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Abstract

We study an online classification problem with partial feedback in which indi-
viduals arrive one at a time from a fixed but unknown distribution, and must be
classified as positive or negative. Our algorithm only observes the true label of an
individual if they are given a positive classification. This setting captures many
classification problems for which fairness is a concern: for example, in criminal
recidivism prediction, recidivism is only observed if the inmate is released; in
lending applications, loan repayment is only observed if the loan is granted. We
require that our algorithms satisfy common statistical fairness constraints (such as
equalizing false positive or negative rates — introduced as “equal opportunity” in
[18]) at every round, with respect to the underlying distribution. We give upper
and lower bounds characterizing the cost of this constraint in terms of the regret
rate (and show that it is mild), and give an oracle efficient algorithm that achieves
the upper bound.1

1 Introduction

Many real-world prediction tasks in which fairness concerns arise — such as online advertising,
short-term hiring, lending micro-loans, and predictive policing — are naturally modeled as online
binary classification problems, but with an important twist: feedback is only received for one of the
two classification outcomes. Clickthrough is only observed if the advertisement is shown; worker
performance is only observed for candidates who were actually hired; those who are denied a loan
never have an opportunity to demonstrate that they would have repaid; only if police troops were
dispatched to a precinct they able to detect unreported crimes. Applying standard techniques for
enforcing statistical fairness constraints on the gathered data can thus lead to pernicious feedback
loops that can lead to classifiers that badly violate these constraints on the underlying distribution.
This kind of failure to “explore” has been highlighted as an important source of algorithmic unfairness
— for example, in predictive policing settings [26, 13, 14].

To avoid this problem, it is important to explicitly manage the exploration/exploitation tradeoff that
characterizes learning in partial feedback settings, which is what we study in this paper. We ask for
algorithms that enforce well-studied statistical fairness constraints across two protected populations
(we focus on the “equal opportunity” constraint of [18], which enforces equalized false positive
rates or false negative rates, but our techniques also apply to other statistical fairness constraints
like “statistical parity” [12]). In particular, we ask for algorithms that satisfy these constraints (with
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respect to the unknown underlying distribution) at every round of the learning procedure. The result
is that the fairness constraints restrict how our algorithms can explore, not just how they can exploit,
which makes the problem of fairness-constrained online learning substantially different from in the
batch setting. The main question that we explore in this paper is: “how much does the constraint of

fairness impact the regret bound of learning algorithms?”

1.1 Our Model and Results

In our setting, there is an unknown distribution D over examples, which are triples (x̂, a, y) 2
X ⇥ {�1, 1}⇥ {�1, 1}. Here x̂ 2 X represents a vector of features in some arbitrary feature space,
a 2 A = {±1} is the group to which this example belongs (which we also call the sensitive feature),
and y 2 Y = {±1} is a binary label. We write x to denote a pair (x̂, a) – the set of all features
(including the sensitive one) that the learner has access to.

In each round t 2 [T ], our learner selects hypotheses from a hypothesis class H consisting of
functions h : X ⇥A ! Y recommending an action (or label) as a function of the features (potentially
including the sensitive feature). We take the positive label to be the one that corresponds to observing
feedback (hiring a worker, admitting a student, approving a loan, releasing an inmate, etc.) We allow
algorithms that randomize over H. Let �(H) be the set of probability distributions over H. We refer
to a ⇡ 2 �(H) as a convex combination of classifiers.
Definition 1.1 (False positive rate). For a fixed distribution D on examples, we define the false

positive rate (FPR) of a convex combination of classifiers ⇡ 2 �(H) on group j 2 {±1} to be

FPRj(⇡) = P(⇡(x) = +1|a = j, y = �1) = E
h⇠⇡


P

(x,y)⇠D

(h(x) = +1|a = j, y = �1)

�
.

We denote the difference between false positive rates between populations as

�FPR(⇡) := FPR1(⇡)� FPR�1(⇡).

The fairness constraint we impose on our classifiers in this paper asks that false positive rates be
approximately equalized across populations at every round t. Throughout, analogous results hold for
false negative rates. These constraints were called equal opportunity constraints in [18].
Definition 1.2 (�-equalized rates [18]). Fix a distribution D. A convex combination ⇡ 2 �(H)

satisfies the �-equalized false positive rate (�-EFP) constraint if |�FPR(⇡)|  �. We informally use

the term �-fair to refer to such a classifier or combination of classifiers.

As we will see in Definition 2.1, we will actually allow our algorithm to have a tiny probability of
ever breaking the fairness constraint.
Remark 1.3. The sources of unfairness we deal with here are the differential abilities of models

in H to predict on different populations (which we inherit from the batch setting), and the biased

data collection inherent in online partial information settings. We use equal opportunity constraints

only as a canonical example of a statistical fairness constraint and do not take the position that it is

always the right one. Our techniques also apply to other constraints like statistical parity.

Note that the fairness constraint is defined with respect to the true underlying distribution D. One of
the primary difficulties we face is that in early rounds, the learner has very little information about D,
and yet is required to satisfy the fairness constraint with respect to D.

It is straightforward to see (and a consequence of a more general lower bound that we prove) that a
�-fair algorithm cannot in general achieve non-trivial regret to the set of �-fair convex combinations
of classifiers, because of ongoing statistical uncertainty about the fairness level for all non-trivial
classifiers. Thus our goal is to minimize our regret to the �-fair convex combination of classifiers that
has the lowest classification error on D, while guaranteeing that our algorithm only deploys convex
combinations of classifiers that guarantee fairness level �0 for some �0 > �. Clearly, the optimal
regret bound will be a function of the gap (�0��), and one of our aims is to characterize this tradeoff.

Our results. We show that the tradeoff achieved by the inefficient algorithm is tight by proving
a lower bound in Section 4. In some sense, the computational inefficiency of the simple bandits
reduction above is unavoidable, because we measure the regret of our learner with respect to 0/1
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classification error, which is computationally hard to minimize, even for very simple classes H
(see, e.g., [22, 16, 11]). However, we can still hope to give an oracle efficient algorithm for our
problem. This approach, which is common in the contextual bandits literature, assumes access to
an “oracle” which can in polynomial time solve the empirical risk minimization problem over H
(absent fairness constraints), and is an attractive way to isolate the “hard part” of the problem that is
often tractable in practice. Our main result, to which we devote the body of the paper, is to show that
access to such an oracle is sufficient to give a polynomial-time algorithm for the fairness-constrained
learning problem, matching the simple information theoretically optimal bounds described above.
To do this, we use two tools. Our high-level strategy is to apply the oracle efficient stochastic
contextual bandit algorithm from [2]. In order to do this, we need to supply it with an offline learning
oracle for the set of classifiers that can with high probability be certified to satisfy our fairness
constraints given the data so far. We construct an approximate oracle for this problem (given a
learning oracle for H) using the oracle-efficient reduction for offline fair classification from [1]. We
need to overcome a number of technical difficulties stemming from the fact that the fair oracle that we
can construct is only an approximate empirical risk minimizer, whereas the oracle assumed in [2] is
exact. Moreover, the algorithm from [2] assumes a finite hypothesis class, whereas we need to obtain
no regret to a continuous family of distributions over hypotheses. The final result is an oracle-efficient
algorithm trading off between regret and fairness, allowing for a regret bound of O(T 2↵

) to the best
�-fair classifier while satisfying �0-fairness at every round, with a gap of �0 � � = O(T�↵

) for
↵ 2 [0.25, 0.5].

1.2 Additional Related Work

We build on two lines of work in the fair machine learning literature. First, batch (non-online)
classification under a variety of statistical fairness constraints: raw classification rates [8, 23, 15]
(statistical parity [12]), positive predictive value [24, 9], and false positive and false negative rates [24,
9, 18] ; see [5] for more examples. Second, fair online classification and regression in the contextual
bandit setting [20, 21, 25]. Unlike some of this prior work that demands stringent individual fairness
constraints at every round, which requires strong realizability assumptions to avoid lower bounds
[20], this paper interpolates by requiring statistical fairness constraints to be enforced, but they still
must hold for every round. This allows much stronger positive results. Recently, [7] considered the
problem of enforcing statistical fairness in online learning, but from a very different perspective. That
work studies the full information and adversarial setting with false positive and error rates averaged
across rounds. Here, we have partial and bandit feedback, distributional assumptions, and require
statistical fairness guarantees at every round.

2 Additional Preliminaries

Throughout the paper, we assume +1,�1 2 H, where +1 and �1 are the two constant classifiers
(that is, +1(x) = 1 and �1(x) = �1 for all x). In some cases, we will additionally assume
+a,�a 2 H, where +a and �a are the identity function (and its negation) on the sensitive feature
(that is, +a(x̂, a) = a and �a(x̂, a) = �a for all x̂, a).

The Online Setting: The learner interacts with the environment as follows. For each round
t = 1, . . . , T , the learner chooses some convex combination ⇡t 2 �(H). The environment draws
(xt, yt) ⇠ D independently; the learner observes xt. The learner labels the point ŷt = ht(xt), where
ht ⇠ ⇡t. If ŷt = +1, the learner observes yt; otherwise, there is no feedback for this round.

We measure a learner’s performance using 0-1 loss, `(ŷt, yt) = [ŷt 6= yt]. Given a class of
distributions P over H ✓ H and a sequence of T examples, the optimal convex combination of
hypotheses from H in hindsight is defined as ⇡⇤

(P) = argmin
⇡2P

P
T

t=1 Eh⇠P [`(h(xt), yt)].

A learner’s (pseudo)-regret with respect to P is

Regret =
TX

t=1

E
(xt,yt)⇠D

[`(h(xt), yt)] �
TX

t=1

E
(xt,yt)⇠D h⇠⇡⇤(P)

[`(h(xt), yt)].

In particular, when P = {⇡ 2 �(H) : ⇡ satisfies �-EFP}, we call this the learner’s �-EFP regret.

Finally, we ask for online learning algorithms that satisfy the following notion of fairness:
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Definition 2.1 (A �-EFP(�) online learning algorithm). An online learning algorithm is said to satisfy

�-EFP(�) fairness (for � 2 [0, 1]) if, with probability 1� � over the draw of {(xt, at, yt)}Tt=1 ⇠ DT
,

simultaneously for all rounds t 2 [T ]: ⇡t satisfies �-EFP.

Cost Sensitive Classification Algorithms: We aim to give oracle-efficient online learning algo-
rithms — that is, algorithms that run in polynomial time per round, assuming access to an oracle
which can solve the corresponding offline empirical risk minimization problem. Concretely, we
assume oracles for solving cost sensitive classification (CSC) problems over H, which are defined by
a set of examples xj and a set of weights c�1

j
, c+1

j
2 R corresponding to the cost of a negative and

positive classification respectively.

Definition 2.2. Given an instance of a CSC problem S = {xj , c
�1
j

, c+1
j

}n
j=1, a CSC oracle O for H

returns O(S) 2 argminh2H

P
n

j=1 c
(h(xj))
j

. From these oracles, we will construct ⌫-approximate

CSC oracles that may have restricted ranges ⇧ ✓ �(H). Such oracles return O⌫(S) = ⇡ 2 ⇧ such

that Eh⇠⇡[
P

n

j=1 c
(h(xj))
j

]  argmin⇡2⇧ Eh⇠⇡[
P

n

j=1 c
(h(xj))
j

] + ⌫.

From “Apple Tasting” to Contextual Bandits: Online classification problems under the feedback
model we study were first described as “Apple Tasting” problems [19]. The algorithm’s loss at each
round accumulates according to the following loss matrix:

L =

y = +1 y = �1⇣ ⌘
ŷ = +1 0 1

ŷ = �1 1 0
,

but feedback is only observed for positive classifications (when ŷ = +1). This is a different feedback
model than the more commonly studied contextual bandits setting. In that setting, the learner always
get to observe the loss of the selected action (regardless of a positive or a negative classification). We
will defer the formal description of contextual bandits to the appendix.

It is nevertheless straightforward to transform the apple tasting setting into the contextual bandits
setting (similar observations have been previously made [4]).

Proposition 2.3. Let A be an contextual bandits algorithm that guarantees a regret bound R(T ) with

probability 1��. There exists a transformation that maps feedbacks for apple tasting to feedbacks for

contextual bandits such that A gurantees regret bound 2R(T ) with probability 1� � when running

on the transformed feedbacks on any apple tasting instance.

Baseline approaches. Given the reduction above, we can draw on standard methods from contex-
tual bandits to solve our fair online learning problem. A simple baseline approach that is oracle-
efficient is to perform “exploration-then-exploitation”: the learner first “explores” by predicting
+1 for roughly T 2/3 rounds, then “exploit” what we have learned by deploying the (empirically)
best performing fair policy. This approach would guarantee a sub-optimal regret bound of Õ(T

2
3 )

to the best �-fair classifier, while satisfying a �0-fairness constraint at every round with a gap of
(�0 � �) = O(T�

1
3 ).

A more sophisticated approach starts with the observation (Lemma B.1) that although the set of “fair
distributions over classifiers” is continuously large, the “fair empirical risk minimization” problem
only has a single constraint, and so we may without loss of generality consider distributions over
hypotheses H that have support of size 2. By an appropriate discretization, this allows us to restrict
attention to a finite net of classifiers whenever H itself is finite. From this observation, one could
employ a simple strategy to obtain an information theoretic result: Fix any parameter ↵ 2 [1/4, 1/2].
The learner first predicts +1 for roughly T 2↵ rounds, then uses the collected data to define a set of fair
policies according to the observed empirical distribution, and lastly runs the EXP4 algorithm [3, 6]
over the set of fair policies. Such algorithm obtains a regret bound of O(T 2↵

) to the best �-fair
classifier, while satisfying a �0-fairness constraint at every round with a gap of (�0 � �) = O(T�↵

).
However, this algorithm needs to maintain a distribution of exponential size, and our goal is to match
its regret rate with an oracle-efficient algorithm.
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3 An Oracle-Efficient Algorithm

Our algorithm proceeds in two phases. First, during the first T0 rounds, the algorithm performs pure

exploration and always predicts +1 to collect labelled data. Because constant classifiers exactly
equalize the false positive rates across populations, each exploration round satisfies our fairness
constraint. The algorithm then use the collected data to form empirical fairness constraints, which we
use to define our construction of a fair CSC oracle, given a CSC oracle unconstrained by fairness.
Then, in the remaining rounds, we will run an adaptive contextual bandit algorithm that minimizes
cumulative regret, while satisfying the empirical fairness constraint at every round.

We make two mild assumptions to simplify our analysis and the statement of our final bounds. First,
we assume that negative examples from each of the two protected groups have constant probability
mass: Pr[a = 1, y = �1],Pr[a = �1, y = �1] 2 ⌦(1). Second, we assume that the hypothesis
class H contains the two constant classifiers and the identity function and its negation on the protected
attribute: {+1,�1,+a,�a} ✓ H.

Our main theorem is as follows:
Theorem 3.1. For any H and data distribution satisfying the two mild assumptions above, there

exists an oracle-efficient algorithm that takes parameters � 2 [0, 1
p
T
] and � � 0 as input and satisfies

(� + �)-EFP(�) fairness and has an expected regret at most Õ(
p
T ln(|H|/�)) with respect to the

class of �-EFP fair policies, where � = O(
p

ln(|H|/�)/T 1/4
).

Remark 3.2. More generally, we can extend Theorem 3.1 to give an algorithm that satisfies (� + �)-

EFP(�) for any � > 0, and achieves an expected regret at most Õ

✓
ln( |H|

� )
�2 +

p
T ln(|H|/�)

◆
with

respect to the class of �-EFP fair policies.

Remark 3.3. We state our theorem in what we believe is the most attractive parametric regime:

when it can obtain a regret bound of O(
p
T ). But it is straightforward, by modifying the length of the

exploration round, to obtain a more general tradeoff—a regret bound of O(T 2↵
) with respect to the

set of �-EFP fair policies, while satisfying (� +O(T�↵
))-EFP(�) fairness, for any ↵ 2 [1/4, 1/2].

This tradeoff is tight, as we show in Section 4.

Algorithm. The outline of our algorithm is as follows.
1. Label the first T0 arrivals as ŷt = 1; observe their true labels.
2. Based on this data, construct an efficient FairCSC oracle. The oracle will be given a cost-sensitive
classification objective. It returns an approximately-optimal convex combination ⇡ of hypotheses
subject to the linear constraint of (�+T�1/4

)-EFP on the empirical distribution of data. We show the
algorithm can be implemented to always return a member of ⇧, defined to be the set of mixtures on
H with support size two whose empirical fairness on the exploration data is at most � + Õ(T�1/4

).
3. Instantiate a bandit algorithm with policy class ⇧. The bandit algorithm, a modification of [2], is
described in detail in the next sections. In order to select its hypotheses, the bandit algorithm makes
calls to the FairCSC oracle we implemented above.
4. For the remaining rounds t > T0, choose labels ŷt selected by the bandit algorithm and provide
feedback to the bandit algorithm via the reduction given by Proposition 2.3.

Analysis. In the remainder of this section, we present our analysis in three main steps. First, we
study the empirical fairness constraint given by the data collected during the exploration phase and
give a reduction from a cost-sensitive classification problem subject to such fairness constraint to a
standard cost-sensitive classification problem absent the constraint, based on [1]. We need to perform
two modifications on the reduction method in [1]. First, we allow our algorithm to handle fairness
constraints defined by a separate data set that is different from the one defining the cost objective.
Secondly, we also provide a fair approximate CSC oracle that returns a sparse solution, a distribution
over H with support size of at most 2. This will be useful for establishing uniform convergence.

Next, we present the algorithm run in the second phase: at each round t > T0, the algorithm makes a
prediction based on a randomized policy ⇡t 2 �(H), which is a solution to a feasibility program
given by [2]. We show how to rely on an approximate fair CSC oracle to solve this program efficiently.
Consequently, we generalize the results of [2] to the setting in which the given oracle may only
optimize the cost sensitive objective approximately. This may be of independent interest.
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Finally, we bound the deviation between the algorithm’s empirical regret and true expected regret.
This in particular requires uniform convergence over the entire class of fair randomized policies,
which we show by leveraging the sparsity of the fair distributions.

We now give the proof of Theorem 3.1, with forward references to needed theorems and lemmas.

Proof of Theorem 3.1. We set T0 = ⇥(
p
T ln(|H|/�)). First, Lemma 3.4 shows that given our

empirical EFP constraint, there exists an optimal policy of support size at most 2. Next, Lemma B.2
shows that, with probability 1 � � over arrivals 1, . . . , T0, all convex combinations ⇡ 2 ⇧ satisfy
�̂-EFP for �̂ = � + �, � = O

⇣p
ln(|H|/�)/T 1/4

⌘
. It also implies that the optimal �-fair policy

is in the class. Theorem 3.5 shows that, given a CSC oracle for H, we can implement an efficient
approximate CSC oracle for this class ⇧. Theorem 3.11 shows that, given an approximate CSC oracle
for any class, there is an efficient bandit algorithm that plays from this class and achieves expected
regret O

⇣
ln (|H|T/�)

p
T
⌘

.

Fairness: In the first T0 rounds we play +1 which is 0-fair, and in the remaining rounds we play only
policies from ⇧. With probability 1� � over the exploration data, every member of ⇧ is (� + �)-fair.

Regret: The algorithm’s regret is at most T0 plus its regret, on rounds T0 + 1, . . . , T , to the optimal
policy in ⇧. By Proposition 2.3, this is at most twice the bandit algorithm’s regret on those rounds.
So our expected regret totals at most O

⇣
ln (|H|T/�)

p
T
⌘

to the best policy in ⇧. With probability
1� �, ⇧ contains the optimal �-fair classifier; with the remaining probability, the algorithm’s regret
to the best �-fair classifier can be bounded by T . Choosing �  1

p
T

gives the result.

3.1 Step 1: Constructing a Fair CSC Oracle From Exploration Data

Let SE denote the set of T0 labeled examples {zi = (xi, ai, yi)}T0
i=1 collected from the initial

exploration phase, and let DE denote the empirical distribution over SE . We will use DE as a proxy
for the true distribution to form an empirical fairness constraint. To support the learning algorithm in
the second phase, we need to construct an oracle that solves CSC problems subject to the empirical
fairness constraint. Formally, an instance of the FairCSC problem for the class H is given by a set of
n tuples {(xj , c

(�1)
j

, c(+1)
j

)}n
j=1 as before, along with a fairness parameter � and an approximation

parameter ⌫. We wish to solve the following fair CSC problem:

min
⇡2�(H)

E
h⇠⇡

2

4
nX

j=1

c
(h(xj))
j

3

5 such that |�FPR(⇡,DE)|  � (1)

where �FPR(⇡,DE) = FPR1(⇡,DE) � FPR�1(⇡,DE) and each FPRj(⇡,DE) denotes the
false positive rate of ⇡ on distribution DE . We show a useful structural property that there always
exists a small-support optimal solution; the proof appears in Appendix B.1.
Lemma 3.4. There exists an optimal solution for the FairCSC that is a distribution over H with

support size no greater than 2.

We therefore consider the set of sparse convex combinations:

⇧ = {⇡ 2 �(H) | Supp(⇡)  2, |�FPR(⇡,DE)|  � + �}
and focus on algorithms that only play policies from ⇧ and measure their performance with respect to
⇧. For any ⇡ 2 ⇧, we will write ⇡(h) to denote the probability ⇡ places on h. Applying a standard
concentration inequality, we can show (Lemma B.2) that each policy in ⇧ is also approximately fair
with respect to the underlying distribution.

We provide a reduction from FairCSC problems to standard CSC problems as follows: 1) We
first apply a standard transformation on the input CSC objective to derive an equivalent weighted
classification problem, in which each example j has importance weight |c(�1)

j
� c(+1)

j
|. 2) We

then run the fair classification algorithm due to [1] that solves the weighted classification problem
approximately using a polynomal number of CSC oracle calls. 3) Finally, we follow an approach
similar to that of [10] to shrink the support size of the solution returned by the fair classification
algorithm down to at most 2, which can be done in polynomial time.
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Theorem 3.5 (Reduction from FairCSC to CSC). For any 0 < ⌫ < �/2, there exists an oracle-

efficient algorithm that calls a CSC oracle for H at most O(1/⌫2) times and computes a solution

⇡̂ 2 �(H) that has a support size of at most 2, satisfies �-EFP, and has total cost

E
h⇠⇡̂

2

4
nX

j=1

c
h(xj ,aj)
j

3

5  min
⇡2⇧

E
h⇠⇡

2

4
nX

j=1

c
h(xj ,aj)
j

3

5+ ✏

with ✏ = 4⌫
P

n

j=1 |c
(�1)
j

� c(+1)
j

|.

3.2 Step 2: The Adaptive Learning Phase

Overview of bandit algorithm. In the second phase, rounds t > T0, we utilize a bandit algorithm
to make predictions. We now describe the algorithm, which closely follows the ILOVETOCONBAN-
DITS algorithm by [2] but with important modifications that are necessary to handle approximation
error in the FairCSC oracle.

At each round t > T0, the bandit algorithm produces a distribution Qt over policies ⇡. Each policy ⇡
is a convex combination of two classifiers in H and satisfies approximate fairness. The algorithm
then draws ⇡ from Qt, draws h from ⇡, and labels ŷt = h(xt). To choose Qt, the algorithm places
some constraints on Q and runs a short coordinate descent algorithm to find a Q satisfying those
constraints. Finally, it mixes in a small amount of the uniform distribution over labels (which can
be realized by mixing between +1 and �1). We will see that the constraints, called the feasibility
program, correspond to roughly bounding the expected regret of the algorithm along with bounding
the variance in regret of each possible ⇡.

Feasibility program. To describe the feasibility program, we first introduce some notation. For
each t, we will write pt to denote the probability that prediction ŷt is selected by the learner, and `t
be the incurred (contextual bandit) loss given by the transformation in Proposition 2.3.

for each policy ⇡ 2 ⇧, let

L̂t(⇡) =
1

t

tX

s=1

`s
Pr[⇡(xs) = ŷs]

ps
, L(⇡) = E

(x,a,y)⇠D

h
E
⇡

[1[⇡(x) 6= y]]
i

denote the estimated average loss given by the inverse propensity score (IPS) estimator and true
expected loss for ⇡, respectively. Similarly, let

dReg
t
(⇡) = L̂t(⇡)� min

⇡02⇧
L̂t(⇡

0
), Reg(⇡) = L(⇡)� min

⇡02⇧
L(⇡0

),

denote the estimated average regret and the true expected regret. In order to bound the variance of
the IPS estimators, we will ensure that the learner predicts each label with minimum probability
µt at each round t. In particular, given a solution Q for the program and a minimum probability
parameter µt, the learner will predict according to the mixture distribution Qµt(· | x) (a distribution
that predicts +1 w.p. µt, and predicts according to Q w.p. 1� µt):

Qµt(ŷ | x) = µt + (1� 2µt)

Z

⇡2⇧
Q(⇡) Pr[⇡(x) = ŷ]d⇡

Note that this can be represented as a convex combination of classifiers from H since we assume that
+1 2 H. We define for each ⇡ 2 ⇧, bt(⇡) =

dRegt(⇡)
4(e�2)µt ln(T ) , and also initialize b0(⇡) = 0.

We describe the feasibility problem solved at each step. The approach and analysis directly follow
and extend that of [2]. In that work, the first step at each round is to compute the best policy so far,
which lets us compute dReg

t
(⇡) and bt(⇡) for any policy ⇡. Here, our FairCSC oracle only computes

approximate solutions, and so we can only compute regret relative to the approximately best policy
so far, which leads to corresponding approximations gReg

t
(⇡) and b̃t(⇡). Then, our algorithm solves

the same feasibility program (although a few more technicalities must be handled): given history Ht

(in the second phase) and minimum probability µt, find a probability distribution Q over ⇧ such thatZ

⇡2⇧
Q(⇡)b̃t�1(⇡)d⇡  4 (Low regret)

8⇡ 2 ⇧ : E
x⇠Ht


1

Qµt(⇡(x) | x)

�
 4 + b̃t�1(⇡) (Low variance)

7



Intuitively, the first constraint ensures that the estimated regret (based on historical data) of the
solution is at most Õ(1/

p
t). The second constraint bounds the variance of the resulting IPS loss

estimator for policies in ⇧, which in turn allows us to bound the deviation between the empirical
regret and the true regret for each policy over time. Importantly, we impose a tighter variance
constraint on policies that have lower empirical regret so far, which prioritizes their regret estimation.

To solve the feasibility program using our FairCSC oracle, we will run a coordinate descent algorithm,
similar to [2] (full description in Section B.3 as Algorithm 1). The FairCSC oracle is used to identify
and fix violated constraints. Via a potential argument similar to the one of [2], we can show that the
algorithm halts in a small number of iterations. We will also bound the additional error in the output
solution due to the approximation in the FairCSC oracle. In the following, let ⇤0 = 0 and for any
t � 1,

⇤t :=
⌫

4(e� 2)µ2
t
ln(T )

.

where ⌫ is the approximation parameter of the FairCSC oracle.
Lemma 3.6. Algorithm 1 halts in a number of iterations (and oracle calls) that is polynomial in

1
µt

,

and outputs a weight vector Q that is a probability distribution with the following guarantee:
Z

⇡2⇧
Q(⇡)(4 + bt�1(⇡))d⇡  4 + ⇤t

8⇡ 2 ⇧ : E
x⇠Ht


1

Qµt(⇡(x) | x)

�
 4 + bt�1(⇡) + ⇤t.

3.3 Step 3: Regret Analysis

The key step in our regret analysis is to establish a tight relationship between the estimated regret and
the true expected regret and show that for any ⇡ 2 ⇧, Reg(⇡)  2dReg(⇡) + ✏t, with ✏t = Õ(1/

p
t).

The final regret guarantee then essentially follows from the guarantee of Lemma 3.6 that the estimated
regret of our policy is bounded by Õ (1/t) with proper setting of µt.

To bound the deviation between Reg(⇡) and dReg
t
(⇡), we need to bound the variance of our IPS

estimators. Let us define the following for any probability distribution P over ⇧, ⇡ 2 ⇧,

V (P,⇡, µ) := E
x⇠D


1

Pµ(⇡(x) | x)

�
V̂t(P,⇡, µ) := E

x⇠Ht


1

Pµ(⇡(x) | x)

�

Recall that through the feasibility program, we can directly bound V̂t(Qt,⇡, µt) for each round.
However, to apply a concentration inequality on the IPS estimator, we need to bound the population
variance V (Qt,⇡, µt). We do that through a deviation bound between V̂t(Qt,⇡, µt) and V (Qt,⇡, µt)

for all ⇡ 2 ⇧. In particular, we rely on the sparsity on ⇧ and apply a covering argument. Let ⇧⌘ ⇢ ⇧

denote an ⌘-cover such that for every ⇡ in ⇧, min⇡02⇧⌘ k⇡(h) � ⇡0
(h)k1  ⌘ for any h 2 H.

Since ⇧ consists of distributions with support size at most 2, we can take the cardinality of ⇧⌘ to be
bounded by d|H|2/⌘e.
Claim 3.7. Let P be any distribution over the policy set ⇧, and let ⇡ be any policy in ⇧. Then there

exists ⇡0 2 ⇧⌘ such that |V (P,⇡, µ)� V (P,⇡0, µ)|1, |V̂t(P,⇡, µ)� V̂t(P,⇡0, µ)|1  ⌘

µ(µ+⌘) .

Lemma 3.8. Suppose that µt �
q

ln(2|⇧⌘|t
2/�)

2t , t � 8 ln(2|⇧⌘|t2/�). Then with probability 1� �,

V (P,⇡, µt)  6.4V̂t(P,⇡, µt) + 162.6 +
2⌘

µt(µt + ⌘)

Next we bound the deviation between the estimated loss and true expected loss for every ⇡ 2 ⇧.
Lemma 3.9. Assume that the algorithm solves the per-round feasibility program with accuracy

guarantee of Lemma 3.6. With probability at least 1� �, we have for all t 2 [T ] all policies ⇡ 2 ⇧,

� 2 [0, µt], and t � 8 ln(2|⇧⌘|t2/�),

|L(⇡)�L̂t(⇡)|  (e�2)�

 
188.2 +

1

t

tX

s=1

✓
6.4bs�1(⇡) + 6.4⇤s�1 +

2⌘

µs(µs + ⌘)

◆!
+

ln

⇣
|⇧⌘|T

�

⌘

�t
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To bound the difference between Reg(⇡) and dReg
t
(⇡), we will set ⌘ = 1/T 2, µt =

3.2 ln(|⇧⌘|T/�)
p
t

the approximation parameter ⌫ of FairCSC to be 1/T .
Lemma 3.10. Assume that the algorithm solves the per-round feasibility program with the accuracy

guarantee of Lemma 3.6. With probability at least 1� �, we have for all t 2 [T ] all policies ⇡ 2 ⇧,

and for all t � 8 ln(2|H|2T 3/�),

Reg(⇡)  2dReg
t
(⇡) + ✏t, and dReg

t
(⇡)  2Reg(⇡) + ✏t

with ✏t =
1000 ln(|H|

2
T

2
/�)

p
t

.

Theorem 3.11. The bandit algorithm, given access to an approximate-CSC oracle, runs in time

polynomial in T and achieves expected regret at most O
⇣
ln(|H|T/�)

p
T
⌘

.

4 Lower Bound

In this section we show that the tradeoff that our algorithm exhibits between its regret bound and
the “fairness gap” �0 � � (i.e. our algorithm is �0-fair, but competes with the best �-fair classifier
when measuring regret) is optimal. We do this by constructing a lower bound instance consisting of
two very similar distributions, D1 and D2 defined as a function of our algorithm’s fairness target �.
Roughly, there are not enough samples to distinguish the distributions until at least ⇥(

1
�2 ) rounds

elapse, but in order to equalize false positive rates on both distributions, an algorithm must “play it
safe” and incur constant regret per round during this time.
Theorem 4.1. Fix any ↵ 2 (0, 0.5) and let T � ↵

p
16. Fix any �  0.24. There exists a hypothesis

class H containing {±1} such that any algorithm satisfying a T�↵
-EFP(�) fairness constraint has

expected regret with respect to the set of 0-EFP fair policies of ⌦
�
T 2↵

�
.
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