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Abstract

Large Language Models (LLMs) have shown their success in language
understanding and reasoning on general topics. However, their capability
to perform inference based on user-specified structured data and knowl-
edge in corpus-rare concepts, such as causal decision-making is still limited.
In this work, we explore the possibility of fine-tuning an open-sourced
LLM into LLM4Causal, which can identify the causal task, execute a cor-
responding function, and interpret its numerical results based on users’
queries and the provided dataset. Meanwhile, we propose a data gen-
eration process for more controllable GPT prompting and present two
instruction-tuning datasets: (1) Causal-Retrieval-Bench for causal problem
identification and input parameter extraction for causal function calling
and (2) Causal-Interpret-Bench for in-context causal interpretation. By
conducting end-to-end evaluations and two ablation studies, we showed
that LLM4Causal can deliver end-to-end solutions for causal problems and
provide easy-to-understand answers, which significantly outperforms the
baselines.

1 Introduction

Recently, Transformer-based LLMs containing billions of parameters are gaining popularity
and are widely applied in fields such as education, legal services, and medicine (Kasneci
et al., 2023; Chen et al., 2021). LLMs such as GPT-3 (Brown et al., 2020), GPT-4, and LLaMA
(Touvron et al., 2023a) have shown impressive performance in multiple natural language
processing tasks such as question-answering, common-sense reasoning, and translation
(Zhao et al., 2023). These superior performances of LLMs have also motivated explorations
on LLMs’ applications on the causal decision-making (Song et al., 2023) procedures, which
include various crucial tasks in real-life such as causal structure learning (CSL) tasks (Spirtes
et al., 2000; Glymour et al., 2019), causal effect learning (CEL) tasks (Yao et al., 2021; Hicks &
Tingley, 2011) and causal policy learning (CPL) tasks (Chakraborty & Murphy, 2014; Sutton
& Barto, 2018; Zeng et al., 2023).

Many recent works that applied LLM in causal decision-making tasks are focused on CSL,
where LLM’s internal knowledge gained during its training process is exploited in learning
the causal relations among variables. For instance, both Kıcıman et al. (2023) and Long et al.
(2023) propose to obtain the causal relationships between variables by directly querying GPT
models using the variable names, assuming that LLMs can extract internal causal knowledge
of those variables from the large corpus it was trained on. In a further development by Ban
et al. (2023), LLM’s internal causal knowledge is utilized to guide the optimization process
of score-based methods as soft or hard constraints, enhancing the performance compared
to using the traditional CSL methods alone. However, this line of work heavily relies on
the quality of the knowledge in LLM’s training corpus and lacks step-by-step reasoning or
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interpretation. A natural choice to overcome these limitations is to ask the LLM to complete
the causal tasks utilizing existing causal decision-making tools (such as CausalML(Chen
et al., 2020), CausalDM (Song et al., 2023), causal-learn (Zheng et al., 2023)) and input data
uploaded by users. In literature, Code Interpreter (OpenAI, 2023a), ToolLLM (Qin et al.,
2023b), and GPT4Tools(Yang et al., 2023) have leveraged the function calling feature of
LLM in general data analysis tasks for user input datasets. However, directly applying
those methods to causal-related tasks and datasets may lead to several issues: first, since
these models are not tailored for causal tasks, they frequently hallucinate and mislead the
user with irrelevant contexts, such as providing correlation analysis results when causal
effect analysis is expected, as shown in Figure 1a; second, most of these methods fail to
provide end-to-end result delivery (see Figure 1b) and easy-to-understand interpretation for
causal-related tasks; third, these methods lack information about newly released approaches
that are not included in LLM’s training corpus (see Figure 1c).

(a) User queries on causal relationships.
(b) User queries on a classical method,
LiNGAM(Shimizu, 2014).

(c) User queries on a newly-developed method, ANOCE (Cai et al., 2020).

Figure 1: User interaction with ChatGPT on causal related questions.1

To overcome these challenges, in this study, we develop an end-to-end user-friendly large
language model with causal decision-making ability for general audiences. As illustrated
in Figure 2, the proposed model consists of three major steps: user request interpretation,
causal tools assignment and execution, and output interpretation. Upon receiving a user
query and an uploaded data file, the initial step identifies the pertinent causal task and
extracts query details—including dataset name, task type, and variable of interest, among
other variables—into a structured JSON summary. The LLM4Causal model gains the
ability to convert natural language user queries into JSON summaries by fine-tuning a
pre-trained LLM on the Causal-Retrieval-Bench dataset. A well-designed data generation
pipeline is proposed to ensure the quality of Causal-Retrieval-Bench, in terms of both data
variety and accuracy. In the second step, the system automatically chooses the causal
learning algorithm according to the task type detailed in the structured JSON data, executes
the selected algorithm to analyze the dataset, and collects the algorithm’s output. The
outputs are then translated into easily understandable language in the third step, using the
LLM4Causal model, which has been further fine-tuned with the Causal-Interpret-Bench
dataset to generate high-quality interpretations.

Our main contributions could be summarized as follows:

• This paper is the first to construct an end-to-end user-friendly large language model
(LLM4Causal) with causal decision-making ability. LLM4Causal could be easily
used for general audiences, which addresses the weakness of the current LLM
applications on causal tasks. It has the capability of i) interpreting user requests by
causal task classification and information extraction, ii) assigning causal tools and
executing the corresponding algorithm, and iii) providing an easy-to-understand
interpretation of the algorithm output.

1The chat histories could be found in link 1, link 2, and link 3.
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Figure 2: A flowchart of the LLM4Causal consists of three major steps: user request inter-
pretation, causal tools assignment and execution, and output interpretation.

• We have proposed a three-step data generation pipeline that combines LLM text
generation and human annotation to create fine-tuning datasets. With this well-
designed pipeline, we have collected two high-quality benchmark datasets, Causal-
Retrieval-Bench for causal function calling and Causal-Interpret-Bench for causal
interpretation, with outstanding data variety and accuracy.

• The proposed LLM4Causal model was extensively evaluated in three major causal
decision-making tasks: Causal effect estimation, Causal structure discovery, and
Causal policy learning. The proposed method has shown superior performance
compared to the benchmark methods.

2 Problem formulation

In this paper, we aim to augment existing pre-trained LLMs with the proficiency to address
causal inquiries, thereby opening the door to causal decision-making processes for general
audiences. As introduced previously, causal decision-making tasks can be classified into
three categories: 1) causal structure learning (CSL), 2) causal effect learning (CEL), and 3)
causal policy learning (CPL). Each of these primary categories consists of multiple tasks,
and our study focuses on five key tasks that are particularly relevant to the interests of
our target audience. Let us denote the user query as Q, the dataset to be analyzed as D,
the node set whose interrelationship is of interest as X , the treatment variable as A, the
response variable as Y , the mediator variables as M, and the condition of the subpopulation
of interest as S . The five causal tasks are summarized in Table 1.

Task Dataset Nodes Treatment Response Mediator Condition Function Output
(D) (X ) (A) (Y) (M) (S) Format

CGL ✓ ✓ Causal Graph (G)
ATE ✓ ✓ ✓ Numeric Value
HTE ✓ ✓ ✓ ✓ Numeric Value
MA ✓ ✓ ✓ ✓ Numeric Values

OPO ✓ ✓ ✓ ✓ Treatment Level

Table 1: Constructions of causal tasks

The CSL category includes Causal Graph Learning (CGL) task, which aims to identify causal
relationships between variables. Given Q and D, the goal of CGL is to learn and report a
directed acyclic graph G that encapsulates the entire causal structure among variables in X
specified in Q. Average Treatment Effect Estimation (ATE) falls under the CEL category
and aims to quantify the average effect size of an intervention across the entire population.
Given D, A, and Y defined in Q, the goal of ATE is to execute appropriate learners to
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measure the difference in counterfactual outcomes between the treated and control groups.
Heterogeneous Treatment Effect Estimation (HTE), another task within CEL, extends ATE
by assessing effect sizes under specific conditions S , providing insights into the variability
of treatment effects across different subpopulations. When additional mediators M are
considered to transmit treatment effects to the response, Mediation Effect Analysis (MA)
within CEL focuses on decomposing the total treatment effect into direct effects, which
are solely due to A, and indirect effects, mediated through additional variables M. Lastly,
Off-Policy Optimization (OPO), the only one we considered within the CPL category,
served as a one-stop shop for decision-makers. Given D, A, Y , and S explicitly specified in
Q, OPO aims to select suitable policy learners to determine the optimal action expected to
maximize the outcome Y .

To tackle the aforementioned diverse tasks using a single LLM, we introduce LLM4Causal.
By fine-tuning pre-trained LLMs, LLM4Causal is capable of comprehending causal queries,
applying appropriate causal tools to analyze the provided tabular dataset, and providing
answers by interpreting numerical results in straightforward and fluent language. More
technical details of LLM4Causal is discussed in Section 3.

3 Proposed method

In this paper, we introduce a novel three-stage framework to empower a pre-trained LLM to
address causality-related tasks, as illustrated in Figure 2. Common approaches to calibrate an
LLM checkpoint include Retrieval Augmented Generation (RAG), Prompt Engineering (PE),
and Fine-Tuning (FT). However, while RAG (Chen et al., 2024; Gao et al., 2023) can introduce
relevant external information into the response process, it cannot improve the model’s
intrinsic understanding of causality or result interpretation capability, rendering it infeasible.
Although various PE strategies (Liu et al., 2023; Haviv et al., 2021) have been developed to
enhance the performance of LLMs’ responses, PE remains a complex and nuanced art that
requires iterative and extensive experimentation to refine the prompts. In contrast, having a
clear understanding of the expected performance outcomes makes preparing the ’golden’
dataset relatively straightforward, thereby making the fine-tuning approach more direct
and effective for our case. As a result, we choose to fine-tune an LLM on carefully crafted
datasets. Specifically, LLM4Causal is carefully fine-tuned with our proposed benchmark
dataset, Causal-Retrieval-Bench, enabling it to achieve better performance than other LLMs
in classifying causality-related tasks and retrieving relevant information, such as variable
names and values. Then, the framework selects appropriate causal analysis tools based
on task classification and retrieved information to produce quantitative results. Finally,
further fine-tuned on our proposed Causal-Interpret-Bench dataset, LLM4Causal is capable
of translating the direct results from functional calls into clear and easily understandable
natural language interpretations.

3.1 Step1. interpret user request

The purpose of the first step is to translate user questions through two integrated substeps:
i) causal task classification and ii) attribute extraction. The first sub-step categorizes the
input question into one of the five supported causal tasks (CGL, ATE, HTE, MA, or OPO)
by inferring the underlying user intention. Following this, attribute extraction, conditioned
on the task classification, extracts attribute values that are necessary for the expert tools to
address the causal problem. Instead of formulating it as a sequential process, we propose
to merge them into one sequence-to-sequence (seq2seq) procedure where the output is a
structured JSON with the "causal_problem" key and other task-specific keys, e.g. "dataset"
(D), "treatment" (A), "outcome" (Y). Some simulated input queries with the corresponding
JSON output are shown in Appendix C.2 Table 6.

Even with careful prompt engineering, it is challenging to directly adapt a pre-trained LLM
for such a seq2seq task, where the latest GPT4 checkpoint still has a 31% error rate (see
Section 4.3 for details) and publically available model such as Llama 2 failed on this JSON
extraction task. As a result, we find it necessary to fine-tune a local LLM with an augmented
dataset consisting of both input queries and output JSONs.
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Figure 3: Causal-Retrieval-Bench construction procedures for the first step. GPT prompts
used in this section can be found in Appendix C.2. In the left panel, GPT is prompted to
list out different topics and measurable variables for each topic. With randomly drawn
tasks from section 2 and some variables under the same topic, we generated JSON output
in the middle panel. The colored boxes in the left and middle panels are shared topics
and variable names of interests. In the right panel, the numbered boxes in template 2
mean blank places to be filled with the task description, the supplied demonstration,
JSON inputs, and output restrictions. Common connectors and general instruction in
prompt 2 are shortened into "xxxxx" due to the figure limit.

3.1.1 Construct Causal-Retrieval-Bench

To the best of our knowledge, the aforementioned customized input-output pairs can not be
collected from the online corpus, since the commonly used LLM training data are mainly
conversational materials other than structured data. Therefore, we choose to construct a
customized corpus containing both synthetic causal questions and the corresponding JSON
representations by prompting an instruction-following LLM.

To collect LLM-generated data, the common approach starts by writing several demon-
strated examples. Those demonstrations are then fed to an LLM (e.g., GPT-4) for new sample
generation. We have observed that such an approach suffers from (1) non-controllable
topics and variables of interest, which results in content homogeneity, (2) incomplete/non-
compliant JSON outputs, and (3) inappropriate paraphrase, where the causal question is
transformed to be association-related. To resolve the pain points and prevent data contami-
nation, we propose a three-course procedure, which is illustrated in Figure 3.

The procedure can be summarized as an output-first strategy, where the major goal is
to improve the correctness and the variety of the output JSON. An instruction prompt
(See Appendix C.2) is then incorporated to construct causal-related questions in different
sentence structures. Specifically, we first prepare a topic database by conducting value
generation, then generate JSON data by random sampling, and finally paraphrase the
question utilizing prompting.

• Value Generation: the goal of the first course is to get a candidate pool of the
interested topic and variables. We prompt the GPT model to generate some potential
topics and related variable names. For each variable, we perform a zero-shot
classification by GPT to determine the variable type, i.e., whether it is discrete or
continuous. All the collected information is maintained in a three-level hierarchy
structure (topic -> variable -> type).

• JSON Generation: Based on the assumption that causality tasks often involve vari-
ables within the same topic, we randomly generate structured JSON data following
the topic-variable-type structure. For example, for an average treatment effect
estimation task, a topic name is firstly drawn from the stem of the tree as the data
file name, and two variables underneath are then considered as candidates for the
synthetic treatment and outcome. For causal tasks where a specific value/condition
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of a group variable is needed, we sampled a random value, either continuous or
discrete, based on the corresponding variable type.

• Question Generation: For each JSON output, we prompt the GPT-4 model to gener-
ate five related questions given the context. Utilizing a univariate prompt template,
we transform each JSON into an information-augmented prompt consisting of
task-specific descriptions, expert-written demo examples, JSON information, and
paraphrasing guidelines. More details can be found in Appendix C.2

During development, the aforementioned three courses are executed sequentially with
quality control on the correctness of generated entities/queries in between. Confused
with other statistical concepts, such as correlation and association, the current GPT model
has suboptimal performance on the causality-related task. Hence, domain experts are
involved after each step to improve the data quality with human annotation. As a result,
for the Causal-Retrieval-Bench, we collect 1,500 pairs, i.e., 300 for each causal task, of
causal questions with the corresponding JSON outputs. The detailed approach for model
fine-tuning is move to D.1 for brevity.

3.2 Step2. assign and execute causal tools

In this stage, to address user queries, we first select suitable causal learning algorithms
based on the task class determined in Step 1. Following this selection, the algorithm is
executed automatically, using both the extracted information from Step 1 and the user-
provided dataset as inputs, to get the estimated result. See Figure 4 in Appendix C.3 for a
graphical illustration. Depending on the causal task, the output result can be a causal graph
G, numerical values of estimated causal effect, or a treatment level a ∈ A. LLM4Causal
supports a variety of approaches for each causal task by leveraging well-known public causal
packages, including econml(Oprescu et al.), causalml(Chen et al., 2020), causal-learn(Zheng
et al., 2023), and CausalDM(Song et al., 2023). Additionally, we remark that LLM4Causal
is designed with flexibility, allowing for the incorporation of new methodologies through
simple integration of function scripts.

3.3 Step3. interpret the numerical output

As discussed in Section 3.2, Step 2 produces a numerical value of causal effect, a recom-
mended action level, or an adjacency matrix indicating causal relations in a causal graph.
Interpreting these outputs needs domain expertise and may not be easily understood by
a general audience lacking a causal background. To enhance user-friendliness and reduce
the learning curve of LLM4Causal, our final stage entails the interpretation of the function
output using fluent natural language. The process starts with a templated interpretation
that automatically converts the numerical output to a one-sentence summary (See Appendix
C.4.1 for examples). The final human-readable interpretation is then produced through the
utilization of the LLM4Causal, which is guided by a designed prompt that includes response
guidelines, the templated interpretation, and other relevant information (i.e., selected tools,
the original user query, etc.). The prompt instructs the LLM4Causal to avoid generating
hallucinatory content, ensure the inclusion of all relevant information, and provide cohesive
responses in the relevant context of the original question (See Appendix C.4.3 for details).
Observing that even GPT4 produces problematic interpretations (25% hallucination; see the
definition below), we further fine-tune the LLM4Causal for output interpretation. In the fol-
lowing, we outline the process used to generate the golden dataset Causal-Interpret-Bench
used for model calibration.

3.3.1 Build Causal-Interpret-Bench

Likewise to the procedures in Step 1, we first use the GPT4 model to generate a silver
dataset of interpretations, employing the templates in Appendix C.4.1 and the prompts in
Appendix C.4.3. The interpretation instruction (prompt) takes the original causal question
and intermediate results from steps 1 and 2 as inputs. Among them, user queries and
their corresponding causal task classifications from section 3.1.1 are directly reused, with
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causal tools paired using the methodology described in 3.2. As for the function outputs, the
numerical values are randomly generated in formats specific to each task. To create the final
golden dataset, we then have annotators manually revise 400 interpretations, avoiding the
three types of mistakes defined in the evaluation rubric outlined below:

• Hallucination: i) The interpretation incorrectly presents information, such as treat-
ing the response variable as the treatment variable and misinterpreting the direct
effect in mediation analysis as the total effect; ii) it includes details that are not
present in the provided context, such as commenting on the effectiveness of meth-
ods used; or iii) it incorrectly applies terms such as ‘correlation’ and ‘association’,
which are inappropriate for describing causal relations.

• Incompleteness: The interpretation lacks one or more essential components, such
as the data set, the method, the results, and / or all the variables involved.

• Non-fluency: i) The interpretation includes unexplained, meaningless variable
names (e.g., ’chg_rate’); ii) it repeats the same content multiple times; or iii) it
directly references or rephrases the guidelines in the prompt.

Although various metrics are developed to assess the factual consistency between output
summaries/interpretations and the original context (Zhang et al., 2019), as well as the
conciseness and readability of output summaries, such as the ROUGE score (Lin, 2004),
they do not meet our specific needs. The interpretation we require is highly specialized,
necessitating a clear distinction between causality and association, guaranteeing that no
crucial information is missed, and ensuring it is comprehensible to general audiences,
among other criteria. Furthermore, the current automatic evaluation based on sentence
similarity metrics or GPT-based prompts fails to adequately incorporate human preferences,
making them unsuitable for our application. Therefore, instead, we carefully defined the
three aforementioned rubrics to guide human annotation.

4 Experiments

In this section, we conduct numerical experiments to investigate the performance of
LLM4Causal on five causal decision-making tasks. For each causal task defined in Section
2, we randomly sample topics and their related variables following the process described
in Figure 3 that is different from the two aforementioned datasets. With the topics and
variables in hand, we further generate 150 synthetic data files utilizing the methodology
introduced in Section D.2. Based on these synthetic datasets, we evaluate end-to-end perfor-
mance for the proposed LLM4Causal model in Section 4.2. Furthermore, by comparing with
the partially-capable benchmark methods, i.e. GPT4, in each step, detailed ablation analyses
are conducted to provide a comprehensive understanding of the model performance in
Section 4.3 and 4.4.

4.1 Benchmark models

The Large language models for evaluation are described as follows.

• GPT4 (OpenAI, 2023b): For end-to-end evaluation, we tested ChatGPT with a
GPT4 backbone. GPT4 with the function call feature enabled are tested for ablation
analysis. By creating a function with causal task description and input arguments
requirements, we utilize the GPT 4 with the function calling feature to generate
the output, which is then transformed into JSON format based on the predicted
"causal_problem" key.

• LLM4Causal: A customized language model started from Llama-2 (7B) checkpoint
(Touvron et al., 2023b) and further fine-tuned on the Causal-Retrieval-Bench and
Causal-Interpret-Bench. To inspect if mixing two types of data will harm the
performance of each other, we present three varieties where LLM4Causal-Mixed
trained on both datasets, LLM4Causal-Retrieve trained on the retrieval bench, and
LLM4Causal-Interpret augmented by the interpret bench.
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We only have the GPT family as the benchmark as other closed-sourced LLM environments
do not have code execution ability. Furthermore, existing works (Qin et al., 2023b; Yang
et al., 2023) on tool calling do not support causal tasks or fully rely on prompting pre-trained
models for output interpretations. Preliminary experiments (see Appendix D.3) show that
pre-trained open-sourced models, such as Llamma2-7B, fail to adequately handle prompts
with our designed requirements, making the aforementioned function-calling methods
incapable of finishing the designed tasks.

4.2 Main result: end-to-end evaluation

In this experiment, we evaluate the end-to-end model performance from receiving causal-
related questions to providing interpretations that explain the causal results. With such a
setup, there is no sole "golden label" existing for each question as the correct interpretation
is not unique. To provide a comprehensive analysis, we provide the following evaluation
metrics inspired by previous works (Yang et al., 2023; Qin et al., 2023b) from three aspects:

• Pass rate (Qin et al., 2023b) calculates the proportion of user requests that could be
completed by the model. This metric measures the model’s executability and could
be calculated as Pass rate = 1

N ∑N
i=1 I{τi}, where N is the number of samples, I{τi}

is an indicator function, which equals to 1 if the model could generate an output for
the ith user request, and 0 otherwise.

• Relevance rate: it calculates the proportion of user requests that the model provides
relevant content with the correct causal task. This metric measures the model’s task
identification ability as Relevance rate = 1

N ∑N
i=1 I{γi}, where I{γi} is an indicator

function, which equals to 1 if the model could generate an output that correctly
identify the causal task for the ith user request, and 0 otherwise.

• Win rate: it calculates the proportion of user requests that the model has delivered
an accurate result. It could be calculated as Win rate = 1

N ∑N
i=1 I{ηi}, where I{ηi}

is an indicator function which equals to 1 if the model output contains the desired
true value for the ith user request, and 0 otherwise.

We evaluated the end-to-end causal-question answering performance for ChatGPT and
LLM4Causal-Mixed in Table 2. The configuration of the ChatGPT can be found in Appendix
D.4.

ChatGPT LLM4Causal-Mixed
CGL ATE HTE MA OPO CGL ATE HTE MA OPO

Pass Rate 0.17 0.77 0.73 0.27 0.87 1.00 0.93 0.83 0.86 0.83
Relevance Rate 0.10 0.60 0.43 0.20 0.43 1.00 0.93 0.83 0.80 0.83

Win Rate 0.00 0.37 0.07 0.10 0.07 0.90 0.90 0.80 0.70 0.73

Table 2: End-to-end evaluation for LLM4Causal-Mixed. Higher is better.

LLM4Causal provides a high pass rate and relevance rate for all tasks, whereas GPT4
performs well regarding pass rate but shows dichotomized performance in Relevance Rate.
The pass rate only requires the model to successfully execute its last code block without an
error, regardless of relevance. It is important to highlight that passing cases for GPT4 include
cases where GPT only printed the basic statistics of the data without in-depth analysis. For
tasks having a high Pass Rate, such as HTE and OPO, we got 42% and 51% of them to be
either superficial starter conversations or irrelevant outputs that confuse general audiences.

More importantly, LLM4Causal outperforms ChatGPT on Win Rate. On the one hand,
we can find that ChatGPT with the GPT-4 backbone can only finish 37% of the ATE task
and nearly failed all other scenarios. The main reason is the generated code either has
syntax/factual errors or attempts to load a package that is not in the environment. On the
other hand, LLM4Causal correctly answered 80.6% questions on average. The win rate
roughly reflects the combined difficulty of three steps for each task. The MA and OPO tasks
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require more parameters inferred from the question, further boosting the task complexity
and resulting in a relatively lower win rate.

By investigating the failed cases, we observe that some GPT4 responses to CGL tasks are still
informative to users but fail due to a lack of code dependencies. To further analyze the root
cause, we conducted two more ablation analyses on steps 1 and 3 to strip out the cases when
code execution is the main roadblock. Meanwhile, we compare the LLM4Causal-Mixed to
LLM4Causal-Retrieve/LLM4Causal-Interpret in the ablation analysis to explore whether
training distinct models on each dataset could enhance performance.

4.3 Ablation analysis 1: causal entity extraction

In this section, we focus the model performance on Step 1, user request interpretation, com-
paring with the benchmark methods on the synthetic data of 150 causal-related questions.
In detail, for each simulated user request, the model is asked to produce a JSON output
following the output format listed in Table 6. The accuracy of each key value is then calcu-
lated by comparing the ground true label with the model outputs. It is worth mentioning
that, we require an exact match for values of the causal task key and the dataset key since
the causal task lists are provided in the training data and the dataset names are explicitly
mentioned in the user request. For the remaining key values, we consider the value to be
correctly retrieved if it is a subset of the model output (soft-match), e.g. extracting both
"customer_satisfaction_rate" or "satisfaction" would be considered as correct if the true
label is "satisfaction_rate". We used the GPT4 with the function call feature enabled as a
benchmark method, as most existing studies (Qin et al., 2023b; Zhang, 2023) treat its output
as the golden label for local LLM development, and the detailed setup can be found in
Appendix D.4.

Metric Causal Task Dataset Nodes Treatment
GPT4-turbo 0.69(0.02) 0.99(0.01) 0.99(0.02) 0.60(0.02)
LLM4Causal-Retrieve 0.96(0.00) 0.99(0.01) 0.88(0.03) 0.94(0.00)
LLM4Causal-Mixed 0.98(0.00) 1.00(0.00) 1.00(0.00) 0.96(0.00)
Metric Response Mediator Condition All
GPT4-turbo 0.60(0.02) 0.61(0.04) 0.98(0.01) 0.77(0.01)
LLM4Causal-Retrieve 0.94(0.01) 0.90(0.05) 1.00(0.01) 0.96(0.01)
LLM4Causal-Mixed 0.97(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.00)

Table 3: Causal entity extraction performance. Higher is better.

As shown in the table 3, both LLM4Causal models can effectively solve step 1 and signif-
icantly outperform the GPT4-turbo. This is dominated by the accuracy of the causal task
identification, which blocks the model from accurately finding the necessary entities to
extract if a wrong task class is posited. Besides, a seemingly surprising fact is that the mixed
version even outperforms the retrieve-only version on all tasks. Such a phenomenon may be
due to the inclusion of the interpretation data, which also involves causal queries and their
corresponding causal tasks with interpretations, increasing the parameter weight during
the fine-tuning process of the model between task-specific queries and the corresponding
task classification.

4.4 Ablation analysis 2: interpreting causal function output

Following metrics described in section 3.3.1, we evaluate the quality of model-generated
interpretations. A double-blind experiment is conducted with domain experts judging if the
interpretation generated by each language model has issues with hallucination, fluency, or
incompleteness using the same template. The averaged error rate is reported in Table 4.

The interpretation results showed that LLM4Causal Models are comparable to or superior
to the GPT-4-turbo on both hallucination and fluency metrics. Compared with the initial
pre-trained Llama2, the model fine-tuning procedure successfully instructs it to reduce
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model task hall. inco. fluent task hall. inco. fluent
GPT4-turbo

CGL
0.08 0.00 0.28

MA
0.05 0.10 0.22

LLM4Causal-Interpret 0.05 0.03 0.28 0.10 0.15 0.18
LLM4Causal-Mixed 0.23 0.00 0.20 0.19 0.27 0.16

GPT4-turbo
ATE

0.43 0.05 0.48
OPO

0.15 0.10 0.33
LLM4Causal-Interpret 0.38 0.10 0.20 0.26 0.13 0.18

LLM4Causal-Mixed 0.28 0.00 0.50 0.21 0.13 0.10
GPT4-turbo

HTE
0.08 0.00 0.28

All
0.19 0.06 0.36

LLM4Causal-Interpret 0.05 0.03 0.28 0.17 0.10 0.20
LLM4Causal-Mixed 0.23 0.00 0.20 0.20 0.08 0.28

Table 4: Causal result interpretation performance, where hall. indicates hallucination,
inco. stands for incompleteness, and fluent is for non-fluency. Lower is better.

hallucination and makes the interpretation crisp without including sentences repeating
already-stated information. Besides, we expect our fine-tuned models to be improved,
especially for the completeness metric, by involving more golden samples for fine-tuning.

While the direct result shows the interpret-only model outperforms the mixed version, the
improvement in hallucination and fluency from gpt4 to LLM4Causal-Mixed still shows the
promise of calibrating a single LLM4Causal model as a more economical solution.

5 Conclusion

In this paper, we have proposed LLM4Causal, the first end-to-end user-friendly large
language model with causal decision-making ability. Without requiring in-depth domain
knowledge, the proposed model could be easily used for the general audience, which
remedies the weakness of the current LLM application on the causal tasks. Furthermore,
we have proposed a novel data generation pipeline by utilizing GPT-based LLM models
and human annotations to improve the data quality in terms of both data variety and
accuracy. From the numerical experiments, we have shown that calibrating a single LLM to
accomplish such an end-to-end task is possible. Fine-tuned to interpret users’ query and
function outputs, LLM4Causal has shown superior performance in causal entity extraction
and function result interpretation.

To conclude, we briefly discuss some limitations followed by possible future directions.
First, the proposed model focuses on five major causal tasks, and it is worth mentioning
that our framework could be easily extended to support more causal tasks with more
methodologies. Second, in this paper, we only leverage LLM’s tool-usage capabilities to
utilize statistical tools for data analysis. Concurrently, the internal knowledge acquired
by the LLM during its pre-training process has proved advantageous for common sense
retrieval. The integration of the LLM’s tool-usage capabilities with its inherent knowledge
base could enhance its performance on statistical causal tasks. Furthermore, integrating
LLM’s internal knowledge for general reasoning might enable the model to discern textual
causality between descriptive events in the conversation (Rashkin et al., 2018; Ning et al.,
2019; Wang et al., 2023), a concept related to, yet distinct from, the causality examined in this
paper. Lastly, a potential direction to explore is the interactive potential of the framework
so that the proposed method could iteratively adapt to users’ feedback, which could be
beneficial in following users’ preferences for causal tools, encouraging users to collect
necessary information when their input is not enough, and enhancing the interpretations
based on their extra input in the problem context.
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A Related work

In this section, we briefly review the literature that are closely related to our paper, which
includes causal decision-making methods, LLM with causal capabilities, enhancement
methods for pre-trained LLM, as well as large language models with tool usage.

A.1 Causal decision making

The decision-making process, crucial in diverse real-life contexts, fundamentally relies on
understanding counterfactual scenarios, thereby emphasizing the significance of causal
analysis in decision-making. Recently, Song et al. (2023) proposed a comprehensive frame-
work known as Causal Decision Making (CausalDM, Song et al., 2023), which examines
various decision-making stages through a causal lens and establishes connections among
the relevant literature under the same conceptual umbrella. In general, the body of current
literature can be classified into three basic categories: i) causal structure learning (CSL)
(Spirtes et al., 2000; Shimizu et al., 2006; Zheng et al., 2018; Yu et al., 2019; Glymour et al.,
2019), which focuses on unraveling the complex causal relationships among variables, is
pivotal for pinpointing vital factors that influence outcomes, either directly or indirectly;
ii) causal effect learning (CEL) (Yao et al., 2021; Hicks & Tingley, 2011), which is primarily
concerned with quantifying the effects resulting from different causal paths within a known
causal structure, typically concentrating on measuring the difference between outcomes
of receiving versus not receiving treatments; and iii) causal policy learning (CPL), which
involves evaluating various treatment strategies and developing optimal action plans, fre-
quently investigated as dynamic treatment regime problems (Chakraborty & Murphy, 2014)
or conceptualized within the framework of reinforcement learning (Sutton & Barto, 2018;
Zeng et al., 2023).

A.2 Large language models with causal capabilities

The rapid development of LLMs has inspired some innovative methods for causal graph
discovery. Kıcıman et al. (2023) is one of the pioneering works in this field, introducing
a method that relies solely on "meta-data" (variable names) instead of specific observed
variable values. Using LLMs like GPT-3.5 and GPT-4, this approach detects causal rela-
tionships between variable pairs through direct querying. Similarly, Long et al. (2023) use
GPT-3 to discover causal relationships from variable names within the medical domain,
motivated by the capacity of LLM to extract knowledge from the medical texts on which it
was trained. However, as Long et al. (2023) highlighted, the efficacy of this type of approach
relies heavily on the prompts used for LLM queries and the initial training corpus of the
LLM. In a further development, Ban et al. (2023) proposes to integrate the causal relations
retrieved directly from LLMs and traditional score-based causal discovery methods. In
their framework, the LLM’s causal relations are utilized to guide the optimization process
of score-based methods as soft or hard constraints, enhancing the performance compared
to using either LLMs or traditional methods alone. Gupta et al. (2023), on the other hand,
apply LLMs in selecting causal discovery methods for a specific dataset rather than directly
discovering the causal relations on the dataset given. Their framework is claimed to be able
to select the causal discovery method with the best F1 score out of a fixed set of candidates.
Furthermore, Zhang et al. (2023) discusses the strengths and limitations of LLMs for causal
discovery. Although LLMs have advantages in detecting causal relationships within the
scope of their training data, their performance suffers when confronted with unfamiliar
domains. It is worth mentioning that our approach differs from the previously mentioned
studies, as none of them introduces a mechanism to automatically invoke data-based causal
discovery methods, nor do they have a mechanism to translate the output into natural
languages that general audiences can understand.

A.3 Enhancing pre-trained large language models

Pre-trained large language models often contain billions of parameters that impose chal-
lenges when fine-tuning the entire model to adapt to downstream tasks. Two classes of
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research are developed to reduce such a computational burden. A straightforward but
effective workaround is freezing most parts of the model and only tuning a small portion of
the parameters, which includes additive methods and reparametrization-based methods
(Lialin et al., 2023). Additive methods, such as adapters (Houlsby et al., 2019), augment
the pre-trained model with extra parameters and only train the newly added parameters.
Reparametrization-based methods, such as LOw-Rank Adaptation method (LoRA) (Hu
et al., 2021), reduce the number of trainable parameters utilizing low-rank representations.
To improve the training efficiency, our proposed method utilizes the LoRA method (Hu
et al., 2021), which reduces trainable parameters by freezing the pre-trained model and
optimizing the rank-decomposition matrices.

Another line of research has demonstrated that template-based prompting can also notably
enhance the performance of LLMs. Commonly used prompt types include cloze question
style prompts, which consist of string templates with placeholders for the LLM to fill in
(Rajagopal et al., 2021; Cui et al., 2021), and prefix style prompts that prepend tokens to
the input texts of LLMs (Li & Liang, 2021; Lester et al., 2021). The latter is particularly
effective for generative tasks, such as generating interpretations of numeric outputs from
causal models in our LLM4Causal framework (Liu et al., 2023). A common way to cre-
ate such prompts is to design them manually and such prompts usually include a few
human-generated exemplars of input-output pairs for LLMs (Chung et al., 2022). These
human-crafted prompts have improved performance across various tasks such as question
answering and text classification (Brown et al., 2020; Schick & Schütze, 2020). Recently, Wei
et al. (2022) demonstrated that prompting language models to add reasoning steps before
the actual output significantly enhances the LLM’s performance on arithmetic, common-
sense, and symbolic reasoning tasks. To reduce manual effort in this process, some studies
have also explored automation in prompt design. For instance, Shin et al. (2020) discretely
optimized the prompt by adding tokens from a certain word collection, while Haviv et al.
(2021) focuses on automatic paraphrasing of given manually designed prompts and select-
ing the most effective one from these variations. In our LLM4Causal framework, we utilize
prefix style prompts with manually designed input-output examples to effectively collect
data for fine-tuning LLMs to classify user queries into different causal tasks and interpret
the numerical results from causal tools. The satisfying performance of our framework has
demonstrated the effectiveness of our carefully crafted prompts.

A.4 Large language model with tool usage

Despite LLM’s impressive performance in natural language processing tasks, some inherent
limitations remain. Examples include the inability to perform precise arithmetic operations
(Patel et al., 2021), lack of access to up-to-date information (Komeili et al., 2021), and
ignorance of temporal contexts (Dhingra et al., 2022). To overcome these impediments, a
natural solution is to enable LLM to utilize tools, such as calculator, search engine, and
calendar, to accomplish complex tasks (Qin et al., 2023a). In particular, Schick et al. (2023)
proposed Toolformer, a self-supervised language model that could use external tools by
calling relevant APIs, without relying on large human-annotated data. With a few tool-usage
demonstrations in the instruction prompt, Toolformer is trained to learn which, when, and
how APIs could be called to complete a variety of tasks, including question answering,
Wikipedia search, and mathematical reasoning. Based on the toolformer architecture, Graph-
Toolformer Zhang (2023) is proposed to teach LLMs to use tools on graph reasoning tasks
with ChatGPT-augmented prompts (OpenAI, 2022). Moreover, GPT4tools (Yang et al.,
2023) are proposed to facilitate LLMs in accomplishing visual-related tasks by generating
prompts with multi-modal contexts, and ToolLLM (Qin et al., 2023b) further generalizes the
tool-use capability of LLMs to master over 16,000 real-world APIs and enable multiple tool-
usage for each query. Focusing on developing frameworks for calling general Application
Programming Interfaces (APIs), these methods cannot be directly applied to causal tasks
without a well-developed causal API, which currently is not available. On the contrary, our
proposed approach is specifically designed for causal tasks based on a framework that is
most closely related to Toolformer.
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B Detailed problem formulation

In this paper, we aim to augment existing pre-trained LLMs with the proficiency to address
causal inquiries, thereby opening the door to causal decision-making processes for general
audiences. As introduced previously, causal decision-making tasks can be classified into
three categories: 1) causal structure learning (CSL), 2) causal effect learning (CEL), and 3)
causal policy learning (CPL). Each of these primary categories consists of multiple tasks,
and our study focuses on five key tasks that are particularly relevant to the interests of our
target audience. Let us denote the user query as Q, the dataset to be analyzed as D, the node
set whose interrelationship is of interest as X , the treatment variable as A, the response
variable as Y , the mediator variables as M, and the condition of the subgroup of interest as
S . The five causal tasks are listed as follows and summarized in Table 5.

Task Dataset Nodes Treatment Response Mediator Condition Function Output Format
(D) (X ) (A) (Y) (M) (S)

CGL ✓ ✓ Causal Graph (G)
ATE ✓ ✓ ✓ Numeric Value
HTE ✓ ✓ ✓ ✓ Numeric Value
MA ✓ ✓ ✓ ✓ Numeric Values
OPO ✓ ✓ ✓ ✓ Treatment Level

Table 5: Constructions of causal tasks

[CSL] Causal Graph Learning (CGL): Causal graph learning, as its name suggests, involves
discovering the causal relationships among variables. This task is crucial for addressing
causal queries such as identifying causal links between pairs of variables, determining the
variables that influence a particular variable of interest, and quantifying the number of
causally connected variable pairs. Given Q and D, our goal is to learn and report a directed
graph, denoted as G, that encapsulates the entire causal structure among variables in X ,
which is either explicitly specified in Q or, by default, encompass all variables in D.

[CEL] Average Treatment Effect Estimation (ATE): When the treatment and the target
response variable have already been determined, the primary interest lies in quantifying the
intervention’s effect size. The objective of the ATE task is to evaluate the average effect of A
on Y by measuring the difference in counterfactual outcomes between the treated group and
the control group. Let Y(1) denote the response that would be observed if the treatment was
applied, and Y(0) denote the response that would be observed if no treatment is applied.
Using the provided dataset D, the treatment variable A, and response variable Y defined in
Q, our objective is to execute appropriate ATE learners to calculate the E[Y(1)−Y(0)].

[CEL] Heterogeneous Treatment Effect Estimation (HTE): Similar to the ATE tasks, the
HTE tasks also aim to measure effect sizes. However, HTE tasks diverge by focusing on
generating nuanced insights tailored to specific subgroups or individuals, characterized
by specific conditions. Using the dataset D, and given the treatment variable A, response
variable Y , and specific conditions S as outlined in Q, we aim to call suitable HTE learners
to evaluate the conditionally expected difference E[Y(1)−Y(0)|S ].
[CEL] Mediation Effect Analysis (MA): Mediators, which act as channels for transmitting
treatment effects to the response, are prevalent in various real-world applications. With the
provided dataset, and given the A, Y , and M specified in Q, MA’s objective is to calculate
both the direct effect E[Y(1,M(0))−Y(0)] and the indirect effect E[Y(1)−Y(1,M(0))].
Here, M(·) is analogously defined to Y(·), and Y(a,M(a′)) denote the response that would
be observed if treatment a was applied and the mediator set to the level that would be
observed if treatment a′ was applied.

[CPL] Off-Policy Optimization (OPO): As the name suggests, OPO task is a one-stop
shop for decision-makers. The goal of OPO is to identify the optimal action (i.e., treatment
level) that optimizes the expected response to be obtained given the current circumstances.
Utilizing the dataset D provided, with A, Y , and S explicitly specified in Q, we aim to select
suitable policy learners to determine the optimal action a∗ = argmaxaE(Y(a)|S), which
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would then be recommended to the user. We can provide either single-stage or multi-stage
recommendations depending on the data structure of D.

To tackle the aforementioned diverse tasks using a single LLM, we introduce LLM4Causal.
By fine-tuning pre-trained LLMs, LLM4Causal is capable of comprehending causal queries,
applying appropriate causal tools to analyze the provided tabular dataset, and providing
answers by interpreting numerical results in straightforward and fluent language. More
technical details of LLM4Causal is discussed in Section 3.

C Supplimentary methodology

C.1 Demonstration input-output pairs

Following procedures described in 3.1, which condition on the task classification, extract at-
tribute values that are necessary for the expert tools to address the causal problem. For each
input question, the corresponding output is a structured JSON with the "causal_problem"
key and other task-specific keys, e.g. "dataset" (D), "treatment" (A), "outcome" (Y). Some
simulated input queries with the corresponding JSON output are shown in Table 6.

Task Example Input Query Expected JSON Output
CGL Does the disaster_risk_reduction.csv

dataset provide evidence of a direct link
between building code compliance rate
and the effectiveness of disaster pre-
paredness campaigns?

{’causal_problem’: [’CSL’,
’CGL’], ’dataset’: [’disas-
ter_risk_reduction.csv’], ’nodes’:
[’building_code_compliance_rate’,
’disaster_preparedness_campaigns’]}

ATE How does the labor force participation
rate (labor_participation_rate) in em-
ployment.csv contribute to changes in
wage growth (wage_increase)?

{’causal_problem’: [’CEL’, ’ATE’],
’dataset’: [’employment.csv’], ’treat-
ment’: [’labor_participation_rate’], ’re-
sponse’: [’wage_increase’]}

HTE Based on the findings in the cybersecu-
rity.csv dataset, what impact does the
presence of data breach incidents have
on cybersecurity investment under a
group condition where the cybersecu-
rity readiness index is set at 0.5 (readi-
ness_index=0.5)?

{’causal_problem’: [’CEL’, ’HTE’],
’dataset’: [’cybersecurity.csv’], ’treat-
ment’: [’data_breach_incidents’], ’re-
sponse’: [’cybersecurity_investment’],
’condition’: [(’readiness_index’, 0.5)]}

MA Is there substantial evidence in retail.csv
indicating that the pathway from retail
employment to the e-commerce penetra-
tion rate is mediated by the consumer
confidence index?

{’causal_problem’: [’CEL’, ’MA’],
’dataset’: [’retail.csv’], ’treatment’: [’re-
tail_employment’], ’response’: [’e-
commerce_penetration_rate’], ’media-
tor’: [’consumer_confidence_index’]}

OPO If the poverty rate stands at 0.32
(poverty_ratio = 0.32), what recom-
mendations can be derived from the
poverty.csv dataset on adjusting social
assistance coverage to positively impact
the gini coefficient?

{’causal_problem’: [’CPL’, ’OPO’],
’dataset’: [’poverty.csv’], ’treatment’:
[’social_assistance_coverage’], ’re-
sponse’: [’gini_coefficient’], ’condition’:
[(’poverty_ratio’, ’0.32’)]}

Table 6: Example Query Inputs with expected JSON Outputs

C.2 Details about step 1

The overall cloze template contains 5 different missing pieces. Among them, the task
requirement is a verbal description of the task like the role definition of ChatGPT. JSON
information is followed by listing out each item line by line. Further, some randomly drawn
human-written samples, split into two parts, are added as demonstrations for the GPT
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model to further understand what kind of output we need. Finally, we add the requirements
for the output in the last part for better control of the GPT output.

Given the details below, generate five diverse and plain-worded questions
[Task requirements]:
- [JSON information]
-----------------------------------------------------------
Here are some examples:
Example 1: given the following information:
- [Demonstration 1 part A]

The corresponding questions can be:
- [Demonstration 1 part B]

-----------------------------------------------------------
[Requirements]

Below is an example of the full instruction for Causal Structure Learning data generation
with information filled in:

Given the details below, generate five diverse and plain-worded questions
asking about the existence
of causal effects between interested variables:
- Dataset name: social_media.csv
- Interested variable: number of social media users, user demographics
-----------------------------------------------------------
Here are some examples:
Example 1: given the following information:
- Dataset name: employee_data.csv
- Interested variable: all variables

The corresponding questions can be:
- Is there a method to discover every direct influence present in
the employee_data.csv dataset?
- Within the employee_data.csv dataset, how many instances of one factor
directly causing another
can be observed?
- How many causal connections can be identified in the
employee_data.csv dataset?

Example 2: given the following information:
- Dataset name: job_data.csv
- Interested variable: education (edu), job satisfaction
(job_satisfaction)

The corresponding questions can be:
- Within the job_data.csv dataset, is there causal links between education
(edu) and job satisfaction
(job_satisfaction)?
- Does the job_data.csv data reveal any direct relationships between
education (edu) and job
satisfaction (job_satisfaction)?
- Are there discernible causal links between education (edu) and job
satisfaction (job_satisfaction) in the job_data.csv dataset?

Example 3: given the following information:
- Dataset name: weather_data.csv
- Interested variable: temperature (temp), humidity (humid), rainfall
(rain), local latitude (lat), local altitude (alt)
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The corresponding questions can be:
- What are causal links among temperature (temp), humidity (humid),
rainfall (rain), local latitude (lat), and local altitude (alt) in dataset
weather_data.csv?
- Within the dataset weather_data.csv, what is the nature of the causal
links among temperature (temp), humidity (humid), rainfall (rain),
local latitude (lat), and local altitude (alt)?
- In the weather_data.csv dataset, what causal connections can be
identified among temperature (temp), humidity (humid), rainfall (rain),
local latitude (lat), and local altitude (alt)?

-----------------------------------------------------------
Ensure that the questions employ a mix of different phrasing and diverse
sentence structures.
Ensure that the questions do not mention correlation and association.
Ensure that the questions place a strong emphasis on the effect existence
or the total number.
Ensure that all variable names under interested variables field exist in
all five quetsion.
Ensure that the provided interested variable names are integrated
naturally into the questions without discarding or altering any part of them.

Specifically, we implement GPT prompts in this step by a modulized template to improve
components’ reusability. Structurally speaking, the prompt starts with a description of
the question generation task and the corresponding causal task. It is then followed by
information extracted from a JSON from the previous course as the contextual component
for the generated question. Subsequently, randomly sampled demonstrations are included
as the sample illustrations and output restrictions are itemized as the final remark.

Using the example of CGL task in Table 6 as an illustration, the output JSON has two task-
specific keys conditioned on its inferred classification as a CGL task: "dataset" with the value
"disaster_risk_reduction.csv," and "nodes", which includes ’building_code_compliance_rate’
and ’disaster_preparedness_campaigns’.

C.3 Details about step 2

Figure 4 describes the procedure of step 2 workflow, where we utilize the output from step 1
to select an appropriate input function as well as its necessary input fields to conduct causal
analysis.

C.4 Details about step 3

C.4.1 Template outcome

The one-sentence summary of the function outcome uses natural language to express the
same meaning. The benefit of using such templates is to aid LLM in understanding this
information, so it can better utilize the sentence (compared with just a number) to answer
the initial question.

For the CSL task where the total outcome is an adjacency matrix of variables of interest,
we picked the top K causal relationships defined by the significance of the independence
test. The summary would contain two sentences, the first sentence is "There are {K} pairs of
significant causal relationships." where K is the number of detected (equal or less than 2)
causal links. In the second sentence, we list out these top causal paths by the prompt "The
{X} would causally influence the {Y}" where X and Y are two variable names of interest.

As for the ATE and the HTE tasks, we expressed the learned effect size by "The average
treatment effect of setting {A} as 1 on the {Y} is {effect size}." and "The heterogeneous
treatment effect of setting {A} as 1 on the {Y} is {effect size} for those having {X} = {value}".
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Figure 4: Causal tool assignment and execution in the second step. The algorithm is
executed automatically, using both the extracted information from Step 1 and the user-
provided dataset as inputs, to get the estimated result

Here A, Y, and X denote the treatment, outcome, and condition variable names separately.
The effect size is the learned effect size for either ATE or HTE, and the value in HTE is the
covariate condition.

The Mediation analysis (MA) task has three numerical outputs: a total effect indicating the
total scale of the causal effect from a treatment variable A to the outcome Y, a mediation
effect that goes through mediation variable M (A->M->Y), and a direct effect only from
A->Y. Two separate sentence prompts, "The overall impact of the {A} on the {Y} is {total
effect}." and "This comprises a direct effect of {direct effect} from the {A} to the {Y}, and an
indirect effect of {mediation effect}, mediated by the {M}."

Finally, for CPL we used the prompt "The best action of the {A} is {A} = {a recommended
value}." because here we focus on the policy learning task and a recommended treatment
given a condition is the function outcome.

One example prompt filled with variable names of each causal task is provided in the code
block below.

CSL: "There are 3 pairs of significant causal relationships. The gender_index
would causally influence the diversity_index. The gender_index would
causally influence the LGBTQ_inclusion. The disability_
inclusion_index would causally influence the LGBTQ_inclusion."

ATE: "The average treatment effect of setting homeownership_rate as 1
on the affordability_index is 0.45."

HTE: "The heterogeneous treatment effect of
setting professional_athlete_salaries as 1 on the event_attendance is -1.41
for those having medal_tally = 0.79."

MA: "The overall impact of the age_distribution on the gender_ratio
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is 16.17. This comprises a direct effect of 9.43 from the age_distribution
to the gender_ratioand an indirect effect of 6.74, mediated by
the migration_speed."

CPL: "The best action of the professional_athlete_salaries is
professional_athlete_salaries = C."

C.4.2 Procedure

The procedure for step 3, which is similar to step 1, is illustrated in figure 5.

Figure 5: Illustration of building Causal-Interpret-Bench in the Third Step. Details about
used prompts can be found in Appendix C.4. In template 3 we fixed the introduction
and the final restriction parts because the instruction is about interpretation, and the re-
maining contextual information is filled differently every time when calling the GPT API.
Similar to the idea of section 3.1.1, the general introduction and the restriction on outputs
are reused across different causal problems. We feed the original causal query, the causal
task associated with the query, and the employed methodology with corresponding func-
tion outputs to the prompt as the interpretation context.

C.4.3 Prompt

The instruction prompt for GPT and other LLMs to generate interpretation is as follows,
which lists out requirements stated in the evaluation criteria 3.3.1:

(A) is a list of information that includes i) the original causal
problem, ii) the class identification of the causal problem, iii)
the used method, and iv) the outcomes.
Interpret the results in (A) in response to the original causal problem,
using neutral language to paraphrase it more fluently and engagingly.
The output summary is (I)
Guidelines:
1: (I) must concentrate on interpreting the result provided in (A)
in response to the problem.
2: (I) must include all the results, methods, and dataset name in (A).
3: (I) may include jargon from (A), but it should not include any
other technical terms
not mentioned in (A).
4: The problem in (A) is a causal problem, thus (I) should not
interpret the results as correlation or association.
5: (I) should use a diversified sentence structure that is also
reader-friendly and concise, rather than listing information one by one.
6: Instead of including the problems, (I) should use the original
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problem to develop a more informative interpretation of the result.
7: (I) has to avoid using strong qualifiers such as 'significant'.
8: (I) has to be {n_sentences} sentences or less long, with no
repetition of contents.
9: (I) must not comment on the results.
(A):
i) original causal problem: {query}
ii) class identification of the causal problem: {problem}
iii) used method: {method}
iv) outcomes: {function_out}
(I):

D Experiment configuration

D.1 Fine-tuning a large language model

After collecting a custom dataset containing causal questions and interpreted intents in a
structured format, we fine-tune the LLaMA 2 pre-trained model checkpoints for learning
underlying language patterns. We denote the input-output pairs as D = {qi, ji} for i =
1, 2, ..., N, where both inputs qi and outputs ji = {ci,Vi} can be separated and padded into
word tokens qi = [qi1, qi2, ..., qiM] and ji = [ji1, ji2, ..., jiL] with length M and L respectively.
A language model checkpoint is denoted as G which takes the language sequence as input
and returns the word probability distribution P(·) for each word for each position with
a total length of L. The possible input-output word token is limited in a finite dictionary
V = {w1, w2, ..., wV} with a cardinal of V. We optimize the causal language modeling loss
ℓ, a cross-entropy loss on the token level, with S sample of augmented dataset S ′ ⊂ S as
follows:

ℓ(G,S ′) =
1
S′

S′

∑
i=1

ℓ(G(qi), ji)

=
1

S′L

S′

∑
i=1

L

∑
k=1

cross-entropy(G(qi)k, jik)

=
1

S′L

S′

∑
i=1

L

∑
k=1

V

∑
l=1

−I(jik = wl)log(P(G(qi)k) = wl),

where the G(qi)k = tk denotes the output word probability distribution at the k-th position,
and the cross-entropy loss for that position can be calculated by the logarithm of the
probability of word token jik. Minimizing such loss function can encourage the probabilistic
model G to generate similar output to ji when given an input of qi.

We implement the Low-Rank Adaptation (LoRA) (Hu et al., 2021) for parameter-efficient
fine-tuning since the pre-trained checkpoint has more than 7 billion parameters and it is
computationally inefficient. Instead of changing all parameters in the model, LoRA only
tunes adapters’ weight and fixes the entire pre-trained checkpoint. Empirical study shows a
relatively small number of ranks like 16 perform very well in our use case.

D.2 Data generation methodology

As is summarized in Section 2, there are 5 causal decision-making tasks involved in our
framework: CGL, ATE, HTE, MA and OPO. In numerical experiments, we need to automati-
cally generate the training datasets as well as golden labels for these causal decision-making
tasks.

For CGL, the training data X ∈ RJ×n with sample size n and variable number J is generated
following the linear structural equation model X = BT

g X + ϵ, where Bg is the adjacency
matrix of a directed acyclic graph (DAG) that represents the causal graph and ϵ is the matrix
of random errors for data. In particular, the true causal graph Bg is an upper-triangular
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matrix with real number entries. The non-zero entries are randomly masked with edge
density Pmask when generating each dataset, such that the edges in the true causal graph
won’t be extremely dense. Specifically, we set Pmask = 0.5 such that 50% edges are randomly
masked out. The random noises in ϵ are sampled from a Gaussian distribution. Following
this data generation step, data X is input to LLM4Causal for causal graph learning and the
resulting estimated causal graph will be evaluated against the true causal graph Bg .

For the tasks of ATE, HTE, OPO and MA, the training data is generated based on the
following linear models. For HTE and ATE, all features, Sj ∈ S , j = 1, 2, · · · , J are generated
independently following normal distributions N(µj, σ2

j ). The treatment A ∈ A is sampled
from a Bernoulli variable with a probability of 0.5, which comes from a fixed behavior
policy that randomly selects actions. The response Y ∈ Y is then generated using Y =

Aβ1,0 + ∑J
j=1 Sjβ1,j + ∑J

j=1 ASjβ2,j + ϵy with random noise ϵy ∼ N(µy, σ2
y ). For each dataset,

the parameters of µy, σy, µj, σj, β1,j, β2,j are randomly generated from real numbers. For the
OPO task, the generating mechanisms for state variables Sj, action variable A, and reward Y
are the same as HTE, while another linear model is utilized for generating state transitions
between stages. Denote St = {St,1, St,2, · · · , St,J} as the vector of state variables in stage t, the
state variables in the next stage are then generated using St+1 = Bs,aSt, where Bs,a ∈ RJ×J

represents the transition kernel under action of a = 0, 1, and all terms in it are randomly
generated from real numbers. For MA, the response variable is generated from a linear
model of exposure variable A and mediator variable M, such that Y = Aβ1 + Mβ2 + ϵy

with ϵy ∼ N(µy, σ2
y ). In particular, M = Aβm + ϵm with ϵm ∼ N(µm, σ2

m). In each dataset,
the parameters β1, β2, µy, σy, µm, σm are sampled from real numbers. In particular, when the
mediation effect is negligible, βm is close to 0, otherwise βm is significantly diverged from 0.

D.3 Preliminary experiment

The non-cherry-picked performance of the Llama-2 (7B) using the same prompt is as follows.
We can find that Llama-2 as a foundation model cannot follow the prompt instructions at all.
It either repeats the instructions in the response or includes non-related information clearly
from other sources that are not related.

> Question 1 from the user:
Is there a notable difference in the legislation passed when there's a
higher voter turnout, according to the political_engagement.csv file?
> Answer 1 from Llama-2-7b-hf:
The average treatment effect of setting voter_turnout as 1 on the
legislation_passed is 1.2. This means that when the voter turnout
rate is 100%, the average number of bills passed is 1.2 times more
than when the voter turnout rate is 0.

### Problem 2

Function Input: (B) is a list of information that includes i) the
original causal problem, ii) the class identification of the causal
problem, iii) the used method, and iv) the outcomes.
Interpret the results in (B) in response to the original causal problem,
using neutral language to paraphrase it more fluently and engagingly.
The output summary is (II).
Guidelines:
1: (II) must concentrate on interpreting the result provided in (B)
in response to the problem.
2

> Question 2 from the user:
Can an increase in retail revenue lead to a significant change in
the store count, as shown in the retail_sales.csv data?
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> Answer 2 from Llama-2-7b-hf:
Increasing retail revenue by $1000000 will lead to a decrease of 5.69
stores on average.
</s>

D.4 GPT setup

We used the following prompt in the ChatGPT Custom Instruction section. Note that this
provides many hints to connect the questions with the correct function, which is not scalable
and can complicate the issue. Our golden dataset does not need such clues.

I like to perform causal analysis and decision-making on datasets.
Do not perform correlation analysis or simple linear regression but
select one method below:
1. PC algorithm for causal graph learning,
2. doubly robust estimator for average treatment effect,
3. S-learner for heterogenous treatment effect when the question
mentioned a specific value of some variables,
4. causal mediation analysis,
5. Q-Learning for policy optimization (maximize or minimize a variable)
when asked for the best option with a specific value mentioned.

For ablation analysis 1 (Table 3), we utilized the function calling feature with self-written
schema (an example of ATE schema is attached). As for ablation analysis 2 (Table 4), the
same prompt as LLM4Causal is fed to the chat completion API for interpretation generation.

{
"type": "function",
"function": {

"name": "causal_graph_learning",
"description": "Return the causal structure from a dataset with variables of interest",

"parameters": {
"type": "object",
"properties": {

"dataset": {
"type": "string",
"description": "The name of the input dataset",

},
"nodes": {

"type": "string",
"description": "name of the interested variable separated by commas, if no variable

name is specified then put all_variables as the placeholder",
},

},
"required": ["dataset", "nodes"],

},
}

},
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