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ABSTRACT

Somatic cancer mutation detection at ultra-low variant allele frequencies (VAFs)
is an unmet challenge that is intractable with current state-of-the-art mutation call-
ing methods. Specifically, the limit of VAF detection is closely related to the depth
of coverage due to the requirement of multiple supporting reads in extant methods,
precluding the detection of mutations at VAFs that are orders of magnitude lower
than the depth of coverage. Nevertheless, the ability to detect cancer-associated
mutations in ultra low VAFs is a fundamental requirement for low-tumor bur-
den cancer diagnostics applications such as early detection, monitoring, and ther-
apy nomination using liquid biopsy methods (cell-free DNA). Here we defined
a spatial representation of sequencing information adapted for convolutional ar-
chitecture that enables variant detection in a manner independent of the depth of
sequencing. This method enables the detection of cancer mutations even in VAFs
as low as 10�4, more than two orders of magnitude below the current state-of-the-
art. We validated our method on both simulated plasma and on clinical cfDNA
plasma samples from cancer patients and non-cancer controls. This method intro-
duces a new domain within bioinformatics and personalized medicine - somatic
whole genome mutation calling for liquid biopsy.

1 INTRODUCTION

The cancer genome acquires somatic mutations which drive its proliferative capacity (Lawrence
et al., 2014). Mutations in the cancer genome also provide critical information regarding the evolu-
tionary history and mutational processes active in each cancer (Martincorena et al., 2017; Alexan-
drov et al., 2013). Cancer mutation calling in patient tumor biopsies has become a pivotal step in
determining patient outcomes and nomination of personalized therapeutics.
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Identifying cancer mutations in liquid biopsy techniques, such as cell-free circulating DNA
(cfDNA), has been suggested as a transformative platform for early-stage cancer screening and resid-
ual disease monitoring. cfDNA released from dying tumor cells enables surveys the somatic genome
dynamically over time for clinical purposes, empowered by the ability to obtain cancer-related ge-
netic material non-invasively through a simple blood draw. Circulating tumor DNA (ctDNA) can be
found and measured in the plasma cfDNA of cancer patients. ctDNA was shown to correlate with tu-
mor burden and change in response to treatment or surgery (Diehl et al., 2008). For example, ctDNA
can be detected even in early stage non-small cell lung cancer (NSCLC) and therefore has the po-
tential to transform NSCLC diagnosis and treatment (Sozzi et al., 2003; Tie et al., 2016; Bettegowda
et al., 2014; Wang et al., 2010). Nevertheless, the fraction of ctDNA of the total cfDNA is typically
exceedingly low, especially in low disease-burden contexts such as early detection or detection of
residual disease after therapeutic interventions. While detection of cancer through cfDNA in the
low disease-burden setting may be of significant clinical benefit, it challenges our current methods
for identifying somatic mutations due to the ultra-low VAFs compared with the available depth of
sequencing.

The most common type of somatic mutations is single-nucleotide variants (SNVs), which occur at
a frequency of 1-100 per million bases. These variants are typically identified in sequencing data
through a careful comparison of the DNA sequencing reads which map to a particular genomic locus
in both the cancer DNA and the matched germline DNA. This process has been enabled through tools
of ever-increasing sophistication that refine the statistical comparison between the number of reads
supporting a candidate mutated variant in the cancer vs. the germline sample (Cibulskis et al., 2013;
Saunders et al., 2012; Wilm et al., 2012).

These statistical methods fundamentally require multiple independent observations (supporting
reads) of the somatic variant at any given genomic location to distinguish true mutations from se-
quencing artifacts. Mutect (Cibulskis et al., 2013), a state-of-the-art low-allele frequency somatic
mutation caller, subjects each SNV to Bayesian classifiers that assume that the SNV either results
from sequencing noise or that the site contains a true cancer variant. A true cancer-related SNV call
is made when the log-likelihood ratio from the two models strongly favors the true cancer Bayesian
classifier. This ”locus-centric” type of cancer mutation detection can be readily achieved through
increased depth of sequencing - so long as the tumor sample contains a high proportion of tumor
DNA. However, these methods are significantly challenged in the ctDNA setting where the VAF is
expected to be well below 1%. For example, a decrease of VAF to 5% and sequencing depth to 10X
resulted in a decreased in the sensitivity of Mutect to below 0.1 (Cibulskis et al., 2013; Saunders
et al., 2012; Wilm et al., 2012). Thus, locus-centric mutation callers are unable to perform effective
mutation calling in the ultra-low VAFs observed in low disease-burden cfDNA settings.

We reasoned that to tackle this challenge, we would need a novel mutation detection framework.
Specifically, we would need methodology to accurately distinguish true somatic cancer mutations
from sequencing artifacts, even in ultra low tumor fractions that preclude the presence of multiple
supporting independent observations (reads) in any given genomic location. We propose a ”read-
centric” alternative approach, and developed a convolutional neural network classifier - Kittyhawk
- trained to discriminate between individual sequencing reads containing sequencing artifacts and
sequencing reads harboring somatic cancer mutations. We take advantage of the fact that both cancer
mutations and sequencing errors are systemic and governed by distinct signatures that can be learned
and used for efficient signal to noise discrimination (e.g., mutagenesis processes such as exposure
to tobacco or UV light are enriched in specific sequence contexts; Alexandrov et al. (2013)) 0.01%-
1%, as well as with cfDNA samples from patients with early stage lung cancer and an individual
with non-malignant lung nodules as controls.

2 METHODS

2.1 TRAINING DATASET SELECTION

We aim to use a training scheme that allows us to both detect true somatic mutations with high
sensitivity and reject candidate mutations caused by systemic sequencing artifacts. As a proof-of-
principle, we applied this methodology to ctDNA detection of NSCLC. This is due to (i) signif-
icant clinical need in sensitive non-invasive detection methods in NSCLC, (ii) high mutation rate
in NSCLC (>10 mutations/Mb), and (iii) distinctive tobacco-related mutational sequence context
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Table 1: Complete Datasets and patient information

Patient Dataset type Cancer type Mutations
(Tumor-
PBMC)

Training
Reads

Validation/Test
reads

CA0045 Train NSCLC 12991 819200 59391
CA0046 Train NSCLC 12559 716800 80896
CA0047 Train NSCLC 18435 204800 11264
CA0049 Train NSCLC 9008 716800 50269
CA0044 Test / Synthetic NSCLC 8632 Not used 271360
CA0035 Train Melanoma 39158 1075200 102400
CA0037 Train Melanoma 98714 3123200 102400
CA0038 Train Melanoma 94850 5939200 102400
CA0040 Test / Synthetic Melanoma 59835 Not used 2816000
BB1116 cfDNA NSCLC 170894 Not used 16332191
BB1125 cfDNA NSCLC 7215 Not used 29321328
BB672 cfDNA Healthy Donor N/A Not used 0

signature (Alexandrov et al., 2013). We sampled four NSCLC patients and their whole-genome se-
quencing (Table 1) for tobacco-exposure lung cancer mutation learning, as well as their matched
peripheral blood mononuclear cells (PBMC) germline DNA WGS for systematic sequencing ar-
tifact learning. To test our ability to extend this strategy to other cancer types, we also included
three Melanoma patients to train a separate Melanoma-specific model. WGS libraries were pre-
pared using the Illumina TruSeq Nano library preparation kit in accordance with the manufacturers
instructions. Final libraries were quantified using the KAPA Library Quantification Kit (KAPA
Biosystems), Qubit Fluorometer (Life Technologies) and Agilent 2100 BioAnalyzer, and were se-
quenced on an Illumina HiSeqX sequencer using 2 x 150bp cycles and processed in-house using our
standard mutation calling pipeline (See appendix). Target depth of sequencing for both tumor and
matched germline was greater than 40X. Next we curate all reads from these data that have either
a true cancer mutation variant or a variant resulting from a sequencing artifact (see Figure 1 and
attached appendix).

2.2 FEATURE CONSTRUCTION

To fully capture the sequencing read, alignment, and genomic context, we create a spatially-oriented
representation of a read (Figure 2). Rows 1-5 represent the reference context (i.e., the correspond-
ing sequence in the human genome, A,C,T,G and N for missing), while rows 6-10 represent the read
sequence (A,C,T,G and N for missing). Rows 11-15 represent the information captured in the align-
ment string known as the CIGAR string (contains information about how each base aligned to the
reference). We used the first five components of the CIGAR string, denoting a match or mismatch,
an insertion or a deletion into the reference, a skipped position in the genome, and soft-clipped bases
(positions which incur a modest penalty for being mismapped on the end of the read). The final row
[16] represents the BQ score at each position in the read. Each column in our matrix represents
an indicator vector, or one-hot encoding, referring to the presence or absence at a specific position
along the read. For reads containing insertions in the reference, ”N” is placed in the reference row at
the location of the insertion to maintain the spatial alignment. For bases in the read that are deletions
in the reference, ”N” is instead placed in the read sequence at the location of the deletion.

The aligner may also implement a ”soft masking” procedure to exclude a part of the read thought
to have lost its sequencing accuracy (typically at the end of the read). Soft-masked regions of
the read are modified such that consecutive Ns are inserted in the reference context rows. This
is done to ensure the signal for softmasked regions is strong and to maintain the characteristic of
these regions of independence from alignment. To ensure that the model is provided with adequate
genomic context even if the variant appears at the ends of the read we add additional 25 bases of
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Figure 1: Kittyhawk Data processing pipeline, left (top to bottom): Whole-genome sequencing is
performed using a tumor biopsy and PBMC, Variant and artifact catalogue are constructed using
a consensus of Strelka, LoFreq, Mutect and a simple caller, pileup, respectively. Artifact reads
are filtered such that only variants occurring once are retained. Mapping quality and variant base
quality filters are applied to both datasets. Finally the datasets are balanced and the CNN is trained
to convergence. Right (top to bottom): Both cfDNA and synthetic cfDNA admixtures have variant
catalogues constructed using pileup, reads are then filtered by their variant allele frequency, then
the mapping quality and variant base quality filters are applied. Reads then receive inference scores
from Kittyhawk and may be used for downstream analysis.

genomic context to both ends of the read. This embodiment of the read results in a 16x200bp matrix
for typical 150bp reads. To maintain equal read length, in the case where a read is shorter than
150bp, extra context bases are added. We set the maximum VBQ score at 40 (0.01% probability
of sequencing error) and scale the scores to be in the interval [0, 1]. Bases not covered by a read
(e.g., flanking genomic context) receive a base quality score of zero. Deletions in the read receive
the mean BQ score of the two flanking positions.
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Figure 2: Top: Representation of a read and its alignment as seen by kittyhawk, Bottom: Genomic
context is appended to the ends of the read. Zeroes are padded for non-context features.

2.3 MODEL, ARCHITECTURE, HYPER-PARAMETERS, AND IMPLEMENTATION

When designing a model for somatic mutation classification, it is important to recognize the sources
of signal. A true mutation is likely to have a higher BQ regardless of its position in the read.
Similarly, the read base, reference base, and alignment string (CIGAR) at the position of a true
mutation are likely to be independent of the read alignment. More specifically, we can expect a
true somatic mutation to be spatially invariant, while systemic errors in sequencing are strongly
impacted by the position on the read. Nevertheless, some errors may have positional invariance.
For example, sequencing artifacts caused by mis-mapping are likely to contain repetitive sequences
or specific sequence motifs (such TTAGGG in telomeres). Our model must be able to accurately
represent both the spatial invariance in true somatic mutations and in errors due to mapping, while
simultaneously maintaining a model of (declining) BQ along the read. It follows that any shallow
convolutional network that depends on a fully connected layer over the read of interest to make
classifications would be unable to capture the invariance in the mutations. We elected for an 8-
layer convolutional neural network with a single fully connected output layer inspired by the VGG
architecture to correct for this spatial dependency (Simonyan & Zisserman, 2014). Building on
the results of Alexandrov et al. (2013), which showed that tri-nucleotide context contains distinct
signatures involved in mutagenesis, we convolve over all features (columns) at a position using a
perceptive field of size three. After two successive convolutional layers, we apply down sampling
by max-pooling with a receptive field of two and a stride of two, forcing our model to retain only the
most important features in small spatial areas (Boureau et al., 2010). We propose two benefits from
this architecture: (i) we maintain spatial invariance when convolving over trinucleotide windows
and (ii) we can capture a ”quality map” by collapsing the read fragment into 25 segments, each
representing approximately an eight-nucleotide region.

The output of the last convolutional layer is applied directly to a sigmoid fully connected layer
used to make the final classification. We use a simple logistic regression layer instead of a multi-
layer perceptron or global average pooling to retain the features associated with position in the
read. We deem our model, filters, and training scheme, Kittyhawk. Kittyhawk is the first use of
a read representation that jointly captures the genomic context of alignment, the complete read
sequence, and the integration of quality scores. Other works have used similar representations,
but these consider piles of reads as single features, losing valuable information about the sequence
alignment itself and the per-base quality associated with a read (Poplin et al., 2016; Torracinta &
Campagne, 2016).

We trained our model using minibatch stochastic gradient decent with an initial learning rate � = 0.1
and momentum � = 0.9. The learning rate was decreased by a factor of 10 when the validation loss
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reached a plateau as in He et al. (2016). We used a minibatch size of 256 as it provided a reasonable
trade-off between validation loss and training speed. We elected to use a base of 64 filters, doubling
after each max-pooling layer to maintain a consistent number of parameters at each convolutional
layer. This was chosen empirically after observing the inability of a 32-base filter model to perform
sufficiently on the lung cancer dataset. After each convolutional layer, we apply batch normalization
(Ioffe & Szegedy, 2015) followed by a rectified linear unit (Nair & Hinton, 2010). Before each
pooling layer, we apply dropout with a drop probability of 0.5 (Srivastava et al., 2014).

3 RESULTS

3.1 KITTYHAWK DISCRIMINATES SOMATIC MUTATIONS FROM NOISE WITH HIGH ACCURACY
AND LEARNS CANCER-SPECIFIC MUTATIONAL SIGNATURES

To evaluate the performance of our model, we first examined the validation dataset comprised of
201,730 reads that were held out from training, from the four NCLSC patient samples used in model
training (see section 2.1). This dataset includes 100,865 true mutated reads and 100,865 sequencing
artifact containing reads that were not previously seen by the model. We evaluate our model with
the metrics F1-score, precision, sensitivity, and specificity. We find that the CNN model provides
an average of F1-score on the validation set of 0.961 (Table 2), comparable to methods that use
multiple supporting reads for mutation calling (Poplin et al., 2016). Thus, the model is capable of
accurately discriminating tumor cancer variant reads vs. sequencing artifact containing reads in a
manner which is completely independent of depth of coverage and thus can be applied to any VAF.

To examine the generalizability of the model, we used it to analyze an additional NSCLC sample and
its matched germline DNA, not used during model training (CA0044, Table 1). In this independent
lung cancer case, we observe a F1 score of 0.92, confirming that the model is learning both lung can-
cer specific and sequencing artifact specific signatures for high accuracy discrimination (Table 2).
To further examine this, we applied an additional sample from a patient with melanoma (CA0040,
Table 1), which typically results in markedly distinct mutational profile due to the exposure to UV
light instead of tobacco as the primary carcinogen (Figure 3a). Notably, our model achieves an
F1-score of 0.71 on the melanoma sample. Thus, while the model is still sensitive, the lower preci-
sion and specificity in the melanoma sample indicate that Kittyhawk has learned specific mutation
patterns associated with tobacco-exposed lung cancer, while learning a more general sequencing
artifact pattern which is applicable to both tumor types.

To further explore this relationship, we measured the difference in tri-nucleotide context frequency
(Figure 3b) between true cancer mutation variant reads and sequencing artifact containing reads
from (i) lung cancer patient samples that were included in training (CA0046, validation dataset), (ii)
lung cancer patient not included in training (CA0044), and (iii) the melanoma patient (CA0040).
We note that as expected, the tobacco related lung adenocarcinoma samples show high enrichment
in C>A transversions consistent with tobacco related mutational signature (Figure 3b). We hypoth-
esized that Kittyhawk may learn specific sequence contexts that are prevalent in tumor mutational
data (i.e., tumor-specific mutational signature). To test this hypothesis we measured the difference
in frequency between true cancer variants vs. sequencing artifacts in each tri-nucleotide context,
and correlated it with the average model prediction for these same reads. We reasoned that if the
model is learning the (lung) cancer specific sequence context, we expect a high correlation between
the tri-nucleotide sequence frequency and the model output. We found a high correlation between
the model prediction and tri-nucleotide enrichment (Figure 3c), both in CA0046 (included in train-
ing, Pearsons r=1) and in CA0044 (not included in training, Pearsons r=0.95). Nevertheless, this
high correlation may alternatively result from accurate classification that is independent of the se-
quence context. To directly examine this alternative scenario, we performed a similar analysis with
the above described melanoma sample (CA0040). While we observe that a positive correlation
(Pearsons r=0.64) between trinucleotide context and model predictions persists, indicating accurate
classification derived from features other than the mutation signature alone, we also observe that
this correlation is significantly lower than in the tobacco exposed lung cancer data. This finding
is consistent with model learning of the specific lung cancer mutational signatures. This finding
motivates us to train a separate model specifically geared towards detecting melanoma related so-
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Figure 3: Kittyhawk Signature Analysis (from left): a) COSMIC signatures associated with Tobacco
(top) and Melanoma (bottom) from Alexandrov et al. (2013). b) Tri-nucleotide frequencies from
sample-specific Tumor and PBMC reads. Specific tri-nucleotides associated with Tobacco (purple)
and UV radiation (green). c) Correlation of relative difference in tri-nucleotide frequencies and
mean activiations of Kittyhawk.

matic mutations. We followed the same procedure described above for NSCLC, using an addition
dataset from three melanoma patients. We observe similar performance, with high F1 score in the
melanoma validation dataset, and independent melanoma sample, and a lower F1 score when this
model was applied to NSCLC data (Table 3).

3.2 KITTYHAWK IS SENSITIVE AND PRECISE AT LOW TUMOR FRACTIONS IN SYNTHETIC
PLASMAS

As noted above, the model performance is independent of coverage and VAF and thus is expected
to perform well even in ultra-low VAF as seen in cfDNA of low disease-burden cancer. To di-
rectly test our method at low frequency mutation detection, we generated four simulated plasma
samples from our test lung sample (CA0044, Table 1) by admixing randomly sampled reads from
the patients matched germline DNA and from the patients tumor DNA. Sampling was performed to
maintain depth of coverage of 35X and with tumor mixtures of 0, 1%, 0.1%, and 0.01%. Mixing was
performed with three random seeds to generate independent replicates. While class labels provide
which sample a given read originated from, tumor WGS may contain sequencing artifacts as well.
We therefore undertook a more conservative approach and re-labeled true cancer variant reads as
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Table 2: NSCLC Validation and Test Metrics
Patient Purpose F1-score Sensitivity Specificity Precision

CA0045 Train 0.946 0.944 0.948 0.948
CA0046 Train 0.962 0.949 0.976 0.975
CA0047 Train 0.944 0.944 0.944 0.944
CA0049 Train 0.976 0.975 0.978 0.977
CA0044 Test 0.922 0.903 0.940 0.938
CA0040 Cancer Control 0.718 0.793 0.642 0.689

any read from the tumor sample that also harbors a mutation from our tumor consensus mutation
catalogue.

As anticipated, while the positive predictive value (PPV) decreases with lower tumor fraction in the
admixture (reflecting the loss of true mutations due to the subsampling), the enrichment performance
of Kittyhawk remains invariant across the range of tumor fractions, providing a 30X enrichment
compared to the pileup method, a method which captures any observed mismatch, alone (Figure
4) (Li et al., 2009). We further compare this performance to several commonly used calling meth-
ods: Mutect, (a state of the art caller designed for low VAF mutation calling), Strelka (a somatic
mutation caller with a similar design to Mutect), and SNooPer (a random forest mutation calling
model), and demonstrate that unlike Kittyhawk, their performance rapidly drops when the tumor
fraction decreases. Mutect and Strelka are unable to detect even a single mutation in the synthetic
samples at any tumor fraction (VAF of 1% or less). SNooPer is only able to make mutation calls at
tumor fraction of 1%, but not lower. It is important to note that this does not represent a failing of
these cutting-edge tools, rather their distinct design purposes. All current mutation detection tools
are designed to assess the information from multiple supporting reads to designate a genomic locus
as mutated. In fact, we believe that in the settings for which these tools were designed, they likely
outperform Kittyhawk, as the use of information from greater than one reads for mutation calling is
expected to provide a more powerful classifier. However, as tumor derived genetic material is mas-
sively diluted in cfDNA, an alternative approach such as Kittyhawk is needed for effective filtering.

To evaluate that our method is robust in the clinical setting of cfDNA, we applied our approach to
two patient derived cfDNA samples (Table 1), obtained at diagnosis. As a control, we obtained
an additional cfDNA sample from an age matched individual with non-malignant lung nodule. We
defined the compendium of true somatic mutation variants using the matched tumor and germline
DNA obtained when these patients underwent subsequent surgical resection (as described in 2.1).
The true positives are defined as reads classified by Kittyhawk as cancer variants which also over-
lap mutation calls derived from the traditional tumor and matched normal mutation calling. False
positives were defined as reads which were classified as cancer variants by Kittyhawk and yet did
not overlap the tumor/normal mutation catalogue. We note that this is a conservative definition,
as cfDNA may show lesions not detected in the matched tumor due to spatial variation between
mutated loci. Application of our approach on patient derived cfDNA recovered 114-132 somatic
SNVs (sSNVs) out of 11,825-15,103 sSNVs detected in matched tumors consistent with a dilution
of ctDNA to less than 1% in early stage cfDNA. Applying the same approach on a plasma sample
from a patient with a benign lung nodule, show only 45-76 mutations that matched the same sSNV
mutation compendium, indicating that Kittyhawk is able to detect relevant sSNV from plasma sam-
ples and discriminate malignant from benign samples. In parallel, Kittyhawk also suppressed the
noise in the samples by filtering out 90-93% of reads with a variant. We note that analyzing the
same samples through Mutect yield no variants detected for all of plasma samples.

4 DISCUSSION

Ultra-low tumor fraction such as observed in cfDNA fundamentally challenge the prevailing muta-
tion calling paradigm. State-of-the-art mutation callers share a common unifying principle: mutation
calling at a particular genomic location based on the observation of the cancer variant in multiple
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Table 3: Melanoma Validation and Test Metrics
Patient Purpose F1-score Sensitivity Specificity Precision

CA0035 Train 0.925 0.927 0.925 0.924
CA0037 Train 0.948 0.953 0.947 0.942
CA0038 Train 0.935 0.931 0.935 0.938
CA0040 Test 0.943 0.942 0.943 0.944
CA0044 Cancer Control 0.721 0.589 0.764 0.928

Figure 4: PPV, enrichment, and sensitivity of CA0044 synthetic cfDNA.

overlapping reads. However, in the ultra-low tumor fraction context, at best, only a single mutated
read is observed, limiting the ability of traditional mutation calling.

The need for extending the mutation-calling framework to ultra-low tumor fraction contexts mo-
tivated us to rethink the mutation calling process from a locus-centric approach to a read-centric
approach. This approach uses every individual read as input for a classifier and lends itself to the
application of convolutional neuronal network learning. To realize this novel methodology, we em-
bodied the information captured in the sequencing read (nucleotide sequence, context, quality met-
rics) in a spatial representation typically applied for image analysis. While we anticipate that our
ongoing efforts to include larger training datasets, will result in further performance improvement,
even at this proof-of-principle stage the algorithm is providing a 30-fold enrichment in a manner that
is completely independent from variant allele fraction or depth of coverage, a unique performance
feature that addresses a major emerging unmet need. Indeed, stable enrichment performance extends
to tumor fractions as low as 10�4.

While Kittyhawk captures position in the read by using a fully connected sigmoid layer, there are
other architectures, which may be suited for capturing relative position on the read. Additionally,
we have excluded an extra source of information contained in the read-pair that comes from the
DNA fragment. The read pair can be used to determine both the strand of origin (Watson or Crick)
and to estimate the DNA fragment size. It has been observed that ctDNA have a distinct fragment
size distribution compared to other cfDNA from normal cells (Underhill et al., 2016). It has been
shown that recurrent neural networks (RNN) are a powerful tool for using length as a feature in
bioinformatics at distances even up to 1kb, far beyond the size of a ctDNA fragment (Hill et al.,
2017). These results suggest that integrating an RNN instead of a logistic regression layer could
increase performance even further. In addition, while Kittyhawk was developed for the context
of low tumor fraction mutation calling in cfDNA, we note that this framework can be adapted to
other contexts. For example, it may be used in mutation (or germline SNP) detection in low pass
genome sequencing (0.01-1X) across a wide range of applications. Furthermore, a read-centric
approach may be also integrated with a more traditional locus-centric mutation calling approach, by
adding Kittyhawk predictions as an additional input metric for extant statistical or machine learning
mutation calling algorithms.

In summary, Kittyhawk is the first somatic mutation caller designed specifically to function in the
ultra-low allele frequency setting where at best a single supporting read is available for candidate
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mutation identification, such as liquid biopsy for early stage cancer detection. We apply a novel
representation of a read together with a hand-engineered architecture to capture the entirety of infor-
mative features associated with a read and its alignment. This work sets the stage for a new family
of somatic mutation callers to aid detection in liquid biopsy, paving the way for pivotal non-invasive
screening and prognosis.
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GLOSSARY OF TERMS 

Base quality (BQ)  – The massively parallel sequencing process provides an estimate of the 
confidence of the sequencing quality at each base, based on the sharpness of the optical read-out 
during sequencing. Cell free DNA (cfDNA) – Fragments of DNA are found within the plasma 
and are amenable to sequencing for clinical purposes in cancer and other applications. CIGAR 
string – a standardized output of genome aligners that provide alignment information compared 
with the matched reference sequence, including insertions, deletions and mismatches. This output 
takes the form of a string of indicators corresponding to the sequence alignment at each base. 
Circulating tumor DNA (ctDNA) – Dying tumor cells shed fragments of their DNA into the 
plasma and can be detected with cfDNA. Mapping quality (MAPQ) – Genomic aligners, such as 
BWA (Burrows-wheeler aligner), provide a confidence estimate regarding the accuracy of the 
mapping for each read. Somatic cancer mutation – a change in DNA that affects the cancer cells 
but not the germline of the patient. Variant allele frequency (VAF) – the frequency of the 
variant allele of the total number of alleles in the population. In the context of cancer sequencing 
this reflects the purity (i.e., fraction of DNA derived from tumor vs. normal cells) and ploidy (i.e. 
number of copies of each allele). For example, a heterozygous somatic mutation in diploid region 
of the genome affecting 50% of the cells in the sample is expected to have a VAF of 25% 
(50/100[cells] * 1/ 2[copies] = 0.25).  

 



ADDITIONAL DETAIL REGARDING TRAINING DATA PROCESSING 

We aim to use a training scheme that allows us to both detect true somatic mutations with high 
sensitivity and reject candidate mutations caused by systemic sequencing artifacts. As a proof-of-
principle, we applied this methodology to ctDNA detection of NSCLC. This is due to (i) 
significant clinical need in sensitive non-invasive detection methods in NSCLC, (ii) high 
mutation rate in NSCLC (>10 mutations/Mb), and (iii) distinctive tobacco-related mutational 
sequence context signature (Alexandrov et al, 2013). We sampled four NSCLC WGS (Table 1) 
for tobacco-exposure lung cancer mutation learning, as well as their matched peripheral blood 
mononuclear cells (PBMC) germline DNA WGS for systematic sequencing artifact learning. To 
test our ability to extend this strategy to other cancer types, we also included three Melanoma 
patients to train a separate Melanoma-specific model. WGS libraries were prepared using the 
Illumina TruSeq Nano library preparation kit in accordance with the manufacturer’s instructions. 
Final libraries were quantified using the KAPA Library Quantification Kit (KAPA Biosystems), 
Qubit Fluorometer (Life Technologies) and Agilent 2100 BioAnalyzer, and were sequenced on an 
Illumina HiSeqX sequencer using 2 x 150bp cycles and processed in-house using our standard 
mutation calling pipeline (See below). Target depth of sequencing for both tumor and matched 
germline was > 40X.  

Next we curate all reads from these data that have either a true cancer mutation variant or a 
variant resulting from a sequencing artifact.  

The true cancer variant reads were obtained through the following procedure (Figure 1):  

- Applying a consensus of the three leading mutation callers, Strelka, LoFreq, and Mutect 
(Saunders et al., 2012; Wilm et al., 2012; Cibulskis et al., 2013) to generate a catalogue 
of genomic loci with true somatic mutation SNVs.  

- We collect all reads supporting these mutations (~10-15 per site, considering 
heterozygous mutations, 40X sequencing depth and typical sample purity) and label them 
as true cancer mutation variant containing reads.  

To enable model learning for discrimination against sequencing artifacts, we curate reads 
containing sequencing artifact variants through the following procedure:  

- Using the pileup method (a method which captures any observed mismatch [Li et al., 
2009]), we identify all loci that contain a variant in the germline DNA samples from 
these patients. As this DNA is derived from non-malignant cells (PBMCs), we may 
assume that variants result primarily from sequencing artifacts.  

- We only retain variants supported by a single read in the 40X WGS data of these 
germline DNA samples. This step is added to exclude rare germline single nucleotide 
polymorphisms (SNPs). Intersection of these variants with the database dbSNP (build ID: 
150) showed that this strategy is sufficient to filter out germline SNPs, with <0.1% 
overlapping with known SNPs.  

Finally, we apply an additional filtering step to all reads (cancer mutation variant reads and 
sequencing artifact reads) to filter out read of poor quality that are overwhelmingly sequencing 
artifacts. Specifically, we filter out variants with a base quality (VBQ) score at the mutation less 
than 20. We selected this threshold based on the likelihood of error provided by the Illumina 
platform. VBQ scores correspond to log_10(-q/10) probability of error, therefore more than 1 in 



100 variants with a base quality below 20 represent a sequencing error. We then filtered reads 
where the mapping quality (MAPQ), or the likelihood that a given alignment is correct, below 40. 
This cutoff was chosen as mapping qualities from mapping software are bimodally distributed 
with modes at MAPQ=30 and MAP=60. We note that 201,730  (5-10%) reads per patient are held 
out during training and used to monitor training progress and to verify the model’s performance 
on independent reads [validation dataset].  
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Preprocessing 
 
Before calling, tumor and matched normal DNA sequencing data go through our somatic pre-
processing pipeline which includes aligning reads to the GRCh37 human reference genome 
using the Burrows-Wheeler Aligner (BWA) aln (Li and Durbin, 2009), marking of duplicate reads 
by the use of NovoSort ( a multi-threaded bam sort/merge tool by Novocraft technologies 
http://www.novocraft.com); realignment around indels (done jointly for all samples derived from 
one individual, e.g. tumor and matched normal samples, or normal, primary and metastatic 
tumor trios) and base recalibration via Genome Analysis Toolkit (GATK) (McKenna et al., 2010). 
 

 
Figure 1: NYGC pre-processing pipeline. 

 

Quality control 
 
Basic DNA sequencing metrics. We run a battery of Picard (QualityScoreDistribution, 
MeanQualityByCycle, CollectBaseDistributionByCycle, CollectAlignmentSummaryMetrics, 
CollectInsertSizeMetrics, CollectGcBiasMetrics, CollectOxoGMetrics) and GATK (FlagStat, 
ErrorRatePerCycle) metrics on all DNA data. In addition, for WGS experiments we run 
bedToolsCoverage and custom R scripts to compute sequencing depth of coverage, and for 
exomes and panels we run GATK CalculateHsMetrics and DepthOfCoverage modules. We 
perform outlier detection to identify samples that need to be manually reviewed, and if verified 
not to pass QC, failed. 
 
Sample contamination and tumor-normal concordance. We run Conpair (Bergmann et al., 
2016) on all tumor-normal pairs to to detect cross-individual contamination and sample mix-ups. 
 
Autocorrelation. We compute a metric called Autocorrelation (Zhang et al., 2013) to give us an 
indication of unevenness in coverage in sequencing data. This method was originally developed 
for array data but we have adapted it for WGS data. We generate intervals with window size of 
1kb every 10kb along the genome, calculate read depth in these windows using Picard 
HsMetrics and then compute Autocorrelation.  

 

Calling SNVs and indels 
 
We return the union of somatic SNVs called by muTect (Cibulskis et al., 2013), Strelka 
(Saunders et al., 2012) and LoFreq (Wilm et al., 2012) and the union of indels called by Strelka, 
and somatic versions of Pindel (Ye et al., 2009) and Scalpel (Narzisi et al., 2014).  
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Figure 2: NYGC somatic SNV/indel pipeline. 
 
The choice of SNV callers was based on internal benchmarking of individual and combinations 
of callers on a synthetic virtual tumor created by spiking reads from two HapMap samples in a 
way that mimics somatic variants with predefined variant allele frequencies (Cibulskis et al., 
2013). The choice of indel callers was based on internal benchmarking on synthetic data from 
the DREAM challenge (Ewing et al., 2015). 
 
For human samples, we also return germline calls in a panel of cancer risk genes (APC, ATM, 
BARD1, BMPR1A, BRCA1/2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, CYLD, EPCAM, IDH1/2, 
MEN1, MET, MLH1, MSH2/6, MUTYH, NBN, NF1/2, PALB2, PMS1/2, PRKAR1A, PTCH1, 
PTEN, RAD51C/D, RB1, RET, SDHAF2, SDHB/C/D, SMAD4, STK11, TP53, TSC1/2, VHL, 
WRN, WT1), made by the use of GATK HaplotypeCaller. 
 

Calling CNVs and SVs [WGS data only] 
 
Structural variants (SVs), such as deletions and amplifications as well as copy-neutral genomic 
rearrangements are detected by the use of multiple tools (NBIC-seq (Xi et al., 2016), Crest 
(Wang et al., 2011), Delly (Rausch et al., 2012), BreakDancer (Chen et al., 2009)) that employ 
complementary detection strategies, such as inspecting read depth within genomic windows, 
analyzing discordant read pairs, and identifying breakpoint-spanning split reads.  
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Figure 3: NYGC somatic WGS CNV/SV pipeline. 

 

Calling CNVs [WES data only] 
 
We use EXCAVATOR (Magi et al., 2013), a read depth based tool, to detect copy-number 
variants (CNVs) such as deletions and amplifications.  
 

 
 

Figure 4: NYGC somatic WES CNV pipeline. 
 

Calling variants without a matched normal [human samples only] 
 
When a matched normal sample is not available, in its place we use a “contemporary normal”, 
that is, DNA from the HapMap sample NA12878 that was prepped and sequenced using the 
same protocol as the tumor sample. Using a contemporary normal removes some of the false 
positives that are due to prep and sequencing (that would manifest in the same way in the tumor 
and NA12878), as well as (mostly common) germline variants that are common to the tumor 
sample and NA12878. 
 

Processing of patient-derived xenograft (PDX) samples 
 
PDX samples undergo an additional preprocessing step. Prior to the preprocessing pipeline, 
mouse reads are detected and removed by aligning the data to a combined reference genome 
of mouse (GRCm38/mm10) and human (GRCh37). All read pairs with both reads mapping to 
mouse or one read mapping to mouse and one unmapped are excluded from the subsequent 
processing and analyses steps. 
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Filtering SNVs and indels 
 

We use a multi-step filtering process: 
Figure 5: The NYGC custom multi-step SNV/indel filtering  

 
Default caller filters. SNVs and indels are filtered using the default filtering criteria as natively 
implemented in each of the callers. For Pindel and Scalpel (natively germline callers) we use 
custom in-house scripts for filtering. For each caller we keep these variants: 
 

● LoFreq: FILTER=PASS 
● muTect: variants with “PASS” in the filter field of the VCF file, which is equivalent to 

“KEEP” in the text file 
● Strelka: FILTER=PASS 
● Pindel: FILTER=PASS 
● Scalpel: FILTER=PASS 

 
Triallelic positions. The latest revision of the pipeline removes triallelic positions. Some SNV 
callers (e.g. muTect) remove them by default, and our internal investigation showed that triallelic 
sites within a sample are by and large due to an unmatched normal, not observing the second 
allele in the normal because of low coverage in the normal at that locus, or mapping artifacts. 
 
Common germline variants. 
Human samples: 

The resulting set of SNVs and indels is further filtered with common variants seen at 
MAF ≥ 5% in DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 and 
SF3B1 genes (see Xie et al., 2014) and with MAF ≥ 1% elsewhere in the genome, as 
reported in the 1000 Genomes Project release 3 (1000 Genomes Project Consortium, 
2012) and the Exome Aggregation Consortium (ExAC) server 
(http://exac.broadinstitute.org), because these are very unlikely to be important in 
cancer. 

Mouse samples: 
The resulting set of SNVs and indels is further filtered with variants seen in dbSNPv138 
and Mouse Genome Project (v3).  

 
UAC filter. Because callers often return different ref/alt allele counts for the same variant we 
introduced unified allele counts (UAC). Computation of UAC is based on the bam-readcount tool 
(Larson et al., 2012). For each variant we generate 4 values that are independent of callers: 

http://exac.broadinstitute.org/
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tumor-ref, tumor-alt, normal-ref, normal-alt. If the tumor_VAF < normal_VAF we discard the 
variant. 
 
Artifacts [human samples only]. In addition, we remove a subset of artifactual calls by the use 
of an blacklist created by calling somatic variants on 16 random pairings of 80x/40x in-house 
sequenced HapMap WGS data. 
 
More. If you wish to further filter the variant call set, the bam-readcount tool 
(https://github.com/genome/bam-readcount) will provide a list of technical co-variates (eg. 
mapping or base quality statistics) for each position in the tumor and normal BAM files.  
 

Annotation and prioritization of SNVs and indels 
Human samples: 

Variants are annotated for their effect (non-synonymous coding, nonsense, etc.) using 
snpEff (Cingolani et al., 2012) based on human genome annotations from ENSEMBL. 
We further annotate the variants via snpEff, snpSift and GATK VariantAnnotator module 
with information from COSMIC (Forbes et al., 2012), 1000 Genomes Project, ExAC, 
CIViC (Clinical Interpretation of Variants in Cancer, https://civic.genome.wustl.edu), 
UniProt (http://www.uniprot.org), etc. We return variant prioritization scores for coding 
changes based on CHASM (Carter et al., 2009), MutationAssessor (Reva et al., 2011) 
and FATHMM Somatic (Shihab et al., 2013). 

 
Mouse samples: 

Variants are annotated for their effect (non-synonymous coding, nonsense, etc.) using 
snpEff (Cingolani et al., 2012) based on mouse genome annotations from ENSEMBL.  

 

Filtering and annotation of SVs and CNVs [WGS data only] 
 
All filtering and annotation of SVs and CNVs is done with in-house scripts, making heavy use of 
bedtools (http://bedtools.readthedocs.org). 
 
SV merging. We merge and annotate SVs called by Crest, Delly and BreakDancer using 
BEDPE format. Two SV calls are merged if they share at least 50% reciprocal overlap (for intra-
chromosomal SVs only), their predicted breakpoints are within 300bp of each other and 
breakpoint strand orientations match for both breakpoints. Thus, merging is done independent 
of which SV type was assigned by the SV caller (a classification that we found to be unreliable 
and variable from caller to caller). 
 

https://github.com/genome/bam-readcount
https://civic.genome.wustl.edu/
http://www.uniprot.org/
http://bedtools.readthedocs.org/
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Figure 6: NYGC somatic CNV/SV filtering and annotation pipeline. 

 
 
Additional SV confirmation. After merging, we annotate each SV with the closest CNV 
changepoint as detected by NBIC-seq from read depth signals. This adds confidence to true SV 
breakpoints that are not copy-neutral. Additionally, we do an independent sensitive split read 
check for each breakpoint using SplazerS. Apart from adding confidence and basepair precision 
to the breakpoint, this step also helps remove remaining germline SVs also found in the normal. 
 
SV filtering. Some SV callers still suffer from large numbers of false positives; those are often 
due to germline SVs overlooked in the normal, e.g. because of low coverage or an unmatched 
normal, or systematic artifacts due to mapping ambiguities. We annotate and filter germline 
variants through overlap with known SVs (1000G call set, DGV for human; MGP for mouse) as 
well as through overlap with an in-house blacklist of SVs (germline SVs and artifacts called in 
healthy genomes). As mentioned above, also the split read check helps remove remaining 
germline SVs. 
Finally, we prioritize SVs that were called by more than one tool, or called by only one tool but 
also confirmed by 1) a CNV changepoint, or 2) at least 3 split reads (in tumor only). Since we 
found them to be very specific, we also keep Crest-only calls in the high confidence set. 
 
SV/CNV Annotation. All predicted copy number and structural variants are annotated with gene 
overlap (RefSeq, Cancer Census) and potential effect on gene structure (e.g. disruptive, 
intronic, intergenic). If a predicted SV disrupts two genes and strand orientations are 
compatible, the SV is annotated as a putative gene fusion candidate. Note that we do not check 
reading frame at this point. Further annotations include sequence features within breakpoint 
flanking regions, e.g. mappability, simple repeat content, segmental duplications and Alu 
repeats. 
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Filtering and annotation of CNVs [WES data only] 
 
All filtering and annotation of CNVs is done with in-house scripts, making heavy use of bedtools 
(http://bedtools.readthedocs.org). 
 

 
 

Figure 6: NYGC somatic CNV annotation pipeline. 
 
Final Segmentation. Adjacent targets (intervals) from the same chromosome and having the 
same normalized mean read count are merged together to generate the final segmentation and 
further annotated as deletion, amplification or copy-neutral.  
 
Annotation. All predicted CNVs are annotated with germline variants through overlap with 
known events (1000G call set, DGV for human). Cancer-specific annotation includes overlap 
with genes (RefSeq, Cancer Census) and potential effect on gene structure (e.g. disruptive, 
intronic, intergenic). Sequence features within breakpoint flanking regions, e.g. mappability, 
simple repeat content, segmental duplications and Alu repeats are also annotated. CNVs of size 
<20Mb are denoted as focal and the rest are large-scale.  

 

Delivered files 
 
We return the caller-ready BAM files (*.final.bam) for the tumor and matched normal sample. 
 
SNVs/indels. The SNV/indel pipeline returns the raw outputs of all variant callers, in VCF 
format (and for muTect also in TXT format). 
 
We in addition return the annotated union of all SNVs (*.snv.union.v*.*), union of all indels 
(*.indel.union.v*.*), and union of all SNVs and indels together (*.union.v*.*), in three formats: 
 

http://bedtools.readthedocs.org/
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