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ABSTRACT

Subject-agnostic brain decoding, which aims to reconstruct continuous visual ex-
periences from fMRI without subject-specific training, holds great potential for
clinical applications. However, this direction remains underexplored due to chal-
lenges in cross-subject generalization and the complex nature of brain signals.
In this work, we propose Visual Cortex Flow Architecture (VCFLOW), a novel
hierarchical decoding framework that explicitly models the ventral-dorsal archi-
tecture of the human visual system to learn multi-dimensional representations. By
disentangling and leveraging features from early visual cortex, ventral, and dor-
sal streams, VCFLOW captures diverse and complementary cognitive informa-
tion essential for visual reconstruction. Furthermore, we introduce a feature-level
contrastive learning strategy to enhance the extraction of subject-invariant seman-
tic representations, thereby enhancing subject-agnostic applicability to previously
unseen subjects. Unlike conventional pipelines that need more than 12 hours of
per-subject data and heavy computation, VCFLOW sacrifices only 7% accuracy
on average yet generates each reconstructed video in 10 seconds without any re-
training, offering a fast and clinically scalable solution.

1 INTRODUCTION

The world, as perceived by the human brain, unfolds as a continuous flow of visual experiences—not
static images, but dynamic videos rich in motion, context, and meaning. Capturing this fluid nature
of perception, fMRI-to-video decoding plays a critical role in revealing how the brain processes
complex visual information over time, encompassing fine visual details, abstract semantic under-
standing, and temporal coherence. Previous research (Chen et al., 2023} |Gong et al.| |2024; |Wang
et al.| 2025)) has primarily focused on training and evaluating models on the same specific subjects,
aiming to achieve the highest reconstruction quality. However, these methods suffer from a funda-
mental limitation: they often overlook subject-agnostic applicability, a factor that is even more crit-
ical in clinical settings. Specifically, when applied to new patients, these models often require more
than 12 hours of subject-specific training, making them impractical for downstream tasks such as
large-scale screening or clinical rehabilitation. For instance, in detecting conditions like schizophre-
nia, hallucinations, or cognitive impairments, subject-specific models become impractical due to
their reliance on extensive retraining, which is both time-consuming and expensive. As a result,
developing a subject-agnostic model capable of directly evaluating previously unseen subjects
holds far greater clinical and practical value. However, this area remains largely underexplored.

To achieve subject-agnostic capability, a straightforward approach is to modify the preprocessing
pipeline and encoding scheme of existing subject-specific models (Gong et al.| [2024; Wang et al.|
2025) to map into a shared representational space, thereby enabling a subject-agnostic setting. How-
ever, when applied to unseen subjects, these subject-specific methods performed poorly, primarily
due to their inability to extract universal semantic information across subjects, as demonstrated by
the results of NEURONS* in Table |1} To address this, the GLFA (Li et al.,|2024) method proposed
a data-level functional alignment strategy that projects data from different subjects into a universal
space. However, its reliance on pretraining with fMRI data from all subjects substantially reduces its
practical applicability and runs counter to the subject-agnostic paradigm. In this case, it is necessary
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Figure 1: Former methods are typically subject-dependent, meaning that when encountering a new
patient, approximately 12 hours of training are required to build a subject-specific model. Such
requirements severely constrain the practical applicability and clinical utility of these approaches.
By contrast, our method ensures applicability at the subject-agnostic level, allowing inference on a
new patient without any additional training and requiring only about 10 seconds of testing, which
provides substantial advantages for downstream tasks.

to redesign a truly subject-agnostic model that enables robust decoding across new subjects at the
level of cognitive features.

To this end, we introduce Visual Cortex Flow Ar-

chitecture (VCFLOW), a novel subject-agnostic ar-
chitecture inspired by the dual-stream mechanism
of the human visual cortex (Kandel et al., [2000;
Huff et al., 2018; [DiCarlo et al., [2012; [Dumoulin
& Wandell, 2008; Yamins & DiCarlo, 2016). As
illustrated in Fig. 2] human visual cognition pri-
marily proceeds along two pathways: the ventral
stream, extending from early vision to encode high-
level semantics such as abstract concepts and object
recognition, and the dorsal stream, extending from
early vision to capture dynamic features including
movement direction, velocity, and spatial transfor-
mations. Following this, we split the fMRI brain fea-
tures into three components: (1) early visual areas,
which are aligned with CLIP low-level features to
capture perceptual and structural properties; (2) ven-
tral stream areas, which are aligned with CLIP high-
level features to learn abstract semantics; and (3)
dorsal stream areas, which are aligned with CLIP
video embeddings, isolating and explicitly modeling
motion-related components. This design enhances
the precision and controllability of dynamic feature
capture, which is essential for video reconstruction
tasks. To further enhance subject-agnostic applica-
bility, we propose a disentanglement module to sep-
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Figure 2: The visual cortex can be broadly
divided into three types of areas: early vi-
sual, ventral, and dorsal. Early visual ar-
eas are primarily responsible for detecting
low-level features including edges, orienta-
tion, and color. Ventral areas are associated
with the processing of higher-level and ab-
stract visual information. In contrast, dorsal
areas are specialized for encoding dynamic
features and spatial representations.

arate subject-specific and subject-agnostic semantic components. By employing contrastive learning
techniques, we effectively extract robust semantic representations that are directly applicable to pre-
viously unseen subjects. (Fig. [I).

Our contributions can be summarized as follows: (1) We are the first to formulate fMRI-to-video
decoding in a subject-agnostic setting, enabling the model to apply to previously unseen subjects
without any retraining. (2) We propose VCFLOW, a novel subject-agnostic framework inspired
by the ventral-dorsal dual-stream architecture of the visual cortex, which hierarchically extracts
and aligns features in accordance with CLIP’s cognitive hierarchy, reinforced by disentanglement
strategy and feature-level contrastive learning. (3) Conventional subject-specific models require
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Figure 3: The overall framework of VCFLOW consists of three core components: (1) Hierarchical
Cognitive Alignment Module (HCAM), (2) Subject-Agnostic Redistribution Adapter (SARA), and
(3) Hierarchical Explicit Decoder (HED). VCFLOW learns three types of semantic representations
through HCAM, which are then fused with subject-agnostic common features extracted by SARA.
These enriched representations are subsequently decoded by HED to explicitly reconstruct informa-
tion across multiple semantic levels.

more than 12 hours of subject-specific data and substantial computational resources. In contrast, our
subject-agnostic approach incurs only a 7% average drop across all evaluation metrics compared
to fully subject-specific approach while achieving 10-second inference per video, making it fast,
practical, and scalable for clinical use.

2 RELATED WORKS

2.1 FMRI-TO-VIDEO RECONSTRUCTION

In recent years, the field of fMRI signal reconstruction has witnessed rapid advancement, largely
driven by the proliferation of fMRI technology and the concurrent development of deep learn-
ing architectures. Compared to the reconstruction of other modalities from fMRI data, the task
of fMRI-to-video reconstruction presents significant challenges due to its comprehensive require-
ments for both semantic and temporal information. Despite these complexities, the fMRI-to-video
reconstruction task holds considerable potential for understanding the cognitive processes underly-
ing the perception of dynamic stimuli. Several notable studies have emerged recently to address
this challenge (Chen et all, 2023}, [Gong et al., [2024; [Wang et al., 2025} [Lu et al)). For instance,
MinD-Video (Chen et al.l [2023) leverages diffusion models to generate videos with competitive
semantic quality, yet it falls short in accurately capturing fine-grained visual details and maintain-
ing consistent dynamic information across frames. NeuroClips 2024) further mitigates
this limitation by jointly leveraging keyframe reconstruction and temporally blurred video guidance.
However, its robustness remains constrained, primarily due to an implicit alignment strategy with
CLIP vision features. More recently, the NEURONS (Wang et al., [2025)) approach attempts to in-
tegrate multidimensional information via the design of explicit training tasks. Nevertheless, critical
information essential to these explicit tasks may not be sufficiently preserved within the diffusion
prior formulation.
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2.2 CROSS-SUBJECT LEARNING

In light of individual differences in brain structure and cognition, generalization across subjects typ-
ically yields significantly inferior performance compared to within-subject generalization. Nonethe-
less, cross-subject generalization remains essential, given its significance for real-time applications
in clinical medicine and neuroscience (Wang et al., |2018; [Sorger et all 2012). In the fMRI-to-
image domain, many studies have transitioned from individual-centric to holistic spatial methodolo-
gies (Scotti et al., 2024; |Huo et al., 2024; \Gong et al., 2025} |[Kong et al., 2024} Zhou et al.| [2024));
however, these approaches often still require subject-specific fine-tuning for previously unseen sub-
jects. Similar trends have been observed within the video reconstruction domain (L1 et al., 2024
Fosco et al.;|2024)). For instance, the GLFALI et al.|(2024) method addresses this issue by function-
ally aligning data to a unified representational space. Nevertheless, such alignment strategies tend
to lack semantic hierarchy and robustness, indicating room for further improvement in cross-subject
generalization.

3 METHOD

The overall framework of VCFLOW is illustrated in Fig. 3] Inspired by the hierarchical cognitive
processes of the human brain, VCFLOW integrates cross-subject semantic alignment at multiple
cognitive levels. Specifically, VCFLOW comprises the following three modules: 1) Hierarchical
Cognitive Alignment Module (HCAM), which extracts cognitive features across hierarchical lev-
els and aligns them within a unified semantic space(§3.1); 2) Subject-Agnostic Redistribution
Adapter (SARA), designed to map individual-specific semantic representations into a common,
subject-invariant semantic space for robust cross-subject generalization(§3.2)); and 3) Hierarchical
Explicit Decoder (HED), which decodes complementary features from different semantic dimen-
sions and fuses them synergistically for accurate reconstruction(§3.3).

3.1 HIERARCHICAL COGNITIVE ALIGNMENT MODULE
3.1.1 FUNCTIONAL ROI-BASED VOXEL PARTITIONING

Inspired by the dual-stream hypothesis of human visual processing, our cognitive workflow begins
with early-stage perception, which is primarily associated with low-level information such as edges,
color, orientation, and spatial structure. Subsequently, along the ventral stream, we select ROIs
that capture higher-level semantics and associative memory. In addition, we select ROIs along the
dorsal stream to enrich our representation with motion perception and spatial information (Kan-
del et al., 2000; Huff et al., |2018)). Further discussion of the ROI selections is provided in the
Appendix [Al Let X € RZ*>XV denote the full fMRI voxel sequence, which is extracted from
Xinput € RE> S HimuxWinw | where B is the batch size, S is the number of subjects, and V is the
voxel length. Then,

Xrois = X[, :, Troxs] € RP7 57 Vo 1)

3.1.2 MULTI-LEVEL FEATURE EXTRACTION

Due to the continuity and hierarchical nature of human cognition, directly extracting information
from a subset of voxels for a specific dimension may disrupt the integrity of semantic represen-
tations. In contrast, a learning-based approach that integrates level-specific semantics with global
representations provides a more coherent and interpretable modeling of brain activity.

Given the input fMRI signal Xinp, We extract four types of features: a full-brain representation
Ebrain, early visual features Eeyy, ventral stream features Eyengar, and dorsal stream features Eqgorsar.
The global representation Eyi, € REXSXP is obtained by applying a ViT backbone to the entire
voxel input Xj,,,.. Meanwhile, the early visual subset Xcyy, ventral stream subset Xenra, and
dorsal stream subset X051 are independently projected into the same latent feature space, result-
ing in Ecany, Eyengal, and Egorsal, respectively. For the global representation Eyri,, after extracting
universal features through SARA (Sec. [3.1), we follow prior work and employ an expressive dif-
fusion prior to transform it into Fpy,, € RB**LeinxCai optimized using the same 10ss Lyior as
adopted in DALL-E 2 (Ramesh et al., |2022). This prior effectively facilitates the transformation
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of features from the fMRI domain to the OpenCLIP embedding space, enabling subsequent recon-
struction. Consequently, we utilize a learnable Cross-Attention module to guide the integration of
features across different cognitive levels, yielding the representations Feay, Frentral, and Fyorgal-

3.1.3 HIERARCHICAL ALIGNMENT

To align multi-dimensional features within the OpenCLIP embedding space, we identify the most

representative ground-truth features for each dimension. High-level features can be naturally aligned
(L)

using CLIP vision embeddings FClip , given their rich semantic content. Aligning low-level infor-

mation is relatively challenging; hence, we align these features with embeddings ng)p from early

CLIP ViT layers, guided by neuroscientific insights into the hierarchical correspondence between
deep neural networks and the human visual system (Yang et al., [2024). In the alignment process,
we adopt the BiMixCo loss (Kim et al., |2020), which leverages MixCo-based data augmentation
to construct a bidirectional contrastive objective that facilitates model convergence, detailed in the

Appendix [A]
3.2 SUBJECT-AGNOSTIC REDISTRIBUTION ADAPTER

3.2.1 REDISTRIBUTION LAYER

Inspired by previous ViT register-based feature extraction strategies (Darcet et al.,[2023), we propose
a unified semantic feature extraction framework based on a redistribution block, which serves as a
token-level information classifier to separate and structure semantic information. To accommodate
a more general scenario, we consider multi-subject feature sequences as the input to our framework.
Let the input feature be defined as E € RBxSXLXC where B is the batch size, S is the number
of subjects, L denotes the number of temporal frames or patch tokens, and C' is the original feature
dimension. To enhance the model’s representational capacity, the feature is first expanded along the
token dimension:
Eexp = Expand(E) € RE*SX(EFLuca) xC )
The expanded representation Eey;, is then passed through a redistribution layer to generate two dis-
tinct sets of latent tokens:
[Tsem; Tsubj] = Redistribution(Eeyp), 3)

where the semantic tokens Ty, € REXS*LXC and the subject-specific tokens Top €

RE*SxLieas XC' correspond to the original and expanded token groups, respectively. This redistri-
bution mechanism enables the model to explicitly disentangle generalizable semantic content from
subject-dependent features, thereby facilitating more robust and interpretable cross-subject align-
ment. In this task, L and C correspond to the token length and channel dimension of features
extracted by OpenCLIP, respectively.

3.2.2 TRAINING OBJECTIVES

To achieve the above objectives, we define a set of training losses based on the semantic and subject
tokens produced by the redistribution block.

First, we apply a BiMixCo-based alignment loss to encourage the semantic tokens to align with
CLIP vision embeddings. Given semantic tokens T, and corresponding CLIP embeddings Fjip,
the semantic alignment loss is defined as:

Ealign = BiMiXCO(Tsema Fclip) (4)

Building upon the semantic alignment, we further aim to project subject-specific semantics into a
shared latent space that ensures semantic consistency across individuals. To achieve this, we adopt
an inter-subject alignment strategy based on a bidirectional contrastive learning scheme. Specif-
ically, we construct a moving window across subjects and apply a symmetric InfoNCE loss to
enforce mutual alignment. Notably, as the number of subjects increases, this training paradigm
becomes more effective and stable due to the richer inter-subject comparisons.
s
[ InfoNCE (T}, i) + InfoNCE (T2, Ti,) | (5)
=2

i—1,sem> - 4,sem i,sem’ - 4—1,sem

K2

1
Lgeneric = m
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To complement the semantic alignment, it is essential to preserve subject-specific identity informa-
tion embedded within the individualized semantic deviations as well. To this end, we introduce a
subject classifier trained on Ty, where each token, along the subject dimension, corresponds to a

subject-specific representation. The classifier is supervised using a cross-entropy loss that encour-

(k)
subj

label for subject & and z(*) represents the classifier’s logit score corresponding to the prediction that
the input belongs to subject k:

(k)
sub] - Z ysubJ ( M > (6)

Z] 1 GXp(Z(J))

ages the retention of discriminative individual features, where y_ .. denotes the one-hot ground-truth

The total loss function is a weighted combination of all objectives:
ﬁSARA = Aalignl:align + /\subj‘csubj + Agenericﬁgeneric (7)

3.3 HIERARCHICAL EXPLICIT DECODER

In the reconstruction of videos, directly utilizing ex-

tracted feature embeddings may fail to adequately inte- ““

grate information across multiple cognitive levels. How- Dma] frames

ever, decoding these embeddings into existing auxiliary

modalities—such as textual descriptions, segmentation
masks, and blurry video representations—can signifi- [ St g

cantly enhance reconstruction quality. This conversion A small
is effectively achieved by formulating explicit auxiliary [I[I[I m—' Drd prched.
tasks. Within the Hierarchical Cognitive Alignment  Ventral ﬂmmm
Module, we systematically generate three distinct fea-
tures: Feary, Fyenral, and Faorsa, €ach associated with - I] UI] ":'mh
tailored explicit tasks that refine feature representations s
within their respective cognitive dimensions, thus im-
proving reconstruction performance (Fig. [4).

Figure 4: The inference stage of
VCFLOW integrates multi-level seman-
tic embeddings to facilitate comprehen-

sive decoding.

For the ventral stream feature Fyepra1, Which encodes ab-
stract semantic content such as object identity and cat-
egorical meaning, we introduce two explicit tasks: im-
age caption generation and object category classification,
yielding the losses Lcapiion and L, respectively. For the
early visual feature Fe,y, which represents perceptual and structural properties such as edges, tex-
tures, and spatial layout, we design a segmentation task to effectively capture morphological details,
resulting in the segmentation loss Ls,. Regarding the dorsal stream feature Fyorsa, Which charac-
terizes spatial-temporal dynamics and motion-related cues, we align it with blurry video modalities
to explicitly capture spatial-temporal motion information. Specifically, we first project F o into
the video frame dimension, obtaining Foa € RE*F*SxLanxCaio where F represents the frame
dimension. This transformed feature is further projected into the latent space of a Variational Au-
toencoder (VAE) to achieve alignment, yielding the alignment loss £ ogion-

Finally, the total loss is formulated as:

ACHED = )\caption'ccaption + )\clsﬂcls + )\seg'cseg + )\motionﬁmotion (8)
Following NEURONS (Wang et al.,[2025)), we progressively adjust the loss coefficients during train-
ing, as shown in Appendix [A]

4 EXPERIMENT

4.1 FMRI-IMAGE DATASETS AND PRETRAINING

We pretrain the backbone on the DIR dataset (Shen et al.l [2019) and the GOD dataset (Horikawa
& Kamitani, |2017) to acquire an initial capacity for capturing semantic representations from neural
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activity. In the DIR and GOD datasets, fMRI signals were recorded from eight subjects while they
viewed 1,250 natural images spanning 200 categories using a 3.0-Tesla Siemens MAGNETOM
Verio scanner. The visual stimuli used in the image presentation experiments for both datasets were
identical and sourced from ImageNet (Deng et al., 2009). Among these images, 1,200 images from
150 categories were allocated to the training sessions, whereas 50 images from 50 categories were
reserved for the test sessions.

Due to the lack of dynamic information in image datasets, the primary goal of our pretraining stage
is to train the backbone to acquire an initial understanding of semantics and to develop the ability to
separate subject tokens. Therefore, we adopt the SARA training objective, as shown in Equation[7]

4.2 DATASET AND PREPROCESSING

In this study, we conducted fMRI-to-video reconstruction experiments using the publicly available
fMRI-video dataset, cc2017 dataset (Wen et al., [ 2018)). For each subject, 18 training video clips and
5 testing video clips—each 8 minutes in duration—were presented. The training clips were shown
twice, while the testing clips were presented 10 times, and the corresponding fMRI signals in the
test set were averaged across repetitions to improve signal-to-noise ratio. MRI data (including T1-
and T2-weighted anatomical scans) and fMRI data (with a temporal resolution of 2 seconds) were
acquired using a 3-Tesla MRI scanner. In total, the dataset contains 8640 training samples and 1200
testing samples of synchronized fMRI-video pairs per subject.

For fMRI data preprocessing, we follow the strategy proposed in fMRI-PTE (Qian et al., [2023)
to map fMRI signals into a common representational space, upon which brain regions are further
segmented. Considering the hemodynamic response delay between stimulus onset and the peak
of the BOLD signal, we introduce a temporal shift of approximately 6 seconds to the fMRI data.
Further details are provided in the Appendix [B]

4.3 EVALUATION METRICS

To comprehensively evaluate the reconstruction quality, we adopt a two-fold assessment strategy,
considering both frame-level and video-level performance. At the frame level, we evaluate both
semantic consistency and pixel-wise similarity. For semantic evaluation, we perform an N-way top-
K classification task based on 1,000 ImageNet categories. Each trial compares the classification
result of a predicted frame against its ground truth counterpart. A trial is deemed correct if the
ground truth label appears within the top-K predictions (top-1 in our case) of the predicted frame,
randomly selected from N candidate labels. The final accuracy is averaged over 100 repeated trials.
For pixel-level assessment, we report SSIM and PSNR scores to capture structural and intensity-
level differences between the reconstructed and original frames. At the video level, we examine
two key aspects: semantic accuracy and spatiotemporal (ST) continuity. Semantic accuracy is also
measured through an N-way top-K action classification task (top 1 in our case) involving 400 classes
from the Kinetics-400 dataset (Kay et al.,2017)), using a VideoMAE-based model (Tong et al.|[2022)
as the classifier. To evaluate spatiotemporal coherence, we calculate the CLIP embedding for each
video frame and compute the mean cosine similarity between every pair of adjacent frames. This
metric, commonly referred to as CLIP-pcc in the video editing literature (Wu et al.l [2023)), reflects
how smoothly semantic content transitions over time.

4.4 MAIN RESULTS

4.4.1 QUANTITATIVE RESULTS

We evaluated the performance of VCFLOW against existing methods, conducting comparisons
across three subjects as well as their averaged results. As shown in Table|l} our approach achieves
substantial improvements over the subject-agnostic baselines NEURONS* and GLFA*, and even
surpasses GLFA, which pretrains the encoder on fMRI data from all subjects. These results high-
light the superiority of our framework.

To be specific, the frame-based metrics exhibit substantial improvements. At the semantic level,
our method attains an accuracy of 14.0% on the 50-way classification task, representing a 46 %
relative gain over GLFA* (9.6%). Consistent improvements are also observed in pixel-level metrics,
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Frame-based Video-based
Task  Method w/o Pretrain Semantic-level Pixel-level Semantic-level ST-level
50-wayT 2-way?  SSIMtT  PSNRT 50-wayl 2-wayl? CLIP-pcct

fMRI-PTE-V (Li et al.|[2024) X 12.3% 77.1% 0.151 - 17.9% 84.6% -

— GLFA (Li et al.[|[2024) X 12.6% 78.1% 0.181 - 17.9% 83.7% -

T NEURONS* (Wang et al.||2025) v 9.7% 74.3% 0.377 9.200 15.5% 82.9% 0.926

2‘ GLFA* (Li et al.|[2024) v 9.0% 74.1% 0.133 - 16.3% 83.3% -
VCFLOW v 142%  78.6% 0.389 10469 189%  84.8% 0.944
fMRI-PTE-V (Li et al.|[2024) X 10.4% 76.2% 0.130 - 17.4% 84.4% -

« GLFA (Li et al.|2024) X 10.5% 76.8% 0.167 - 17.5% 83.8% -

T NEURONS¥ (Wang et al.||2025) v 10.6% 75.5% 0.385 10.000 16.8% 84.3% 0.936

2 GLFA* (Li et al.|[2024) v 10.3% 74.9% 0.141 - 17.7% 84.6% -
VCFLOW v 132%  77.6% 0.424 10.629  18.0% 84.3% 0.937
fMRI-PTE-V (Li et al.|[2024) X 10.7% 76.5% 0.161 - 18.2% 83.4% -

By GLFA (Li et al.[|2024) X 11.6%  71.7% 0.172 - 193% 84.7% -

T NEURONS* (Wang et al.|[2025) v 10.0% 74.9% 0.378 9.636 16.0% 83.6% 0.931

2 GLFA* (Li et al.|[2024) v 9.5% 75.3% 0.137 - 17.0% 84.1% -
VCFLOW v 14.7% 77.6% 0.375 10.335 17.8% 84.5% 0.940
fMRI-PTE-V (Li et al.|[2024) X 11.1% 76.6% 0.147 - 17.8% 84.1% -

@, GLFA (Li et al.[[2024) X 11.6% 77.5% 0.173 - 18.2% 84.1% -

5 NEURONS* (Wang et al.||2025) v 10.1% 74.9% 0.380 9.612 16.1% 83.6% 0.931

z GLFA* (Li et al.|[2024) v 9.6% 74.8% 0.137 - 17.0% 84.0% -
VCFLOW v 14.0%  77.9% 0.396 10478 182%  84.5% 0.940

g VCFLOW vs. GLFA* (A%) - +45.8%  +4.1%  +189.1% - +7.1% +0.6% -

g VCFLOW vs. NEURONS* (A%) - +38.6%  +4.0% +4.2% +9.0% +13.0% +1.1% +1.0%

o VCFLOW vs. GLFA (A%) - +20.7%  4+0.5%  +128.9% - 0.0% +0.5% -

Table 1: Quantitative comparison of VCFLOW with representative methods. All results are based
on subjects provided by the cc2017 dataset (Wen et al.,|2018). GLFA* refers to GLFA results with
test subject data excluded during pretraining. NEURONS* refers to the NEURONS model adapted
to a subject-agnostic setting by modifying its data processing pipeline and encoder components. w/o
Pretrain indicates whether the encoder is pretrained using the fMRI data of the test subject.

including SSIM and PSNR. Moreover, the video-based metrics achieve state-of-the-art performance
under the current setting, highlighting the model’s superior ability to capture dynamic information.
These results collectively underscore the effectiveness of VCFLOW in both motion modeling and
semantic feature extraction. The results comparing with subject-specific methods are provided in

Appendix
4.4.2 QUALITATIVE RESULTS

We compare the qualitative performance of VCFLOW with GLFA, as illustrated in Fig. 5} The
results demonstrate that our method achieves superior performance in both semantic accuracy and
the ability to capture motion dynamics. Benefiting from the incorporation of dedicated motion
features, the reconstructed videos exhibit more coherent and faithful representations of spatial and
temporal information. Additional results are provided in the Appendix [C]

4.5 ABLATION STUDIES

In this section, we evaluate the effectiveness of four key components: fMRI-to-image pretraining,
HCAM, SARA, and HED. All experiments follow a subject-agnostic setting, where models are
trained on subjects 2 and 3 and directly tested on subject 1. As shown in Table [2] each module con-
tributes to performance gains across both video-based and image-based metrics. Adding HCAM
enhances semantic understanding, while SARA boosts cross-subject transferability, reflected in
CLIP-pcc and PSNR. Introducing HED provides the most significant gains, particularly in high-
level semantics and reconstruction quality.

4.6 INTERPRETATION RESULTS

By adopting the cortical projection technique introduced in (Yang et al., 2024), we visualize the hier-
archical embeddings on the brain surface map. As illustrated in Fig. [0 the early vision embeddings
exhibit a clear correspondence with early visual areas, notably V1 through V4. The ventral stream
embeddings show strong activation in high-level visual regions such as the FFA and PPA, while also
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Figure 5: Compared with GLFA (Li et al., 2024), the qualitative comparison demonstrates that
VCFLOW achieves superior semantic fidelity and temporal coherence, effectively capturing fine-
grained semantics and preserving motion information in a subject-agnostic setting.

Brain Image Modules \ Frame-based Video-based

Model Pretrain HCAM SARA HED \ 50-way? 2-wayt SSIM{T PSNRT 50-way? 2-wayf! CLIP-pcct

v 11.3% 73.1%  0.401 9.720 12.6% 81.3% 0.908
v v 10.4% 75.0%  0.382 9.866 15.3% 81.8% 0.918
v v v 11.8% 759%  0.357 9.583 14.7% 82.4% 0.919
v v v v 12.4% 772% 0389  10.442 15.2% 83.1% 0.934
v v v v v | 142% 78.6% 0389 10469 189%  84.8% 0.944

Table 2: Ablations on the key components of VCFLOW, and all results are from subject 1.

demonstrating more diffuse projections across broader cortical areas, likely due to their encoding of
abstract global semantics. In contrast, the dorsal stream embeddings align well with motion-related
regions, particularly those associated with MST. These interpretation results are highly consistent
with the neurocognitive structure underpinning our proposed framework.

Figure 6: By projecting the three types of embeddings from different semantic dimensions onto
the cortical surface, we can clearly observe their respective correspondences with different brain
regions.

5 CONCLUSION

In this work, we propose VCFLOW, the first subject-agnostic framework for fMRI-to-video recon-
struction. We design a novel dual-stream hierarchical feature extraction architecture inspired by the
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human brain’s cognitive pathways, enabling the model to extract multi-level features for accurate
video reconstruction. A key innovation of our approach lies in the utilization of CLIP embeddings
from multiple layers to achieve fine-grained semantic alignment with fMRI signals. To further
enhance generalization across individuals, we introduce a redistribution-based cross-subject learn-
ing strategy that captures subject-invariant representations. Without relying on any subject-specific
training data, VCFLOW achieves efficient video reconstruction with only a marginal drop in ac-
curacy, offering a rapid and generalizable solution suitable for clinical applications. Additionally,
our interpretation analyses provide compelling evidence of the alignment between the reconstructed
features and human visual cognition mechanisms.
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A TECHNICAL DETAILS

A.1 MIXCO LOSS

The MixCo needs to mix two independent fMRI signals. For each )., we random sample another
fMRI Y., which is the keyframe of the clip index by m.. Then, we mix ). and YV, using a linear
combination:

y: :mim(yc»ymc) :)\c'yc+(1_)\c)ymcv 9
where V! denotes mixed fMRI signal and A. is a hyper-parameter sampled from Beta distribution.
Then, we adapt the ridge regression to map )V to a lower-dimensional y:' and obtain the embedding
ey- via the MLP, i.e. ey~ = 8()}:/). Based on this, the BiMixCo loss can be formed as:

P 1 %’3/\ exp(sim(ey-, ex,)/T)
BiMixCo = — 577 i 108
TN I exp(sim(eyy s ex,)/7)
Nf .
1 exp(sim(eys,ex, )/T
~ o D (1) log pr( (,y“ i )/7)
i Yol exp(mm(eyi*,exk)/T)
Ny . (10)
1 Z)\~ o8 exp(s1m(ey;,exj)/7')
Py j N .
2Ny = > ety exp(sim(ey, ex;)/7)
Nf .
1 exp (sun(ey* ,ex; )/T)
RS S SR
T > ety exp(sim(ey, ex;)/7)

where e, denotes the OpenCLIP embedding for keyframe X..

A.2 PRrIOR LOSS

We use the Diffusion Prior to transform fMRI embedding ey_ into the reconstructed OpenCLIP
embeddings of video ey ,. Similar to DALLE-2, Diffusion Prior predicts the target embeddings with
mean-squared error (MSE) as the supervised objective:

EPrior = Eevc,eyc7€~N(0,1)||6(€yc) - chH' (1)
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A.3 FUNCTIONAL CLASSIFICATION OF ROISs

In constructing the dual-stream framework, we distinguish three main groups: early vision ROIs,
dorsal ROIs, and ventral ROIs. However, the dual-stream theory does not provide a definitive as-
signment for every ROI in the visual cortex, and the categorization of certain borderline regions re-
mains ambiguous. To address this uncertainty, we adopted two alternative ROI partitioning schemes
and compared their effectiveness. Considering both cognitive relevance and the balance in voxel
distribution, we ultimately selected scheme A as our final partitioning strategy. The comparative
results on subject 1 are presented in Table 3]

Scheme A

* Early vision: V1, V2, V3, V4

* Dorsal stream: V3A, V3B, V6, V6A, V7, IPS1, LO1, LO2, LO3, FST, MT, MST, V3CD,
V4t, PH, IPO

* Ventral stream: FFC, PIT, V8, VMV1, VMV2, VMV3, VVC, PHA1, PHA2, PHA3, TE2p

Scheme B

* Early vision: V1, V2, V3, V4
e Dorsal stream: V3A, V3B, V6, V6A, V7,IPS1, FST, MT, MST, V3CD, V4t, IP0O

* Ventral stream: FFC, PIT, V8, VMV1, VMV2, VMV3, VVC, PHA1, PHA2, PHA3, TE2p,
LO1, LO2, LO3, PH

Frame-based Video-based

Scheme

Semantic-level Pixel-level Semantic-level ST-level
50-way? 2-wayt SSIMT PSNRfT 50-wayt 2-way? CLIP-pcct

Scheme A 142%  78.6% 0389 10469 189%  84.8% 0.944
Scheme B 12.4% 71.9%  0.353 9.366 9.8% 80.6% 0.913

Table 3: Comparison of ROI partitioning schemes on subject 1.
A.4 PROGRESSIVE LEARNING STRATEGY

We adopt a progressive learning strategy (Wang et al., 2025)) to jointly optimize multiple loss func-
tions. This strategy regulates the weight of each loss along a smooth schedule: starting from 1,
increasing to 10, and then decaying back to 1 within a predefined period. The scheduling is applied
to four loss functions, each with a distinct offset period to promote balanced training.

Formally, let E denote the epoch index, B the batch index, and Nz the number of batches per epoch.
The total number of batches within a period P is defined as 7' = P - Ng. For a period that starts at
epoch S, the position of the current batch within this period is computed as

C=(E—-S5) - Np+B. (12)
The weight w at this position is then given by
c
sin(T . 7T> ’ . (13)

If E lies outside the interval [S, S + P), the weight remains constant, i.e., w = 1.

w=14+9-

A.5 SUBTASKS DESCRIPTIONS

Our task setup is inspired by NEURONS (Wang et al.,2025)), and we describe each subtask in detail
below. We first present the ventral-related tasks, which are mainly designed to capture high-level
semantic information along the visual processing stream.

Concept Recognition. To enhance conceptual understanding, we introduce a concept recognition
task by adding a multi-label classifier D.4(-) that predicts the key concepts in each frame from the
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fMRI-derived visual embeddings. Concretely, we apply a cross-entropy loss between the classifier
prediction and the ground-truth (GT) concept list:

Les = Lee (Dcls (év)7 C)7 (14)
where €¥ denotes the mean of e” along the frame axis, and C is the GT concept list.

Scene Description. To further model scene-level semantics, we incorporate a scene description
task that aims to generate a descriptive caption for each video frame. Specifically, we finetune
a pre-trained text decoder D qprion (-), Which takes the fMRI-derived text embeddings el as input
and produces the caption. We adopt GPT-2 (Radford et al.l [2019) as the text decoder and train it
using prefix language modeling. Given a GT caption token sequence S = {59, 51, .. ., 5|/} and the
corresponding text embedding ef, the decoder Deaption () is trained to reconstruct S conditioned on
el as the prefix. The training objective Lecaption is defined as:

S|
1
‘Ccaption - _E ;log Dcaption(si | S<iy et)v (15)

where s; denotes the i-th token in the GT sequence S.

Next, we consider early-vision tasks, which primarily aim to learn coarse object contours and spatial
masks.

Key Object Segmentation. To better capture object-level information, we design a text-driven video
decoder based on the VAE video decoder (von Platen et al.l [2022). This decoder takes the video
embeddings e’ together with the text embeddings e! as inputs. For this task, the text embeddings
are obtained by encoding the category name of the key object with the CLIP text encoder. A cross-
attention module is then applied to activate specific patches in e” (used as queries () corresponding

to e’ (used as keys K and values V): €9 = softmax(%) - V. The activated feature e*“9 is

upsampled to a higher resolution for pixel-level prediction. We then employ a simple segmentation
head D, (-) to generate the binary segmentation masks y,., for the key object in the video. The
training objective for this task is a binary cross-entropy loss, denoted as L.,4.

Finally, we introduce the dorsal-related task, which focuses on modeling global motion information.

Blurry Video Reconstruction. We reuse the same VAE decoder as in the key object segmenta-
tion task, but replace the segmentation head D,s(-) with a reconstruction head D,,,.(-). Given the
video embeddings e”, the text-driven video decoder together with D,,.(-) generates a blurry video
ymotion We then map y™°*°" into the latent space of the Stable Diffusion VAE to obtain the latent
embeddings y.. This subtask is trained with a mean absolute error (MAE) loss, defined as:

F
1 .
Luotion = Iz E ’ygli()twn - y(/:‘,’i|' (16)
i=1

It is worth noting that, unlike NEURONS, which jointly optimizes all tasks over a single global
feature representation, we explicitly associate each task with a particular cognitive process and train
it on the corresponding process-specific features.

A.6 INFERENCE

At inference time, our pipeline leverages a pre-trained T2V diffusion model (Guo et al., 2023)), in
a setup similar to NEURONS (Wang et al., [2025). We conditions the model jointly on a control
image, a blurry video, and a text description. These three inputs are assembled from the outputs of
the decoupled tasks: a control image is reconstructed from each frame via unCLIP (Ramesh et al.,
2022), while D and D qption provide the predicted concepts and generated captions, respectively.
The embedding of the top-1 predicted concept, together with the caption embedding, is used to guide
video-mask prediction through D, s and blurry video reconstruction through D,,,.. To further enhance
the prominence of the key object, we rescale its binary mask from 0, 1 to [0.5, 1] and multiply it with
both the control image and the blurry video before feeding them into the diffusion model.

Because inference for unseen subjects does not require any subject-specific finetuning, their data
can be directly processed by the model. With this setup, the inference time—normalized by the
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total number of videos—remains below 10 seconds per video. All measurements are obtained on an
NVIDIA RTX 4090 GPU.

A.7 DETAILS OF BRAIN MODEL

As shown in Fig. [3| our Brain Model extracts four types of representations from the input fMRI sig-
nals: a full-brain representation Eyiy, €arly visual features Ecqyy, ventral-stream features Eyengal,
and dorsal-stream features Egs,1. Here, the Brain Model refers to the module responsible for deriv-
ing these fMRI-based features, consisting of a ViT backbone together with several linear projection
heads.

The linear heads operate directly on the flattened voxel signals to obtain the three cognitively
grounded feature sets—Eeay, Evengal, and Egosa—each with shape RB*S'XD  For the global full-
brain representation Ey,;,, we adopt a ViT-based fMRI encoder (fMRI-PTE (Qian et al.,[2023)), pre-
trained on the UK Biobank dataset (Miller et al.,[2016)), which produces features of shape RZ* SxD,

B DETAILS OF DATA PRE-PROCESSING

We employ both the fMRI-to-image datasets and the fMRI-to-video dataset in our experiments (Wen
et al 2018 Shen et al,, |2019; Horikawa & Kamitanil 2017). For fMRI data preprocessing, we
first aligned all fMRI volumes to the 32k fs_LR brain surface space based on anatomical struc-
ture (Glasser et al.,2013)). Unlike conventional fMRI decoding methods that flatten each fMRI frame
into a one-dimensional signal and select subject-specific activated voxels, our approach transforms
the fMRI data into a unified surface-based representation across subjects. After surface alignment,
we applied voxel-wise z-transformation to normalize the fMRI signals and unfolded the cortical sur-
face into a two-dimensional plane, thereby preserving spatial relationships between adjacent voxels.
Given that only a subset of brain regions is typically activated during visual stimulation tasks (Huang
et al.|[2021), we further restricted the analysis to early and higher visual cortical Regions of Interest
(ROIs). These ROIs, encompassing a total of 8,405 vertices, were defined according to the HCP-
MMP atlas (Glasser et al.,[2016) in the 32k_fs_LR surface space. Each processed fMRI volume was
then converted into a single-channel 256 x 256 image. For datasets with multiple runs corresponding
to the same video stimulus, we averaged the aligned fMRI frames across runs. Finally, for fMRO-
to-Video dataset, to account for the hemodynamic response delay—the time lag between stimulus
presentation and the peak of the BOLD response—a temporal shift of approximately 6 seconds was
applied to the fMRI data.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISON WITH SUBJECT-SPECIFIC METHODS

We also compare our method with state-of-the-art approaches under different settings as shown
in Table 4] Notably, when compared with the subject-specific state-of-the-art method NEU-
RONS (Wang et al., 2025), our approach exhibits only a modest decrease of 7% in average per-
formance. However, it achieves the advantage of direct testing without the need for retraining.

C.2 VISUALIZATION RESULTS

We further conduct a qualitative comparison among VCFLOW, GLFA (Li et al.| 2024), and NEU-
RONS (Wang et al., [2025)), as illustrated in Fig. Compared to GLFA, VCFLOW consistently
delivers superior performance in both semantic fidelity and dynamic coherence. In comparison with
the subject-specific model NEURONS, which exhibits high visual fidelity and strong temporal con-
sistency, VCFLOW achieves 31mllarly high-quality reconstructions while maintaining robust motion
dynamics. Notably, in scenarios involving common semantic structures, VCFLOW even surpasses
NEURONS by producing smoother motion trajectories and more semantically accurate content, de-
spite being trained in a subject-agnostic manner.
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Frame-based Video-based
Method Setting Semantic-level Pixel-level Semantic-level ST-level
50-wayt 2-wayf  SSIMtT  PSNRfT 50-wayf 2-way? CLIP-pcct
Subject 1
NEURONS (Wang et al.|[2025) Subject-specific 20.6% 81.0% 0.373 9.591 25.4% 86.2% 0.932
GLFA (Li et al.|[2024) Subject-adaptive pretraining 11.6% 77.7% 0.172 — 19.3% 84.7% —
VCFLOW Subject-agnostic 14.2% 78.6% 0.389 10.469 18.9% 84.8% 0.944
Subject 2
NEURONS (Wang et al.}[2025) Subject-specific 21.4% 81.0% 0.353 9.502 25.2% 86.0% 0.933
GLFA (Li et al.|[2024) Subject-adaptive pretraining 10.5% 76.8% 0.167 - 17.5% 83.8% -
VCFLOW Subject-agnostic 13.2% 77.6% 0.424 10.629 18.0% 84.3% 0.937
Subject 3
NEURONS (Wang et al.}[2025) Subject-specific 21.0% 81.7% 0.369 9.488 27.8% 86.8% 0.937
GLFA (Li et al.|[2024) Subject-adaptive pretraining 12.6% 78.1% 0.181 - 17.9% 83.7% -
VCFLOW Subject-agnostic 14.7% 77.6% 0.375 10.335 17.8% 84.5% 0.940
Average
NEURONS (Wang et al.}[2025) Subject-specific 21.0% 81.2% 0.365 9.527 26.1% 86.3% 0.934
GLFA (Li et al.|[2024) Subject-adaptive pretraining 11.6% 77.5% 0.173 - 18.2% 84.1% -
VCFLOW Subject-agnostic 14.0% 77.9% 0.396 10.478 18.2% 84.5% 0.940
VCFLOW vs. GLFA (A%) - +20.7%  +0.5% +128.9% - 0.0% +0.5% -
VCFLOW vs. NEURONS (A%) - -33.3% -4.1% +8.5%  +10.0%  -30.3% -2.1% +0.6%
GLFA vs. NEURONS (A%) - -44.8% -4.6% -52.6% - -30.3% -2.6% -

Table 4: Comparison of VCFLOW with GLFA (Li et al.|[2024) and NEURONS (Wang et al., [2025)
across subjects. GLFA adopts subject-adaptive pretraining by using fMRI data from all subjects,
while NEURONS is trained and evaluated on the same subject.

C.3 FAILURE CASES

Since our evaluation is conducted in a cross-subject subject-agnostic setting and the amount of
training data is limited, a number of failure cases are observed. As illustrated in Fig. [8] the major
failure cases can be broadly categorized into two types. The first type arises when the primary
objects in the stimulus videos belong to very rare categories, making it difficult for the model to
effectively learn their semantics, as exemplified by the first two cases. The second type occurs when
the semantics in the stimulus videos are overly complex and intertwined, which makes it challenging
to recover the most salient semantic components, as shown in the latter two cases.

C.4 ADDITIONAL ABLATION RESULTS

To strengthen the persuasiveness of our SARA and HED designs, we conducted ablation studies on
both components, as shown in Table [5]and Table [6]

HCAM SARA HED | Frame-based Video-based

Lagign Lsvj  Leeneric \ 50-wayt 2-way? SSIMf PSNRT 50-wayf 2-way! CLIP-pcct
v v v 7.52% 68.2% 0.392 9.090 9.67% 77.3% 0.903
v v v v 10.7% 75.0%  0.368 9.983 13.9% 81.7% 0.924
v v v v v 14.2% 78.6% 0389 10.469 189% 84.8% 0.944

Table 5: Ablations on the components of SARA, and all results are from subject 1.

HCAM  SARA HED | Frame-based Video-based

Letion  Las  Lseg Lmotion  PL | 50-way? 2-wayt SSIMt PSNRT 50-wayt 2-wayt CLIP-pect
v v v 10.0% 72.6% 0.356 9.370 12.8% 81.4% 0.907
v v v v 8.2% 71.1% 0.360 10.197 14.6% 82.3% 0.970
v v v v v 13.2% 78.9 % 0.408 10.737 16.4% 84.1% 0.942
v v v v v v 11.3% 76.0% 0.383 10.123 15.2% 82.4% 0.926
v v v v v v v 14.2% 78.6% 0.389  10.469 18.9% 84.8% 0.944

Table 6: Ablations on the components of HED, and all results are from subject 1.
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Figure 7: Qualitative comparison results among VCFLOW, GLFA and NEURONS.
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GT

VCFlow

VCFlow

VCFlow

VCFlow

Figure 8: Representative failure cases under the cross-subject subject-agnostic setting, including (1)
rare object categories (first two examples) and (2) overly complex and intertwined semantics (last
two examples).

C.5 VISUALIZATION COMPARISON

We conducted a comparative visualization of the preprocessed data and the semantic tokens, as
shown in Fig.[9]
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Figure 9: Visualization of the preprocessed data and the semantic tokens.

D USE OF LLMS

Large Language Models (LLMs) were employed solely for spelling and writing refinement in the
preparation of this paper. They were not involved in research ideation, methodological design,
experimental execution, or substantive content generation.
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