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ABSTRACT

This paper studies the problem of domain division which aims to segment in-
stances drawn from different probabilistic distributions. This problem exists in
many previous recognition tasks, such as Open Set Learning (OSL) and General-
ized Zero-Shot Learning (G-ZSL), where the testing instances come from either
seen or unseen/novel classes with different probabilistic distributions. Previous
works only calibrate the confident prediction of classifiers of seen classes (W-
SVM [Scheirer et al.| (2014)) or taking unseen classes as outliers Socher et al.
(2013). In contrast, this paper proposes a probabilistic way of directly estimat-
ing and fine-tuning the decision boundary between seen and unseen classes. In
particular, we propose a domain division algorithm to split the testing instances
into known, unknown and uncertain domains, and then conduct recognition tasks
in each domain. Two statistical tools, namely, bootstrapping and Kolmogorov-
Smirnov (K-S) Test, for the first time, are introduced to uncover and fine-tune the
decision boundary of each domain. Critically, the uncertain domain is newly in-
troduced in our framework to adopt those instances whose domain labels cannot
be predicted confidently. Extensive experiments demonstrate that our approach
achieved the state-of-the-art performance on OSL and G-ZSL benchmarks.

1 INTRODUCTION

This paper discusses the problem of learning to separate two domains which include the instances
sampled from different distributions. This is a typical and general research topic that can be poten-
tially used in various recognition tasks, such as Open Set Learning (OSL) and Generalized Zero-Shot
Learning (G-ZSL). Particularly, OSL can break the constraints of the closed set in supervised learn-
ing, and aim at recognizing the testing instances from one of the seen classes (i.e., known domain),
and the novel class (i.e., unknown domain). The novel classes include the testing instances which
have different distributions from that of the seen ones. In contrast, G-ZSL targets at distinguishing
the labels of instances from the seen and unseen classes. Only the seen classes have the training
instances, but unseen classes do not. Note that OSL does not explicitly give the class labels for
those instances categorized as the novel class, but G-ZSL requires predicting the class labels of
unseen classes. To address G-ZSL, semantic attributes or vectors are introduced as the intermedi-
ate representations; each (seen/unseen) class has one semantic prototype that contains class level
information. Specifically, a reasonable solution of OSL and G-ZSL is via dividing the known and
unknown domains. For training classes, the predictors are constructed to map visual features to
the class label space (OSL), (or semantic space (G-ZSL)). Testing is performed on each separated
domain to identify seen classes and the novel class (OSL), or both seen and unseen classes (G-ZSL).

The key question of OSL and ZSL is how to deal with the newly introduced novel class/unseen
classes efficiently in the testing time. This is different from the conventional Zero-Shot Learning
(ZSL) task which assumes that, in the testing stage, seen classes would not be misclassified as
unseens, and vice versa; ZSL only uses the unseen classes for testing. Unfortunately, the predictors
learned on training classes will inevitably make OSL or G-ZSL approaches tend to be biased towards
the seen classes, and thus leading to very poor classification results for the novel class (OSL) or
unseen classes (G-ZSL) Xian et al.|(2017);|Chao et al.| (2016). We show an example in Fig. E} On
aPY dataset (described in Sec. 6.1) |Farhadi et al.| (2009), t-SNE [van der Maaten & Hinton/(2008)) is
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(a) Feature Space (b) Semantic Space (c) Direct Domain Prediction

Figure 1: Feature and semantic spaces of seen and unseen classes. We can see that a large of
portion of instances from unseen classes is wrongly labeled as seen classes (FP). TN: True Negative;
TP: True Positive; FN: False Negative; FP: False Positive.
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Figure 2: (a) Illustration of Our Domain Division Algorithm: The initial boundary of the known
domain is estimated by bootstrapping. We can further divide an uncertain domain by K-S Test.
Then we can recognize instances in each domain. (b) The distribution of pairwise intraclass
and interclass distances: We compute the empirical density of the pairwise distance in aPY dataset
(described in Sec. 6.1). There is a large overlapping of the distribution of the intraclass and interclass
distances.

employed to visualize the distributions of the testing instances of the ResNet-101 features in
(Fig.[T](a)), and semantic features learned by SAE[Kodirov et al.| (2017) (Fig. [T (b)). We
categorize the SAE prediction as known or unknown domain labels and compare with the ground-
truth in Fig. [T(c). We show that a large portion of unseen instances being predicted as one of the
known classes.

A natural recipe for addressing this problem is to learn to separate domains by the distributions of
instances; and different classifiers can be directly applied in each domain. However, there are still
two key problems. First, visual features alone are not discriminative enough to help to distinguish
the seen and unseen/novel classes. As Fig. |Z| (a), bicycle and motorbike, respectively, are one of the
seen and unseen classesElin aPY dataset (described in Sec. 6.1). We can observe that there is a large
overlapping region between their t-SNE visualized feature distributions. That is, the visual features
may not be representative enough to differentiate these two classes; the instances of motorbike (cir-
cled as the uncertain domain) may be taken as the bicycle, or vice versa; Second, the predictors
trained on seen classes may be not trustworthy. A not well-trained predictor may negatively affect
the recognition algorithms. Third and even worse, the performance of classifiers in each domain is
still very sensitive to the results of domain separation: should the domain of one testing instance be
wrongly divided, it would never be correctly categorized by the classifiers.

"Note that in OSL setting, we do not know the class label of motorbike, and its instances should be catego-
rized as just the novel class.
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To tackle the aforementioned issues, our key insight (see Fig. [2(a)) is to introduce a novel do-
main — uncertain domain that accounts for the overlapping regions of testing instances from seen or
novel/unseen classes. Thus, the visual or semantic space can be learned to be divided into known,
unknown and uncertain domains. The recognition algorithms will be directly employed in each do-
main. Nonetheless, how to divide the domains based on known information is also a non-trivial task.
Though the supervised classifiers can learn the patterns of known classes, not all classes encountered
during testing are known.

Formally, we propose exploiting the distribution information of seen and novel/unseen classes to
efficiently learn to divide the domains from a probabilistic perspective. Our domain separation
algorithm has two steps: the initial division of domains by bootstrapping, and fine-tuning by the
Kolmogorov-Smirnov test. Specifically, according to extreme value theory Scheirer et al.| (2014)),
the maximum/minimum confidence scores predicted by the classifier of each class can be taken as
an extreme value distribution. Since we do not have the prior knowledge of the underlying data
distributions of each class; bootstrapping is introduced here as an asymptotically consistent method
in estimating an initial boundary of known classes. Nevertheless, the initial boundary estimated by
bootstrapping is too relaxed to include novel testing instances as is illustrated in Fig. 2[b). To fine-
tune the boundary, we exploit the K-S Test to validate whether the learned predictors are trustworthy
in a specific region. The uncertain domain introduced thus accounts for those testing instances
whose labels are hard to be judged. Recognition models can be conducted in each domain.

Contributions: The main contribution is to present a systematic framework of learning to separate
domains by probabilistic distributions of instances, which is capable of addressing various recogni-
tion tasks, including OSL and G-ZSL. Towards this goal, two simple, most widely used, and very
effective tools — bootstrapping and the Kolmogorov-Smirnov test, are employed to firstly initially
estimate and then fine-tune the boundary. In particular, we introduce an uncertain domain, which
encloses the instances which can hardly be classified into known or unknown with high confidence.
We extensively evaluate the importance of domain division on several zero-shot learning bench-
marks and achieved significant improvement over existing ZSL approaches.

2 RELATED WORKS

One-Class Classification (OCC). It is also known as the unary classification or class-modeling.
The OCC assumes that the training set contains only the positive samples of one specific class. By
learning from such positive instances, OCC aims at identifying the instances belonging to that class.
The common algorithms of OCC include One-class Support Vector Machine (OCSVM)|SchAlkopf
et al|(2001), Local Outlier Factor (LOF) Breunig et al.| (2000). OCSVM leverages Support Vector
Data Description (SVDD) to get a spherical boundary in feature space. It regularizes the volume of
hypersphere so that the effects of outliers can be minimized. The LOF measures the local deviation
of the density of a given instance comparing to other instances, namely locality. The locality repre-
sents the density of the area. The instances in low-density parts can be taken as outliers. Note that
all OCC algorithms just considered and build a boundary for the positive instances of one class.

Open Set Learning (OSL). It judges whether the instances belong to known/seen classes |Sattar,
et al. (2015)); Scheirer et al.| (2014} 2013); Bendale & Boult| (2015) or a novel unknown class. Both
the OCC and OSL are able to divide the instances into known and unknown domains and recognize
the known classes from the known domain. OSL aims at discriminating the instances into seen
classes and instances beyond these classes are categorized into a single novel class. Critically OSL
does not have the semantic prototypes of unseen classes to further give the class label of those
instances in the novel class. Both the OCC and OSL are able to divide the instances into known
and unknown domains and recognize the known classes in the known domain. Intrinsically, their
key difference lies in whether leveraging the information of different seen classes in building the
classifiers. Specifically, OCC only utilizes the instances of one class to learn its class boundary,
whilst OSL can use the instances of different seen classes.

Zero-Shot Learning (ZSL). ZSL aims at recognizing the novel instances which have never been
trained before. It transfers the knowledge learned from known source classes to recognize the testing
instances from unknown target classes. The knowledge can be formulated as semantic attributes
Farhadi et al.| (2009); Lampert et al.| (2009); |[Fu et al.| (2015), semantic word vector [Norouzi et al.
(2013)); Frome et al.|(2013)); Fu & Sigal|(2016)); Xu et al.|(2017) or ontology Rohrbach et al.|(2010).
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However, ZSL usually assumes that the unseen classes cannot be mis-classified as seen classes and
vice versa. This has greatly simplified the learning task.

Generalized Zero-Shot Learning. Chao ez al. [Changpinyo et al.|(2016) realized that it is nontrivial
to directly utilize the existing Zero-Shot Learning algorithms in a more general setting, i.e., G-ZSL.
In such a setting, the testing instances can come from either the seen or unseen classes. A thorough
evaluation of G-ZSL is further conducted in|Xian et al.|(2017). Their results show that the existing
ZSL algorithms do not perform well if directly applied to G-ZSL. The predicted results are inclined
to be biased towards seen classes.

3 LEARNING TO CATEGORIZE INSTANCES INTO DIFFERENT DOMAINS

3.1 PROBLEM SETUP

In learning tasks, we are given the training dataset, i.e., seen classes, of n, instances, D, =
{xi,¥i, ll}?=1 x; € R™ is the feature of i, instance with the class label I; € C,, where C, is the
source class set; n¢ is the number of instances in seen class c. Analogous to standard ZSL setting,
we introduce the target label classes C; with Cs [ C; = 0 and the total class label set C = C,; U C;.
y; is the semantic attribute vector of instance x;. In general, the y; of instances in one class should
be the same |Lampert et al.| (2014). We simplify y. as the semantic prototype for all the instances in
class c. Given one test instance x;, our goal is to predict its class label ¢;. We discuss two tasks: (1)
Open set recognition: ¢; € {Cs,’ novel class'}; (2) Generalized zero-shot learning: ¢; € {Cs,C;}.
The semantic prototype is predefined for each class in C;. The ’novel class’ is an umbrella term
referring to any class not in Cs.

3.2 EXTREME VALUE DISTRIBUTIONS

We firstly introduce the background of modeling the extreme values (i.e., minimum/maximum
scores) computed from one supervised classifier as the extreme value distributions. In particular, by
using each source class ¢, we can train a binary predictor function, e.g. SVM, z¢ = f. (x) : R” - R
where z is the confidence score of instance x belonging to the class c. In Extreme Value Theory
(EVT) , the extreme values (i.e., maximum / minimum confidence scores) of the score distribution
computed by the predictor function f, (-) can be modeled by an EVT distribution. Specifically, for
instance set {x} that belong to class ¢; the minimum score z¢; = minf. ({x}) follows the Weibull

distribution,

i o G (2 Ay Ve, i) (1)

where G (-) is the Cumulative Distribution Function (CDF) of Weibull distribution (z > v):
G(2% Ae, Ve, ke) = 1 — exp (— (%) ’C) . Critically, Eq (1) models the lower boundary dis-

c

tribution of instance confidence scores belonging to class c¢. On the other hand, for instance set
{x} NOT belonging to class ¢, the maximum score 25 ., = maxf. ({x}) should follow the reverse

Weibull distribution |Scheirer et al.|(2011;2012;[2014),

Ziax Bra (z )\C,VC, K ) ()
where G (+) is the CDF of reverse Weibull distribution:
T‘G(Z )\C,Vc,m)zl—G<z )\C,VC,K) 3)

Eq (@) models the upper boundary distribution of confidence scores NOT belonglng to class c. The

scale parameters A, )\ shape parameters ., .., and location parameters v,, v/, are estimated by
Maximum Likelihood Estimator fitted from the tralnlng data. Critically, Eq. ([Z]) models the upper
boundary distribution of instance confidence scores NOT belonging to class c.

3.3 WEAKNESS OF CATEGORIZING INSTANCES INTO KNOWN/UNKNOWN DOMAINS

One can conduct the OSL and G-ZSL by directly learning to separate the domains of seen and
novel/unseen classes. The idea of learning to divide testing instances to known or unknown domains
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has been studied in W-SVM [Scheirer et al.| (2014) (OSL), and CMT [Socher et al.| (2013)) (G-ZSL).
Particularly, given a test instance x;, the supervised binary algorithm can compute the confidence
score z¢ = f.. (x;) belonging to the class c. Here we introduce two events:

F1 : x; belonging to class c;

E5 @ x; belonging to the other seen classes.

The distributions of extreme values defined in Eq (T) and Eq (2) can actually give us the boundary

of each event above happened in a probabilistic perspective. Thus we can have the probability
c Ke c ’ K‘/c

P (E1) =1—exp (— (%) ); and P.g (—Es) = exp (— (Z/\%IJC) . Thus, to determine

if one testing instance x; belong to class ¢, W-SVM |Scheirer et al.| (2014) computes the statistic

m. (x;) by,

me (i) = Pra (0B2 | fe (%)) - P (Bx | fe (%)) S

W-SVM introduces a threshold ¢, to determine whether the instance 4 belongs to the class c as,

¢ me(x;) >0

i = . 5

¢ {—@ otherwise )

where &, is a fixed value [Scheirer et al.| (2014). The instance x; rejected by all the seen classes by

Eq (3) is labeled as the unknown domain. Generalizing to C, class is straightforward by training
multiple prediction functions {f. (x)},c=1,---,|Cq]|.

However, there are several key limitations in directly utilizing Eq @) and Eq (3) of learning the di-
vision of domains: (1) Eq (4) directly multiplies two terms and this indicates that there is a potential
hypothesis that no correlation exists between E; and —FEs, which is generally not the case. (2) In
multiple seen classes, the instances may derive from many different classes. It is hard to determine a
single fixed ¢ in Eq (5) for each class. (3) Furthermore, we give an illustration of the non-negligible
overlapping between the intra-class and inter-class distances of each pair of instances on the aPY
dataset (described in Sec. 6.1/Farhadi et al.| (2009)). As shown in the feature space of Fig. [2](b), we
compute the pairwise Lo distances over (1) the instances within the same classes (intra-class), and
(2) the instance from different classes (inter-class) on aPY dataset |Farhadi et al.| (2009). We use the
empirical density to show the results in Fig. [2] (c). Practically, it is hard to predict the class labels
of instances of the overlapped region in the known/unknown domain. Due to the large overlapped
region, the instances (e.g., CMT in |Socher et al.| (2013)) whose domains are wrongly labeled will
never be correctly categorized.

4 PROPOSED DOMAIN DIVISION ALGORITHM

4.1 DETERMINING THE INITIAL BOUNDARY BY BOOTSTRAPPING

The W-SVM in Eq (5) and Eq () estimates the confidence scores by a fixed threshold empirically
per-defined for any data distributions in the known domain. However, intrinsically, it can be taken
as a model selection task in estimating the boundary by Eq (4). In this paper, we tackle the question
of constructing the boundary of the known domain via the bootstrap approach |[Efron| (1979). The
bootstrappinﬁ is a strategy of estimating the standard errors and the confidence intervals of param-
eters when the underlying distributions are unknown. Its procedures are closely related to the other
methods such as cross-validation, and jackknife.

Bootstrapping is the most widely used tool in approximating the sampling distributions of test
statistics and estimators. To facilitate the discussion, we denote the training set of class c as
{x{,.}; the testing set whose instances are mostly confidently predicted as class ¢, as {x§, }. Thus
the corresponding confidence score set on training and testing data are {zf.} = f. ({x§.}) and
{z.} = fe ({x¢,}) respectively. The whole algorithm is shown in Alg.

Till now, we had a sketch of our domain division algorithm. Specifically, the training instances of
seen classes are utilized to learn the f. (-), ¢ € C; For any given testing instance x;, we compute

21t is different from “bootstrapping” (i.e., self-training) in computer vision Shrivastava et al.[(2012).
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Algorithm 1 Determining the initial threshold by bootstrapping

Input: Confidence score set on training data {zf,. }
Output: Threshold d.:
1. We sample from {z{,} for n times (with replacement), producing a sampling set {Etcr( k) }ZZI, where

Z¢r (k) indicates the k;p, sampled instance;

2. We also choose the significance level «, and generate the « quantile Z§;* from {Efr( k) }Z_l. Particu-
larly, we sort 27, ;) with an ascending order and extract (max (Round [an], 1)), value as Z;;". We
repeat it for n times over {2, } to get {2/, }:: .

3. The threshold of Eq (5) can thus be computed as the mean of these values, i.e., 5. = = h=1Ztn(k)-

its confidence score f.(x;), ¢ € Cs. To determine whether the class of a instance x; is seen or
unseen, we calculate the statistic m. (x;) in Eq (4) and Eq (5] with the threshold ¢ estimated by the
bootstrapping algorithm in Alg. |1} The instances computed in the known and unknown domain will
be categorized by supervised, or zero-shot classifiers respectively.

There are still two difficulties in the above framework. (1) The whole framework relies on the
classifier f. (+), ¢ € Cs which is supposed to be robust and well-trained. However, empirically, we
can not always train good classifiers for all classes. For example, some class has small number of
labeled training instances which are insufficient in training the classifier; some outliers may affect
the predictor; the hyper-parameters of the classifiers are wrongly tuned. (2) The naive bootstrapping
in Alg. [I] generally provides the bad approximations of the distributions of empirical quantiles
in practice |[Falk & Reiss| (1989). Practically, in our tasks, we observe that the estimated J. may
be consistently too relaxed to determine the boundary of the known domain. We illustrate such
a phenomenon in Figure [2(a): the low-density of seen class bicycle instances (blue points) in the
northwest part extends the decision boundary. The relaxed boundary could inadvertently classify
unseen instances (red points) as the false positives. Unfortunately, in the framework above, once
one testing instance in unseen class is wrongly labeled as the known domain, this instance will never
be correctly classified. To address these two problems, we suggest a shrinking step in updating the
initial boundary of bootstrapping in the next subsection.

4.2 SHRINKING THE BOUNDARY OF THE KNOWN DOMAIN BY KOLMOGOROV-SMIRNOV
TEST

The key idea of updating initial boundary of bootstrapping is to validate whether the learned classi-
fier f. (+), ¢ € Cs is trustworthy. Generally, assume the instances of class ¢ independent and identi-
cally distributed and provided training samples sufficient, a ideal classifier f,. (-) should produce the
similar confidence score distributions of training and testing instances of class c.

The Kolmogorov-Smirnov (K-S) test is an efficient, straightforward, and qualified choice method
for comparing distributions Massey Jr| (1951)); Miller| (1956); |[Wang et al.| (2003). Remarkably, K-S
test is a distribution free test, and the statistics of K-S test is effortless to compute. We define the
null and alternative hypothesis as

Hy : {z{,} and {z{.} are from the same distribution.

(6)

H; : {z{.} and {z{.} are from different distributions.

We introduce a distance measure K¢ = sup || Ff. (z) — FE (2)|| where Ff. = ecdf({zf.}) and

Ff, = ecdf({#f.}); and the ecdf (-) is the empirical distribution function. The null hypothesis
would be rejected at the significant level o when,

2 {2} - {2}

When H) is accepted, it indicates that the f, (-) is trustworthy, and the confidence scores of training
and testing instances in class ¢ come from the same distribution. We are certain that a large portion
of testing instances {z,} = f. ({x{.}) should be indeed in the class c¢. On the other hand, when

Ke(a) > % [CRIRAEATINEY o
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H, is rejected, we are not sure whether f. (-) is well learned; and the class labels of these testing
instances are uncertain. To this end, we introduce a new domain — uncertain domain to include these
instances.

Uncertain Domain. The labels of instances in the uncertain domain should be labeled as the most

: . c _ [Cs]
likely seen class, or one of unseen classes. Specifically, we can compute the {2¢ = f. (x)}.°; over
all C, classes; and we can obtain,

{c*, 2"} = argmax .. {2°}. 8

The mapping function g (-) is learned on the known domain from features x; to its corresponding
semantic attributes y,. Given one testing instance x;: if 2} is very high, we can confidently predict
x; belonging to one of seen classes; otherwise, the label of x; is either in the uncertain or unknown
domain. We thus have,

argmaxf. (x;) seen domain
ceCs
o — Jargmin [lg (x;) —yel|  unseen domain 9)
T ceCy
argmin ||g (x;) — ye|| uncertain domain
c€Ciu{ct)

where y. is semantic prototype of class c¢; ¢* is the most likely known class to which x; be-
longs to. Note that in OSL, we only know the y. (¢ € Cs) of seen classes; We can dynamically
construct a C; set by randomly generating y,; by making sure ||y; —y,|| > € (Vy; € C,), and

€= micn ) lly: — y;ll. The sample size is usually the same with the number of target classes.
Yi,y; €Cs5i7]

5 RECOGNITION MODELS IN KNOWN/UNKNOWN/UNCERTAIN DOMAINS

We can apply different recognition algorithms in each domain. In known domain, the standard
supervised classifiers can be learned and applied. In unknown and uncertain domains, we propose a
simple yet effective feature prototype embedding recognition algorithm as our plain implement.

Feature prototype embedding. Once the domain is well separated, we can use the ZSL algorithms
to set up the mapping from feature space to semantic/attribute space. In order to confirm that our
main contribution is the domain division part, we do not use very complicated ZSL algorithms.
Only the simplest linear predictor is utilized here to recognize the unseen classes. Particularly, we
use feature prototypes to replace all the instances of each class to avoid the unbalance sample size
among classes. We learn a linear predictor to predict the attribute/word vector g (x) = w’ - x. The
feature prototype embedding is computed as,

w = argmin ) _ [|g(X:) = yel + A fwl, (10)
w c€Cyq
where X, = H%Ell:cxi is the feature prototype of class c; y. is the semantic prototype of class c.

When we tackle an instance in the unknown or uncertain domain, we need to embed features into
semantic space with g, which can infer the class labels of instances:

argmin ||g (x;) —yel|  unknown domain
=1 < . . (11)
argmin ||g (x;) —y.| wuncertain domain
ceCU{c*}

where ¢* is the most likely seen class for x; which is computed by the supervised classifier and y.
is the semantic prototype.

Also, the experiment in each domain can be done with ANY other ZSL. For instance, we report the
implement with f~-CLSWGAN (f-C) Xian et al.|(2018) so that G-ZSL can be done with f~-CLSWGAN
within a single domain.
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6 EXPERIMENTS

6.1 DATASETS AND SETTINGS

Datasets. Animal with Attribute (AwA) Dataset |[Lampert et al.| (2014) has 50 classes and 30,475
images in total, with 85 class-level attributes annotated. We use 40 source training classes (including
13 classes as validation); the rest as testing. CUB DatasetWah et al.|(2011) includes 200 classes and
11,788 fine-grain images with 312 class-level attributes annotated. The training set has 150 classes
(including 50 classes as validation). (3) aPY Dataset [Farhadi et al.| (2009) has 15,339 images in 32
classes with 64 class-level annotated attributes. We use 20 classes for training (including 5 validation
classes). For the AwA, CUB and aPY, we use ResNet-101 features and the class split contributed
by Xian et al.| (2017). (4) ImageNet 2012/2010 dataset is proposed in |[Fu & Sigal (2016). As the
large-scale dataset, we use the split as |[Fu & Sigal| (2016): 1000 training classes with full training
instances in ILSVRC 2012; and 360 testing classes in ILSVRC 2010, non-overlapped with ILSVRC
2012 classes. We address two recognition tasks: OSL and G-ZSL.

Experimental settings. Our model is validated in OSL and G-ZSL settings. OSL identifies whether
an image belongs to the one of seen classes or the novel class. G-ZSL gives the class label of testing
instances either from seen or unseen classes. We set the significance level o = 0.05 to tolerate
5% Type-1 error. By default, we use SVM with RBF kernel with parameter cross-validated, unless
otherwise specified.

6.2 RESULTS OF OPEN SET LEARNING

We compare against the competitors, including Attribute Baseline (Attr-B), W-SVM |Scheirer et al.
(2014), One-class SVM SchAlkopf et al.[(2001), Binary SVM, OSDN |Bendale & Boult|(2016) and
LOF Breunig et al.| (2000). The attribute baseline is the variant of our task without using domain
division algorithm. Particularly, the Attr-B uses the same semantic space and embedding as our
model, but does not leverage domain division step, i.e., use negative samples and prototypes to
identify projected instances directly (Fig. [1|(c)).

We use the metric — F1-measure, which is defined as the harmonic mean of seen class accuracy (spe-
cific class) and unseen prediction accuracy (unnecessary to predict the specific class). The results
are compared in Tab. [1] Significant performance gain over existing approaches has been observed,
in particular for AwA, aPY and ImageNet. This validates the effectiveness of our framework. We
attribute the improvement to the newly introduced uncertain domain which help better differentiate
whether testing instances derive from known or unknown domain.

Table 1: Comparison of open set recognition algorithms
Method / Accuracy AwA  CUB  aPY  ImageNet

Attr-B 33.8 18.7 5.1 3.7
Binary SVM 57.7 29.8  66.6 24.6
W-SVM 80.2 586 786 50.1
One-Class SVM 58.9 276 571 234
OSDN 49.9 36.7 415 -

LOF 60.0 545  49.1 38.0
Ours 93.7 59.5 943 67.6

6.3 RESULTS OF GENERALIZED ZERO-SHOT LEARNING

Settings: We first compare the experiments on G-ZSL by using the settings in |Xian et al.| (2017).
The results are summarized in Tab. [2] In particular, we further compare the separate settings;
and top-1 accuracy in (%) is reported here: (1) S — T: Test instances from seen classes, the
prediction candidates include both seen and unseen classes; (2) U — T: Test instances from unseen
classes, the prediction candidates include both seen and unseen classes. (3) We employ the harmonic
mean as the main evaluation metric to further combine the results of both S — T and U — T, as
H =2 (Acc(U—T) x Ace(S — T)) / (Ace(U — T) 4 Ace(S — T)).

Competitors. We compare several competitors. (1) DAP Lampert et al.|(2014), trains a probabilistic
attribute classifier and utilizes the joint probability to predict labels; (2) ConSE |Norouzi et al.[(2013)),
maps features into the semantic space by convex combination of attributes; (3) CMT |Socher et al.
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Table 2: G-ZSL Results on AwA, CUB and aPY. (* Our implement; ! Plain implement: prototype
linear mapping; 2 Implement with f-C)

AwA CUB aPY

U—-T S—T H U—-T S—T H U—-T S—>T H
Chance 2.0 2.0 - 0.5 0.5 - 3.1 3.1 -
DAP 0.0 88.7 0.0 1.7 67.9 33 4.8 78.3 9.0
ConSE 0.4 88.6 0.8 1.6 72.2 3.1 0.0 91.2 0.0
CMT 8.4 86.9 15.3 4.7 60.1 8.7 10.9 74.2 19.0
SSE 7.0 80.6 12.9 8.5 46.9 14.4 0.2 78.9 0.4
Latem 7.3 71.7 13.3 15.2 57.3 24.0 0.1 73.0 0.2
ALE 16.8 76.1 27.5 23.7 62.8 34.4 4.6 73.7 8.7
DeViSE 13.4 68.7 22.4 23.8 53.0 32.8 49 76.9 9.2
SJE 11.3 74.6 19.6 23.5 59.2 33.6 3.7 55.7 6.9
ESZSL 6.6 75.6 12.1 12.6 63.8 21.0 2.4 70.1 4.6
SYNC 8.9 87.3 16.2 11.5 70.9 19.8 7.4 66.3 13.3
SAE 1.1 82.2 2.2 7.8 54.0 13.6 0.4 80.9 0.9
SE-G 56.3 67.8 61.5 41.5 53.3 46.7 - - -
cycle-C 56.9 64.0 60.2 45.7 61.0 52.3 - - -
f-C 57.9 61.4 59.6 43.7 57.7 49.7 - - -
PTMCA 22.4 80.6 35.1 23.0 51.6 31.8 154 71.3 25.4
f-C* 57.8 72.4 64.2 43.4 58.3 49.8 16.8 45.7 24.6
Ours! 53.6 90.4 67.3 37.2 45.2 40.8 44.0 89.2 58.9
Ours? 66.0 91.2 76.6 53.1 59.4 56.1 22.4 81.3 35.1

(2013), projects features into unsupervised semantic space and uses LOF to detect novel classes; (4)
SSE [Zhang & Saligramal (2015)), regards novel classes as mixtures of seen proportions to measure
the instance similarity. (5) Latem|Xian et al.|(2016), is a novel latent embedding for ZSL and G-ZSL.
(6) ALE |Akata et al.| (2016), embeds labels into the attribute space by learning a function to rank
the likelihood of each class. (7) DeViSE [Frome et al.| (2013), uses both unsupervised information
and annotated attributes to classify classes in an embedding model; (8) SJE |Akata et al.| (20135) is
a hierarchical embedding to learn an inner product gram matrix between features and attributes.
(9) ESZSL Romera-Paredes & Torr| (2015), focuses on the regularization term in the projection from
features to semantic space. (10) SYNC|Changpinyo et al.| (2016)), aligns the semantic space to feature
space by manifold learning. (11) SS-VOC |Fu & Sigal| (2016)), optimizes the triplet loss to learn the
projection from features to semantic space. (12) SAE |Kodirov et al.|(2017) is an auto-encoder to
combine feature and semantic space. (13) SE-GZSL |Verma et al.| (2018)) leverages VAE Kingma
& MaxWelling (2014) as the generator of pseudo instances to train the mapping. (14-15) cycle-
CLSWGAN (cycle-C) & f-CLSWGAN (f-C) [Felix et al.| (2018)); [Xian et al.| (2018)): both of them use
W-GAN |Arjovsky et al|(2017) to reconstruct features and cycle-C adds another regularizer. (16)
PTMCA |Long et al.| (2018)) uses transfer approach and embedding way to reduce bias and variance.

Table 3: G-ZSL on the large-scale dataset — ImageNet 2012/2010.
SS-Voc  SAE ESZSL DeViSE ConSE Chance Ours

U—-T 23 0.2 0.5 0.4 0.0 <0.1 5.7
S—T 335 32.8 38.1 24.7 56.2 <0.1 54.1
H 43 0.5 0.9 0.8 0.0 - 10.3

Results. As seen in Tab. |2 our harmonic mean results are significantly better than all the competitors
on almost all the datasets. This shows that ours can effectively address the G-ZSL tasks. Particularly,

(1) Our plain results can beat other competitors by a large margin on AwWA and aPY dataset, due
to the efficacy of our domain division algorithm. Also, thanks to the power of f~-CLSWGAN (f-C),
our implement with it on both CUB and AwA dataset are impressive. (2) The key advantage of the
proposed framework is learning to better divide the testing instances into known, uncertain and un-
known domains. In the known domain, we use the standard SVM classifier. In unknown/uncertain
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Table 4: Ablation Study. 1//X indicate using/not using the corresponding step respectively.

Dataset AwA aPY CUB

K-S test Vv Vv X X Vv Vv X X v Vv X X
Bootstrap N4 X Vv X N4 X Vv X v X vV X

OSL 93.7 856 371 802 943 8.1 368 786 595 593 329 58.6
G-ZSL 67.3 635 114 617 589 405 6.9 195 408 381 121 31.0

domains, we directly embed feature prototypes into semantic space and match the most likely class
in the candidate pool. This is the most simple and straightforward recognition method. Thus our
good harmonic mean performance on G-ZSL largely comes from the good domain division algo-
rithm. Additionally, we also highlight that the other advanced supervised or zero-shot algorithms are
orthogonal and potentially be useful in each domain if we want to further improve the performance
of G-ZSL. (3) Our framework is also applied to large-scale datasets in Tab. [3] We compare several
state-of-the-art methods that address G-ZSL on the large-scale dataset. We use the SVM with the
linear kernel on this dataset, due to the large data scale. Our harmonic mean results surpass the
other competitors with a very significant margin. We notice that other algorithms have very poor
performance on U — T. This indicates the intrinsic difficulty of G-ZSL on large-scale dataset. In
contrast, our domain division algorithm can better separate the testing instances into different do-
mains; thus achieving better recognition performance. Additionally, we found that the prediction of
ConSE [Norouzi et al.| (2013)) is heavily biased towards known classes which is consistent with the
results in small datasets. This is due to the probability of unseen classes are expressed as the convex
combination of seen classes. Usually, there is no higher probability would be assigned to unseen
classes than the most probable seen class, especially for large datasets.

6.4 ABLATION STUDY

In the ablation study, we report the F1-measure and Harmonic mean for OSL and G-ZSL respectively
with our plain implement. As is illustrated in Fig. |2| we notice that although the distance statistic
shows the different histogram patterns in feature space, the overlapping part is not negligible.

Importance of bootstrapping the initial threshold. We introduce a variant A of our framework by
replacing bootstrapping step (Sec. by using Eq @) and Eq (3) to fix the threshold (i.e., W-SVM
Scheirer et al.| (2014)), i.e., K-S test (1/), and Bootstrap (x). As in Tab. El, the results of variant A
are significantly lower than our framework on all three datasets. This actually directly validates the
importance of determining the initial threshold by bootstrapping.

Improvements of fine-tuning the threshold by K-S test. We define the variant B is to only use
step without fine-tuning the boundary by K-S Test (in Sec. {f.2). Tabled]directly shows the improve-
ment with/without fine-tuning the threshold, i.e., K-S test (x), and Bootstrap (/). In particular, we
note that variant B has significant lower results on OSL and G-ZSL than variant A and our frame-
work. One reason is that our bootstrapping step actually learns to determine a very wide boundary
of the known domain, to make sure the good results in labeling testing instances as unknown do-
main samples. The fine-tuning threshold step will further split the individual known domain into
known/uncertain domain by shrinking the threshold. Without such a fine-tuning step, variant B may
wrongly categorize many instances from unseen classes as one of the known classes. Thus, we can
show that the two steps of our framework are very complementary to each other and they work as a
whole to enable the good performance on OSL and G-ZSL. Finally, we introduce the variant C in
Tab. 4} by using W-SVM to do OSL, and then use our ZSL model for G-ZSL, i.e., K-S test (x), and
Bootstrap (x). The performance of variant C is again significantly lower than that of ours, and this
demonstrates the efficacy of our model.

7 CONCLUSION

This paper learns to divide the instances into known, unknown and uncertain domains for the recog-
nition tasks from a probabilistic perspective. The domain division procedure consists of bootstrap-
ping and K-S Test steps. The bootstrapping is used to set an initial threshold for each class; we
further employ the K-S test to fine-tune the boundary. Such a domain division algorithm can be used
for OSL and G-ZSL tasks, and achieves remarkable results.

10
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