a proposal dis-
tribution in an amortized way (Paige &
Wood, 2016) and using it to invert a gen-
erative model (the renderer).

Experiment 1: Figure 4. To evaluate
which components of the model are nec-

3

Under review as a conference paper at ICLR 2018

essary to parse complicated scenes, we compared the neural network with SMC against the neural
network by itself or SMC by itself. Only the combination of the two passes a critical test of general-
ization: when trained on images with ≤ 12 objects, it successfully parses scenes with many more
objects than the training data. We compare with a baseline that produces the trace set in one shot by
using the CNN to extract features of the input which are passed to an LSTM which finally predicts
the trace set token-by-token (LSTM in Fig. 4). This architecture is used in several successful neural
models of image captioning (e.g., Vinyals et al. (2015)), but, for this domain, cannot parse cluttered
scenes with many objects.

2.1 GENERALIZING TO REAL HAND DRAWINGS

We trained the model to generalize to hand drawings by introducing noise into the renderings of the
training target images. We designed this noise process to introduce the kinds of variations found in
hand drawings (see supplement for details).

Our neurally-guided SMC procedure used pixel-wise distance as a surrogate for a likelihood function
(L(·|·) in section 2). But pixel-wise distance fares poorly on hand drawings, which never exactly match
the model’s renders. So, for hand drawings, we learn a surrogate likelihood function, Llearned(·|·).
The density Llearned(·|·) is predicted by a convolutional network that we train to predict the distance
between two trace sets conditioned upon their renderings. We train our likelihood surrogate to
approximate the symmetric difference, which is the number of drawing commands by which two
trace sets differ:

− logLlearned(render(T1)|render(T2)) ≈ |T1 − T2|+ |T2 − T1| (1)

Experiment 2: Figures 5–7. We evaluated, but did not train, our system on 100 real hand-drawn
figures; see Fig. 5–6. These were drawn carefully but not perfectly with the aid of graph paper. For
each drawing we annotated a ground truth trace set and had the neurally guided SMC sampler produce
103 samples. For 63% of the drawings, the Top-1 most likely sample exactly matches the ground
truth; with more samples, the model finds trace sets that are closer to the ground truth annotation
(Fig. 7). We will show that the program synthesizer corrects some of these small errors (Sec. 4.1).

Figure 5: Left to right: Ising model, recurrent network ar-
chitecture, figure from a deep learning textbook Goodfellow
et al. (2016), graphical model

Figure 6: Near misses. Right-
most: illusory contours (note:
no SMC)

3 SYNTHESIZING GRAPHICS PROGRAMS FROM TRACE SETS

Although the trace set of a graphics program describes the contents of a scene, it does not encode
higher-level features of the image, such as repeated motifs or symmetries. A graphics program better
describes such structures. We seek to synthesize graphics programs from their trace sets.

We constrain the space of programs by writing down a context free grammar over programs – what in
the program languages community is called a Domain Specific Language (DSL) (Polozov & Gulwani,
2015). Our DSL (Tbl. 2) encodes prior knowledge of what graphics programs tend to look like.

4

Under review as a conference paper at ICLR 2018

Figure 7: How close are the model’s out-
puts to the ground truth on hand draw-
ings, as we consider larger sets of sam-
ples (1, 5, 100)? Distance to ground
truth trace set measured by the intersec-
tion over union (IoU) of predicted vs.
ground truth: IoU of sets A and B is
|A∩B|/|A∪B|. (a) for 63% of drawings
the model’s top prediction is exactly cor-
rect; (b) for 70% of drawings the ground
truth is in the top 5 model predictions;
(c) for 4% of drawings all of the model
outputs have no overlap with the ground
truth. Red: the full model. Other colors:
lesioned versions of our model.

Table 2: Grammar over graphics programs. We allow loops (for) with conditionals (if), verti-
cal/horizontal reflections (reflect), variables (Var) and affine transformations (Z×Var+Z).

Program→ Statement; · · · ; Statement
Statement→ circle(Expression,Expression)
Statement→ rectangle(Expression,Expression,Expression,Expression)
Statement→ line(Expression,Expression,Expression,Expression,Boolean,Boolean)
Statement→ for(0 ≤ Var < Expression) { if (Var > 0) { Program }; Program }
Statement→ reflect(Axis) { Program }

Expression→ Z×Var+Z
Axis→ X = Z | Y = Z
Z→ an integer

Given the DSL and a trace set T , we want a program that both evaluates to T and, at the same time,
is the “best” explanation of T . For example, we might prefer more general programs or, in the spirit
of Occam’s razor, prefer shorter programs. We wrap these intuitions up into a cost function over
programs, and seek the minimum cost program consistent with T :

program(T) = argmin
p∈DSL, s.t. p evaluates to T

cost(p) (2)

We define the cost of a program to be the number of Statement’s it contains (Tbl. 2). We also penalize
using many different numerical constants; see supplement.

The constrained optimization problem in Eq. 2 is intractable in general, but there exist efficient-in-
practice tools for finding exact solutions to such program synthesis problems. We use the state-of-
the-art Sketch tool (Solar Lezama, 2008). Sketch takes as input a space of programs, along with a
specification of the program’s behavior and optionally a cost function. It translates the synthesis
problem into a constraint satisfaction problem and then uses a SAT solver to find a minimum-cost
program satisfying the specification. Sketch requires a finite program space, which here means that
the depth of the program syntax tree is bounded (we set the bound to 3), but has the guarantee that
it always eventually finds a globally optimal solution. In exchange for this optimality guarantee it
comes with no guarantees on runtime. For our domain synthesis times vary from minutes to hours,
with 27% of the drawings timing out the synthesizer after 1 hour. Tbl. 3 shows programs recovered
by our system. A main impediment to our use of these general techniques is the prohibitively high
cost of searching for programs. We next describe how to learn to synthesize programs much faster
(Sec. 3.1), timing out on 2% of the drawings and solving 58% of problems within a minute.

5

Under review as a conference paper at ICLR 2018

Table 3: Example drawings (left), their ground truth trace sets (middle left), and programs synthesized
from these trace sets (middle right). Compared to the trace sets the programs are more compressive
(right: programs have fewer lines than traces) and automatically group together related drawing
commands. Note the nested loops and special case conditionals in the Ising model, combination
of symmetry and iteration in the bottom figure, affine transformations in the top figure, and the
complicated program in the second figure to bottom.

Drawing Trace Set Program Compression factor

Line(2,15, 4,15)
Line(4,9, 4,13)
Line(3,11, 3,14)
Line(2,13, 2,15)
Line(3,14, 6,14)
Line(4,13, 8,13)

for(i<3)
line(i,-1*i+6,

2*i+2,-1*i+6)
line(i,-2*i+4,i,-1*i+6)

6
3 = 2x

Circle(5,8)
Circle(2,8)
Circle(8,11)
Line(2,9, 2,10)
Circle(8,8)
Line(3,8, 4,8)
Line(3,11, 4,11)

... etc. ...; 21 lines

for(i<3)
for(j<3)
if(j>0)
line(-3*j+8,-3*i+7,

-3*j+9,-3*i+7)
line(-3*i+7,-3*j+8,

-3*i+7,-3*j+9)
circle(-3*j+7,-3*i+7)

21
6 = 3.5x

Rectangle(1,10,3,11)
Rectangle(1,12,3,13)
Rectangle(4,8,6,9)
Rectangle(4,10,6,11)

... etc. ...; 16 lines

for(i<4)
for(j<4)
rectangle(-3*i+9,-2*j+6,

-3*i+11,-2*j+7)

16
3 = 5.3x

Line(3,10,3,14,arrow)
Rectangle(11,8,15,10)
Rectangle(11,14,15,15)
Line(13,10,13,14,arrow)

... etc. ...; 16 lines

for(i<3)
line(7,1,5*i+2,3,arrow)
for(j<i+1)
if(j>0)
line(5*j-1,9,5*i,5,arrow)
line(5*j+2,5,5*j+2,9,arrow)

rectangle(5*i,3,5*i+4,5)
rectangle(5*i,9,5*i+4,10)
rectangle(2,0,12,1)

16
9 = 1.8x

Circle(2,8)
Rectangle(6,9, 7,10)
Circle(8,8)
Rectangle(6,12, 7,13)
Rectangle(3,9, 4,10)

... etc. ...; 9 lines

reflect(y=8)
for(i<3)
if(i>0)
rectangle(3*i-1,2,3*i,3)
circle(3*i+1,3*i+1)

9
5 = 1.8x

3.1 LEARNING A SEARCH POLICY FOR SYNTHESIZING PROGRAMS

We want to leverage powerful, domain-general techniques from the program synthesis community,
but make them much faster by learning a domain-specific search policy. A search policy poses
search problems like those in Eq. 2, but also offers additional constraints on the structure of the
program (Tbl. 4). For example, a policy might decide to first try searching over small programs
before searching over large programs, or decide to prioritize searching over programs that have loops.

A search policy πθ(σ|T) takes as input a trace set T and predicts a distribution over synthesis
problems, each of which is written σ and corresponds to a set of possible programs to search over
(so σ ⊆ DSL). Good policies will prefer tractable program spaces, so that the search procedure
will terminate early, but should also prefer program spaces likely to contain programs that concisely
explain the data. These two desiderata are in tension: tractable synthesis problems involve searching
over smaller spaces, but smaller spaces are less likely to contain good programs. Our goal now is to
find the parameters of the policy, written θ, which best navigate this trade-off.

6

Under review as a conference paper at ICLR 2018

Given a search policy, what is the best way of using it to quickly find minimum cost programs? We
use a bias-optimal search algorithm (Schmidhuber, 2004):

Definition: Bias-optimality. A search algorithm is n-bias optimal with respect to a distribution
Pbias[·] if it is guaranteed to find a solution in σ after searching for at least time n× t(σ)

Pbias[σ]
, where

t(σ) is the time it takes to verify that σ contains a solution to the search problem.

An example of a 1-bias optimal search algorithm is a time-sharing system that allocates Pbias[σ] of its
time to trying σ. We construct a 1-bias optimal search algorithm by identifying Pbias[σ] = πθ(σ|T)
and t(σ) = t(σ|T), where t(σ|T) is how long the synthesizer takes to search σ for a program for T .
This means that the search algorithm explores the entire program space, but spends most of its time
in the regions of the space that the policy judges to be most promising.

Now in theory any πθ(·|·) is a bias-optimal searcher. But the actual runtime of the algorithm depends
strongly upon the bias Pbias[·]. Our new approach is to learn Pbias[·] by picking the policy minimizing
the expected bias-optimal time to solve a training corpus, D, of graphics program synthesis problems:

LOSS(θ;D) = ET∼D
[

min
σ∈BEST(T)

t(σ|T)
πθ(σ|T)

]
+ λ‖θ‖22 (3)

where σ ∈ BEST(T) if a minimum cost program for T is in σ.

Practically, bias optimality has now bought us the following: (1) a guarantee that the policy will
always find the minimum cost program; and (2) a differentiable loss function for the policy parameters
that takes into account the cost of searching, in contrast to e.g. DeepCoder (Balog et al., 2016).

To generate a training corpus for learning a policy which minimizes this loss, we synthesized
minimum cost programs for each trace set of our hand drawings and for each σ. We locally minimize
this loss using gradient descent. Because we want to learn a policy from only 100 hand-drawn
diagrams, we chose a simple low-capacity, bilinear model for a policy:

πθ(σ|T) ∝ exp
(
φparams(σ)

>θφtrace(T)
)

(4)

where φparams(σ) is a one-hot encoding of the parameter settings of σ (see Tbl. 4) and φtrace(T)
extracts a few simple features of the trace set T ; see supplement for details.

Experiment 3: Figure 8. We compare synthesis times for our learned search policy with two
alternatives: Sketch, which poses the entire problem wholesale to the Sketch program synthesizer;
and an Oracle, a policy which always picks the quickest to search σ also containing a minimum cost
program. Our approach improves upon Sketch by itself, and comes close to the Oracle’s performance.
One could never construct this Oracle, because the agent does not know ahead of time which σ’s
contain minimum cost programs nor does it know how long each σ will take to search. With this
learned policy in hand we can synthesize 58% of programs within a minute.

Table 4: Parameterization of different ways of posing the program synthesis problem. The policy
learns to choose parameters likely to quickly yield a minimal cost program. We slightly abuse
notation by writing σ to mean an assignment to each of these parameters (so σ assumes one of 24
different values) and to mean the set of programs selected by that parameterization (so σ ⊆ DSL)

Parameter Description Range

Loops? Is the program allowed to loop? {True,False}
Reflects? Is the program allowed to have reflections? {True,False}
Incremental? Solve the problem piece-by-piece or all at once? {True,False}
Maximum depth Bound on the depth of the program syntax tree {1, 2, 3}

4 APPLICATIONS OF GRAPHICS PROGRAM SYNTHESIS

Why synthesize a graphics program, if the trace set already suffices to recover the objects in an
image? Within our domain of hand-drawn figures, graphics program synthesis has several uses:

7

Under review as a conference paper at ICLR 2018

Figure 8: How long does it typically take to synthesize a minimum cost program? Sketch: out-of-the-
box performance of the Sketch (Solar Lezama, 2008) program synthesizer. Oracle: upper bounds
the performance of any search policy. Learned policy: a bias-optimal learned search policy running
on an ideal timesharing machine. ∞ = timeout. Red dashed line is median time. Learned policy
evaluated using 20-fold cross validation.

4.1 CORRECTING ERRORS MADE BY THE NEURAL NETWORK

Figure 9: Left: hand drawings. Cen-
ter: interpretations favored by the
deep network. Right: interpretations
favored after learning a prior over
programs. The prior favors simpler
programs, thus (top) continuing the
pattern of not having an arrow is pre-
ferred, or (bottom) continuing the
“binary search tree” is preferred.

The program synthesizer corrects errors made by the neural
network by favoring trace sets which lead to more concise or
general programs. For example, figures with perfectly aligned
objects are preferable, and precise alignment lends itself to
short programs. Concretely, we run the program synthesizer on
the Top-k most likely trace sets output by the neurally guided
sampler. Then, the system reranks the Top-k by the prior prob-
ability of their programs. The prior probability of a program is
learned by picking the prior maximizing the likelihood of the
ground truth trace sets; see supplement for details. But, this
procedure can only correct errors when a correct trace set is in
the Top-k. Our sampler could only do better on 7/100 drawings
by looking at the Top-100 samples (see Fig. 7), precluding a
statistically significant analysis of how much learning a prior
over programs could help correct errors. But, learning this
prior does sometimes help correct mistakes made by the neural
network; see Fig. 9 for a representative example of the kinds
of corrections that it makes. See supplement for details.

4.2 EXTRAPOLATING FIGURES

Having access to the source code of a graphics program facilitates coherent, high-level image editing.
For example we can extrapolate figures by increasing the number of times that loops are executed.
Extrapolating repetitive visuals patterns comes naturally to humans, and is a practical application:
imagine hand drawing a repetitive graphical model structure and having our system automatically
induce and extend the pattern. Fig. 10 shows extrapolations produced by our system.

Figure 10: Top, white: hand drawings. Bottom, black: extrapolations produced by our system.

8

Under review as a conference paper at ICLR 2018

5 RELATED WORK

Program Induction: Our approach to learning to search for programs draws theoretical underpin-
nings from Levin search (Levin, 1973; Solomonoff, 1984) and Schmidhuber’s OOPS model (Schmid-
huber, 2004). DeepCoder (Balog et al., 2016) is a recent model which, like ours, learns to predict
likely program components. Our work differs because we treat the problem as metareasoning, identi-
fying and modeling the trade-off between tractability and probability of success. TerpreT (Gaunt et al.,
2016) systematically compares constraint-based program synthesis techniques against gradient-based
search techniques, like those used to train Differentiable Neural Computers (Graves et al., 2016). The
TerpreT experiments motivate our use of constraint-based techniques.

Deep Learning: Our neural network bears resemblance to the Attend-Infer-Repeat (AIR) system,
which learns to decompose an image into its constituent objects (Eslami et al., 2016). AIR learns an
iterative inference scheme which infers objects one by one and also decides when to stop inference.
Our network differs in its architecture and training regime: AIR learns a recurrent auto-encoding
model via variational inference, whereas our parsing stage learns an autoregressive-style model from
randomly-generated (trace, image) pairs.

IM2LATEX (Deng et al., 2017) is a recent work that also converts images to LATEX. Their goal
is to derender LATEX equations, which recovers a markup language representation. Our goal is to
go from noisy input to a high-level program, which goes beyond markup languages by supporting
programming constructs like loops and conditionals. Recovering a high-level program is more
challenging than recovering markup because it is a highly under constrained symbolic reasoning
problem.

Our image-to-trace parsing architecture builds on prior work on controlling procedural graphics
programs (Ritchie et al., 2016). We adapt this method to a different visual domain (figures composed
of multiple objects), using a broad prior over possible scenes as the initial program and viewing
the trace through the guide program as a symbolic parse of the target image. We then show how to
efficiently synthesize higher-level programs from these traces.

In the computer graphics literature, there have been other systems which convert sketches into
procedural representations. One uses a convolutional network to match a sketch to the output of a
parametric 3D modeling system (Huang et al., 2017). Another uses convolutional networks to support
sketch-based instantiation of procedural primitives within an interactive architectural modeling
system (Nishida et al., 2016). Both systems focus on inferring fixed-dimensional parameter vectors.
In contrast, we seek to automatically infer a structured, programmatic representation of a sketch
which captures higher-level visual patterns.

Hand-drawn sketches: Prior work has also applied sketch-based program synthesis to authoring
graphics programs. Sketch-n-Sketch is a bi-directional editing system in which direct manipulations
to a program’s output automatically propagate to the program source code (Hempel & Chugh, 2016).
We see this work as complementary to our own: programs produced by our method could be provided
to a Sketch-n-Sketch-like system as a starting point for further editing.

The CogSketch system (Forbus et al., 2011) also aims to have a high-level understanding of hand-
drawn figures. Their primary goal is cognitive modeling (they apply their system to solving IQ-test
style visual reasoning problems), whereas we are interested in building an automated AI application
(e.g. in our system the user need not annotate which strokes correspond to which shapes; our neural
network produces something equivalent to the annotations).

The Trace Hypothesis: The idea that an execution trace could assist in program learning goes back
to the 1970’s (Summers, 1977) and has been applied in neural models of program induction, like
Neural Program Interpreters (Reed & de Freitas, 2015), or DeepCoder, which predicts what functions
occur in the execution trace (Balog et al., 2016). Our contribution to this idea is the trace hypothesis:
that trace sets can be inferred from perceptual data, and that the trace set is a useful bridge between
perception and symbolic representation. Our work is the first to articulate and explore this hypothesis
by demonstrating how a trace could be inferred and how it can be used to synthesize a high-level
program.

9

Under review as a conference paper at ICLR 2018

6 CONTRIBUTIONS

We have presented a system for inferring graphics programs which generate LATEX-style figures from
hand-drawn images. The system uses a combination of deep neural networks and stochastic search
to parse drawings into symbolic trace sets; it then feeds these traces to a general-purpose program
synthesis engine to infer a structured graphics program. We evaluated our model’s performance at
parsing novel images, and we demonstrated its ability to extrapolate from provided drawings.

In the near future, we believe it will be possible to produce professional-looking figures just by
drawing them and then letting an artificially-intelligent agent write the code. More generally, we
believe the trace hypothesis, as realized in our two-phase system—parsing into trace sets, then
searching for a low-cost symbolic program which generates those traces—may be a useful paradigm
for other domains in which agents must programmatically reason about noisy perceptual input.

REFERENCES

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. DeepCoder:
Learning to write programs. arXiv preprint arXiv:1611.01989, November 2016. URL https://arxiv.
org/abs/1611.01989.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. CoRR, abs/1705.07962,
2017. URL http://arxiv.org/abs/1705.07962.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-to-markup generation with
coarse-to-fine attention. In ICML, 2017.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet
Kohli. Robustfill: Neural program learning under noisy i/o. ICML, 2017.

Arnaud Doucet, Nando De Freitas, and Neil Gordon (eds.). Sequential Monte Carlo Methods in Practice.
Springer, 2001.

SM Eslami, N Heess, and T Weber. Attend, infer, repeat: Fast scene understanding with generative models. arxiv
preprint arxiv:..., 2016. 2016.

Kenneth Forbus, Jeffrey Usher, Andrew Lovett, Kate Lockwood, and Jon Wetzel. Cogsketch: Sketch un-
derstanding for cognitive science research and for education. Topics in Cognitive Science, 3(4):648–666,
2011.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,
and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. arXiv preprint
arXiv:1608.04428, 2016.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,
Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing
using a neural network with dynamic external memory. Nature, 538(7626):471–476, 2016.

Brian Hempel and Ravi Chugh. Semi-automated svg programming via direct manipulation. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pp. 379–390, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4189-9. doi: 10.1145/2984511.2984575. URL http:
//doi.acm.org/10.1145/2984511.2984575.

Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. Shape synthesis from sketches via
procedural models and convolutional networks. IEEE transactions on visualization and computer graphics,
2017.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in Neural
Information Processing Systems, pp. 2017–2025, 2015.

Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi Informatsii, 9(3):115–116,
1973.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau. Interactive
sketching of urban procedural models. ACM Trans. Graph., 35(4), 2016.

10

https://arxiv.org/abs/1611.01989
https://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1705.07962
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://doi.acm.org/10.1145/2984511.2984575
http://doi.acm.org/10.1145/2984511.2984575

Under review as a conference paper at ICLR 2018

Brooks Paige and Frank Wood. Inference networks for sequential monte carlo in graphical models. In
International Conference on Machine Learning, pp. 3040–3049, 2016.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthesis. ACM
SIGPLAN Notices, 50(10):107–126, 2015.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. CoRR, abs/1511.06279, 2015. URL
http://arxiv.org/abs/1511.06279.

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah Goodman. Neurally-guided procedural models:
Amortized inference for procedural graphics programs using neural networks. In Advances In Neural
Information Processing Systems, pp. 622–630, 2016.

Jürgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):211–254, 2004.

Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS Department, University of Cal-
ifornia, Berkeley, Dec 2008. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008-177.html.

Raymond J Solomonoff. Optimum sequential search. 1984.

Phillip D. Summers. A methodology for lisp program construction from examples. J. ACM, 24(1):161–175,
January 1977. ISSN 0004-5411. doi: 10.1145/321992.322002. URL http://doi.acm.org/10.1145/
321992.322002.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption
generator. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3156–3164,
2015.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

11

http://arxiv.org/abs/1511.06279
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://doi.acm.org/10.1145/321992.322002
http://doi.acm.org/10.1145/321992.322002

Under review as a conference paper at ICLR 2018

SUPPLEMENT TO: LEARNING TO INFER GRAPHICS
PROGRAMS FROM HAND-DRAWN IMAGES

Anonymous authors
Paper under double-blind review

1 CORRECTING ERRORS MADE BY THE NEURAL NETWORK

The program synthesizer can help correct errors from the execution trace proposal network by favoring
execution traces which lead to more concise or general programs. For example, one generally prefers
figures with perfectly aligned objects over figures whose parts are slightly misaligned – and precise
alignment lends itself to short programs. Similarly, figures often have repeated parts, which the
program synthesizer might be able to model as a loop or reflectional symmetry. So, in considering
several candidate traces proposed by the neural network, we might prefer traces whose best programs
have desirable features such being short or having iterated structures.

Concretely, we implemented the following scheme: for an image I , the neurally guided sampling
scheme of section 3 of the main paper samples a set of candidate traces, written F(I). Instead of
predicting the most likely trace in F(I) according to the neural network, we can take into account
the programs that best explain the traces. Writing T̂ (I) for the trace the model predicts for image I ,

T̂ (I) = argmax
T∈F(I)

Llearned(I|render(T))× Pθ[T |I]× Pβ [program(T)] (1)

where Pβ [·] is a prior probability distribution over programs parameterized by β. This is equivalent
to doing MAP inference in a generative model where the program is first drawn from Pβ [·], then the
program is executed deterministically, and then we observe a noisy version of the program’s output,
where Llearned(I|render(·))× Pθ[·|I] is our observation model.

Given a corpus of graphics program synthesis problems with annotated ground truth traces (i.e. (I, T)
pairs), we find a maximum likelihood estimate of β:

β∗ = argmax
β

E

[
log

Pβ [program(T)]× Llearned(I|render(T))× Pθ[T |I]∑
T ′∈F(I)Pβ [program(T ′)]× Llearned(I|render(T ′))× Pθ[T ′|I]

]
(2)

where the expectation is taken both over the model predictions and the (I, T) pairs in the training
corpus. We define Pβ [·] to be a log linear distribution∝ exp(β ·φ(program)), where φ(·) is a feature
extractor for programs. We extract a few basic features of a program, such as its size and how many
loops it has, and use these features to help predict whether a trace is the correct explanation for an
image.

We synthesized programs for the top 10 traces output by the deep network. Learning this prior over
programs can help correct mistakes made by the neural network, and also occasionally introduces
mistakes of its own; see Fig. 1 for a representative example of the kinds of corrections that it makes.
On the whole it modestly improves our Top-1 accuracy from 63% to 67%. Recall that from Fig. 6 of
the main paper that the best improvement in accuracy we could possibly get is 70% by looking at the
top 10 traces.

1

Under review as a conference paper at ICLR 2018

Figure 1: Left: hand drawing. Center: interpretation favored by the deep network. Right: interpreta-
tion favored after learning a prior over programs. Our learned prior favors shorter, simpler programs,
thus (top example) continuing the pattern of not having an arrow is preferred, or (bottom example)
continuing the binary search tree is preferred.

2 MEASURING SIMILARITY BETWEEN DRAWINGS

We measure the similarity between two drawings by extracting features of the best programs that
describe them. Our features are counts of the number of times that different components in the DSL
were used. We project these features down to a 2-dimensional subspace using primary component
analysis (PCA); see Fig.2. One could use many alternative similarity metrics between drawings which
would capture pixel-level similarities while missing high-level geometric similarities. We used our
learned distance metric between traces, Llearned(·|·), and projected to a 2-dimensional subspace using
multidimensional scaling (MDS: (1)). This reveals similarities between the objects in the drawings,
while missing similarities at the level of the program.

3 LEARNING A BIAS OPTIMAL POLICY

Recall from the main paper that our goal is to estimate the policy minimizing the following loss:

LOSS(θ;D) = ET∼D
[

min
σ∈BEST(T)

t(σ|T)
πθ(σ|T)

]
+ λ‖θ‖22 (3)

where σ ∈ BEST(T) if a minimum cost program for T is in σ.

We make this optimization problem tractable by annealing our loss function during gradient descent:

LOSSβ(θ;D) = ET∼D
[

SOFTMINIMUMβ

{
t(σ|T)
πθ(σ|T)

: σ ∈ BEST(T)

}]
+ λ‖θ‖22 (4)

where SOFTMINIMUMβ(x1, x2, x3, · · ·) =
∑
n

xn
e−βxn∑
n′ e−βxn′

(5)

Notice that SOFTMINIMUMβ=∞(·) is just min(·). We set the regularization coefficient λ = 0.1 and
minimize equation 4 using Adam for 2000 steps, linearly increasing β from 1 to 2.

We parameterize the space of policies as a simple log bilinear model:

πθ(σ|T) ∝ exp
(
φparams(σ)

>θφtrace(T)
)

(6)

where:

φparams(σ) = [1[σ can loop];
1[σ can reflect];
1[σ is incremental];
1[σ has depth bound 1];1[σ has depth bound 2];1[σ has depth bound 3];]

φtrace(T) = [# circles in T ; # rectangles in T ; # lines in T ; 1]

2

Under review as a conference paper at ICLR 2018

Figure 2: PCA on features of the programs that were synthesized for each drawing. Symmetric
figures cluster to the right; “loopy” figures cluster to the left; complicated programs are at the top and
simple programs are at the bottom.

Figure 3: MDS on drawings using the learned distance metric, Llearned(·|·). Drawings with similar
looking parts in similar locations are clustered together.

4 NEURAL NETWORK ARCHITECTURE

4.1 HIGH-LEVEL OVERVIEW

For the model in Fig. 4, the distribution over the next drawing command factorizes as:

Pθ[t1t2 · · · tK |I, T] =
K∏
k=1

Pθ
[
tk|aθ

(
fθ(I, render(T))|{tj}k−1j=1

)
, {tj}k−1j=1

]
(7)

where t1t2 · · · tK are the tokens in the drawing command, I is the target image, T is a trace set, θ are
the parameters of the neural network, fθ(·, ·) is the image feature extractor (convolutional network),

3

Under review as a conference paper at ICLR 2018

Target image: I

Canvas: render(T)

CNN
⊕

Im
age

features

MLP

circle(

STN

MLP

X=7,

STN

MLP

Y=12)

Next drawing command

Renderer
2
5
6
×

2
5
6
×

2

1
6
×

1
6
×

1
0

Figure 4: Our neural architecture for inferring the trace set of a graphics program from its output.
Blue: network inputs. Black: network operations. Red: samples from a multinomial. Typewriter
font: network outputs. Renders snapped to a 16 × 16 grid, illustrated in gray. STN (spatial
transformer network) is a differentiable attention mechanism (2).

and aθ(·|·) is an attention mechanism. The distribution over traces factorizes as:

Pθ[T |I] =
|T |∏
n=1

Pθ[Tn|I, T1:(n−1)]× Pθ[STOP|I, T] (8)

where |T | is the length of trace T , the subscripts on T index drawing commands within the trace (so
Tn is a sequence of tokens: t1t2 · · · tK), and the STOP token is emitted by the network to signal that
the trace explains the image.

4.2 CONVOLUTIONAL NETWORK

The convolutional network takes as input 2 256× 256 images represented as a 2× 256× 256 volume.
These are passed through two layers of convolutions separated by ReLU nonlinearities and max
pooling:

• Layer 1: 20 8× 8 convolutions, 2 16× 4 convolutions, 2 4× 16 convolutions. Followed by
8× 8 pooling with a stride size of 4.

• Layer 2: 10 8× 8 convolutions. Followed by 4× 4 pooling with a stride size of 4.

4.3 AUTOREGRESSIVE DECODING OF DRAWING COMMANDS

Given the image features f , we predict the first token (i.e., the name of the drawing command:
circle, rectangle, line, or STOP) using logistic regression:

P[t1] ∝ exp (Wt1f + bt1) (9)

where Wt1 is a learned weight matrix and bt1 is a learned bias vector.

Given an attention mechanism a(·|·), subsequent tokens are predicted as:

P[tn|t1:(n−1)] ∝ MLPt1,n(a(f |t1:(n−1))⊕
⊕
j<n

oneHot(tj)) (10)

Thus each token of each drawing primitive has its own learned MLP. For predicting the coordinates
of lines we found that using 32 hidden nodes with sigmoid activations worked well; for other tokens
the MLP’s are just logistic regression (no hidden nodes).

4

Under review as a conference paper at ICLR 2018

We use Spatial Transformer Networks (2) as our attention mechanism. The parameters of the spatial
transform are predicted on the basis of previously predicted tokens. For example, in order to decide
where to focus our attention when predicting the y coordinate of a circle, we condition upon both
the identity of the drawing command (circle) and upon the value of the previously predicted x
coordinate:

a(f |t1:(n−1)) = AffineTransform(f,MLPt1,n(
⊕
j<n

oneHot(tj))) (11)

So, we learn a different network for predicting special transforms for each drawing command (value
of t1) and also for each token of the drawing command. These networks (MLPt1,n in equation 11)
have no hidden layers and output the 6 entries of an affine transformation matrix; see (2) for more
details.

Training takes a little bit less than a day on a Nvidia TitanX GPU. The network was trained on 105

synthetic examples.

4.4 LSTM BASELINE

We compared our deep network with a baseline that models the problem as a kind of image captioning.
Given the target image, this baseline produces the program trace in one shot by using a CNN to extract
features of the input which are passed to an LSTM which finally predicts the trace token-by-token.
This general architecture is used in several successful neural models of image captioning (e.g., (4)).

Concretely, we kept the image feature extractor architecture (a CNN) as in our model, but only passed
it one image as input (the target image to explain). Then, instead of using an autoregressive decoder
to predict a single drawing command, we used an LSTM to predict a sequence of drawing commands
token-by-token. This LSTM had 128 memory cells, and at each time step produced as output the next
token in the sequence of drawing commands. It took as input both the image representation and its
previously predicted token.

4.5 A LEARNED LIKELIHOOD SURROGATE

Our architecture for Llearned(render(T1)|render(T2)) has the same series of convolutions as the
network that predicts the next drawing command. We train it to predict two scalars: |T1 − T2|
and |T2 − T1|. These predictions are made using linear regression from the image features followed
by a ReLU nonlinearity; this nonlinearity makes sense because the predictions can never be negative
but could be arbitrarily large positive numbers.

We train this network by sampling random synthetic scenes for T1, and then perturbing them in small
ways to produce T2. We minimize the squared loss between the network’s prediction and the ground
truth symmetric differences. T1 is rendered in a “simulated hand drawing” style which we describe
next.

5 SIMULATING HAND DRAWINGS

We introduce noise into the LATEX rendering process by:

• Rescaling the image intensity by a factor chosen uniformly at random from [0.5, 1.5]

• Translating the image by ±3 pixels chosen uniformly random

• Rendering the LATEX using the pencildraw style, which adds random perturbations to the
paths drawn by LATEXin a way designed to resemble a pencil.

• Randomly perturbing the positions and sizes of primitive LATEXdrawing commands

6 LIKELIHOOD SURROGATE FOR SYNTHETIC DATA

For synthetic data (e.g., LATEX output) it is relatively straightforward to engineer an adequate distance
measure between images, because it is possible for the system to discover drawing commands that

5

Under review as a conference paper at ICLR 2018

Figure 5: Example synthetic training data

exactly match the pixels in the target image. We use:

− logL(I1|I2) =
∑

1≤x≤256

∑
1≤y≤256

|I1[x, y]− I2[x, y]|

α, if I1[x, y] > I2[x, y]

β, if I1[x, y] < I2[x, y]

0, if I1[x, y] = I2[x, y]

(12)

where α, β are constants that control the trade-off between preferring to explain the pixels in the
image (at the expense of having extraneous pixels) and not predicting pixels where they don’t exist
(at the expense of leaving some pixels unexplained). Because our sampling procedure incrementally
constructs the scene part-by-part, we want α > β. That is, it is preferable to leave some pixels
unexplained; for once a particle in SMC adds a drawing primitive to its trace that is not actually in
the latent scene, it can never recover from this error. In our experiments on synthetic data we used
α = 0.8 and β = 0.04.

7 GENERATING SYNTHETIC TRAINING DATA

We generated synthetic training data for the neural network by sampling LATEX code according to
the following generative process: First, the number of objects in the scene are sampled uniformly
from 1 to 12. For each object we uniformly sample its identity (circle, rectangle, or line). Then we
sample the parameters of the circles, than the parameters of the rectangles, and finally the parameters
of the lines; this has the effect of teaching the network to first draw the circles in the scene, then
the rectangles, and finally the lines. We furthermore put the circle (respectively, rectangle and line)
drawing commands in order by left-to-right, bottom-to-top; thus the training data enforces a canonical
order in which to draw any scene.

To make the training data look more like naturally occurring figures, we put a Chinese restaurant
process prior (5) over the values of the X and Y coordinates that occur in the execution trace. This
encourages reuse of coordinate values, and so produces training data that tends to have parts that are
nicely aligned.

In the synthetic training data we excluded any sampled scenes that had overlapping drawing com-
mands. As shown in the main paper, the network is then able to generalize to scenes with, for example,
intersecting lines or lines that penetrate a rectangle.

When sampling the endpoints of a line, we biased the sampling process so that it would be more
likely to start an endpoint along one of the sides of a rectangle or at the boundary of a circle. If n
is the number of points either along the side of a rectangle or at the boundary of a circle, we would
sample an arbitrary endpoint with probability 2

2+n and sample one of the “attaching” endpoints with
probability 1

2+n .

See figure 7 for examples of the kinds of scenes that the network is trained on.

For readers wishing to generate their own synthetic training sets, we refer them to our source code
at: redactedForAnonymity.com.

6

redactedForAnonymity.com

Under review as a conference paper at ICLR 2018

8 THE COST FUNCTION FOR PROGRAMS

We seek the minimum cost program which evaluates to (produces the drawing primitives in) an
execution trace T :

program(T) = argmin
p∈DSL

p evaluates to T

cost(p) (13)

Programs incur a cost of 1 for each command (primitive drawing action, loop, or reflection). They
incur a cost of 1

3 for each unique coefficient they use in a linear transformation beyond the first
coefficient. This encourages reuse of coefficients, which leads to code that has translational symmetry;
rather than provide a translational symmetry operator as we did with reflection, we modify what
is effectively a prior over the space of program so that it tends to produce programs that have this
symmetry.

Programs also incur a cost of 1 for having loops of constant length 2; otherwise there is often no
pressure from the cost function to explain a repetition of length 2 as being a reflection rather a loop.

9 FULL RESULTS ON DRAWINGS DATA SET

Below we show our full data set of drawings. The leftmost column is a hand drawing. The middle
column is a rendering of the most likely trace discovered by the neurally guided SMC sampling
scheme. The rightmost column is the program we synthesized from a ground truth execution trace of
the drawing. Note that because the inference procedure is stochastic, the top one most likely sample
can vary from run to run. Below we report a representative sample from a run with 2000 particles.

line(6,2,6,3,
arrow = False,solid = True);
line(6,2,3,2,
arrow = True,solid = True);
reflect(y = 9){
line(3,7,5,5,
arrow = True,solid = True);
rectangle(1,1,3,3);
rectangle(5,3,7,6);
rectangle(0,0,8,9)
}

7

Under review as a conference paper at ICLR 2018

for (i < 2){
line(8,8,3,8,
arrow = True,solid = False);
line(-2 * i + 12,5,-2 * i + 13,5,
arrow = True,solid = True);
line(6,5,7,5,
arrow = True,solid = True);
line(3,-6 * i + 8,5,-2 * i + 6,
arrow = True,solid = True);
rectangle(-2 * i + 13,4,-2 * i + 14,6);
rectangle(1,-6 * i + 7,3,-6 * i + 9)
};
circle(8,5);
rectangle(5,3,6,7);
rectangle(0,0,10,10);
line(8,6,8,8,
arrow = False,solid = False)

reflect(y = 7){
line(2,6,4,4,
arrow = True,solid = True);
rectangle(0,0,2,2)
};
rectangle(4,2,6,5)

line(7,5,9,5,
arrow = True,solid = True);
rectangle(5,3,7,7);
rectangle(0,0,12,10);
reflect(y = 10){
circle(10,5);
line(3,2,5,4,
arrow = True,solid = True);
rectangle(1,1,3,3)
}

8

Under review as a conference paper at ICLR 2018

line(10,1,2,1,
arrow = True,solid = False);
line(10,1,10,3,
arrow = False,solid = False);
line(7,4,9,4,
arrow = True,solid = True);
reflect(y = 8){
circle(10,4);
line(2,1,4,3,
arrow = True,solid = True);
rectangle(4,2,7,6);
rectangle(0,6,2,8)
}

line(12,9,12,0,
arrow = True,solid = True);
rectangle(9,3,11,9);
rectangle(6,5,8,9);
rectangle(0,7,2,9);
rectangle(3,8,5,9)

for (i < 3){
for (j < (1*i + 1)){
if (j > 0){
line(3 * j + -3,3 * i + -2,3 * j + -1,3 * i + -3,
arrow = False,solid = True);
line(0,3 * j + -2,3 * j + -3,4,
arrow = False,solid = True)
}
rectangle(2,0,5,3)
}
}

9

Under review as a conference paper at ICLR 2018

for (i < 3){
circle(-3 * i + 7,1);
circle(-3 * i + 7,6);
line(-3 * i + 7,-1 * i + 4,-3 * i + 7,5,
arrow = False,solid = True)
}

line(0,0,0,4,
arrow = False,solid = True)

line(6,0,0,0,
arrow = True,solid = True)

10

Under review as a conference paper at ICLR 2018

rectangle(0,0,3,4)

circle(1,1)

reflect(x = 7){
circle(6,1);
line(6,2,6,5,
arrow = False,solid = True);
rectangle(5,5,7,7)
};
line(2,6,5,6,
arrow = False,solid = True);
line(2,1,5,1,
arrow = False,solid = True)

11

Under review as a conference paper at ICLR 2018

line(3,2,1,2,
arrow = True,solid = True);
line(0,3,2,3,
arrow = True,solid = True);
line(5,0,3,0,
arrow = True,solid = True);
line(2,1,4,1,
arrow = True,solid = True)

rectangle(6,0,7,1);
for (i < 3){
rectangle(-2 * i + 4,2 * i + 2,-2 * i + 5,2 * i + 3);
rectangle(-2 * i + 4,2 * i,-2 * i + 5,2 * i + 1)
}

line(3,0,5,0,
arrow = False,solid = True);
line(1,2,3,2,
arrow = False,solid = True);
line(0,3,2,3,
arrow = False,solid = False);
line(2,1,4,1,
arrow = False,solid = False)

12

Under review as a conference paper at ICLR 2018

circle(9,1);
for (i < 3){
circle(-2 * i + 7,3 * i + 4);
circle(-2 * i + 5,3 * i + 1);
line(-2 * i + 6,3 * i + 1,-2 * i + 7,3 * i + 3,
arrow = False,solid = True);
line(-2 * i + 7,3 * i + 3,-2 * i + 8,3 * i + 1,
arrow = False,solid = True)
}

for (i < 3){
line(2 * i + 3,-3 * i + 9,2 * i + 2,-3 * i + 7,
arrow = True,solid = True);
line(2 * i + 3,-3 * i + 9,2 * i + 4,-3 * i + 7,
arrow = True,solid = True);
rectangle(2 * i + 2,-3 * i + 9,2 * i + 4,-3 * i + 11);
rectangle(2 * i,-3 * i + 6,2 * i + 2,-3 * i + 8)
};
rectangle(8,0,10,2)

for (i < 2){
circle(2 * i + 1,-3 * i + 6);
circle(-3 * i + 7,2 * i + 3);
circle(2 * i + 5,1)
}

13

Under review as a conference paper at ICLR 2018

line(4,4,2,2,
arrow = True,solid = True);
rectangle(0,0,2,2);
rectangle(3,4,5,6)

for (i < 3){
line(-4 * i + 9,4,-4 * i + 9,2,
arrow = True,solid = True);
for (j < (1*i + 2)){
if (j > 0){
circle(-4 * j + 13,-4 * i + 9);
line(-4 * i + 12,5,-4 * i + 10,5,
arrow = True,solid = True)
}
rectangle(0,4,2,6)
}
}

circle(1,5);
line(4,1,2,1,
arrow = True,solid = True);
line(8,1,6,1,
arrow = True,solid = True);
for (i < 3){
line(4 * i + 1,2,4 * i + 1,4,
arrow = True,solid = True);
rectangle(4,4,6,6);
rectangle(4 * i,0,4 * i + 2,2)
};
rectangle(8,4,10,6)

14

Under review as a conference paper at ICLR 2018

for (i < 3){
line(4 * i + 1,4,4 * i + 1,2,
arrow = True,solid = True);
for (j < 2){
line(4 * j + 4,5,4 * j + 2,5,
arrow = True,solid = True);
rectangle(4 * i,-4 * j + 4,4 * i + 2,-4 * j + 6)
}
}

for (i < 3){
line(4 * i + 1,2,4 * i + 1,4,
arrow = True,solid = True);
for (j < 2){
circle(4 * i + 1,4 * j + 1);
line(4 * j + 4,1,4 * j + 2,1,
arrow = True,solid = True)
}
}

line(5,7,5,6,
arrow = True,solid = True);
line(3,3,3,2,
arrow = True,solid = True);
line(1,7,1,6,
arrow = True,solid = True);
rectangle(0,3,6,6);
rectangle(2,0,4,2);
rectangle(0,7,6,9)

15

Under review as a conference paper at ICLR 2018

line(6,1,5,1,
arrow = True,solid = True);
for (i < 3){
line(3,1,2,1,
arrow = True,solid = True);
rectangle(3 * i,0,3 * i + 2,2)
}

for (i < 3){
circle(1,-4 * i + 9)
};
line(1,4,1,2,
arrow = True,solid = True);
line(1,8,1,6,
arrow = True,solid = True)

reflect(y = 2){
line(0,1,1,2,
arrow = False,solid = True);
line(1,0,2,1,
arrow = False,solid = True)
}

16

Under review as a conference paper at ICLR 2018

line(0,0,0,2,
arrow = False,solid = True);
line(0,2,2,2,
arrow = False,solid = True)

for (i < 3){
line(1 * i,-2 * i + 4,1 * i,-1 * i + 6,
arrow = False,solid = True);
line(1 * i,-1 * i + 6,2 * i + 2,-1 * i + 6,
arrow = False,solid = True)
}

circle(5,2);
circle(5,4);
rectangle(4,1,6,5);
reflect(y = 5){
circle(1,4);
rectangle(0,3,2,5)
}

17

Under review as a conference paper at ICLR 2018

for (i < 3){
for (j < (1*i + 1)){
circle(3 * i + 1,-2 * j + 5)
};
rectangle(3 * i,-2 * i + 4,3 * i + 2,6)
}

circle(5,5);
line(2,5,4,5,
arrow = False,solid = True);
rectangle(0,0,5,3);
rectangle(0,4,2,6)

line(0,0,0,3,
arrow = False,solid = True);
line(6,0,6,3,
arrow = False,solid = True);
line(0,3,6,3,
arrow = False,solid = False);
line(0,0,6,0,
arrow = False,solid = False)

18

Under review as a conference paper at ICLR 2018

for (i < 2){
line(2 * i,-2 * i + 5,2,5,
arrow = False,solid = True);
line(1,2,2 * i + 1,-2 * i + 4,
arrow = False,solid = True);
line(2 * i + 3,-2 * i + 3,5,3,
arrow = False,solid = True);
line(4,0,2 * i + 4,-2 * i + 2,
arrow = False,solid = True)
}

circle(6,1);
circle(1,1);
circle(1,6);
line(2,6,6,2,
arrow = True,solid = True);
line(1,5,1,2,
arrow = True,solid = True)

rectangle(5,5,9,9);
rectangle(0,0,4,4);
for (i < 2){
rectangle(1 * i + 7,-2 * i + 2,9,-3 * i + 4);
rectangle(0,-3 * i + 8,1 * i + 1,-2 * i + 9)
}

19

Under review as a conference paper at ICLR 2018

circle(1,8);
line(5,2,5,5,
arrow = False,solid = True);
line(1,7,3,5,
arrow = False,solid = True);
rectangle(4,0,6,2);
rectangle(0,5,6,9)

for (i < 3){
for (j < 3){
if (j > 0){
line(3 * j + -1,3 * i + 1,3 * j,3 * i + 1,
arrow = False,solid = True);
line(3 * i + 1,3 * j + -1,3 * i + 1,3 * j,
arrow = False,solid = True)
}
circle(3 * i + 1,3 * j + 1)
}
}

for (i < 3){
for (j < 3){
if (j > 0){
line(3 * i + 1,3 * j + -1,3 * i + 1,3 * j,
arrow = False,solid = True);
line(3 * j + -1,3 * i + 1,3 * j,3 * i + 1,
arrow = False,solid = True)
}
rectangle(3 * i,3 * j,3 * i + 2,3 * j + 2)
}
}

20

Under review as a conference paper at ICLR 2018

for (i < 3){
circle(-3 * i + 7,1)
}

for (i < 3){
rectangle(-2 * i + 4,0,-2 * i + 5,6)
}

line(4,0,4,1,
arrow = False,solid = False);
line(0,0,0,5,
arrow = False,solid = False);
line(4,1,4,5,
arrow = False,solid = False)

21

Under review as a conference paper at ICLR 2018

line(0,0,0,5,
arrow = False,solid = True);
line(4,0,4,5,
arrow = False,solid = True)

reflect(x = 12){
circle(4,1);
line(2,1,3,1,
arrow = False,solid = True);
rectangle(0,0,2,2)
}

circle(7,6);
reflect(y = 12){
line(4,6,6,6,
arrow = True,solid = True);
line(2,10,2,8,
arrow = True,solid = True);
rectangle(1,0,3,2)
};
rectangle(0,4,4,8)

22

Under review as a conference paper at ICLR 2018

reflect(y = 9){
reflect(x = 9){
circle(8,8);
line(3,8,6,8,
arrow = False,solid = True);
line(1,3,1,6,
arrow = False,solid = True)
}
}

reflect(x = 11){
rectangle(9,4,10,7);
reflect(y = 11){
rectangle(8,0,11,3);
rectangle(4,9,7,10)
}
}

for (i < 3){
line(2 * i,-2 * i + 5,2 * i + 2,-2 * i + 5,
arrow = False,solid = True);
line(2 * i + 1,-2 * i + 4,2 * i + 3,-2 * i + 4,
arrow = False,solid = True)
}

23

Under review as a conference paper at ICLR 2018

rectangle(4,1,6,2);
rectangle(7,0,9,2);
reflect(y = 10){
rectangle(0,0,3,3);
rectangle(1,4,2,6)
}

line(7,4,9,4,
arrow = True,solid = True);
line(8,3,7,3,
arrow = True,solid = True);
reflect(y = 7){
line(2,1,4,3,
arrow = True,solid = True);
rectangle(0,0,2,2)
};
line(8,3,9,3,
arrow = False,solid = True);
rectangle(9,2,12,5);
rectangle(4,2,7,5)

for (i < 3){
rectangle(2 * i,2 * i,2 * i + 3,2 * i + 1)
}

24

Under review as a conference paper at ICLR 2018

circle(4,10);
for (i < 3){
circle(3 * i + 1,1);
circle(3 * i + 1,5);
line(4,9,3 * i + 1,6,
arrow = True,solid = True);
line(3 * i + 1,4,3 * i + 1,2,
arrow = True,solid = True)
}

line(2,8,2,6,
arrow = True,solid = True);
line(4,8,4,0,
arrow = True,solid = True);
line(6,8,6,4,
arrow = True,solid = True);
line(0,8,8,8,
arrow = False,solid = True)

line(2,3,2,5,
arrow = False,solid = True);
rectangle(0,0,4,8);
rectangle(1,1,3,3);
rectangle(1,5,3,7)

25

Under review as a conference paper at ICLR 2018

circle(1,5);
line(1,4,1,2,
arrow = True,solid = True);
rectangle(0,0,2,2)

rectangle(0,0,6,2);
reflect(x = 6){
for (i < 3){
circle(5,2 * i + 4);
circle(2 * i + 1,1);
rectangle(4,3,6,9)
}
}

for (i < 3){
for (j < 3){
circle(4 * i + 1,-3 * j + 7)
}
}

26

Under review as a conference paper at ICLR 2018

line(8,0,0,0,
arrow = True,solid = True);
line(8,0,8,7,
arrow = True,solid = True);
for (i < 3){
rectangle(-2 * i + 6,0,-2 * i + 7,-1 * i + 5)
}

line(4,0,0,0,
arrow = False,solid = False)

line(2,4,4,4,
arrow = True,solid = True);
line(6,7,5,5,
arrow = True,solid = True);
for (i < 2){
circle(-2 * i + 7,-3 * i + 7);
circle(3 * i + 4,1);
line(5,3,3 * i + 4,2,
arrow = True,solid = True);
rectangle(0,3,2,5)
}

27

Under review as a conference paper at ICLR 2018

circle(2,1);
circle(6,1);
line(5,1,3,1,
arrow = True,solid = True);
rectangle(0,0,7,2)

rectangle(5,0,8,3);
rectangle(0,2,1,3);
rectangle(2,1,4,3)

for (i < 3){
rectangle(-1 * i + 2,-1 * i + 2,1 * i + 3,1 * i + 3)
}

28

Under review as a conference paper at ICLR 2018

reflect(y = 6){
line(2,5,4,5,
arrow = False,solid = True);
reflect(x = 6){
line(5,2,5,4,
arrow = False,solid = True);
rectangle(0,4,2,6)
}
}

reflect(y = 6){
reflect(x = 6){
circle(1,1);
line(5,2,5,4,
arrow = False,solid = True)
};
line(2,1,4,1,
arrow = False,solid = True)
}

for (i < 3){
line(1 * i,-1 * i + 2,-1 * i + 7,-1 * i + 2,
arrow = False,solid = True)
}

29

Under review as a conference paper at ICLR 2018

line(1,5,5,1,
arrow = False,solid = True);
line(1,4,5,0,
arrow = False,solid = True);
rectangle(0,4,1,5);
rectangle(5,0,6,1)

for (i < 3){
circle(-4 * i + 9,1);
rectangle(-4 * i + 8,0,-4 * i + 10,2)
}

reflect(x = 5){
circle(4,1);
line(4,4,4,2,
arrow = True,solid = True)
};
rectangle(0,4,5,6)

30

Under review as a conference paper at ICLR 2018

circle(3,1);
reflect(x = 6){
circle(5,5);
circle(1,9);
line(5,4,3,2,
arrow = True,solid = True);
line(5,8,2,5,
arrow = True,solid = True);
line(1,8,1,6,
arrow = True,solid = True)
}

for (i < 3){
line(7,1,5 * i + 2,3,
arrow = True,solid = True);
for (j < (1*i + 1)){
if (j > 0){
line(5 * j + -1,9,5 * i,5,
arrow = True,solid = True)
}
line(5 * j + 2,5,5 * j + 2,9,
arrow = True,solid = True)
};
rectangle(5 * i,3,5 * i + 4,5);
rectangle(5 * i,9,5 * i + 4,10)
};
rectangle(2,0,12,1)

reflect(y = 8){
for (i < 3){
circle(-3 * i + 7,-3 * i + 7)
};
rectangle(2,2,3,3);
rectangle(5,5,6,6)
}

31

Under review as a conference paper at ICLR 2018

line(10,8,12,4,
arrow = True,solid = True);
line(6,8,8,4,
arrow = True,solid = True);
for (i < 3){
line(4 * i + 5,5,4 * i + 5,7,
arrow = True,solid = True);
line(4 * i + 5,1,4 * i + 5,3,
arrow = True,solid = True);
rectangle(4 * i + 4,3,4 * i + 6,5);
rectangle(4 * i + 4,7,4 * i + 6,9);
line(2,1,13,1,
arrow = False,solid = True)
};
rectangle(0,0,2,8)

for (i < 3){
for (j < 3){
circle(2 * j + 1,2 * i + 1)
}
};
rectangle(2,2,4,4);
rectangle(0,0,6,6)

for (i < 4){
circle(4 * i + 1,1);
circle(4 * i + 1,5);
for (j < 3){
line(4 * i + 1,4,4 * i + 1,2,
arrow = True,solid = True);
line(4 * j + 2,5,4 * j + 4,5,
arrow = True,solid = True)
}
}

32

Under review as a conference paper at ICLR 2018

reflect(x = 8){
circle(4,1);
circle(1,8);
line(0,2,4,5,
arrow = False,solid = True);
line(4,5,4,10,
arrow = False,solid = True)
}

circle(9,8);
circle(5,1);
circle(1,8);
reflect(x = 10){
line(6,1,9,3,
arrow = False,solid = True);
line(2,8,4,8,
arrow = False,solid = True);
line(9,5,9,7,
arrow = False,solid = True);
rectangle(0,3,2,5)
};
rectangle(4,7,6,9)

line(3,2,5,4,
arrow = True,solid = True);
line(6,6,6,5,
arrow = True,solid = True);
line(8,3,7,4,
arrow = True,solid = True);
line(4,0,12,8,
arrow = False,solid = True);
line(0,6,12,6,
arrow = False,solid = True);
line(0,8,8,0,
arrow = False,solid = True)

33

Under review as a conference paper at ICLR 2018

for (i < 3){
circle(4 * i + 1,13);
circle(5,-4 * i + 9);
circle(4 * i + 1,9);
line(4 * i + 1,12,4 * i + 1,10,
arrow = True,solid = True);
line(5,-4 * i + 12,5,-4 * i + 10,
arrow = True,solid = True)
};
line(9,8,6,5,
arrow = True,solid = True);
line(1,8,4,5,
arrow = True,solid = True)

reflect(x = 14){
circle(11,10);
circle(3,4);
circle(7,1);
reflect(y = 20){
circle(13,7);
circle(9,7)
};
line(3,3,7,2,
arrow = True,solid = True);
line(10,10,5,8,
arrow = True,solid = True);
reflect(x = 6){
line(5,12,3,11,
arrow = True,solid = True);
line(1,6,3,5,
arrow = True,solid = True);
line(3,9,5,8,
arrow = True,solid = True)
}
}

34

Under review as a conference paper at ICLR 2018

circle(1,1);
circle(4,1);
rectangle(6,0,8,2);
rectangle(9,0,11,2)

Solver timeout

reflect(x = 10){
circle(5,1);
circle(2,4);
line(2,3,5,2,
arrow = True,solid = True);
reflect(x = 16){
circle(9,7);
line(9,6,8,5,
arrow = True,solid = True)
}
}

35

Under review as a conference paper at ICLR 2018

Solver timeout

for (i < 4){
if (i > 0){
line(1,3 * i,1,3 * i + -1,
arrow = True,solid = True)
}
circle(1,3 * i + 1)
}

rectangle(5,0,8,3);
rectangle(0,5,3,8);
for (i < 2){
rectangle(1 * i + 6,3 * i + 4,8,2 * i + 6);
rectangle(0,2 * i,1 * i + 1,3 * i + 1)
}

36

Under review as a conference paper at ICLR 2018

reflect(x = 8){
rectangle(0,0,1,1);
rectangle(5,5,8,8);
rectangle(0,2,2,4)
}

for (i < 3){
rectangle(-2 * i + 4,-1 * i + 2,1 * i + 6,2 * i + 3)
}

37

Under review as a conference paper at ICLR 2018

circle(9,5);
line(3,1,8,1,
arrow = True,solid = True);
line(8,5,7,5,
arrow = True,solid = True);
line(9,8,0,8,
arrow = True,solid = True);
line(9,2,9,4,
arrow = True,solid = True);
line(12,1,10,1,
arrow = True,solid = True);
line(9,2,10,1,
arrow = False,solid = True);
line(12,1,12,5,
arrow = False,solid = True);
reflect(x = 6){
line(6,5,4,5,
arrow = True,solid = True)
};
rectangle(2,4,4,6);
rectangle(1,0,13,9);
line(9,6,9,8,
arrow = False,solid = True);
line(6,4,7,5,
arrow = False,solid = True);
line(10,5,12,5,
arrow = False,solid = True);
line(3,1,3,4,
arrow = False,solid = True)

circle(6,2);
for (i < 3){
circle(5 * i + 1,7)
};
line(5,7,2,7,
arrow = True,solid = True);
line(6,6,6,3,
arrow = True,solid = True);
line(10,7,7,7,
arrow = True,solid = True);
rectangle(4,0,8,9)

38

Under review as a conference paper at ICLR 2018

reflect(x = 5){
reflect(y = 5){
line(0,5,2,5,
arrow = False,solid = True);
line(0,3,0,5,
arrow = False,solid = True)
}
}

for (i < 3){
reflect(x = 14){
circle(9,4 * i + 1);
line(10,4 * i + 1,12,4 * i + 1,
arrow = False,solid = True);
rectangle(0,4 * i,2,4 * i + 2)
}
}

reflect(x = 10){
line(5,6,1,8,
arrow = True,solid = True);
line(9,2,5,4,
arrow = True,solid = True);
for (i < 3){
circle(4 * i + 1,4 * i + 1)
}
}

39

Under review as a conference paper at ICLR 2018

reflect(x = 12){
line(6,2,6,3,
arrow = True,solid = True);
line(2,7,5,4,
arrow = True,solid = True);
line(0,0,9,9,
arrow = False,solid = True)
};
line(0,2,12,2,
arrow = False,solid = True)

for (i < 3){
for (j < 3){
if (j > 0){
circle(6 * i + -5,-5 * j + 16);
line(6 * i + -5,5,4,2,
arrow = True,solid = True);
line(6 * j + -5,10,6 * i + -5,7,
arrow = True,solid = True)
}
circle(4,1)
}
}

reflect(y = 10){
circle(1,9);
for (i < 4){
circle(-2 * i + 9,-2 * i + 9)
}
}

40

Under review as a conference paper at ICLR 2018

for (i < 3){
circle(1,-4 * i + 9);
circle(5,-4 * i + 9);
for (j < 3){
if (j > 0){
line(4 * i + -3,-4 * j + 10,4 * i + -3,-4 * j + 12,
arrow = False,solid = True)
}
line(2,-4 * j + 9,4,-4 * j + 9,
arrow = False,solid = True)
}
}

circle(2,2);
circle(2,6);
circle(2,11);
line(2,5,2,3,
arrow = True,solid = True);
line(2,10,2,7,
arrow = True,solid = True);
rectangle(0,0,4,9)

for (i < 2){
circle(4,6 * i + 1);
circle(1,6 * i + 4);
rectangle(0,6 * i,2,6 * i + 2);
rectangle(3,6 * i + 3,5,6 * i + 5)
}

REFERENCES

[1] Michael AA Cox and Trevor F Cox. Multidimensional scaling. Handbook of data visualization, pages
315–347, 2008.

41

Under review as a conference paper at ICLR 2018

[2] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in
Neural Information Processing Systems, pages 2017–2025, 2015.

[3] Christopher M. Bishop. Mixture Density Networks. Technical report, 1994.

[4] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption
generator. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3156–3164, 2015.

[5] Samuel J Gershman and David M Blei. A tutorial on bayesian nonparametric models. Journal of Mathemat-
ical Psychology, 56(1):1–12, 2012.

42

	Introduction
	Neural architecture for inferring trace sets
	Generalizing to real hand drawings

	Synthesizing graphics programs from trace sets
	Learning a search policy for synthesizing programs

	Applications of graphics program synthesis
	Correcting errors made by the neural network
	Extrapolating figures

	Related work
	Contributions
	Correcting errors made by the neural network
	Measuring similarity between drawings
	Learning a bias optimal policy
	Neural network architecture
	High-level overview
	Convolutional network
	Autoregressive decoding of drawing commands
	Predicting continuous coordinates using Mixture Density Networks
	LSTM Baseline
	A learned likelihood surrogate

	Simulating hand drawings
	Likelihood surrogate for synthetic data
	Generating synthetic training data
	The cost function for programs
	Full results on drawings data set

