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ABSTRACT

Over the past few years, various tasks involving videos such as classification, de-
scription, summarization and question answering have received a lot of attention.
Current models for these tasks compute an encoding of the video by treating it as
a sequence of images and going over every image in the sequence, which becomes
computationally expensive for longer videos. In this paper, we focus on the task
of video classification and aim to reduce the computational cost by using the idea
of distillation. Specifically, we propose a Teacher-Student network wherein the
teacher looks at all the frames in the video but the student looks at only a small
fraction of the frames in the video. The idea is to then train the student to mini-
mize (i) the difference between the final representation computed by the student
and the teacher and/or (ii) the difference between the distributions predicted by
the teacher and the student. This smaller student network which involves fewer
computations but still learns to mimic the teacher can then be employed at infer-
ence time for video classification. We experiment with the YouTube-8M dataset
and show that the proposed student network can reduce the inference time by upto
30% with a negligent drop in the performance.

1 INTRODUCTION

Today video content has become extremely prevalent on the internet influencing all aspects of our
life such as education, entertainment, communication efc. This has led to an increasing interest in
automatic video processing with the aim of identifying activities (Simonyan & Zisserman, 2014;
Yue-Hei Ng et al.l 2015), generating textual descriptions (Donahue et al., 2015), generating sum-
maries (Zhang et al.| 2016; [Pan et al., |2016), answering questions (Jang et al.l 2017) and so on.
On one hand, with the availability of large scale datasets (Soomro et al., [2012; |Wang et al.| |[2017a;
Kuehne et al., 201 1;|/Abu-El-Haija et al.| 2016; Xiao et al.|[2016) for various video processing tasks,
it has now become possible to train increasingly complex models which have high memory and
computational needs but on the other hand there is a demand for running these models on low power
devices such as mobile phones and tablets with stringent constraints on latency and computational
cost. It is important to balance the two and design models which can learn from large amounts of
data but still be computationally cheap at inference time.

With the above motivation, we focus on the task of video classification (Abu-El-Haija et al., 2016)
and aim to reduce the computational cost at inference time. Current state of the art models for video
classification (Yue-Hei Ng et al., 2015} |L1 et al., |2017; [Wu et al.| [2016; |Skalic et al. 2017) treat
the video as a sequence of images (or frames) and compute a representation of the video by using
a Recurrent Neural Network (RNN). The input to the RNN at every time step is an encoding of the
corresponding image (frame) at that time step as obtained from a Convolutional Neural Network.
Computing such a representation for longer videos can be computationally very expensive as it
requires running the RNN for many time steps. Further, for every time step the corresponding frame
from the video needs to pass through a convolutional neural network to get its representation. Such
computations are still feasible on a GPU but become infeasible on low end devices which have
power, memory and computational constraints.

Typically, one can afford more computational resources at training time but a less expensive model
is desired at test time. We propose to achieve this by using the idea of distillation wherein we
train a computationally expensive teacher network which computes a representation for the video
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by processing all frames in the video. We then train a relatively inexpensive student network whose
objective is to process only a few frames of the video and produce a representation which is very
similar to the representation computed by the teacher. This is achieved by minimizing (i) the squared
error loss between the representations of the student network and the teacher network and/or (ii) by
minimizing the difference between the output distributions (class probabilities) predicted by the two
networks. We refer to this as the matching loss. Figure[I]illustrates this idea where the teacher sees
every frame of the video but the student sees fewer frames, i.e., every j-th frame of the video. At
inference time, we then use the student network for classification thereby reducing the time required
for processing the video.

We experiment with two different methods of training the Teacher-Student network. In the first
method (which we call Serial Training), the teacher is trained independently and then the student
is trained to match the teacher with or without an appropriate regularizer to account for the classi-
fication loss. In the second method (which we call Parallel Training), the teacher and student are
trained jointly using the classification loss as well as the matching loss. We experiment with the
YouTube-8M dataset and show that the smaller student network reduces the inference time by upto
30% while still achieving a classification performance which is very close to that of the expensive
teacher network.

2 RELATED WORK

Since we focus on task of video classification in the context of the YouTube-8M dataset (Abu-ElI-
Haija et al.|, 2016)), we first review some recent works on video classification. In the latter half of this
section, we review some relevant work on model compression in the context of image processing.

On average the videos in the YouTube-8M dataset dataset have a length of 200 seconds. Each video
is represented using a sequence of frames where every frame corresponds to one second of the video.
These one-second frame representations are pre-computed and provided by the authors. The authors
also proposed a simple baseline model which treats the entire video as a sequence of these one-
second frames and uses an Long short-term memory networks (LSTM) to encode this sequence.
Apart from this, they also propose some simple baseline models like Deep Bag of Frames (DBoF)
and Logistic Regression (Abu-El-Haija et al., |2016). Various other classification models (Miech
et al., 2017; |Wang et al.|, [2017b} [Li et al.l [2017; |Chen et al.| [2017b; [Skalic et al.l [2017) have been
proposed and evaluated on this dataset which explore different methods of: (i) feature aggregation
in videos (temporal as well as spatial) (Chen et al., 2017b; Miech et al.| [2017), (ii) capturing the
interactions between labels (Wang et al.,|2017b)) and (iii) learning new non-linear units to model the
interdependencies among the activations of the network (Miech et al.,[2017). We focus on one such
state of the art model, viz., a hierarchical model whose performance is comparable to that of a single
(non-ensemble) best performing model (Multi Scale CNN-LSTM reported in Wang et al.| (2017b))
on this dataset. We take this model as the teacher network and train a comparable student network
as explained in the next section.

Recently, there has been a lot of work on model compression in the context of image classification.
We refer the reader to the survey paper by |Cheng et al. (2017) for a thorough review of the field.
For brevity, here we refer to only those papers which use the idea of distillation. For example, Ba &
Caruana| (2014); Hinton et al.| (2015)); [Lopez-Paz et al.| (2016); Chen et al.| (2017a) use Knowledge
Distillation to learn a more compact student network from a computationally expensive teacher
network. The key idea is to train a shallow student network to mimic the deeper teacher network,
ensuring that the final output representations produced by the student network are very close to those
produced by the teacher network. This is achieved by training the student network using soft targets
(or class probabilities) generated by the teacher instead of the hard targets present in the training
data. There are several other variants of this technique, for example, [Romero et al.|(2015) extend
this idea to train a student model which not only learns from the outputs of the teacher but also uses
the intermediate representations learned by the teacher as additional hints. This idea of Knowledge
Distillation has also been tried in the context of pruning networks in various domains (Chen et al.|
2017a; |Polino et al., [2018)). For example, |Chen et al. (2017a) exploited the idea of intermediate
representation matching along with Knowledge Distillation to compress state-of-art models for mul-
tiple object detection. On similar lines, [Polino et al.| (2018)) combine the ideas of Quantization and
Knowledge Distillation for better model compression in different image classification models. Stu-
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Figure 1: Architecture of TEACHER-STUDENT network for video classification
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dent teacher networks have also been proposed for speech recognition (Wong & Gales| 2016) and
reading comprehension 2018). While in these works, the teacher and student differ in the
number of layers, in our case, the teacher and student network differ in the number of time steps or
frames processed by the two networks. To the best of our knowledge, this is the first work which
uses a Teacher-Student network for video classification.

3 PROPOSED APPROACH

Given a fixed set of m classes y1,¥2,¥3, .-, ym € % and a video V containing N frames
(Fy, F1, ..., Fn_1), the goal of video classification is to identify all the classes to which the video
belongs. In other words, for each of the m classes we are interested in predicting the probability
P(y;|V). This probability can be parameterized using a neural network f which looks at all the
frames in the video to predict:

P<yi|V>:f(FUaFla"-aFNfl)

The focus of this work is to design a simpler network g which looks at only a fraction of the N
frames at inference time while still allowing it to leverage the information from all the N frames at
training time. To achieve this, we propose a teacher student network as described below wherein the
teacher has access to more frames than the student.

TEACHER: The teacher network can be any state of the art video classification model and in this
work we consider the hierarchical RNN based model. This model assumes that each video contains
a sequence of b equal sized blocks. Each of these blocks in turn is a sequence of [ frames thereby
making the entire video a sequence of sequences. In the case of the YouTube-8M dataset, these
frames are one-second shots of the video and each block b is a collection of [ such one-second frames.
The model contains a lower level RNN to encode each block (sequence of frames) and a higher level
RNN to encode the video (sequence of blocks). As is the case with all state of the art models for
video classification, this teacher network looks at all the IV frames of video (Fy, F}, ..., Fy_1) and
computes an encoding 7 of the video, which is then fed to a simple feedforward neural network
with a multi-class output layer containing a sigmoid neuron for each of the ¢ classes. This teacher
network f can be summarized by the following set of equations:

C; = CNN(F,) Vt€{0...N —1}and C; € R
hy = LSTM (C¢,hi—1) Yt €{0...N —1} and h; € R0
Ui = O’(leThN_l) Vi; € % classes

The CN N used in the above equations is typically a pre-trained network and its parameters are
not fine-tuned. The remaining parameters of the teacher network which includes the parameters of
the LST M as well as the output layer (with W parameters) are learnt using a standard multi-label
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classification loss L g, which is a sum of the cross-entropy loss for each of the % classes. We refer
to this loss as Lo where the subscript C'E stands for cross entropy between the true labels y and
predictions 3.

||
Log=— Zyi log(9;) + (1 — y;) log(1 — ;) M

i=1

STUDENT: In addition to this teacher network, we introduce a student network which only pro-
cesses every ;" frame (Fy, F;, Fy;, ..., Fn_) of the video (as shown in ﬁgure and computes a
J

representation Eg of the video from these % frames. Similar to the teacher, the student also uses a
hierarchical recurrent neural network to compute this representation which is again fed to a simple
feedforward neural network with a multi-class output layer. The parameters of this output layer are
shared between the teacher and the student. The student is trained to minimize the squared error
loss between the representation computed by the student network and the representation computed
by the teacher. We refer to this loss as £,..,, where the subscript rep stands for representations.

Erep = ||5T - ‘S‘SHQ (2)

We also try a simple variant of the model, where in addition to ensuring that the final representations
&g and Ep are similar, we also ensure that the intermediate representations (Zg and Z7) of the models
are similar. In particular, we ensure that the representation of the frames j, 27 and so on computed by
the teacher and student network are very similar by minimizing the squared error distance between
the corresponding intermediate representations. We refer to this loss as Efep where the superscript
7 stands for intermediate.

N_1
J

‘C%ep: Z ||I’%_ .19”2 (3)

1=5,2J,--

Alternately, the student can also be trained to minimize the difference between the class proba-
bilities predicted by the teacher and the student. We refer to this loss as £,..q Where the sub-
script pred stands for predicted probabilities. More specifically if Pr = {pk,p%,....,p7} and
Ps = {pls, p%, ....,pT'} are the probabilities predicted for the m classes by the teacher and the
student then

‘Cpred = d(pTz PS) (4)

where d is any suitable distance metric such as KL divergence or squared error loss.

TRAINING: Intuitively, it makes sense to train the teacher first and then use this trained teacher
to guide the student. We refer to this as the Serial mode of training as the student is trained after
the teacher as opposed to jointly. For the sake of analysis, we use different combinations of loss
function to train the student as described below:

(a) L,¢p : Here, we operate in two stages. In the first stage, we train the student network
to minimize the L,., as defined above, i.e., we train the RNN parameters of the student
network to produce representations which are very similar to the teacher network. The
idea is to let the student learn by only mimicking the teacher and not worry about the final
classification loss. In the second stage, we then plug-in the classifier trained along with
the teacher (see Equation[T)) and finetune all the parameters of the student and the classifier
using the cross entropy loss, Log. In practice, we found that the finetuning done in the
second stage helps to improve the performance of the student.

(b) Lyep + Lok Here, we train the student to jointly minimize the representation loss as well
as the classification less. The motive behind this was to ensure that while mimicking the
teacher, the student also keeps an eye on the final classification loss from the beginning
(instead of being finetuned later as in the case above).
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MODEL k=6 k=10 k=15 k=20 k=30
GAP | MAP | GAP | MAP | GAP [ MAP | GAP | MAP | GAP | MAP
Teacher-Skyline 0.811 | 0.414
Model with k frames BASELINE METHODS
Uniform-k 0.715 | 0.266 | 0.759 | 0.324 | 0.777 | 0.35 | 0.785 | 0.363 | 0.795 | 0.378
Random-£ 0.679 | 0.246 | 0.681 | 0.254 | 0.717 | 0.268 | 0.763 | 0.329 | 0.774 | 0.339
First-k 0.478 | 0.133 | 0.539 | 0.163 | 0.595 | 0.199 | 0.632 | 0.223 | 0.676 | 0.258
Middle-£ 0.577 | 0.178 | 0.600 | 0.198 | 0.620 | 0.214 | 0.638 | 0.229 | 0.665 | 0.25
Last-k 0.255 | 0.062 | 0.267 | 0.067 | 0.282 | 0.077 | 0.294 | 0.083 | 0.317 | 0.094
First-Middle-Last-k 0.640 | 0.215 | 0.671 | 0.242 | 0.680 | 0.249 | 0.698 | 0.268 | 0.721 | 0.287
Training | Student-Loss TEACHER STUDENT METHODS
Parallel | L., 0.724 | 0.280 | 0.762 | 0.331 | 0.785 | 0.365 | 0.794 | 0.380 | 0.803 | 0.392
Parallel | Lycp, Lcr 0.726 | 0.285 | 0.766 | 0.334 | 0.785 | 0.362 | 0.795 | 0.381 | 0.804 | 0.396
Parallel | Lyep, Lpred, Lo | 0.729 | 0.292 | 0.770 | 0.337 | 0.789 | 0.371 | 0.796 | 0.388 | 0.806 | 0.404
Serial Liyep 0.727 | 0.288 | 0.768 | 0.339 | 0.786 | 0.365 | 0.795 | 0.381 | 0.802 | 0.394
Serial Lyep, Lcr 0.728 | 0.291 | 0.769 | 0.341 | 0.786 | 0.368 | 0.794 | 0.383 | 0.803 | 0.399
Serial Lyep, Lpred, Lo | 0731 | 0.297 | 0.771 | 0.349 | 0.789 | 0.375 | 0.798 | 0.390 | 0.806 | 0.405

Table 1: Performance Comparison of proposed Teacher-Student models using different Student-
Loss variants, with their corresponding baselines using k frames. Teacher-Skyline refers to the
default model which process all the frames in a video.

(©) Lyep + Lok + Lpreq: Finally, we also add in £,,.4 to enable the student to learn from the
soft targets obtained from the teacher in addition to hard target labels present in the training
data. Figure 1 illustrates the process of training the student with different loss functions.

For the sake of completeness, we also tried an alternate mode in which train the teacher and student
in parallel such that the objective of the teacher is to minimize L g and the objective of the student
is to minimize one of the 3 combinations of loss functions described above.

4 EXPERIMENTAL SETUP

In this section, we describe the dataset used for our experiments, the hyperparameters that we
considered, the baseline models that we compared with and the effect of different loss functions and
training methods.

1. Dataset: The YouTube-8M dataset (Abu-El-Haija et al |2016) contains 8 million videos with
multiple classes associated with each video. The average length of a video is 200s and the maximum
length of a video is 300s. The authors of the dataset have provided pre-extracted audio and visual
features for every video such that every second of the video is encoded as a single frame. The
original dataset consists of 5,786,881 training (70%), 1,652,167 validation (20%) and 825,602 test
examples (10%). Since the authors did not release the test set, we used the original validation set
as test set and report results on it. In turn, we randomly sampled 48,163 examples from the training
data and used these as validation data for tuning the hyperparameters of the model. We trained our
models using the remaining 5,738,718 training examples.

2. Hyperparameters: For all our experiments, we used Adam Optimizer with the initial learning
rate set to 0.001 and then decreased it exponentially with 0.95 decay rate. We used a batch size of
256. For both the student and teacher networks we used a 2-layered MultiLSTM Cell with cell size
of 1024 for both the layers of the hierarchical model. For regularization, we used dropout (0.5) and
L, regularization penalty of 2 for all the parameters. We trained all the models for 5 epochs and
then picked the best model based on validation performance. We did not see any benefit of training
beyond 5 epochs. For the teacher network we chose the value of [ (number of frames per block ) to
be 20 and for the student network we set the value of [ to 5 or 3 depending on the reduced number
of frames considered by the student.

3. Evaluation Metrics: We used the following metrics as proposed in (Abu-El-Haija et al., [2016)
for evaluating the performance of different models :
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Figure 2: Performance Comparison (GAP score) of different variants of Serial and Parallel methods
in Teacher-Student training.

o GAP (Global Average Precision): is defined as

P
GAP = Z p(i)Vr(i)

where p(4) is the precision at prediction ¢, Vr(i) is the change in recall at prediction ¢ and P
is the number of top predictions that we consider. Following the original YouTube-8M Kaggle
competition we use the value of P as 20.

e mAP (Mean Average Precision) : The mean average precision is computed as the unweighted
mean of all the per-class average precisions.

4. Baseline Models: As mentioned earlier the student network only processes k frames in the
video. We have considered different baselines to explore the possible selections of frames in a
video sequence. We report results with different values of k£ : 6, 10, 15, 20, 30 and compare the
performance of our student networks with the following models:

a) Teacher-Skyline: The original hierarchical model which processes all the frames of the video.
This, in some sense, acts as the upper bound on the performance.

b) Uniform-k : A hierarchical model trained from scratch which only processes k frames of the
video. These frames are separated by a constant interval and are thus equally spaced. However,
unlike the student model this model does not try to match the representations produced by the
full teacher network.

¢) Random-k: A hierarchical model which only processes k frames of the video. These frames are
sampled randomly from the video and may not be equally spaced.

d) First-k: A hierarchical model which processes the starting k frames of the video.

e) Middle-k: A hierarchical model which processes the middle & frames of the video.

f) Last-k: A hierarchical model which processes the last k£ frames of the video.

g) First-Middle-Last-k: A hierarchical model which processes k frames by selecting the starting

%, middle % and ending g frames of the video.

5 DISCUSSION AND RESULTS

The results of our experiments are summarized mainly in Tables [I| (performance) and ] (compu-
tation time). We also report some additional results in Table [2 and [3] Below, we discuss the main
observations from our experiments:

1. Comparisons of different baselines: First, we simply compare the performance of different
baselines listed in the top half of Table [I} As is evident, the Uniform-k baseline which looks at



Under review as a conference paper at ICLR 2019

MODEL Intermediate Final

\ GAP mAP \ GAP mAP
Parallel L, 0.803 0.393 | 0.803 0.392
Parallel L,., + Lcg | 0.803 0.396 | 0.804 0.396
Parallel Lyep + Lpreq | 0.804  0.400 | 0.806 0.404
Serial Lyep 0.804 0.395 | 0.802 0.394
Serial Lyep +Lce | 0.803 0397 | 0.803 0.399
Serial Lyep + Lprea | 0.806  0.405 | 0.806 0.405

Table 2: Comparison of Final and Intermediate representation matching by Student network using
k:30 frames.

equally spaced k frames performs better than all the other baselines. The performance gap between
Uniform-k and the other baselines is even more significant when the value of k& is small. The main
purpose of this experiment was to decide the right way of selecting frames for the student network.
Based on these results, we ensured that for all our experiments, we fed equally spaced % frames to
the student. Also, these experiments suggest that Uniform-£ is a strong baseline to compare against.

2. Comparing Teacher-Student Network with Uniform-% Baseline: As mentioned above, the
Uniform-£ is a simple but effective way of reducing the number of frames to be processed. We
observe that all the teacher-student models outperform this strong baseline. Further, in a separate
experiment as reported in Table[3]we observe that when we reduce the number of training examples
seen by the teacher and the student, then the performance of the Uniform-£ baseline drops and is
much lower than that of the corresponding teacher student network. This suggests that the teacher
student network can be even more useful when the amount of training data is limited.

3. Serial Versus Parallel Training of Teacher-Student: While the best results in Table [I] are ob-
tained using Serial training, if we compare the corresponding rows of Serial and Parallel training we
observe that there is not much difference between the two. We found this to be surprising and inves-
tigated this further. In particular, we compared the performance of the teacher after different epochs
in the Parallel training setup with the performance of the a static teacher trained independently (Se-
rial). We plotted this performance in Figure [2| and observed that after 3-4 epochs of training, the
Parallel teacher is able to perform at par with Serial teacher (the constant blue line). As a result,
the Parallel student now learns from this trained teacher for a few more epochs and is almost able
to match the performance of the Serial student. This trend is same across the different combinations
of loss functions that we used.

4. Visualization of Teacher and Student Representations: Apart from evaluating the final per-
formance of the model in terms of MAP and GAP, we also wanted to check if the representa-
tions learned by the teacher and student are indeed similar. To do this, we chose top-5 classes
(classi:Vehicle, class2: Concert, class3: Association football, class4: Animal, class5: Food) in
the Youtube-8M dataset and visualized the TSNE-embeddings of the representations computed by
the student and the teacher for the same video (see Figure [3). We use the darker shade of a color
to represent teacher embeddings of a video and a lighter shade of the same color to represent the
students embeddings of the same video. We observe that the dark shades and the light shades of
the same color almost completely overlap showing that the student and teacher representations are
indeed very close to each other.

5. Matching Intermediate v/s Final representations: Intuitively, it seemed that the student should
benefit more if we train it to match the intermediate representations of the teacher at different
timesteps as opposed to only the final representation at the last time step. However, as reported
in Table 2] we did not see any benefit of matching intermediate representations.

6. Computation time of different models: Lastly, the main aim of this work was to ensure that
the computational cost and time is minimized at inference time. The computational cost can be
measured in terms of the number of FLOPs. The main result from the table[d]is that when k=30, the
inference time drops by 30% where the number of FLOPs reduces by 90%, but the performance of
the model is not affected. In particular, as seen in Table[I} when & = 30, the GAP and mAP drop by
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Model | Metric | %age of training data

Model Time (hrs.) | FLOPs (Billion
| | 10%  25%  50% , | (hrs.) | ( )
- Teacher-Skyline | 13.00 | 5.042
Serial GAP | 0.774 0.788 0.796
MAP | 0345 0369 0.373 k: 10 7.61 0.151
- k: 20 8.20 0.252
MAP | 0.220 0.301 0.349

Table 4: Comparison of FLOPs and evaluation
time of models using k frames with Skyline model
on original validation set using Tesla k80s GPU

Table 3: Effect of amount of training data on per-
formance of Serial and Uniform models using 30
frames

0.5-0.9% and 0.9-2% respectively as compared to the teacher skyline. This shows that the proposed
teacher student model is an effective way of reducing the computational cost and time.

classl-t
class2-t
class3-t
class4-t
class5-t
» classl-s
« class2-s
« class3-s
» class4-s
class5-s

-75 -50 -25 0 25 50 75 100

Figure 3: TSNE-Embedding of teacher and student representations. Here, class c refers to the clus-
ter representation obtained corresponding to ct® class, whereas ¢ and s denote teacher and student
embedding respectively.

6 CONCLUSION AND FUTURE WORK

We proposed a method to reduce the computation time for video classification using the idea of
distillation. Specifically, we first train a teacher network which computes a representation of the
video using all the frames in the video. We then train a student network which only processes k
frames of the video. We use different combinations of loss functions which ensures that (i) the final
representation produced by the student is the same as that produced by the teacher and (ii) the output
probability distributions produced by the student are similar to those produced by the teacher. We
compare the proposed models with a strong baseline and skyline and show that the proposed model
outperforms the baseline and gives a significant reduction in terms of computational time and cost
when compared to the skyline. In particular, We evaluate our model on the YouTube-8M dataset and
show that the computationally less expensive student network can reduce the computation time by
upto 30% while giving similar performance as the teacher network.

As future work, we would like to evaluate our model on other video processing tasks such as summa-
rization, question answering and captioning. We would also like to experiment with more complex
and different teacher networks other than the hierarchical RNN considered in this work. We would
also like to independently train an agent which learns to select the most favorable &k frames of the
video as opposed to simply using equally spaced k frames.
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