
Workshop track - ICLR 2018

BUILDING EFFICIENT CONVNETS USING REDUNDANT
FEATURE PRUNING

Babajide O. Ayinde & Jacek M. Zurada
Department of Electrical and Computer Engineering
University of Louisville
Louisville, KY 40229, USA
{babajide.ayinde,jacek.zurada}@louisville.edu

ABSTRACT

This paper presents an efficient technique to prune deep and/or wide convolutional
neural network models by eliminating redundant features (or filters). Previous
studies have shown that over-sized deep neural network models tend to produce
a lot of redundant features that are either shifted version of one another or are
very similar and show little or no variations; thus resulting in filtering redundancy.
We propose to prune these redundant features along with their connecting feature
maps according to their differentiation and based on their relative cosine distances
in the feature space, thus yielding smaller network size with reduced inference
costs and competitive performance. We empirically show on select models and
CIFAR-10 dataset that inference costs can be reduced by 40% for VGG-16, 27%
for ResNet-56, and 39% for ResNet-110.

1 INTRODUCTION

Recent studies indicate that over-sized deep learning models typically result in largely over-
determined (or over-complete) systems (Denil et al., 2013; Rodrı́guez et al., 2016; Bengio &
Bergstra, 2009; Changpinyo et al., 2017; Ayinde & Zurada, 2017; Han et al., 2016; 2017). The
resulting architectures may therefore be less computationally efficient due to their size, over-
parameterization, and largely due to their high inference cost. To account for the scale, diversity
and the difficulty of data these models learn from, the architectural complexity and the excessive
number of weights and units are often deliberately built in into the deep neural network models
by design (Bengio et al., 2007; Changpinyo et al., 2017). These over-sized models have expensive
inference costs especially for applications with constrained computational and power resources such
as web services, mobile and embedded devices. In addition to good accuracy, such resource-limited
applications benefit greatly from lower inference cost (Li et al., 2017; Szegedy et al., 2016).

In this paper, we focus on controlled network size reduction of well-trained deep learning
models based on feature agglomeration followed by one-shot elimination of redundant features
and retraining heuristic. By leveraging on the observations that large capacity CNNs usually have
significant redundancy among different features, we propose a simple, intuitive, and efficient way
to remove such redundancy without undermining the efficiency or introducing sparsity that would
require specialized library and/or hardware. We find that our pruning technique improves inference
cost over a recently proposed technique (Li et al., 2017) across benchmark models and dataset
considered without modifying existing hyperparameters.

2 RELATED WORK

Storage and computational cost reduction via model network pruning techniques has a long history
(LeCun et al., 1990; Hassibi & Stork, 1993; Mariet & Sra, 2016; Ioannou et al., 2016; Polyak &
Wolf, 2015; Molchanov et al., 2017). For instance, Optimal Brain Damage (LeCun et al., 1990) and
Optimal Brain Surgeon (Hassibi & Stork, 1993) use second-order derivative information of the loss
function to prune redundant network parameters. Other related work include but is not limited to

1

Workshop track - ICLR 2018

Anwar et al. (2017) which prunes based on particle filtering, Mathieu et al. (2013) uses FFT to avoid
overhead due to convolution operation, and Howard et al. (2017) uses depth multiplier method to
scale down the number of filters in each convolutional layer. Closely related to our work, Li et al.
(2017) sorts and prunes filters based on the sum of their absolute weights and Han et al. (2015)
prunes weights with magnitude below a set threshold.

3 FEATURE CLUSTERING AND PRUNING

The objective here is to discover nf clusters in the set of n′ original filters that are identical or very
similar in weight space according to a well-defined similarity measure, where nf ≤ n′. Achieving

W (l)

n′
l

hl

Zl

n′
l

n′
l+1

n′
l+1

Zl+1

n′
l+1

n′
l+2

Zl+2

W (l+1)

Ψ

vl

Figure 1: Pruning schema: Assume filter φ1 is the cluster representative, filters φ3 and φ5 and their
corresponding feature maps in Z1+1 and related weights in the next layer (third and fifth rows of
W(l+1)) are pruned due to high similarity among filters φ1, φ3 and φ5. Filters φ1, φ3, and φ5
correspond to first, third, and fifth columns of W(l), respectively

this involves choosing suitable similarity measures to express the inter-feature distances between
features φi that connect the feature map Zl−1 of layer l − 1 to neurons of layer l. In other words,
φ
(l)
i , i=1,...n′l, are feature vectors in layer l, each φ(l)i ∈ Rp corresponds to the i-th column of the

kernel matrix W(l) = [φ
(l)
1 , ...φ

(l)
n′
l
] ∈ Rp×n′

l where p = k2n′l−1 and k is the size of square 2D

kernel Ψ ∈ Rk×k. A number of suitable agglomerative similarity testing/clustering algorithms can
be applied for localizing redundant features. Based on a comparative review, a clustering approach
from Walter et al. (2008); Ding & He (2002) has been adapted and reformulated for this purpose.
By starting with each weight vector φi as a potential cluster, agglomerative clustering is performed
by merging the two most similar clusters Ca and Cb as long as the average similarity between their
constituent feature vectors is above a chosen cluster similarity threshold denoted as τ (Leibe et al.,
2004; Manickam et al., 2000). The pair of clusters Ca and Cb exhibits average mutual similarities
as follows:

SIMC(Ca, Cb) =

∑
φi∈Ca,φj∈Cb

SIMC(φi, φj)

|Ca| × |Cb|
> τ

a, b = 1, ...n′l; a 6= b; i = 1, ...|Ca|;
j = 1, ...|Cb|; and i 6= j

(1)

where SIMC(φ1, φ2) = <φ1,φ2>
‖φ1‖‖φ2‖ is the cosine similarity between two features and < φ1, φ2 > is

the inner product of arbitrary feature vectors φ1 and φ2, and τ is a set threshold.

The redundant-feature-based pruning procedure for lth convolutional layer is summarized as
follows:

1. Group all the filters φi (columns of the kernel matrix) into nf clusters whose average
similarities are above a set threshold τ .

2. Two heuristics are considered: (A) Randomly sample one representative filter from each of
the nf clusters and prune the remaining filters and their corresponding feature maps. (B)
Randomly prune n′ − nf filters and their corresponding feature maps. The weights of the
pruned feature maps in lth layer are also removed in layer (l + 1)th as shown in Figure 1.

3. A new kernel matrix is defined for both lth and (l + 1)th layer of a new smaller model.

2

Workshop track - ICLR 2018

4 EXPERIMENTS

The network pruning was implemented in Pytorch deep learning library (Paszke et al., 2017). We
evaluated the proposed redundant-feature-based pruning on three deep networks, namely: VGG-16
(Simonyan & Zisserman, 2015) and two residual networks (ResNet-56 and 110) (He et al., 2016)
trained on CIFAR-10. The baseline model and accuracy for residual networks were obtained by
training the model following the procedures highlighted in He et al. (2016). See Appendix for
implementation details and supplemental results for both VGG-16 and residual networks.

Model Error % FLOP Pruned % # Parameters Pruned %

VGG-16 6.20 3.13× 108 1.47× 107

VGG-16-pruned (Li et al., 2017) 6.60 2.06 ×108 34.2% 5.4× 106 64.0%
VGG-16-pruned-A (this work) 6.33 1.86 ×108 40.5% 3.23 ×106 78.1%
VGG-16-pruned-B (this work) 6.70 1.86 ×108 40.5% 3.23 ×106 78.1%

ResNet-56 6.61 1.25 ×108 8.5 ×105

ResNet-56 pruned (Li et al., 2017) 6.94 9.09 ×107 27.6% 7.3 ×105 13.7%
ResNet-56 pruned-A (this work) 6.88 9.07 ×107 27.9% 6.5 ×105 23.7%
ResNet-56 pruned-B (this work) 6.94 9.07 ×107 27.9 % 6.5 ×105 23.7 %

ResNet-110 6.35 2.53 ×108 1.72 ×106

ResNet-110 pruned (Li et al., 2017) 6.70 1.55 ×108 38.6% 1.16 ×106 32.4%
ResNet-110 pruned-A (this work) 6.73 1.54 ×108 39.1% 1.13 ×106 34.2%
ResNet-110 pruned-B (this work) 7.41 1.54 ×108 39.1% 1.13 ×105 34.2%

Table 1: Performance evaluation for three pruning techniques on CIFAR-10 dataset. Performance
with the lowest test error is reported.

4.1 VGG-16 ON CIFAR-10

As seen in Table 1, for τ = 0.54 our approaches (both A and B) outperform that in Li et al. (2017)
and are able to prune more than 78% of the parameters resulting in 40% FLOP reduction and a
competitive classification accuracy. We suspect that our pruning approach outshines that of Li et al.
(2017), which ranks importance of filters based on the sum of absolute value of their weights, be-
cause it localizes and prunes similar or shifted versions of filters that do not add extra information
to the feature hierarchy. This notion is reinforced from information theory standpoint that the acti-
vation of one unit should not be predictable based on the activations of other units of the same layer
(Rodrı́guez et al., 2017). Another crucial observation is that heuristic A achieves a better accuracy
than heuristic B because random pruning might prune filters that are dissimilar.

4.2 RESNET-56/110 ON CIFAR-10

For RestNet-56/110, we only prune the first layer of the residual block to avoid dimensions mismatch
due to unavailability of projection mapping for selecting the identity mapping (see He et al. (2016)
for details). We found that redundant-feature-based pruning are competitive to that in Li et al. (2017)
in terms of % FLOP reduction. However, for RestNet-56, our approach prunes 10% more parameters
than Li et al. (2017) and upon retraining, it achieves better classification accuracy.

5 CONCLUSION

Motivated by the observations of recent studies that modern CNNs often have large number of
overlapping filters amounting to unnecessary filtering redundancy and large inference cost. By using
hierarchical agglomerative clustering to group all filters at each layer in the weight space according
to a predefined measure, redundant filters are pruned and inference cost (FLOPS) reduced by 40%
for VGG-16, 28%/39% for ResNet-56/110 trained on CIFAR-10. To recover the accuracy after
pruning, we retrained the model for a few iterations without the need to modify hyper-parameters.

3

Workshop track - ICLR 2018

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):32,
2017.

Babajide O Ayinde and Jacek M Zurada. Nonredundant sparse feature extraction using autoencoders
with receptive fields clustering. Neural Networks, 93:99–109, 2017.

Yoshua Bengio and James S Bergstra. Slow, decorrelated features for pretraining complex cell-like
networks. In Advances in Neural Information Processing Systems, pp. 99–107, 2009.

Yoshua Bengio, Yann LeCun, et al. Scaling learning algorithms towards ai. Large-scale kernel
machines, 34(5):1–41, 2007.

Soravit Changpinyo, Mark Sandler, and Andrey Zhmoginov. The power of sparsity in convolutional
neural networks. arXiv preprint arXiv:1702.06257, 2017.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in deep
learning. In Advances in Neural Information Processing Systems, pp. 2148–2156, 2013.

Chris Ding and Xiaofeng He. Cluster merging and splitting in hierarchical clustering algorithms. In
Proc. of the IEEE International Conference on Data Mining, pp. 139–146, 2002.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pp. 1135–1143,
2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
ICLR, 2017.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pp. 164–171, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778, 2016.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and Antonio Criminisi. Training
cnns with low-rank filters for efficient image classification. ICLR, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python.
URL http://www.scipy.org/. Online accessed: 01-04-2018.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, pp. 598–605. Morgan-Kaufmann, 1990.
URL http://papers.nips.cc/paper/250-optimal-brain-damage.pdf.

Bastian Leibe, Ales Leonardis, and Bernt Schiele. Combined object categorization and segmentation
with an implicit shape model. In Workshop on Statistical Learning in Computer Vision, volume 2,
pp. 7, 2004.

4

http://www.scipy.org/
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

Workshop track - ICLR 2018

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, pp. 1–12, 2017.

Swami Manickam, Scott D Roth, and Thomas Bushman. Intelligent and optimal normalized corre-
lation for high-speed pattern matching. Datacube Technical Paper, 2000.

Zelda Mariet and Suvrit Sra. Diversity networks. ICLR, 2016.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851, 2013.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient transfer learning. ICLR, 2017.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Adam Polyak and Lior Wolf. Channel-level acceleration of deep face representations. IEEE Access,
3:2163–2175, 2015.

Pau Rodrı́guez, Jordi Gonzàlez, Guillem Cucurull, Josep M Gonfaus, and Xavier Roca. Regularizing
cnns with locally constrained decorrelations. arXiv preprint arXiv:1611.01967, 2016.

Pau Rodrı́guez, Jordi Gonzàlez, Guillem Cucurull, Josep M Gonfaus, and Xavier Roca. Regularizing
cnns with locally constrained decorrelations. ICLR, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. Fast agglomerative clustering for
rendering. In IEEE Symposium on Interactive Ray Tracing, pp. 81–86, 2008.

ACKNOWLEDGMENTS

This work was supported by the NSF under grant 1641042.

APPENDIX

6 IMPLEMENTATION DETAILS AND RESULTS

All experiments were performed on Intel(r) Core(TM) i7-6700 CPU @ 3.40Ghz and a 64GB of
RAM running a 64-bit Ubuntu 14.04 edition. The software implementation has been in Pytorch
library 1 on two Titan X 12GB GPUs and the filter clustering was implemented in SciPy ecosystem
Jones et al.. The agglomeration of filters using hierarchical clustering is practical for very wide and
deep networks even though its complexity is O((n′l)

2log(n′l)). For instance, clustering VGG-16
feature vectors empirically takes on the average on our machine 14.1 milliseconds and this is
executed only once during training. This amounts to a negligible computational overhead for most
deep architectures.

The implementation of our filter pruning strategy is similar to that in Li et al. (2017) in the
sense that when a particular filter of a convolutional layer is pruned, its corresponding feature map
is also pruned and the weights of the pruned feature map in the filter of the next convolutional layer
are equally pruned. It must be emphasized that after pruning the feature maps of last convolutional
layer, the input to the linear layer has changed and its weight matrix has to be pruned accordingly.

1http://pytorch.org/

5

http://pytorch.org/

Workshop track - ICLR 2018

CIFAR-10 dataset was used in all the experiments to train and validate the models. The dataset
contains a labeled set of 60,000 32x32 color images belonging to 10 classes: airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. The dataset is split into 50000 and 10000
training and testing sets, respectively. We used FLOP to compare the computational efficiency
of the models considered because its evaluation is independent of the underlying software and
hardware. In order to fairly compare our method with that in Li et al. (2017), we also calculated the
FLOP only for the convolution and fully connected layers.

6.1 VGG-16 ON CIFAR-10

For the first set of experiments, we used a modified version of the popular convolutional neural net-
work known as the VGG-16 (Simonyan & Zisserman (2015)), which has 13 convolutional layers
and 2 fully connected layer. In the modified version of VGG-16, each layer of convolution is fol-
lowed by a Batch Normalization layer (Ioffe & Szegedy, 2015). Our base model was trained for
350 epochs, with a batch-size of 128 and a learning rate 0.1 as highlighted in the repository2. The
learning rate was reduced by a factor of 10 at 150 and 250 epochs. We have shared our pruning im-
plementation and trained model for reproducibility of results 3. After pruning we retrain the network
with learning rate of 0.001 for 80 epochs to fine tune the weights of the remaining connections to
regain the accuracy.
Figure 2 shows the number of nonredundant filters per layer for different τ values. As can be seen

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

0

50

100

150

200

250

300

nf

CIFAR10 VGG-16 prune redundant filters
Conv_1 64
Conv_2 64
Conv_3 128
Conv_4 128
Conv_5 256
Conv_6 256
Conv_7 256

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

0

100

200

300

400

500

600

nf

CIFAR10 VGG-16 prune redundant filters
Conv_8 512
Conv_9 512
Conv_10 512
Conv_11 512
Conv_12 512
Conv_13 512

Figure 2: Number of nonredundant filters (nf) vs. cluster similarity threshold (τ) for VGG-16
trained on the CIFAR-10 dataset. Initial number of filters for each layer is shown in the legend.

that some convolutional layers in VGG are prone to extracting features with very high correlation
such as Conv layer 1, 11, 12, and 13. Another very important observation is that later layers of VGG
are more susceptible to extracting redundant filters than earlier layers and can be pruned heavily.
Figure 3(a) shows the sensitivity of the convolutional layer of VGG-16 to pruning and it can be
observed that layers such as Conv 1, 3, 4, 9, 11, and 12 are very sensitive. However, as can be
observed in Figure 3(c), accuracy can be restored after pruning filters in later layers (Conv 9, 11,
and 12) compared to early ones (Conv 1, 3, and 4). For our final test score, we fine tuned on the
entire training set. For pruning, we performed a grid search over τ values within 0.1 and 1.0, and
found 0.54 gave the least test error. Table 2 reports the pruning performance for τ = 0.54 and it
can be easily seen that more than 90% of most of the latter layers have been pruned and most of the
sensitive earlier layers are minimally pruned. Figure 3(b) depicts the sensitivity of trained VGG-16
model to pruning using heuristic B that calculates the number of redundant filters (n′ − nf) and
randomly prunes them.

2Implementation of modified version of VGG-16 can be found in https://github.com/kuangliu/
pytorch-cifar

3https://github.com/babajide07/Redundant-Feature-Pruning-Pytorch-Implementation

6

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/babajide07/Redundant-Feature-Pruning-Pytorch-Implementation

Workshop track - ICLR 2018

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

0

10

20

30

40

50

60

70

80

90

te
st

 e
rro

r

CIFAR10 VGG-16 prune redundant filters
Conv_1 64
Conv_2 64
Conv_3 128
Conv_4 128
Conv_5 256
Conv_6 256
Conv_7 256
Conv_8 512
Conv_9 512
Conv_10 512
Conv_11 512
Conv_12 512
Conv_13 512

(a) Prune redundant filters

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

0

10

20

30

40

50

60

70

80

90

te
st
 e
rro

r

CIFAR10 VGG-16 prune random redundant filters
Conv_1 64
Conv_2 64
Conv_3 128
Conv_4 128
Conv_5 256
Conv_6 256
Conv_7 256
Conv_8 512
Conv_9 512
Conv_10 512
Conv_11 512
Conv_12 512
Conv_13 512

(b) Prune n′ − nf random filters

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6.5

7.0

7.5

8.0

te
st

 e
rro

r

CIFAR10 VGG-16 prune redundant filters and retrain
Conv_1 64
Conv_2 64
Conv_3 128
Conv_4 128
Conv_5 256
Conv_6 256
Conv_7 256
Conv_8 512
Conv_9 512
Conv_10 512
Conv_11 512
Conv_12 512
Conv_13 512

(c) Prune and retrain

Figure 3: Sensitivity to pruning (a) redundant filters (b) random n′ − nf filters, and (c) redundant
filters and retraining for 30 epochs for VGG-16.

layer vl × hl #Maps FLOP #Params #Maps FLOP%

Conv 1 32× 32 64 1.8E+06 1.7E+03 32 50.0%
Conv 2 32× 32 64 3.8E+07 3.7E+04 58 54.7%
Conv 3 16× 16 128 1.9E+07 7.4E+04 125 11.5%
Conv 4 16× 16 128 3.8E+07 1.5E+05 128 2.3%
Conv 5 8× 8 256 1.9E+07 2.9E+05 256 0%
Conv 6 8× 8 256 3.8E+07 5.9E+05 254 0.8%
Conv 7 8× 8 256 3.8E+07 5.9E+05 252 2.3%
Conv 8 4× 4 512 1.9E+07 1.2E+06 299 42.5%
Conv 9 4× 4 512 3.8E+07 2.4E+06 164 81.3%
Conv 10 4× 4 512 3.8E+07 2.4E+06 121 92.4%
Conv 11 2× 2 512 9.4E+06 2.4E+06 59 97.3%
Conv 12 2× 2 512 9.4E+06 2.4E+06 104 97.7%
Conv 13 2× 2 512 9.4E+06 2.4E+06 129 94.9 %

Table 2: Pruning performance on CIFAR dataset using VGG-16 model at τ = 0.54

6.2 RESNET-56/110 ON CIFAR-10

The architecture of residual networks is more complex than VGG and also the number of parameters
in the fully connected layer is relatively smaller and this makes it a bit challenging to prune a large
proportion of the parameters. Both ResNet-56 and ResNet-110 have three stages of residual blocks
for feature maps with of differing sizes. The sizes (vl × hl) of feature maps in stages 1,2, and 3 are
32 × 32, 16 × 16, and 8 × 8, respectively. Each stage has 9 and 18 residual blocks for ResNet-56
and ResNet-110, respectively. A residual block consists of two convolutional layer each followed
by a Batch Normalization layer. Preceding the first stage is a convolutional layer followed by a
Batch Normalization layer4. Only the redundant filters in first convolution layer of each block are
pruned due to unavailability of mapping for selecting the identity feature maps.

As can be observed in Figures 4 and 5 that convolutional layers in first stage are prone to
extracting more redundant features than those of second stage, and the convolutional layers in
the second stage are susceptible to extracting redundant filters than those of third block, which is
contrary to the observations with VGG-16. In effect, more filters could be pruned from layers in
first stage than the latter ones without losing much to accuracy. More specifically, many layers in
the first stage of ResNet-56, such as Conv 2,8,10, and 26, have filters that are correlated more 80%
and could be heavily pruned. Similarly, convolutional layers in the first stage of ResNet-110 exhibit
similar tendency to produce more filters that are redundant. As a result of these differing tendencies
at each stage, τ for all the stages is set to different values. In pruning ResNet-56, we set τ to 0.253,
0.223, 0.20 as thresholds for stages 1,2, and 3, respectively. Similarly for ResNet-110 we used 0.18,
0.12, and 0.17.

4We used the Pytorch implementation of ResNet56/110 in https://github.com/D-X-Y/
ResNeXt-DenseNet as baseline models

7

https://github.com/D-X-Y/ResNeXt-DenseNet
https://github.com/D-X-Y/ResNeXt-DenseNet

Workshop track - ICLR 2018

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

4

6

8

10

12

14

16

nf

CIFAR10 ResNet-56 prune redundant filters

Conv_2 16
Conv_4 16
Conv_6 16
Conv_8 16
Conv_10 16
Conv_12 16
Conv_14 16
Conv_16 16
Conv_18 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

10

15

20

25

30

35

nf

CIFAR10 ResNet-56 prune redundant filters

Conv_20 32
Conv_22 32
Conv_24 32
Conv_26 32
Conv_28 32
Conv_30 32
Conv_32 32
Conv_34 32
Conv_36 32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

25

30

35

40

45

50

55

60

65

nf

CIFAR10 ResNet-56 prune redundant filters

Conv_38 64
Conv_40 64
Conv_42 64
Conv_44 64
Conv_46 64
Conv_48 64
Conv_50 64
Conv_52 64
Conv_54 64

Figure 4: Number of nonredundant filters (nf) vs. cluster similarity threshold (τ) for ResNet-56
trained on the CIFAR-10 dataset. Initial number of filters for each layer is shown in the legend.

Figure 6 shows the sensitivity of the convolutional layer of ResNet-56 to pruning and it can

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6

8

10

12

14

16

nf

CIFAR10 ResNet-110 prune redundant filters
Conv_2 16
Conv_4 16
Conv_6 16
Conv_8 16
Conv_10 16
Conv_12 16
Conv_14 16
Conv_16 16
Conv_18 16
Conv_20 16
Conv_22 16
Conv_24 16
Conv_26 16
Conv_28 16
Conv_30 16
Conv_32 16
Conv_34 16
Conv_36 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

10

15

20

25

30

35

nf

CIFAR10 ResNet-110 prune redundant filters
Conv_38 32
Conv_40 32
Conv_42 32
Conv_44 32
Conv_46 32
Conv_48 32
Conv_50 32
Conv_52 32
Conv_54 32
Conv_56 32
Conv_58 32
Conv_60 32
Conv_62 32
Conv_64 32
Conv_66 32
Conv_68 32
Conv_70 32
Conv_72 32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

20

25

30

35

40

45

50

55

60

65

nf

CIFAR10 ResNet-110 prune redundant filters
Conv_74 64
Conv_76 64
Conv_78 64
Conv_80 64
Conv_82 64
Conv_84 64
Conv_86 64
Conv_88 64
Conv_90 64
Conv_92 64
Conv_94 64
Conv_96 64
Conv_98 64
Conv_100 64
Conv_102 64
Conv_104 64
Conv_106 64
Conv_108 64

Figure 5: Number of nonredundant filters (nf) vs. cluster similarity threshold (τ) for ResNet-110
trained on the CIFAR-10 dataset. Initial number of filters for each layer is shown in the legend.

be observed that layers such as Conv 10, 14, 16, 18, 20, 34, 36, 38, 52 and 54 are more sensitive
to filter pruning than other convolutional layers. Likewise for ResNet-110, the sensitivity of the
convolutional layer to pruning is depicted in Figure 7 and it can be observed that Conv 1, 2, 38, 78,
and 108 are sensitive to pruning. In order to regain the accuracy by retraining the pruned model, we
skip these sensitive layers while pruning.

As seen on Table 1 for ResNet-56, redundant-feature-based pruning (both A and B) have

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6

7

8

9

10

11

12

13

te
st
 e
rro

r

CIFAR10 ResNet-56 prune redundant filters
Conv_2 16
Conv_4 16
Conv_6 16
Conv_8 16
Conv_10 16
Conv_12 16
Conv_14 16
Conv_16 16
Conv_18 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6

7

8

9

10

11

12

13

14

15

te
st
 e
rro

r

CIFAR10 ResNet-56 prune redundant filters
Conv_20 32
Conv_22 32
Conv_24 32
Conv_26 32
Conv_28 32
Conv_30 32
Conv_32 32
Conv_34 32
Conv_36 32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6

8

10

12

14

16

18

te
st
 e
rro

r

CIFAR10 ResNet-56 prune redundant filters
Conv_38 64
Conv_40 64
Conv_42 64
Conv_44 64
Conv_46 64
Conv_48 64
Conv_50 64
Conv_52 64
Conv_54 64

Figure 6: Sensitivity to pruning n′ − nf redundant convolutional filters in ResNet-56

competitive performance in terms of FLOP reduction but outperform that in Li et al. (2017) in
reducing the number of effective parameters by 10% with relatively better classification accuracy
after retraining. However, we were able to marginally increase the effective number of parameters
pruned in ResNet-110 from 38.6% to 39.1%, which gives rise to approximately 2% increase. Also,
the accuracy after fine tuning the pruned ResNet-110 model is not as good as that in Li et al. (2017).

8

Workshop track - ICLR 2018

The inference time of both original and pruned models was recorded and reported in Ta-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6.0

6.5

7.0

7.5

8.0

8.5

te
st
 e
rro

r
CIFAR10 ResNet-110 prune redundant filters

Conv_2 16
Conv_4 16
Conv_6 16
Conv_8 16
Conv_10 16
Conv_12 16
Conv_14 16
Conv_16 16
Conv_18 16
Conv_20 16
Conv_22 16
Conv_24 16
Conv_26 16
Conv_28 16
Conv_30 16
Conv_32 16
Conv_34 16
Conv_36 16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6.2

6.4

6.6

6.8

7.0

7.2

7.4

te
st
 e
rro

r

CIFAR10 ResNet-110 prune redundant filters
Conv_38 32
Conv_40 32
Conv_42 32
Conv_44 32
Conv_46 32
Conv_48 32
Conv_50 32
Conv_52 32
Conv_54 32
Conv_56 32
Conv_58 32
Conv_60 32
Conv_62 32
Conv_64 32
Conv_66 32
Conv_68 32
Conv_70 32
Conv_72 32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
τ

6.0

6.5

7.0

7.5

8.0

8.5

9.0

te
st
 e
rro

r

CIFAR10 ResNet-110 prune redundant filters
Conv_74 64
Conv_76 64
Conv_78 64
Conv_80 64
Conv_82 64
Conv_84 64
Conv_86 64
Conv_88 64
Conv_90 64
Conv_92 64
Conv_94 64
Conv_96 64
Conv_98 64
Conv_100 64
Conv_102 64
Conv_104 64
Conv_106 64
Conv_108 64

Figure 7: Sensitivity to pruning n′ − nf redundant convolutional filters in ResNet-110

Model FLOP Pruned % Time(s) Saved %

VGG-16 3.13× 108 1.47
VGG-16-pruned-A (this work) 1.86 ×108 40.5% 0.94 34.01%
ResNet-56 1.25 ×108 1.16
ResNet-56-pruned-A (this work) 9.07 ×107 27.9% 0.96 17.2%
ResNet-110 2.53 ×108 2.22
ResNet-110-pruned-A (this work) 1.54 ×108 39.1% 1.80 18.9%

Table 3: FLOP and wall-clock time reduction for inference. Operations in convolutional and fully
connected layer are considered for computing FLOP

ble 3. 10000 test images of CIFAR-10 dataset were used for the timing evaluation conducted in
Pytorch version 0.2.0 3 with Titan X (Pascal) GPU and cuDNN v8.0.44, using a mini-batch of size
100. It can be observed that %FLOP reduction also translates almost directly into inference clock
time savings.

6.3 PRUNE AND TRAIN FROM SCRATCH

In order to see the effect of copying weights from the original (larger) model to a pruned (smaller)
model, we pruned two models (VGG-16 and ResNet-56) as described above and re-initialized their
weights and trained them from scratch. As shown in Table 4 that fine tuning a pruned model is
almost always better than re-initializing and training a pruned model from scratch. We believe that
already-trained filters may serve as good initialization for a smaller network which might on its own
be difficult to train. Other observation from Table 4 is that redundant-feature-based pruning results
in an architecture that when trained attains a better performance than its counterpart in Li et al.
(2017). This may indicate that redundant-feature-based pruning might be a potential approach to
determining the architectural width of modern deep neural network models.

Model Error %

VGG-16-pruned (Li et al., 2017) 6.60
VGG-16-pruned-A (this work) 6.33
VGG-16-pruned-scratch-train (Li et al., 2017) 6.88
VGG-16-pruned-A-scratch-train (this work) 6.79

ResNet-56-pruned (Li et al., 2017) 6.94
ResNet-56-pruned (this work) 6.88
ResNet-56-pruned-scratch-train (Li et al., 2017) 8.69
ResNet-56-pruned-A-scratch-train (this work) 7.66

Table 4: Performance on CIFAR dataset

9

	Introduction
	Related Work
	Feature Clustering and Pruning
	Experiments
	VGG-16 on CIFAR-10
	RESNET-56/110 on CIFAR-10

	Conclusion
	Implementation Details and Results
	VGG-16 on CIFAR-10
	RESNET-56/110 on CIFAR-10
	Prune and Train from Scratch

