
Under review as a conference paper at ICLR 2017

FAST CHIRPLET TRANSFORM TO ENHANCE CNN MA-
CHINE LISTENING - VALIDATION ON ANIMAL CALLS
AND SPEECH

Hervé Glotin
DYNI, LSIS, Machine Learning & Bioacoustics team
AMU, University of Toulon, ENSAM, CNRS, IUF
La Garde, France
glotin@univ-tln.fr

Julien Ricard
DYNI, LSIS, Machine Learning & Bioacoustics team
AMU, University of Toulon, ENSAM, CNRS
La Garde, France
julien.ricard@gmail.com

Randall Balestriero
Department of Electrical and Computer Engineering
Rice University
Houston, TX 77005, USA
randallbalestriero@gmail.com

ABSTRACT

The scattering framework offers an optimal hierarchical convolutional decompo-
sition according to its kernels. Convolutional Neural Net (CNN) can be seen as
an optimal kernel decomposition, nevertheless it requires large amount of training
data to learn its kernels. We propose a trade-off between these two approaches:
a Chirplet kernel as an efficient Q constant bioacoustic representation to pretrain
CNN. First we motivate Chirplet bioinspired auditory representation. Second we
give the first algorithm (and code) of a Fast Chirplet Transform (FCT). Third, we
demonstrate the computation efficiency of FCT on large environmental data base:
months of Orca recordings, and 1000 Birds species from the LifeClef challenge.
Fourth, we validate FCT on the vowels subset of the Speech TIMIT dataset. The
results show that FCT accelerates CNN when it pretrains low level layers: it re-
duces training duration by -28% for birds classification, and by -26% for vowels
classification. Scores are also enhanced by FCT pretraining, with a relative gain
of +7.8% of Mean Average Precision on birds, and +2.3% of vowel accuracy
against raw audio CNN. We conclude on perspectives on tonotopic FCT deep
machine listening, and inter-species bioacoustic transfer learning to generalise the
representation of animal communication systems.

1 INTRODUCTION

Representation of bioacoustic sequences started with ’Human’ speech in the 70’. Speech automatic
processing yields to the efficient Mel Filter Cepstral Coefficients (MFCC) representation. Today new
bioacoustic representation paradigms arise from environmental monitoring and species classification
at weak Signal to Noise Ratio (SNR) and with small amount of data per species.

Several neurobiological evidences suggest that auditory cortex is tuned to complex time varying
acoustic features, and consists of several fields that decompose sounds in parallel (Kowalski et al.,
1996; Mercado et al., 2000). Therefore it is more than reasonable to investigate the Chirplet time-
frequency representation from acoustic and neurophysiological points of view.

Chirps, or transient amplitude and frequency modulated waveforms, are ubiquitous in nature systems
(Flandrin (2001)), ranging from bird songs and music, to animal vocalization (frogs, whales) and
Speech. Moreover the sinusoidal models are a typical attempt to represent audio signals as a
superposition of chirp-like components. Chirp signals are also commonly observed in biosonar
systems.

1

Under review as a conference paper at ICLR 2017

The Chirplet transform subsumes both Fourier analysis and wavelet analysis, providing a broad
framework for mapping one-dimensional sound waveforms into a n-dimensional auditory parameter
space. It offers the processing described in different auditory fields, i.e. cortical regions with
systematically related response sensitivities. Moreover, Chirplet spaces are highly over-complete
because there is an infinite number of ways to segment a time-frequency plane, the dictionary is
redundant: this corresponds well with the overlapping, parallel signal processing pathways of auditory
cortex.

Then we suggest that low level CNN layers shall be pretrained by Chirplet kernels. Thus, we define
and code a Fast Chirplet Transform (FCT). We conduct validation on real recordings of whale and
birds, and on Speech (vowels subset of TIMIT). We demonstrate that CNN classification benefits
from low level layers FCT pretraining. We conclude on the perspectives of tonotopic FCT machine
listening and inter-species transfer learning.

2 FORMAL DEFINITION OF CHIRPLET

A chirplet can be seen as a complex sinus with increasing or decreasing frequency over time modulated
by a Gaussian window to have a localized support in the time and Fourier domain. It is a broad
class of filters which includes wavelets and Fourier basis as special cases. As a result, and as
presented in (Mann & Haykin, 1991; 1992), the Chirplet transform is a generalization of many
known time-frequency representations. We first present briefly the wavelet transform framework
to extend it to Chirplets. Given an input signal x one can compute a wavelet transform (Mallat,
1999) through the application of multiple wavelets ψλ. A wavelet is an atom with localized support
in time and frequency domain which integrates to 0. The analytical support of the wavelets is
not compact but they are very well localized. It can be considered compact in the applied case
where roundoff error lead to 0 quickly after moving around the center frequency. The whole filter
bank is derived from a mother wavelet ψ0 and a set of dilation coefficients following a geometric
progression defined as Λ = {21+j/Q, j = 0, ..., JQ − 1} with J being the number of octave to
decompose and Q the number of wavelets per octave. As a result, one can create the filter-bank as the
collection {ψ0(tλ) := ψλ, λ ∈ Λ}. After application of the filter-bank, one ends up with a time-scale
representation, or scalogram, Ux(λ, t) := |(x ? ψλ)(t)| where the complex modulus was applied in
order to remove the phase information and contract the space. It is clear that a wavelet filter-bank is
completely characterized by its mother wavelet and the set of scale parameters. Generalizing this
framework for Chirplets will be straightforward by now allowing a nonconstant frequency for each
filter. As for wavelets, filters are generated from a Gaussian window determining the time support
however the complex sinus has nonconstant frequency over time with center-frequency fc. Since the
scope of the parameters leads infinitely many different possible filters, we have to restrain ourselves,
and thus create only a fixed Chirplet filter-bank allowing fast computations. The parameters defining
these filters include the time position tc, the frequency center fc, the duration ∆t and the chirp rate c:

gtc,fc,log(∆t),c(t) =
1√√
π∆t

e
− 1

2
(t−tc)2

∆2
t ej2π(c(t−tc)2+fc(t−tc)). (1)

3 PROPOSITION OF A FAST CHIRPLET TRANSFORM (FCT)

The parameter space is basically of infinite dimension. Similarly to continuous wavelet transform
however, it is possible to use some a priori knowledge in order to create a finite bank-filter. For
example, wavelets are generated by knowing the number of wavelets per octave and the number
of octave to decompose. As a result, we used the same motivation in order to reduce the number
of possible Chirplets required. The goal here is not to compute an invertible transform, but rather
provide a redundant transformation highlighting transient structures which are not the same tasks
as discussed in (Coifman et al., 1992; Meyer, 1993; Coifman et al., 1994). As a result, we keep the
same overall framework as for wavelets with the Q and J parameters. For example parameters for
bird songs in this paper are J = 6 and Q = 16 with a sampling rate (SR) of 44100Hz, and J = 4
and Q = 16 on speech and Orca with SR=16 kHz). Finally, since we are interested in frequency
modulations, we compute the ascendant and descendant chirp filters as one being the symetrized
version of the other. As a result, we use a more straightforward analytical formula defined with a
starting frequency F0, an ending frequency F1, and the usual wavelet like parameters σ being the

2

Under review as a conference paper at ICLR 2017

bandwidth. Finally the hyperparameter p defining the polynomial order of the chirp is constant for the
whole bank-filter generation. For example, the case p = 1 leads to a linear chirp, p = 2 to a quadratic
chirp. The starting and ending frequencies are chosen to approximately cover one octave and are
directly computed from the λ parameters which define the scales. Finally, following the scattering
network inspiration from (Bruna & Mallat, 2013), in order to remove unstable noisy pattern, we apply
a low-pass filter (a Gaussian blurring) and thus we increase the SNR of the representation.

Λ = {2.01+i/Q, i = 0, ..., J ×Q− 1}, (2)

F0 =
Fs

2λ
, λ ∈ Λ, (3)

F1 =
Fs

λ
, λ ∈ Λ, (4)

σ = 2
d

λ
, λ ∈ Λ. (5)

4 LOW COMPLEXITY FCT ALGORITHM AND IMPLEMENTATION

We give here our code of Fast Chirplet Transform (FCT), taking advantage of the a priori knowledge
for the filter-bank creation and the fast convolution algorithm 1. Therefore, we first create the Chirplet
with the ascendant and descendant versions in once (see Annexe Algo 1).

Then we generate the whole filter-bank (see Algo 2 in annexe) with the defined λ and hyper-
parameters.

Finally, we use the scattering framework (Bruna & Mallat, 2013; Andén & Mallat, 2014): we apply
a local low-pass filter to the obtained representation. In fact, the scattering coefficients Sx result
from a time-averaging on the time-frequency representation Ux bringing local and up to global
time-invariance. This time-averaging is computed through the application of the φ filter, usually a
Gabor atom with specified standard deviation and such that∫

φ(t)dt = 1. (6)

As a result, one computes these coefficients as: Sx(λ, t) = (|x ? ψλ| ? φ) (t), where ψλ is a Chirplet
with λ parameters and φ. Similarly, we perform local time-averaging on the Chirplet representation
in the same manner.

We present some possible filters in Fig. 2, and some bird features Fig. 3.

The third step in our FCT consists in the reduction of the convolution task. The asymptotic complexity
of the Chirplet transform is O(N. log(N)) with N being the size of the input signal. This is the
same asymptotic complexity as for the continuous wavelet transform and the scattering network.
However, it is possible to reach lower asymptotic complexity simply by a division of the convolution
task. usually the convolutions are carried through application of an element-wise multiplication of
the signal and the filter in the frequency domain and then compute the inverse Fourier transform
to end up with x ? ψλ. However, if we denote by M the length of the filter ψλ it is possible to
instead perform multiple times this operation on different overlapping chunks of the signal to then
concatenate the results to obtain at the end the same convolution result but now in O(N. log(M)).
Finally a last improvement induced by this approach is to allow easy tackling of signals with a length
just above a power of 2 which otherwise would require to be padded in order to obtain a FFT with
real O(N. log(N)) complexity through the Danielson-Lanczos lemma (Press, 2007). Applying this
scheme allowed to compute the convolutions between 3 to 4 times faster. The variations came from
the distance between N and the closest next power of 2 depending on the desired chunk size.

We validate the efficiency of FCT on real bioacoustic recordings. We processed on 10 medium
speed CPUs of 4 years old, 100 hours of recording of LifeClef bird challenge (16 kHz Sampling
Rate (SR), 16 bits) in 2 days. Second, we processed in 7 days the equivalent of 1 month of

1We provide our implementation in Annexe and: https://github.com/DYNI-TOULON/
fastchirplet.git

3

https://github.com/DYNI-TOULON/fastchirplet.git
https://github.com/DYNI-TOULON/fastchirplet.git

Under review as a conference paper at ICLR 2017

Figure 1: Top: Chirplet of Orca call with p=3, j=4, q=16, t=0.001, s=0.01, with usual FFT spectrogram
below, Sampling Rate (SR) 22 kHz, 16 bits. Waves and Chirplets of Orca are: http://sabiod.
univ-tln.fr/orcalab. Bottom: same on bird calls from Amazonia (BIRD10 data set). SR 16
kHz, 16 bits.

Orca whale recordings from Orcalab.org ONG (22 kHz SR, 16 bits), in Fig. 1,2,3 and at http:
//sabiod.univ-tln.fr/orcalab .

4

http://sabiod.univ-tln.fr/orcalab
http://sabiod.univ-tln.fr/orcalab
http://sabiod.univ-tln.fr/orcalab
http://sabiod.univ-tln.fr/orcalab

Under review as a conference paper at ICLR 2017

Figure 2: Some FCT displayed in the physical domain and in the time-frequency domain through a
spectrogram. The first one reduces to a wavelet since the chirp rate is 0. One can see the importance
of the time duration and the chirp rate and well as the center frequency depending on what one wishes
to capture.

.

Figure 3: FCT of 4 species of amazonian birds LifeClef 2015 challenge including BIRD10 dataset
available online. The call patterns are the high SNR (red) regions. The species international codes
are, from top to bottom, right to left: nnbhgj, aethwv, aksucy, nipfbr.

.

5 ENHANCING CNN BIOACOUSTIC REPRESENTATION WITH FCT

A strategy for CNN fine-tuning can be to retrain a classifier on top of a CNN on a new dataset, or to
fine-tune the weights of a pretrained network by continuing the backpropagation. It is possible to

5

Under review as a conference paper at ICLR 2017

fine-tune all the layers of the CNN or to freeze some of the earlier, later or central layers, and to only
fine-tune some portion of the network. As the features propagate deeper and deeper in the network
layers, they become increasingly invariant and discriminative (Seltzer 2013). Thus usually only the
higher level are fine-tuned, the earlier features of a CNN contain more generic features that should be
useful to many tasks. As denoted in later layers of the CNN becomes progressively more specific to
the details of the classes contained in the original dataset.

In this paper we adapt our parametric Chirplet decomposition to a specific acoustic domain with a
specific CNN. We compare a CNN trained on raw audio to one trained on Mel and Chirplet. The best
model is the one trained on parametric Chirplet. Second, we show that the CNN can be enhanced by
pretraining Chirp in low level layer.

5.1 CNN BIRDS CLASSIFICATION ON FCT, RAW AUDIO, VERSUS MEL

The first demonstration is conducted on complex Bird songs. We use the BIRD10 subset of LifeClef
2016 bird classification challenge. It was used as ENS Ulm data challenge 2016, and contains 3
species in a total of 15 minutes of recordings (SR 44100 Hz, 16 bits), and is available (.wav, Mel and
FCT features) at http://sabiod.univ-tln.fr/workspace/BIRD10.

We train 3 CNNs (LeCun & Bengio, 1995) on the Lasagne Theano platform. The base-
line CNN is trained from the raw audio. A second CNN, with similar topology (see an-
nexe) is trained on a simple log of the simple 64 channels Mel scale of FFT spectrum (
http://pydoc.net/Python/librosa/0.2.0/librosa.feature/). We overlap by 90% the time windows. A
third CNN is trained on our FCT. The parameters of both CNN are similar, with 64 frequency bands
each (we remove top and bottom band from the Chirplet to set to 64 bands only). Then the input layer
is 64 x 86, the Conv layer has 20 filters of size 8 x 10. All activation functions are relu. We maxpool
2 x 2, follow the 20 filters of size 8 x 10, maxpooling, dense layer (200), dropout at 10%, with a final
softmax dense layer with 3 classes and same dropout. Each CNN is trained by cross-entropy, L2 reg.,
with a learning rate set of 0.001.

The Fig. 4 gives the MAP of these two CNNs having similar hyperparameters. The CNN on FCT
gives the best MAP with 61.5% at epoch 280 compared to later epoch (820) for Mel with a similar
MAP of 61%. Audio is slower and weaker (58% MAP at epoch 1140).

Figure 4: The Mean Average Precision on BIRD10 of the CNNs on Mel, raw audio, or FCT. The
training conditions are the same on the three CNNs, and they have similar size and topology (see
Annexe). The CNN trained on FCT is slightly better than on Mel or raw audio, and is learning faster.

6

http://sabiod.univ-tln.fr/workspace/BIRD10

Under review as a conference paper at ICLR 2017

5.2 ENHANCING BIRDS CLASSIFICATION STACKING PRETRAINED CHIRPNET CNN

In order to test the efficiency of the FCT, we pretrain a CNN to encode audio to Chirplets (a.k.a. the
Audio2Chirp CNN) and a CNN to convert parametric Chirplet to classes (a.k.a. the Chirp2Class
CNN). The topology of these CNNs (Tab. 2, 3) is set for reasonable time of training. We also speed
up the training with shorter time overlap of the time windows (only 30% instead of 90% in the
previous experimentation). We then decrease the average MAP, however the objective here is to
compare the gain in MAP and time of convergence in stacked Chirplet deep representations.

We then simply stack at low level layer the audio2chirp with the chirp2class CNN to build a complete
audio2class CNN. We train it from random initialization, or from pretrained CNN. Note that the
random seed in all the experimentation of this paper is fixed to allow fair comparisons. Results are
reported in Tab. 1 for each of the stacked CNN, with the epoch giving the best MAP on the dev. set,
and the corresponding MAP on the test set. Results demonstrate that the pretraining of low level
layers by FCT enhances CNN. More details are given in Annexe.

Model BIRD dev BIRD test
nb. Epoch MAP %

Baseline:
Audio2Class(0) CNN trained from random initialisation (Fig. 6) 530 (rel.gain) 51 (rel. gain)
Audio2Class CNN from stacked
pretrained Audio2Chirp(*) with Chirp2Class(*) CNNs (Fig. 7) 390 (-26%) 53 (+3.9%)
Audio2Class CNN from stacked
pretrained Audio2Chirp(*) with Chirp2Class(*) CNNs
without updating Chirp2Class(*) (Fig. 8) 380 (-28%) 55 (+7.8%)

Table 1: Summary of the CNN enhanced by our FCT representation, on BIRD. For each model, we
detail the time of convergence on dev. and corresponding Mean Average Precision on test set.

5.3 ENHANCING VOWELS CLASSIFICATION STACKING PRETRAINED CHIRPNET CNN

In this section we run the same demonstration on the subset of speech vowels of all the TIMIT
acoustic-phonetic corpus JS et al. (1993): 3,696 training utterances (sampled at 16kHz) from 462
speakers. The cross-validation set consists of 400 utterances from 50 speakers. The core test set of
the 8 vowels subset was used to report the results: 192 utterances from 24 speakers, excluding the
validation set. There are 61 hand labeled phonetic symbols but the experiments in this paper run on
the time windows of 310ms centered on each of the 8 vowels of TIMIT (= iy, ih, eh, ae, aa, ah, uh,
uw).

Due to similar bioacoustic voicing dynamics of the two species (near 4 Hz), we simply set the FCT
parameters for vowel to the one used for Orca presented above (p = 3,j = 4,q = 16,t = 0.001,s =
0.01). The time windows are set to 310 ms as recommended in Palaz et al. (2013).

The results of the different training stages of the audio2chirp and chirp2class and stacked model are
given in Tab.2 and Annexe. We run due to lack of time the experiment only on vowel classification,
which does not really allow comparison with other papers, however this seminal work only aims to
study the relative gain between CNN pretrained or not by FCT.

The results demonstrate that FCT pretraining of the audio2class model is improved by 2.3% of
relative gain of accuracy while the training time is decreased by 26%.

6 DISCUSSION AND CONCLUSION

In this paper we propose for the first time at our knowledge the definition and implementation of a
Fast Chirplet Transform (FCT). Due to its low complexity, FCT can be computed as fast as FFT.

7

Under review as a conference paper at ICLR 2017

Figure 5: FCT (top) versus Fourier spectrogram (bottom) of two utterances of Speech vowel (TIMIT),
(p = 3,j = 4,q = 16,t = 0.001,s = 0.01).

.

Figure 6: Training stacked CNN. Blue: random initialization of audio2chirp(0) and chirp2class(0).
Red: Initialization with optimal audio2chirp(*) and chirp2class(*).

Second we show that FCT pretraining accelerates CNN. For Bird10 data set, we have 280 epochs
using FCT versus 820 on Mel features, or 1140 on raw audio for same MAP score. The stacked CNN
with the chirpnet in low level layer also decreases training from 530 epochs to 380 epochs, while

8

Under review as a conference paper at ICLR 2017

Model TIMIT dev TIMIT test
Scores on the 8 vowels of TIMIT nb. Epoch (rel. gain) AC % (rel. gain)
Baseline: Audio2Class CNN from scratch 79 (ref.) 66.5 (ref.)
Audio2Class CNN trained from stacked
pretrained Audio2Chirp(*) with Chirp2Class(*) CNNs 58 (-26%) 68.0 (+2.3%)

Table 2: Summary of the CNN enhanced by our FCT representation on vowel (TIMIT): time of
convergence and vowel accuracy on TIMIT test set.

it increases MAP by 4 points (Tab. 1). The experiment on Vowels demonstrates a training of 30
epochs on FCT, versus 60 on raw audio (for same 65% accuracy level), and an increase of 1.5 point
of accuracy (Tab. 2).

These gains may be due to the sparsity of the Chirplet, and the denoising step in the FCT. These
experiences bring to light the problem of deep learning for small and biased dataset for which a full
learning strategy is sub-optimal due to local optimum convergence. As a result, FCT prior knowledge
can be used to mitigate this drawback by reducing the complexity of the deep-net architecture.

Three main perspectives are then opened. Future work will consist on sparse Chirpnet inspired from
tonotopic net Strom (1997), auditory nerve and cortex topology Pironkov et al. (2015). The acoustic
vibrations are transmitted to the base of the cochlea, thus each region of the basilar membrane are
excited by different frequencies. The higher frequencies excite areas closer to the cochlea base,
whereas lower frequencies are closer to the apex. This implies that neurons connected to a specific
zone of the basilar membrane will be simultaneously stimulated inducing tonotopic representation.

A second perspective is to integrate Chirplet computation into the CNN training itself, as a constrained
embedded layer, in a framework similar to a Wavelet Neural Network (Adeli & Jiang, 2006) but with
Chirplet activation functions.

Last, we currently work on transfer learning of Chirpnet from animal to speech (and reverse), in order
to generalize a deep Chirpnet representation of the animal communication systems.

7 ACKNOWLEDGEMENTS

We thank colleagues from ENS Paris Data Team with S. Mallat, and P. Flandrin, for fruitful discussions
on Scattering and Chirplet. We thank YLC and YB for advises on CNN. We thank V. Tassan for
cleaning the code. We used Theano, Lasagne 2, Librosa 3 and Pysoundfile 4.

REFERENCES

Hojjat Adeli and Xiaomo Jiang. Dynamic fuzzy wavelet neural network model for structural system
identification. Journal of Structural Engineering, 132(1):102–111, 2006.

Joakim Andén and Stéphane Mallat. Deep scattering spectrum. IEEE Transactions on Signal
Processing, 62(16):4114–4128, 2014.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Ronald R Coifman, Yves Meyer, and Victor Wickerhauser. Wavelet analysis and signal processing.
In In Wavelets and their Applications. Citeseer, 1992.

Ronald R Coifman, Yves Meyer, Steven Quake, and M Victor Wickerhauser. Signal processing and
compression with wavelet packets. In Wavelets and their applications, pp. 363–379. Springer,
1994.

2https://github.com/Lasagne/Lasagne
3https://github.com/librosa/librosa
4https://github.com/bastibe/PySoundFile

9

Under review as a conference paper at ICLR 2017

Patrick Flandrin. Time frequency and chirps. Proc. SPIE, 4391:161–175, 2001. doi: 10.1117/12.
421196. URL http://dx.doi.org/10.1117/12.421196.

Garofolo JS, LF Lamel, and al. Timit acoustic-phonetic continuous speech corpus. In Linguistic data
consortium, Philadelphia, 1993.

Nina Kowalski, Didier A Depireux, and Shihab A Shamma. Analysis of dynamic spectra in ferret
primary auditory cortex. ii. prediction of unit responses to arbitrary dynamic spectra. Journal of
Neurophysiology, 76(5):3524–3534, 1996.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

Stéphane Mallat. A wavelet tour of signal processing. Academic press, 1999.

Steve Mann and Simon Haykin. The chirplet transform: A generalization of gabor’s logon transform.
In Vision Interface, volume 91, pp. 205–212, 1991.

Steve Mann and Simon Haykin. Adaptive chirplet transform: an adaptive generalization of the
wavelet transform. Optical Engineering, 31(6):1243–1256, 1992.

Eduardo Mercado, Catherine E Myers, and Mark A Gluck. Modeling auditory cortical processing as
an adaptive chirplet transform. Neurocomputing, 32:913–919, 2000.

Yves Meyer. Wavelets-algorithms and applications. Wavelets-Algorithms and applications Society
for Industrial and Applied Mathematics Translation., 142 p., 1, 1993.

Dimitri Palaz, Ronan Collobert, and Mathew Magimai-Doss. Estimating phoneme class conditional
probabilities from raw speech signal using convolutional neural networks. CoRR, abs/1304.1018,
2013. URL http://arxiv.org/abs/1304.1018.

Gueorgui Pironkov, Stéphane Dupont, and Thierry Dutoit. Investigating sparse deep neural networks
for speech recognition. In IEEE ASRU Workshop, pp. 124–129, 2015.

William H Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press, 2007.

Nikko Strom. A tonotopic artificial neural network architecture for phoneme probability estimation.
In Automatic Speech Rec. and Understanding IEEE Wkp, pp. 156–163, 1997.

10

http://dx.doi.org/10.1117/12.421196
http://arxiv.org/abs/1304.1018

Under review as a conference paper at ICLR 2017

A BIRD DATASET

The experiment is conducted on BIRD10, an online data set http://sabiod.univ-tln.fr/
workspace/BIRD10/ which is a subset of the training LIFEClef 2016 challenge on bird classifi-
cation. BIRD10 contains 454 audio files (22050 Hz SR, 16 bits) from 10 bird classes, split in 0.5s
segments. 20% of the training set was used as the validation set.

Only segments with detected bird activity were kept, assuming a bird sound to have prominent energy
and to be mostly harmonic. This bird detection is for a given segment:

if (energy_ratio > energy_threshold and
spectral_flatness_weighted_mean < spectral_flatness_threshold)
bird_detected = True

else
bird_detected = False

where the energy and the spectral flatness are computed on 50% overlapping frames of 256 samples:

er = energy_ratio =
mean(seg_energy)

95thpercentile(file_energy)

swf = spectral_flatness_weighted_mean =
sum(seg_spectral_flatness× seg_energy)

sum(seg_energy)

This naive algorithm performed quite well on a manually labelled dataset of bird vocalizations
(precision=0.89, recall=0.57 for er=0.2 and sfw=0.3) after a quick grid search on the two parameters.

B BIRDS CLASSIFICATION : BASELINE CNNS

The first experiment consisted in running similar CNNs to compare the performance of using raw
audio and two time-frequency representations as the input: a standard log-amplitude Mel spectrum
and the Chirplet representation described in the first part of this paper. In this experiments the
segments were overlapping by 90%. The topologies of the networks are given in Tab. 2. The cost
function is the cross-entropy, learning rate = 0.0001 = L2 regularisation coefficient. The Mel spectrum
is computed from 64 bands between 0 and 11025 Hz (=SR/2). Both Mel spectrum and Chirplets were
normalized by Z-score.

Input Topology

Audio, shape (1, 11025)

conv_1: 20 filters of shape (1, 400) (nonlinearity: relu)
pool_1: (1, 4) max pooling
conv_2: 20 filters of shape (1, 100) (nonlinearity: relu)
pool_2: (1, 4) max pooling
dense_1: 400 units (nonlinearity: relu, 10% dropout)
dense_2: 10 units (nonlinearity: softmax, 10% dropout)

Log-amplitude Mel spectrum, shape (64, 80)

conv_1: 20 filters of shape (8, 20) (nonlinearity: relu)
pool_1: (2, 2) max pooling
conv_2: 20 filters of shape (8, 20) (nonlinearity: relu)
pool_2: (2, 2) max pooling
dense_1: 200 units (nonlinearity: relu, 10% dropout)
dense_2: 10 units (nonlinearity: softmax, 10% dropout)

Chirplets (chirp2class), shape (80, 110)

conv_1: 20 filters of shape (8, 20) (nonlinearity: relu)
pool_1: (2, 2) max pooling
conv_2: 20 filters of shape (8, 20) (nonlinearity: relu)
pool_2: (2, 2) max pooling
dense_1: 200 units (nonlinearity: relu, 10% dropout)
dense_2: 10 units (nonlinearity: softmax, 10% dropout)

Table 3: CNN topologies for the 3 different inputs.

11

http://sabiod.univ-tln.fr/workspace/BIRD10/
http://sabiod.univ-tln.fr/workspace/BIRD10/

Under review as a conference paper at ICLR 2017

In all experiments, a given topology is always initialized using the same set of random parameters,
unless specified otherwise. The value * (resp. 0) after the name of the net refers to the pretrained net
(resp. random initialization).

C BIRD AUDIO2CHIRP - CHIRPLET ENCODER

The chirp encoder, aka audio2chirp, aims at training a net to get a Chirplet-like representation. It is a
simple CNN taking audio as input, Chirplets as output and minimizing the square error. It converges
easily in 180 epochs. The topology of the audio2chirp net is given Tab. 4.

Input Topology

Audio, shape (1, 11025)

conv_1: 40 filters of shape (1, 1001) (nonlinearity: relu)
pool_1: (1, 4) max pooling
conv_2: 40 filters of shape (1, 501) (nonlinearity: relu)
pool_2: (1, 4) max pooling
conv_3: 40 filters of shape (1, 101) (nonlinearity: relu)
pool_3: (1, 4) max pooling
dense_1: 8800 units (nonlinearity: relu, 10% dropout)
reshape_1: 8800 -> (80, 110)

Table 4: CNN topology of the chirp encoder (audio2chirp).

12

Under review as a conference paper at ICLR 2017

D BIRD: TRAINING, DEV AND TESTING CURVES OF THE DIFFERENT CNNS

Figure 7: Training stacked random initialized CNNs: audio2chirp(0) and chirp2class(0).

Figure 8: Training stacked pretrained CNNs: audio2chirp(*) and chirp2class(*).

13

Under review as a conference paper at ICLR 2017

Figure 9: Training stacked pretrained CNNs audio2chirp(*) and chirp2class(*) but freezing
chirp2class(*) (no weight update).

Figure 10: Training stacked pretrained CNNs audio2chirp(*) and chirp2class(*) but freezing au-
dio2chirp(*) (no weight update).

14

Under review as a conference paper at ICLR 2017

Figure 11: Training stacked CNNs : pretrained audio2chirp(*) and chirp2class(0) and freezing
audio2chirp (no weight update).

Figure 12: Training stacked CNN from pretrained CNN: Initialized with optimal audio2chirp(*) and
chirp2class(0).

E EXPERIMENT ON SPEECH VOWEL

The Tab. 5 gives the topology of the audio2chirp and chirp2class, and stacked models, for these
vowel experiments.

15

Under review as a conference paper at ICLR 2017

In all experiments, each CNN is initialized using the same random seed. The symbol “*” refers to the
optimal trained parameters of a net.

Input Topology

audio2chirp, shape (1, 4960)

conv_1: 40 filters of shape (1, 1001) (nonlinearity: relu)
pool_1: (1, 4) max pooling
conv_2: 40 filters of shape (1, 501) (nonlinearity: relu)
pool_2: (1, 4) max pooling
conv_3: 40 filters of shape (1, 101) (nonlinearity: relu)
pool_3: (1, 4) max pooling
dense_1: 3136 units (nonlinearity: relu, 10% dropout)
reshape_1: 3136 -> (64, 49)

chirp2class, shape (64, 49)

conv_1: 20 filters of shape (8, 10) (nonlinearity: relu)
pool_1: (2, 2) max pooling
conv_2: 20 filters of shape (8, 10) (nonlinearity: relu)
pool_2: (2, 2) max pooling
dense_1: 200 units (nonlinearity: relu, 10% dropout)
dense_2: 8 units (nonlinearity: softmax, 10% dropout)

Table 5: CNN topologies for TIMIT vowel experiments.

Figure 13: Trained and loss audio2chirp (TIMIT).

16

Under review as a conference paper at ICLR 2017

F ALGORITHM FOR THE FAST CHIRPLET TRANSFORM (FCT)

Algo 1: Chirplet Generation
INPUT: F0,F1,Fs,sigma,p
OUTPUT: coefficients_upward,coefficients_downward
if(p):

w=cos(2*pi*((F1-F0)/((p+1)*sigma**p)*t**p+F0)*t)
else:

w=cos(2*pi*((F0*(F1/F0)**(t/sigma)-F0)*sigma/log(F1/F0)))
coefficients_upward=w*exp(-((t-\sigma/2.0)**2)/(2*sigma**2))
coefficients_downward=flipud(coefficients_upward).

Algo 2: Chirplet Filter-Bank Generation
INPUT: J, Q, Fs, sigma, p
lambdas = 2.0**(1+arrange(J*Q)/float(Q))
start_frequencies = (Fs /lambdas)/2.0
end_frequencies = Fs /lambdas
distances = 2.0*d/flipud(lambdas)
filters=list()
for f0,f1,d in zip(start_frequencies,end_frequencies,distances):

filters.append(chirplet(Fs,f0,f1,d,p))
return filters.

17

Under review as a conference paper at ICLR 2017

G THE PYTHON CODE FOR THE FAST CHIRPLET TRANSFORM (FCT)

This code, in GPL licence (c) DYNI team, is in Github :
https://github.com/DYNI-TOULON/fastchirplet.git.

import l i b r o s a
import os
import numpy as np
from p y l a b import ∗
import s y s
from numpy . l i b import pad

c l a s s C h i r p l e t :

" " " s m a l l e s t t i m e b i n among t h e c h i r p l e t " " "
g l o b a l s m a l l e s t _ t i m e _ b i n s

def _ _ i n i t _ _ (s e l f , s a m p l e r a t e , F0 , F1 , sigma , po lynome_degree) :

" " " l o w e s t f r e q u e n c y where t h e c h i r p l e t i s a p p l i e d
" " "

s e l f . m in_ f r equency = F0

" " " h i g h e s t f r e q u e n c y where t h e c h i r p l e t i s a p p l i e d
" " "

s e l f . max_f requency = F1

" " " s a m p l e r a t e o f t h e s i g n a l " " "
s e l f . s a m p l e r a t e = s a m p l e r a t e

" " " d u r a t i o n o f t h e c h i r p l e t " " "
s e l f . t i m e _ b i n = sigma / 1 0

" " " de gr e e o f t h e polynome t o g e n e r a t e t h e
c o e f f i c i e n t s o f t h e c h i r p l e t " " "

s e l f . po lynome_degree = polynome_degree

" " " c o e f f i c i e n t s a p p l i e d t o t h e s i g n a l " " "
s e l f . f i l t e r _ c o e f f i c i e n t s = s e l f .

c a l c u l _ c o e f f i c i e n t s ()

def c a l c u l _ c o e f f i c i e n t s (s e l f) :
" " " c a l c u l a t e c o e f f i c i e n t s f o r t h e c h i r p l e t s " " "
p r i n t (s e l f . _ s a m p l e r a t e)
t = l i n s p a c e (0 , s e l f . t ime_b in , i n t (s e l f . s a m p l e r a t e ∗

s e l f . t i m e _ b i n))
i f (s e l f . po lynome_degree) :

w = cos (2∗ p i ∗ ((s e l f . max_frequency−s e l f .
m in_ f r equency)

/ ((s e l f . po lynome_degree +1) ∗ s e l f .
t i m e _ b i n ∗∗ s e l f . po lynome_degree
)

∗ t ∗∗ s e l f . po lynome_degree + s e l f .
m in_ f r equency) ∗ t)

e l s e :
w = cos (2∗ p i ∗ ((s e l f . m in_ f r equency ∗ (s e l f .

max_f requency / s e l f . m in_ f r equency)

18

https://github.com/DYNI-TOULON/fastchirplet.git

Under review as a conference paper at ICLR 2017

∗∗ (t / s e l f . t i m e _ b i n)− s e l f .
m in_ f r equency) ∗ s e l f . t i m e _ b i n

/ l o g (s e l f . max_f requency / s e l f . m in_ f r equency
)))

c o e f f s = w∗ hann ing (l e n (t)) ∗∗2

re turn c o e f f s

def smooth_up (s e l f , i n p u t _ s i g n a l , sigma , end_smooth ing) :
g e n e r a t e f a s t f o u r i e r t r a n s f o r m from a s i g n a l and smooth

i t

new_up = b u i l d _ f f t (i n p u t _ s i g n a l , s e l f .
f i l t e r _ c o e f f i c i e n t s , s igma)

re turn f f t _ s m o o t h i n g (f a b s (new_up) , end_smooth ing)

def compute (i n p u t _ s i g n a l , s ave = F a l s e , d u r a t i o n _ l a s t _ c h i r p l e t = 1 . 0 1 ,
num_octaves =5 , n u m _ c h i r p s _ b y _ o c t a v e =10 , po lynome_degree =3 ,

end_smooth ing = 0 . 0 0 1) :
" " " main f u n c t i o n . Fas t C h i r p l e t Trans form from a s i g n a l " " "

da ta , s a m p l e r a t e = l i b r o s a . l o a d (i n p u t _ s i g n a l , s r =None)

s i z e _ d a t a = l e n (d a t a)

n e a r e s t _ p o w e r _ 2 = 2∗∗ (s i z e _ d a t a −1) . b i t _ l e n g t h ()

d a t a = np . l i b . pad (da t a , (0 , n e a r e s t _ p o w e r _ 2−s i z e _ d a t a) ,
’ c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)

c h i r p l e t s = i n i t _ c h i r p l e t _ f i l t e r _ b a n k (s a m p l e r a t e ,
d u r a t i o n _ l a s t _ c h i r p l e t , num_octaves ,
num_ch i rps_by_oc tave , po lynome_degree)

c h i r p s = a p p l y _ f i l t e r b a n k (da t a , c h i r p l e t s , end_smooth ing)

c h i r p s = r e s i z e _ c h i r p s (s i z e _ d a t a , n e a r e s t _ p o w e r _ 2 , c h i r p s)

i f s ave :
i f not os . p a t h . e x i s t s (" csv ") :

os . m a k e d i r s (" csv ")
np . s a v e t x t (" csv / "+os . p a t h . basename (i n p u t _ s i g n a l) .

s p l i t (’ . ’) [0] + ’ . c sv ’ , c h i r p s , d e l i m i t e r =" , ")

re turn c h i r p s

def r e s i z e _ c h i r p s (s i z e _ d a t a , n e a r e s t _ p o w e r _ 2 , c h i r p s) :
s i z e _ c h i r p s = l e n (c h i r p s)
r a t i o = s i z e _ d a t a / n e a r e s t _ p o w e r _ 2
s i z e = i n t (r a t i o ∗ l e n (c h i r p s [0]))

t a b f i n a l = np . z e r o s ((s i z e _ c h i r p s , s i z e))
f o r i in range (0 , s i z e _ c h i r p s) :

t a b f i n a l [i]= c h i r p s [i] [0 : s i z e]
re turn t a b f i n a l

19

Under review as a conference paper at ICLR 2017

def i n i t _ c h i r p l e t _ f i l t e r _ b a n k (s a m p l e r a t e , d u r a t i o n _ l a s t _ c h i r p l e t ,
num_octaves , num_ch i rps_by_oc tave , p) :

" " " g e n e r a t e a l l t h e c h i r p l e t s from a g i v e n sample r a t e " " "

lambdas = 2 . 0∗∗ (1 + a r a n g e (num_octaves ∗
n u m _ c h i r p s _ b y _ o c t a v e) / f l o a t (n u m _ c h i r p s _ b y _ o c t a v e))

#Low f r e q u e n c i e s f o r a s i g n a l
s t a r t _ f r e q u e n c i e s = (s a m p l e r a t e / lambdas) / 2 . 0
h igh f r e q u e n c i e s f o r a s i g n a l
e n d _ f r e q u e n c i e s = s a m p l e r a t e / lambdas
d u r a t i o n s = 2 . 0∗ d u r a t i o n _ l a s t _ c h i r p l e t / f l i p u d (

lambdas)
C h i r p l e t . s m a l l e s t _ t i m e _ b i n s = d u r a t i o n s [0]
c h i r p l e t s = l i s t ()
f o r f0 , f1 , d u r a t i o n in z i p (s t a r t _ f r e q u e n c i e s ,

e n d _ f r e q u e n c i e s , d u r a t i o n s) :
c h i r p l e t s . append (C h i r p l e t (s a m p l e r a t e , f0 , f1 ,

d u r a t i o n , p))
re turn c h i r p l e t s

def a p p l y _ f i l t e r b a n k (i n p u t _ s i g n a l , c h i r p l e t s , end_smooth ing) :
" " " g e n e r a t e l i s t o f s i g n a l w i t h c h i r p l e t s " " "
r e s u l t = l i s t ()
f o r c h i r p l e t in c h i r p l e t s :

r e s u l t . append (c h i r p l e t . smooth_up (i n p u t _ s i g n a l , 6 ,
end_smooth ing))

re turn a r r a y (r e s u l t)

def f f t _ s m o o t h i n g (i n p u t _ s i g n a l , s igma) :
" " " smooth t h e f a s t t r a n s f o r m f o u r i e r " " "
s i z e _ s i g n a l = i n p u t _ s i g n a l . s i z e
s h o r t e n t h e s i g n a l
new_s ize = i n t (f l o o r (1 0 . 0∗ s i z e _ s i g n a l ∗ s igma))
h a l f _ n e w _ s i z e = new_s ize / / 2

f f t x = f f t (i n p u t _ s i g n a l)
s h o r t _ f f t x = []
f o r e l e in f f t x [: h a l f _ n e w _ s i z e] :

s h o r t _ f f t x . append (e l e)
f o r e l e in f f t x [− h a l f _ n e w _ s i z e :] :

s h o r t _ f f t x . append (e l e)

a p o d i z a t i o n _ c o e f f i c i e n t s =
g e n e r a t e _ a p o d i z a t i o n _ c o e f f i c i e n t s (h a l f _ n e w _ s i z e , sigma ,
s i z e _ s i g n a l)

a p p l y t h e a p o d i z a t i o n c o e f f i c i e n t s
s h o r t _ f f t x [: h a l f _ n e w _ s i z e] ∗= a p o d i z a t i o n _ c o e f f i c i e n t s
a p p l y t h e a p o d i z a t i o n c o e f f i c i e n t s i n a r e v e r s e l i s t
s h o r t _ f f t x [h a l f _ n e w _ s i z e :] ∗= f l i p u d (

a p o d i z a t i o n _ c o e f f i c i e n t s)
r e a l i f f t x w = r e a l (i f f t (s h o r t _ f f t x))
re turn r e a l i f f t x w

def g e n e r a t e _ a p o d i z a t i o n _ c o e f f i c i e n t s (num_coeffs , sigma , s i z e) :
" " " g e n e r a t e a p o d i z a t i o n c o e f f i c i e n t s " " "
a p o d i z a t i o n _ c o e f f i c i e n t s = a r a n g e (num_coef f s)
a p o d i z a t i o n _ c o e f f i c i e n t s = a p o d i z a t i o n _ c o e f f i c i e n t s ∗∗2

20

Under review as a conference paper at ICLR 2017

a p o d i z a t i o n _ c o e f f i c i e n t s = a p o d i z a t i o n _ c o e f f i c i e n t s / (2 ∗ (
s igma ∗ s i z e) ∗∗2)

a p o d i z a t i o n _ c o e f f i c i e n t s = exp(− a p o d i z a t i o n _ c o e f f i c i e n t s)
re turn a p o d i z a t i o n _ c o e f f i c i e n t s

def f f t _ b a s e d (i n p u t _ s i g n a l , h , boundary =0) :
M=h . s i z e
h a l f _ s i z e = M/ / 2
i f (boundary ==0) : #ZERO PADDING

i n p u t _ s i g n a l =pad (i n p u t _ s i g n a l , (h a l f _ s i z e , h a l f _ s i z e
) , ’ c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)

h=pad (h , (0 , i n p u t _ s i g n a l . s i z e−M) , ’ c o n s t a n t ’ ,
c o n s t a n t _ v a l u e s =0)

newx= i f f t (f f t (i n p u t _ s i g n a l) ∗ f f t (h))
re turn newx [M−1:−1]

e l i f (boundary ==1) : # s y m m e t r i c
i n p u t _ s i g n a l = c o n c a t e n a t e ([f l i p u d (i n p u t _ s i g n a l [:

h a l f _ s i z e]) , i n p u t _ s i g n a l , f l i p u d (i n p u t _ s i g n a l [
h a l f _ s i z e :])])

h=pad (h , (0 , x . s i z e−M) , ’ c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)
newx= i f f t (f f t (i n p u t _ s i g n a l) ∗ f f t (h))
re turn newx [M−1:−1]

e l s e : # p e r i d i c
re turn r e a l (r o l l (i f f t (f f t (i n p u t _ s i g n a l) ∗ f f t (h ,

i n p u t _ s i g n a l . s i z e)) ,− h a l f _ s i z e))

def b u i l d _ f f t (i n p u t _ s i g n a l , f i l t e r _ c o e f f i c i e n t s , n =2 , boundary =0) :
" " " g e n e r a t e f a s t t r a n s f o r m f o u r i e r by windows " " "

M= f i l t e r _ c o e f f i c i e n t s . s i z e
p r i n t (n , boundary ,M)
h a l f _ s i z e = M/ / 2
s i g n a l _ s i z e = i n p u t _ s i g n a l . s i z e
power o f 2 t o a p p l y f a s t f o u r i e r t r a n s f o r m
windows_s ize = i n t (2∗∗ c e i l (l og2 (M∗ (n +1))))
number_of_windows= f l o o r (s i g n a l _ s i z e / / windows_s ize)
i f (number_of_windows ==0) :

re turn f f t _ b a s e d (i n p u t _ s i g n a l , f i l t e r _ c o e f f i c i e n t s ,
boundary)

o u t p u t = e m p t y _ l i k e (i n p u t _ s i g n a l)
#pad w i t h 0 t o have a s i z e i n a power o f 2
z e r o p a d d i n g = pad (f i l t e r _ c o e f f i c i e n t s , (0 , windows_s ize−M) , ’

c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)

h _ f f t = f f t (z e r o p a d d i n g)

t o browse t h e whole s i g n a l
c u r r e n t _ p o s =0

a p p l y f f t t o a p a r t o f t h e s i g n a l . T h i s p a r t has a s i z e
which i s a power o f 2

i f (boundary ==0) : #ZERO PADDING
#window i s h a l f padded w i t h s i n c e i t ’ s f o c u s e d on

t h e f i r s t h a l f
window = i n p u t _ s i g n a l [c u r r e n t _ p o s : c u r r e n t _ p o s +

windows_s ize−h a l f _ s i z e]
zeropaddedwindow = pad (window , (l e n (h _ f f t)−l e n (

window) , 0) , ’ c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)

21

Under review as a conference paper at ICLR 2017

x _ f f t = f f t (zeropaddedwindow)
e l i f (boundary ==1) : #SYMMETRIC

window = c o n c a t e n a t e ([f l i p u d (i n p u t _ s i g n a l [:
h a l f _ s i z e]) , i n p u t _ s i g n a l [c u r r e n t _ p o s :
c u r r e n t _ p o s + windows_s ize−h a l f _ s i z e]])

x _ f f t = f f t (window)
e l s e :

x _ f f t = f f t (i n p u t _ s i g n a l [: windows_s ize])

o u t p u t [: windows_s ize−M]= i f f t (x _ f f t ∗ h _ f f t) [M−1:−1]
c u r r e n t _ p o s += windows_s ize−M−h a l f _ s i z e

a p p l y f a s t f o u r i e r t r a n s o f m t o each windows
whi le (c u r r e n t _ p o s + windows_s ize−h a l f _ s i z e <= s i g n a l _ s i z e) :

x _ f f t = f f t (i n p u t _ s i g n a l [c u r r e n t _ p o s−h a l f _ s i z e :
c u r r e n t _ p o s + windows_s ize−h a l f _ s i z e])

o u t p u t [c u r r e n t _ p o s : c u r r e n t _ p o s + windows_s ize−M]=
r e a l (i f f t (x _ f f t ∗ h _ f f t) [M−1:−1])

c u r r e n t _ p o s += windows_s ize−M

a p p l y f a s t f o u r i e r t r a n s f o r m t o t h e r e s t o f t h e s i g n a l
i f (windows_s ize −(s i g n a l _ s i z e −c u r r e n t _ p o s + h a l f _ s i z e) <

h a l f _ s i z e) :
window = i n p u t _ s i g n a l [c u r r e n t _ p o s−h a l f _ s i z e :]
zeropaddedwindow = pad (window , (0 , i n t (windows_s ize
−(s i g n a l _ s i z e −c u r r e n t _ p o s + h a l f _ s i z e))) , ’
c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)

x _ f f t = f f t (zeropaddedwindow)
o u t p u t [c u r r e n t _ p o s :] = r e a l (r o l l (i f f t (x _ f f t ∗ h _ f f t) ,

h a l f _ s i z e) [h a l f _ s i z e : h a l f _ s i z e + o u t p u t . s i z e−
c u r r e n t _ p o s])

o u t p u t [− h a l f _ s i z e :] = c o n v o l v e (i n p u t _ s i g n a l [−M:] ,
f i l t e r _ c o e f f i c i e n t s , ’ same ’) [− h a l f _ s i z e :]

e l s e :
window = i n p u t _ s i g n a l [c u r r e n t _ p o s−h a l f _ s i z e :]
zeropaddedwindow = pad (window , (0 , i n t (windows_s ize
−(s i g n a l _ s i z e −c u r r e n t _ p o s + h a l f _ s i z e))) , ’
c o n s t a n t ’ , c o n s t a n t _ v a l u e s =0)

x _ f f t = f f t (zeropaddedwindow)
o u t p u t [c u r r e n t _ p o s :] = r e a l (i f f t (x _ f f t ∗ h _ f f t) [M−1:M+

o u t p u t . s i z e−c u r r e n t _ p o s −1])
re turn o u t p u t

22

	Introduction
	Formal definition of Chirplet
	Proposition of a Fast Chirplet Transform (FCT)
	Low complexity FCT Algorithm and implementation
	Enhancing CNN bioacoustic representation with FCT
	CNN Birds classification on FCT, raw audio, versus Mel
	Enhancing Birds classification stacking pretrained Chirpnet CNN
	Enhancing Vowels classification stacking pretrained Chirpnet CNN

	Discussion and Conclusion
	Acknowledgements
	BIRD Dataset
	BIRDs classification : baseline CNNs
	BIRD Audio2chirp - Chirplet encoder
	BIRD: training, dev and testing curves of the different CNNs
	Experiment on Speech Vowel
	Algorithm for the Fast Chirplet Transform (FCT)
	The Python code for the Fast Chirplet Transform (FCT)

